JP5516929B2 - Carbon nanotube material for negative electrode and lithium ion secondary battery using the same as negative electrode - Google Patents

Carbon nanotube material for negative electrode and lithium ion secondary battery using the same as negative electrode Download PDF

Info

Publication number
JP5516929B2
JP5516929B2 JP2008298925A JP2008298925A JP5516929B2 JP 5516929 B2 JP5516929 B2 JP 5516929B2 JP 2008298925 A JP2008298925 A JP 2008298925A JP 2008298925 A JP2008298925 A JP 2008298925A JP 5516929 B2 JP5516929 B2 JP 5516929B2
Authority
JP
Japan
Prior art keywords
carbon
negative electrode
lithium
carbon nanotube
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008298925A
Other languages
Japanese (ja)
Other versions
JP2010129169A (en
Inventor
修 棚池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008298925A priority Critical patent/JP5516929B2/en
Publication of JP2010129169A publication Critical patent/JP2010129169A/en
Application granted granted Critical
Publication of JP5516929B2 publication Critical patent/JP5516929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はリチウムイオン二次電池に用いられる負極用炭素材料に関し、更に詳しくは改質されたカーボンナノチューブおよびこれを負極とするリチウムイオン二次電池に関する。   The present invention relates to a carbon material for a negative electrode used in a lithium ion secondary battery, and more particularly to a modified carbon nanotube and a lithium ion secondary battery using the carbon nanotube as a negative electrode.

リチウムイオン二次電池は、充放電時に電解液中のリチウムイオンが正極と負極を移動するタイプの電池である。
このようなリチウムイオン二次電池においては、正極、負極ともに、リチウムを可逆的に格納できる物質が用いられ、両極でのリチウムの挿入・脱離の電位差が電池の起電力となる。電解液にはリチウムイオンが移動できる液体または固体の電解質が使用される。
A lithium ion secondary battery is a type of battery in which lithium ions in an electrolyte move between a positive electrode and a negative electrode during charging and discharging.
In such a lithium ion secondary battery, a material capable of reversibly storing lithium is used for both the positive electrode and the negative electrode, and the potential difference between insertion and desorption of lithium at both electrodes becomes the electromotive force of the battery. As the electrolytic solution, a liquid or solid electrolyte capable of moving lithium ions is used.

このうち、負極材料については、理論上最も卑な電位で動作する大容量の電極材料はリチウム金属である。すなわち、リチウムイオンが電子を受け取りリチウム金属として析出する反応が最も大容量で、その理論容量は3861mAh/gに達する。また、最も卑な電位で動作できる負極となり、各種正極と組み合わせた時に、最も高い起電力を与えることができる。
しかし、リチウム金属は針状結晶(デンドライト)として析出するため、使用を繰り返すことで正極との短絡を起こす危険性が指摘されており、現在はごく限られたボタン電池などのみに使用されている。そこで、大容量で可逆的にリチウムを格納することができる材料が代わりに求められる。
Among these, for the negative electrode material, the electrode material having a large capacity that operates at the lowest potential in theory is lithium metal. That is, the reaction in which lithium ions receive electrons and precipitate as lithium metal has the largest capacity, and the theoretical capacity reaches 3861 mAh / g. Moreover, it becomes a negative electrode which can operate at the lowest potential, and can give the highest electromotive force when combined with various positive electrodes.
However, since lithium metal precipitates as needle-like crystals (dendrites), there is a risk of short-circuiting with the positive electrode due to repeated use, and it is currently used only for very limited button batteries. . Therefore, a material capable of reversibly storing lithium with a large capacity is demanded instead.

リチウムの溶解析出電位は非常に卑な電位であることから、多くの化合物は腐食されてしまうが、炭素材料はこの電位でも安定であり、起電力の高い電池には推奨されている。
このうち黒鉛は、層状物質であり、その層間にリチウムイオンを取り込んで、組成式LiC6のリチウム黒鉛層間化合物が生成する。このときの電位はリチウム金属の電位と、約+0.06Vほどしか離れていないため、正極反応と併せた時には、高い起電力が保持できる。また、その充放電電位はほぼ一定であり、黒鉛自体は導電性が高いため内部抵抗ロスが小さく、充放電効率(放電量に対する充電量の割合。すなわち、入れた電気をどれだけ取り出せるかの目安)も90%を超えるなど、安定した動作が見込めるため、現在の携帯電話などのリチウムイオン電池には、ほぼ、黒鉛材料が用いられている。
Since the dissolution and precipitation potential of lithium is a very low potential, many compounds are corroded, but carbon materials are stable even at this potential and are recommended for batteries with high electromotive force.
Of these, graphite is a layered substance, and lithium ions are taken in between the layers, thereby producing a lithium graphite intercalation compound of composition formula LiC6. Since the potential at this time is only about +0.06 V away from the potential of lithium metal, a high electromotive force can be maintained when combined with the positive electrode reaction. In addition, the charge / discharge potential is almost constant, and the graphite itself has high conductivity, so the internal resistance loss is small, and the charge / discharge efficiency (ratio of charge to discharge). ) Exceeds 90%, and stable operation can be expected. For this reason, graphite materials are mostly used in current lithium ion batteries such as mobile phones.

一方、LiC6の組成における理論容量は372mAh/gに過ぎず、たとえば電気自動車用途など、より大容量の電池を設計するには十分な容量とはいえない。   On the other hand, the theoretical capacity in the composition of LiC6 is only 372 mAh / g, and it cannot be said that the capacity is sufficient for designing a battery with a larger capacity, for example, for an electric vehicle.

そこで、同じ炭素材料である、低温焼成炭素や難黒鉛化性炭素(ハードカーボン)を用いる試みが長く行われてきた。これらは、炭素六角網面が黒鉛のように大きくはなく、かつ、ランダムに積層している炭素材料と考えることができ、LiC6の層間化合物の形成反応とともに、炭素中の空隙や欠陥などにリチウムを格納できるため黒鉛の二倍以上の700〜800mAh/gを示すものもある。
しかし、挿入されたリチウムが一部取り出せない、表面皮膜(SEI)の生成量が多い、低温焼成ほど導電性に乏しい、などの理由により充放電効率が黒鉛と比べて悪く、また、充放電の電位プロファイルが一定でなく、容量に比例して電位が変化するため、小型機器などの電池には不向きであるなどの欠点もあり、黒鉛を置き換えるほどの製品化はされていない。
Thus, attempts have been made for a long time to use the same carbon material, such as low-temperature calcined carbon and non-graphitizable carbon (hard carbon). These can be thought of as carbon materials with carbon hexagonal mesh surfaces that are not as large as graphite, and are laminated randomly. LiC6 intercalation compound formation reactions, along with voids and defects in carbon, etc. Can store 700-800 mAh / g more than twice that of graphite.
However, the charge / discharge efficiency is worse than graphite due to the fact that some of the inserted lithium cannot be removed, the amount of surface film (SEI) generated is large, the conductivity is poorer at low temperature firing, etc. Since the potential profile is not constant and the potential changes in proportion to the capacity, there is a disadvantage that it is not suitable for a battery such as a small device, and the product has not been commercialized to replace graphite.

以上の背景から、負極材料として他の炭素系材料を用いたリチウムイオン二次電池についての研究も盛んに行われるに至っている。
この中で、カーボンナノチューブも炭素原子のみから成る材料のひとつであるため様々なナノチューブ類へのリチウム挿入脱離の研究が多くなされている。
From the above background, research on lithium ion secondary batteries using other carbon-based materials as negative electrode materials has been actively conducted.
Among these, since carbon nanotubes are one of the materials consisting of only carbon atoms, many studies have been conducted on lithium insertion / extraction from various nanotubes.

カーボンナノチューブの場合は、図6に示すように、リチウムの挿入空間として、(1)壁の層間、(2)チューブ内空間、(3)バンドル空間の3つが考えられる。
このうち、チューブ内空間は、これまで、きれいに先端部のみを開口する技術が確立していないため、その中に可逆的にリチウムを挿入脱離した、という報告はまだ信憑性が薄い。また、壁の層間は単層カーボンナノチューブでは存在しないため、多層カーボンナノチューブに限られるが、層が筒構造になっていることで、リチウム挿入に伴う層間の膨張がストレスに阻害され膨張が起こりにくく、壁の部分については、黒鉛系ほどの容量が期待できない、という報告がある。バンドル空間についてはナノチューブの積み重なったチューブとチューブに挟まれたナノチューブ特有の空間であり、黒鉛の層間と同じくファンデアワールス空間とみなされ、ここへの物質の貯蔵が早くから期待されている。バンドル空間量が最も多いのは単層カーボンナノチューブであり、非特許文献1の論文によると、レーザーアブレーション法による比較的バンドル構造の発達した単層カーボンナノチューブへのリチウム挿入量は470mAh/gという報告がされ、in-situ XRD法から、チューブバンドル間へのリチウム挿入とされている。それ以降、さまざまなチューブへのリチウム挿入の研究が行われた。現在では、チューブの製法、構造や純度などの異なるものに関して、ことから、〜800mAh/gという報告もなされている。(非特許文献2〜3)
In the case of carbon nanotubes, as shown in FIG. 6, there are three possible lithium insertion spaces: (1) a wall layer, (2) a tube space, and (3) a bundle space.
Among these, since the technology for opening only the tip portion of the space inside the tube cleanly has not been established so far, reports that lithium is reversibly inserted and desorbed are still unreliable. In addition, single-walled carbon nanotubes do not exist between the wall layers, so they are limited to multi-walled carbon nanotubes. However, since the layers have a cylindrical structure, the expansion between the layers due to lithium insertion is hindered by stress and is unlikely to expand. There is a report that the wall portion cannot be expected to have a capacity as high as that of graphite. The bundle space is a unique space of nanotubes sandwiched between tubes where tubes are stacked, and is regarded as a van der Waals space as well as the graphite layer, and storage of materials here is expected from an early stage. Single-walled carbon nanotubes have the largest amount of bundle space. According to a paper by Non-Patent Document 1, the amount of lithium inserted into single-walled carbon nanotubes with a relatively bundle structure developed by laser ablation is 470 mAh / g. In-situ XRD method is used to insert lithium between tube bundles. Since then, lithium insertion into various tubes has been studied. At present, there are also reports of ~ 800 mAh / g regarding different tube manufacturing methods, structures and purity. (Non-patent documents 2-3)

このように、カーボンナノチューブは炭素系材料なので、リチウム金属に近い、卑な電位でリチウムを挿入することができ、起電力を大きくとれ、またリチウム挿入空間が多彩であることから、黒鉛の理論容量を超えたより大きな容量が望める。また、それ自体が導電性を有しており、酸化物電極などと異なり導電助剤が不要であるなどといった多くのメリットを有するものである。
しかしながら、可逆容量は黒鉛よりも大きいものの、初期不可逆容量が黒鉛と比べものにならないくらい大きいため、実使用に耐える電池を作製することができないといった致命的な欠点を有する。以下、このことを図面を用いて説明する。
Thus, since carbon nanotubes are carbon-based materials, lithium can be inserted at a base potential close to that of lithium metal, the electromotive force can be increased, and the lithium insertion space is diverse. Greater capacity than can be expected. In addition, it itself has electrical conductivity, and has many merits such as no need for a conductive aid unlike an oxide electrode.
However, although the reversible capacity is larger than that of graphite, since the initial irreversible capacity is not so large as that of graphite, there is a fatal defect that a battery that can withstand actual use cannot be manufactured. Hereinafter, this will be described with reference to the drawings.

図7と8は、それぞれ黒鉛および市販HiPco法によるカーボンナノチューブを用いたリチウムの充放電曲線である。
図7から、黒鉛の場合は、0.8V付近で非常に小さなプラトー(平坦部)が生じ、これが表面皮膜(SEI)の形成に使用された電流量に相当する。SEIは、一回目のリチウム挿入時に、黒鉛層の表面近傍で一部の溶媒分子が層間に入り込んで、そこで電気化学分解されることで生成するリチウムイオンを含んだ有機化合物である。このSEIは、導電性はないが、リチウムイオンは通り抜けることができ、したがって、SEIの表面で溶媒和されているリチウムから溶媒分子が外れ、リチウムのみがSEIを抜けて黒鉛層の中に挿入される仕組みとなっており、このため、SEIは、最低限は生成しなければいけない。SEIが生成した後は、0V付近で電流が流れており、ここが、リチウムの黒鉛層間への挿入に相当する。この、0V付近での挿入量は、約300mAh/gに相当し、実験室レベルでの黒鉛での値に非常にマッチしている。2回目以降の充放電ではすでにSEIは出来上がっているので、0V付近でのプラトーのみが観測される。黒鉛でSEIの量が小さいのは、露出している黒鉛表面が小さいからである。
7 and 8 are charge and discharge curves of lithium using carbon nanotubes by graphite and a commercial HiPco method, respectively.
From FIG. 7, in the case of graphite, a very small plateau (flat portion) is generated around 0.8 V, and this corresponds to the amount of current used for forming the surface film (SEI). SEI is an organic compound containing lithium ions that are generated when some of the solvent molecules enter the interlayer near the surface of the graphite layer and undergo electrochemical decomposition there at the first lithium insertion. This SEI is not conductive, but lithium ions can pass through, so the solvent molecules are detached from the lithium solvated on the surface of the SEI, and only lithium passes through the SEI and is inserted into the graphite layer. Therefore, SEI must be generated at a minimum. After SEI is generated, a current flows around 0V, which corresponds to the insertion of lithium between the graphite layers. The amount of insertion near 0 V corresponds to about 300 mAh / g, which is very close to the value of graphite at the laboratory level. Since the SEI has already been completed in the second and subsequent charging / discharging, only a plateau near 0V is observed. The reason why the amount of SEI in graphite is small is that the exposed graphite surface is small.

一方、高圧一酸化炭素法(HiPco法)によるカーボンナノチューブでは、図8から、1V付近での異常に巨大で平坦なプラトーが見られ、1500mAh/gの初期不可逆容量が生じていることから、チューブの表面でSEIに相当する溶媒のほぼ単一の電気化学分解反応が激しく起っていることがわかる。HiPco法の場合はSEIが生成し終わったあとは、0V付近に近いところで400mAh/g程度の可逆容量が生じており、これは文献値と同じ、チューブバンドル空間へのリチウム挿入脱離量と思われる。   On the other hand, carbon nanotubes produced by the high-pressure carbon monoxide method (HiPco method) show an abnormally large and flat plateau near 1 V, and an initial irreversible capacity of 1500 mAh / g is generated from FIG. It can be seen that almost a single electrochemical decomposition reaction of the solvent corresponding to SEI occurs on the surface. In the case of the HiPco method, after SEI has been generated, a reversible capacity of about 400 mAh / g occurs near 0 V, which is the same as the literature value, which is the amount of lithium insertion / extraction into the tube bundle space. It is.

以上のように、カーボンナノチューブは、黒鉛よりも大きな可逆容量を生じる可能性を有しているが、初回のリチウム挿入時に生じるSEI量が異常なほど大きく、初期不可逆容量が黒鉛の100倍以上にも達するため、製品とする場合は、作製した電池を初回充電してもその10〜20%程度しか放電できない、という致命的な欠点を有する。また、SEIは絶縁性なので、あまり大量に生成すると、電池の内部抵抗を下げてしまい、ハイパワーを必要とする車載用電池などには使用できなくなってしまう。
したがって、このSEIの生成量を黒鉛並に小さくし、その初期不可逆容量を大幅に低減できれば、ナノチューブの固有の物質格納空間をリチウム貯蔵に用いる用途展開にうまく生かすことができ、有用なリチウムイオン二次電池の創製が期待できる。
As described above, the carbon nanotube has a possibility of generating a reversible capacity larger than that of graphite, but the amount of SEI generated at the first insertion of lithium is abnormally large, and the initial irreversible capacity is 100 times or more that of graphite. Therefore, in the case of a product, there is a fatal defect that only about 10 to 20% can be discharged even if the manufactured battery is charged for the first time. Moreover, since SEI is insulative, if it is produced in a large amount, the internal resistance of the battery is lowered, and it cannot be used for an in-vehicle battery that requires high power.
Therefore, if the amount of SEI produced can be reduced to the same level as graphite and the initial irreversible capacity can be significantly reduced, the unique material storage space of the nanotube can be utilized well for application development using lithium storage, and useful lithium ion secondary The creation of the next battery can be expected.

A.S.Claye, et al., J.Electrochem.Soc. 147(8) 2845-2852(2000)A.S.Claye, et al., J. Electrochem.Soc. 147 (8) 2845-2852 (2000) 小宮山慎悟等、「炭素」、No.216(2005)p.25.Shingo Komiyama et al., `` Carbon '', No.216 (2005) p.25. 安部武志、「電気化学会誌」, Vol.76 , No.5 , p.354-357 (2008).Takeshi Abe, `` Journal of the Electrochemical Society '', Vol.76, No.5, p.354-357 (2008).

本発明は、リチウム挿入空間が多彩であり、より黒鉛に比べ大きな電気容量が望めると共に、酸化物電極などと異なり導電助剤が不要であるといった多くのメリットを有する負極用カーボンナノチューブ材料について、その巨大なSEI層の生成を著しく抑制することで、1V付近の不可逆容量が大幅に低減された、カーボンナノチューブ材料を負極とする新規なリチウムイオン二次電池を提供することを目的とする。   The present invention relates to a carbon nanotube material for a negative electrode that has a variety of lithium insertion spaces, can have a larger electric capacity than graphite, and has many merits that a conductive auxiliary agent is unnecessary unlike an oxide electrode. An object of the present invention is to provide a novel lithium ion secondary battery using a carbon nanotube material as a negative electrode, in which the irreversible capacity in the vicinity of 1 V is significantly reduced by remarkably suppressing the generation of a huge SEI layer.

本発明者らは、負極材料としてのカーボンナノチューブの特性改善を長年に亘り鋭意検討した結果、カーボンナノチューブバルク材料に、熱可塑性樹脂を混合して不活性ガス中で加熱することで、熱分解の過程で液相となった炭素前駆体がナノチューブ材料の表面を被覆し、その状態で炭素化することにより得られる、炭素で被覆されたカーボンナノチューブ材料が負極材料として極めて有用な特性を発現することを見出した。
本発明はかかる新規な知見によりなされたものである。
すなわち、この出願は以下の発明を提供するものである。
カーボンナノチューブの露出面がアモルファス状炭素で被覆された、炭素被覆カーボンナノチューブ材料からなる負極用炭素材料の製造方法であって、カーボンナノチューブと熱可塑性樹脂との混合物を不活性ガス中で熱処理すること、及び、熱可塑性樹脂が、液相を経由して炭素化する樹脂であることを特徴とする、炭素被覆カーボンナノチューブ材料からなる負極用炭素材料の製造方法(ただし、“リチウムと合金化可能な金属粒子と、繊維状黒鉛質材料と、を混合・攪拌処理して複合粒子とした後、該複合粒子と炭素質材料の前駆体とを混合し、熱処理する”ものを除外する。)
〉液相を経由して炭素化する樹脂が、ポリ塩化ビニル、または、ポリビニルアルコールであることを特徴とする〈〉に記載の炭素被覆カーボンナノチューブ材料からなる負極用炭素材料の製造方法。
As a result of intensive studies over many years on the improvement of the characteristics of carbon nanotubes as a negative electrode material, the present inventors have mixed a thermoplastic resin into a carbon nanotube bulk material and heated it in an inert gas, thereby enabling thermal decomposition. The carbon precursor material, which is obtained by coating the surface of the nanotube material with the carbon precursor that has become a liquid phase in the process and carbonizing in that state, exhibits extremely useful characteristics as a negative electrode material. I found.
The present invention has been made based on such novel findings.
That is, this application provides the following inventions.
< 1 > A method for producing a carbon material for a negative electrode comprising a carbon-coated carbon nanotube material in which an exposed surface of the carbon nanotube is coated with amorphous carbon, wherein the mixture of the carbon nanotube and the thermoplastic resin is mixed with an inert gas. subjected to heat treatment, and, a thermoplastic resin, characterized in that it is a resin carbonized via liquid phase, method of manufacturing the negative electrode carbon material consisting of carbon-containing coated carbon nanotube material (where "lithium The alloy particles that can be alloyed and the fibrous graphite material are mixed and stirred to form composite particles, and then the composite particles and the carbonaceous material precursor are mixed and heat-treated. .)
< 2 > The method for producing a carbon material for a negative electrode comprising the carbon-coated carbon nanotube material according to < 1 >, wherein the resin to be carbonized via the liquid phase is polyvinyl chloride or polyvinyl alcohol. .

本発明の負極用炭素材料は、カーボンナノチューブ材料の露出面を熱分解炭素で覆うことで、ナノチューブへの電解液の直接接触を抑えることができる。このことにより、SEIは熱分解炭素上のみで生成し、ナノチューブ表面において1Vで生成するSEI層の生成を抑制することができ、それに伴い初期不可逆容量をたとえば1/4〜1/5にまで著しく低減することができる。一方、被覆材としての熱分解炭素はリチウムは通過が可能なため、内包されているカーボンナノチューブは、従来通りのリチウム挿入脱離挙動を示すことが可能となる。
また、表面を被覆する高分子の熱分解から生成する炭素は、それ自身もリチウム挿入脱離が可能な活物質であるが、低温焼成ゆえ一般に導電性が小さく、それ単独、または、酸化物活物質を炭素被覆した電極などにおいてはハイパワー特性に難を有する。しかし、本手法においてナノチューブに被覆した場合は、内部に導電性の高いナノチューブを含んでいることから、表面被覆された薄い熱分解炭素層は活物質として利用が見込める。
したがって、本発明においては、ナノチューブ側、熱分解炭素側、双方から互いの欠点を補うことの可能なC/Cコンポジット負極材料として用いることが可能となる。
また、本発明の改質カーボンナノチューブは、炭素のみからなっている複合材料電極であることから、有機ポリマーや酸化物とナノチューブを組み合わせた複合材料電極と異なり、高温での熱処理により、さらなる二次的な構造制御が可能となる。
The carbon material for negative electrodes of the present invention can suppress direct contact of the electrolyte solution with the nanotubes by covering the exposed surface of the carbon nanotube material with pyrolytic carbon. As a result, SEI is generated only on pyrolytic carbon and can suppress the generation of SEI layers generated at 1 V on the nanotube surface, and the initial irreversible capacity is significantly reduced to, for example, 1/4 to 1/5. Can be reduced. On the other hand, since pyrolytic carbon as a covering material allows lithium to pass through, the carbon nanotubes contained therein can exhibit a conventional lithium insertion / extraction behavior.
Carbon generated by thermal decomposition of the polymer covering the surface itself is an active material capable of lithium insertion / extraction, but it is generally low in conductivity because of low-temperature firing, and can be used alone or as an oxide active material. An electrode coated with a carbon material has difficulty in high power characteristics. However, when the nanotube is coated in this method, since the highly conductive nanotube is contained inside, the thin pyrolytic carbon layer whose surface is coated can be used as an active material.
Therefore, in this invention, it becomes possible to use as a C / C composite negative electrode material which can make up for each other's fault from both the nanotube side and the pyrolytic carbon side.
In addition, since the modified carbon nanotube of the present invention is a composite material electrode made of only carbon, unlike a composite material electrode in which an organic polymer or an oxide and a nanotube are combined, a further secondary treatment can be performed by heat treatment at a high temperature. Structure control is possible.

本発明の負極用炭素材料は、カーボンナノチューブの露出面がアモルファス状炭素で被覆されていることを特徴とする。
ここで、カーボンナノチューブの露出面とは通常外気に触れている部分であり、電池とした場合は電解液に濡れる部分を意味する。言い換えると、バンドルの中に存在するチューブは外部に露出しておらず、また、チューブは通常は閉じているためチューブ内壁は露出されていないため、露出面とはバンドルの一番外側の表面のみを意味する。
このような炭素被覆カーボンナノチューブ材料の代表例は、カーボンナノチューブと熱可塑性樹脂との混合物を不活性ガス中で熱処理し、カーボンナノチューブの露出面をアモルファス状炭素で被覆することにより得られるものである。
本発明に係る代表的な炭素被覆カーボンナノチューブ材料の模式図を図1に示す。
通常、ナノチューブは独立で一本一本では存在するよりは、むしろ、束(バンドル)を形成していることが多い。この束がさらに凝集し、粉末や紙などの構造体として工業的には提供される。このナノチューブ材料を、熱可塑性高分子の代表的存在であるポリ塩化ビニルやポリビニルアルコールなどとともに混合し、加熱することで、熱可塑性高分子が液相を経由して炭素化する。この過程で、液相となった炭素前駆体がナノチューブ露出面を多い、そこで炭素化することで、炭素被覆カーボンナノチューブを作製できる。得られた炭素被覆カーボンナノチューブは、リチウムイオンを挿入することができるが溶媒分子は挿入することができないアモルファス炭素でおおわれているため、溶媒の分解、すなわちSEI相はアモルファス炭素上でのみ生成し、リチウムイオンはナノチューブに達して貯蔵される。このような炭素質のみで構成されたC/C複合材料として提供が可能となる。
The carbon material for a negative electrode of the present invention is characterized in that the exposed surface of the carbon nanotube is coated with amorphous carbon.
Here, the exposed surface of the carbon nanotube is a portion that is usually in contact with the outside air, and in the case of a battery, it means a portion that gets wet with the electrolyte. In other words, the tube present in the bundle is not exposed to the outside, and the tube is normally closed so that the inner wall of the tube is not exposed, so the exposed surface is only the outermost surface of the bundle. Means.
A typical example of such a carbon-coated carbon nanotube material is obtained by heat-treating a mixture of carbon nanotubes and a thermoplastic resin in an inert gas and coating the exposed surface of the carbon nanotubes with amorphous carbon. .
A schematic view of a typical carbon-coated carbon nanotube material according to the present invention is shown in FIG.
In general, nanotubes often form bundles rather than exist independently and individually. This bundle further aggregates and is industrially provided as a structure such as powder or paper. The nanotube material is mixed with polyvinyl chloride, polyvinyl alcohol, or the like, which is a typical thermoplastic polymer, and heated to carbonize the thermoplastic polymer via the liquid phase. In this process, the carbon precursor in a liquid phase has a large number of exposed nanotube surfaces, and carbonization can be performed by carbonizing the carbon precursor. The resulting carbon-coated carbon nanotubes are covered with amorphous carbon that can insert lithium ions but not solvent molecules, so the decomposition of the solvent, i.e. the SEI phase, is only produced on the amorphous carbon, Lithium ions reach the nanotubes and are stored. It can be provided as a C / C composite material composed only of such carbonaceous matter.

原料となるカーボンナノチューブとしては、従来公知の単層あるいはと多層のいずれもが使用できる。単層カーボンナノチューブとしては、たとえば、HiPco法やスーパーグロース法、気相流動成長法などの化学気相熱分解法によるものや、レーザーアブレーション法によるもの等が例示される。また、多層カーボンナノチューブについても同様であり、この中には、二層ナノチューブなど別途の名称で呼ばれるものも含まれる。
この中でも、SEIの形成部位が多い、比表面積の大きな単層カーボンナノチューブを用いることが本発明は最も効果を発揮する。また、リチウムを格納できるバンドル空間を有しているナノチューブの方が、一本一本が分離したナノチューブよりも容量の点で好ましいが、チューブ内空間なども将来的にはリチウム格納空間として望めるため、特に、バンドルの有無には制限されない。
As the carbon nanotube used as a raw material, either a conventionally known single-layer or multi-layer can be used. Examples of single-walled carbon nanotubes include those by chemical vapor pyrolysis methods such as HiPco method, super growth method, vapor phase flow growth method, and those by laser ablation method. The same applies to multi-walled carbon nanotubes, which include double-walled nanotubes called by other names.
Among these, the present invention is most effective when single-walled carbon nanotubes having many SEI formation sites and a large specific surface area are used. In addition, nanotubes with a bundle space that can store lithium are preferable in terms of capacity over nanotubes that are separated from each other, but the space inside the tube can be expected as a lithium storage space in the future. In particular, the presence or absence of a bundle is not limited.

本発明の炭素被覆カーボンナノチューブ材料は、カーボンナノチューブ凝集粉体の露出面を熱分解炭素で覆うことで、ナノチューブへの電解液の直接接触を抑えることができる。このことにより、SEIは熱分解炭素上のみで生成し、前記図8にみられるカーボンナノチューブ電極に特有な1Vで生成する巨大なSEI層の生成を抑制し、その初期不可逆容量を大幅に低減することができる。一方、SEI、熱分解炭素ともに、リチウムは通過が可能なため、内包されているカーボンナノチューブは、従来通りのリチウム挿入脱離挙動を示すことが可能となる。
また、表面を被覆する高分子の熱分解から生成する炭素は、それ自身もリチウム挿入脱離が可能な活物質であるが、低温処理ゆえ導電性が小さく、それ単独ではハイパワーの電池には不向きであるが、本手法では、内部に導電性のナノチューブを含んだ薄い熱分解炭素層は内部抵抗の低い活物質として利用が見込める。
The carbon-coated carbon nanotube material of the present invention can suppress direct contact of the electrolyte solution with the nanotube by covering the exposed surface of the carbon nanotube aggregated powder with pyrolytic carbon. As a result, SEI is generated only on pyrolytic carbon, suppresses the generation of a huge SEI layer generated at 1 V, which is characteristic of the carbon nanotube electrode shown in FIG. 8, and greatly reduces its initial irreversible capacity. be able to. On the other hand, since lithium can pass through both SEI and pyrolytic carbon, the encapsulated carbon nanotube can exhibit the conventional lithium insertion / extraction behavior.
Carbon generated from the thermal decomposition of the polymer that coats the surface itself is an active material capable of lithium insertion / extraction, but it has low conductivity because of low-temperature treatment, and by itself is not suitable for high-power batteries. Although unsuitable, in this method, a thin pyrolytic carbon layer containing conductive nanotubes can be used as an active material with low internal resistance.

なお、前記の背景技術で触れた黒鉛負極とするリチウムイオン二次電池においても、黒鉛表面を炭素で被覆する方法も種々報告されているが、これは、使用溶媒の選択自由度を高めるための技術に関するものである。
すなわち、これらの技術は、プロピレンカーボネート(PC)溶媒は低温特性に優れ寒冷地においても固化することのない優れた溶媒であるが、黒鉛負極とするリチウムイオン二次電池の電解溶媒として用いた場合には、PCがリチウムイオンとの嵩高い複合体イオンとなり黒鉛層間に挿入してしまい、黒鉛層の剥離・破壊をもたらす現象が生じるため、黒鉛表面をPCを分解しない炭素で被覆することにより、かかる現象を抑制し、PC溶媒の使用を可能とすることを主眼としたものである(たとえば、特開2002−141062号公報やM.Yoshio, et al., J. Electrochem. Soc., 147(4) 1245-1250 (2000)参照)。
したがって、かかる技術は、巨大なSEI層の生成を著しく抑制し、1V付近の不可逆容量を大幅に低減することを目的とする本発明の炭素被覆カーボンナノチューブ材料の技術とは、その対象および課題などが明らかに異なっており、両者の技術は明確に区別される。
In addition, in the lithium ion secondary battery as the graphite negative electrode mentioned in the background art, various methods for coating the graphite surface with carbon have been reported. This is to increase the degree of freedom in selecting the solvent used. It is about technology.
That is, in these technologies, propylene carbonate (PC) solvent is an excellent solvent that has excellent low-temperature characteristics and does not solidify even in cold regions, but when used as an electrolytic solvent for a lithium ion secondary battery using a graphite negative electrode In this case, a phenomenon occurs in which PC becomes a complex ion with lithium ions and is inserted between graphite layers, resulting in peeling and destruction of the graphite layer. Therefore, by covering the graphite surface with carbon that does not decompose PC, The main purpose is to suppress such a phenomenon and enable the use of a PC solvent (for example, Japanese Patent Application Laid-Open No. 2002-141062 and M. Yoshio, et al., J. Electrochem. Soc., 147 ( 4) See 1245-1250 (2000)).
Therefore, this technique remarkably suppresses the generation of a huge SEI layer, and the technique of the carbon-coated carbon nanotube material of the present invention, which aims to significantly reduce the irreversible capacity near 1 V, its object and problem, etc. Are clearly different, and the two technologies are clearly distinguished.

カーボンナノチューブの提供形状は、特に限定されず、粉末状のほか、ペーパー状、圧縮成型体などのものであってよいが、樹脂粉末と混合しやすく、液相炭素前駆体がよく浸透し、ナノチューブ表面を濡らすことが効率的な炭素被覆を行いやすいことから、粒状あるいは粉末状となった原料を使用するのが好ましい。粉末状の凝集体は、ナノチューブの合成において最も簡便に得られる形態であるため、本発明で原料形態の制限は生じえない。   The provided shape of the carbon nanotube is not particularly limited, and may be in the form of powder, paper, compression-molded body, etc., but it is easy to mix with the resin powder, the liquid phase carbon precursor penetrates well, and the nanotube Since wetting the surface facilitates efficient carbon coating, it is preferable to use a raw material in a granular or powder form. Since the powder-like aggregate is the form most easily obtained in the synthesis of nanotubes, the raw material form cannot be limited in the present invention.

カーボンナノチューブに炭素を被覆する手法は、気相含浸法、液相熱分解法など、どのような手法でもよいが、最も簡単で、かつ、被覆を効果的に行えるのは、炭素化の過程で液相を経由する液相熱分解法である。
液相熱分解に用いる炭素源ポリマーは、炭素化の過程で溶融し、ナノチューブを濡らすことのできる熱可塑性樹脂であれば何でもよく、たとえば、ポリ塩化ビニル、ポリビニルアルコールが例示される。一方、同じ熱可塑性樹脂でも、炭素化せずに蒸散してしまうポリエチレンやポリスチレンなどは好ましくない。
後記する実施例においては、その代表例として、濡れ性に適した粘性の低い液相を経由し、かつ、リチウム挿入特性に影響を及ぼす含酸素官能基の生成要素を排除する狙いから、酸素を含有しないポリ塩化ビニルを用いたが、本発明はこのものに限定されないことはもちろんである。
被覆させる炭素量は制限を受けない。すなわち、被覆炭素材料も活物質として用いることができるため、電池特性を極端に下げてしまうことにはならないためである。言い換えると、求める電池性能、たとえば、容量密度やパワー密度によって、ナノチューブと被覆炭素の比が決められる。
Any method such as vapor phase impregnation method or liquid phase pyrolysis method may be used to coat carbon nanotubes with carbon, but the simplest and most effective way to coat carbon nanotubes is during the carbonization process. This is a liquid phase pyrolysis method via a liquid phase.
The carbon source polymer used for the liquid phase pyrolysis may be any thermoplastic resin that melts during the carbonization process and can wet the nanotube, and examples thereof include polyvinyl chloride and polyvinyl alcohol. On the other hand, even if the same thermoplastic resin is used, polyethylene, polystyrene, or the like that evaporates without being carbonized is not preferable.
In the examples described below, as a representative example, oxygen is used for the purpose of eliminating oxygen-containing functional group-generating elements that affect a lithium insertion property via a low-viscosity liquid phase suitable for wettability. Although polyvinyl chloride not containing was used, it is needless to say that the present invention is not limited to this.
The amount of carbon to be coated is not limited. That is, since the coated carbon material can also be used as an active material, the battery characteristics are not extremely lowered. In other words, the ratio of the nanotube to the coated carbon is determined by the required battery performance, such as capacity density and power density.

このようなカーボンナノチューブの露出面がアモルファス状炭素で被覆された、炭素被覆カーボンナノチューブ材料からなる負極用炭素材料は、種々の方法によって製造できるが、たとえば、カーボンナノチューブ粉末と熱可塑性樹脂とを窒素ガスなどの不活性ガス中で熱処理することにより得られる。   A carbon material for a negative electrode made of a carbon-coated carbon nanotube material in which the exposed surface of the carbon nanotube is coated with amorphous carbon can be manufactured by various methods. For example, carbon nanotube powder and a thermoplastic resin are mixed with nitrogen. It can be obtained by heat treatment in an inert gas such as a gas.

カーボンナノチューブと熱可塑性樹脂との使用割合は、初期不可逆容量の低減化を損なわない範囲で、求める電池性能、たとえば、容量密度やパワー密度等を考慮することにより適宜定めることができる。後記する本発明の実施例においては、カーボンナノチューブと熱可塑性樹脂の使用割合を重量比で1:0.5〜1:4にしているが、本発明はこれらの範囲に限定されるものでない。   The use ratio of the carbon nanotube and the thermoplastic resin can be appropriately determined by considering the required battery performance, for example, the capacity density and the power density, as long as the reduction in the initial irreversible capacity is not impaired. In the examples of the present invention described later, the use ratio of the carbon nanotubes and the thermoplastic resin is 1: 0.5 to 1: 4, but the present invention is not limited to these ranges.

熱処理温度は樹脂が熱分解・炭素化する温度以上であれば可能であり、一般には500度以上で炭素質の被覆が認められる。しかし、一般には高温処理の方が、被覆炭素の導電性が向上するので、最終的な温度は高い方がよい。一方、1500度以上になると、ナノチューブが変性してしまうため、実用的には、1000〜1500度が好ましい。   The heat treatment temperature is possible as long as it is higher than the temperature at which the resin is thermally decomposed and carbonized, and generally a carbonaceous coating is observed at 500 ° C. or higher. However, in general, high-temperature treatment improves the conductivity of the coated carbon, so the final temperature should be higher. On the other hand, when the angle is 1500 degrees or more, the nanotube is denatured, and therefore, practically, 1000 to 1500 degrees is preferable.

本発明に係る炭素被覆カーボンナノチューブ材料の比表面積(BET法)は、炭素で被覆されることにより、被覆量に依存して減少し、大量の被覆で完全にナノチューブを内包してしまうと、比表面積はゼロに近くなるので、本発明においては、ナノチューブの特性を生かす観点から、ナノチューブの比表面積に近い状態で均一に炭素被覆されることが好ましいが、被覆炭素も電池活物質として用いることが可能なため、比表面積が小さくなっても電極として使用が不可能になることはない。   The specific surface area (BET method) of the carbon-coated carbon nanotube material according to the present invention is reduced depending on the coating amount by being coated with carbon, and if the nanotube is completely included in a large amount of coating, Since the surface area is close to zero, in the present invention, from the viewpoint of taking advantage of the characteristics of the nanotubes, it is preferable that the carbon is uniformly coated in a state close to the specific surface area of the nanotubes, but the coated carbon is also used as the battery active material. Therefore, even if the specific surface area is reduced, it cannot be used as an electrode.

本発明に係る炭素被覆カーボンナノチューブ材料は、たとえば電子顕微鏡や窒素吸着法により被覆の状態が確認でき、また、実際に電池の充放電特性を測ることで、その効果が顕著に確認できる。   In the carbon-coated carbon nanotube material according to the present invention, the coating state can be confirmed by, for example, an electron microscope or a nitrogen adsorption method, and the effect can be remarkably confirmed by actually measuring the charge / discharge characteristics of the battery.

本発明の炭素被覆カーボンナノチューブ材料は、カーボンナノチューブ材料の露出面を熱分解炭素で覆うことで、ナノチューブへの電解液の直接接触を抑えることができる。このことにより、SEIは熱分解炭素上のみで生成し、前記図8にみられるカーボンナノチューブ電極に特有な1Vで生成する巨大なSEI層の生成を抑制し、その初期不可逆容量を大幅に低減することができる。一方、SEI、熱分解炭素ともに、リチウムは通過が可能なため、内包されているカーボンナノチューブは、従来通りのリチウム挿入脱離挙動を示すことが可能となる。
また、表面を被覆する高分子の熱分解から生成する炭素は、それ自身もリチウム挿入脱離が可能な活物質であるが、低温処理ゆえ導電性が小さく、それ単独ではハイパワーの電池には不向きであるが、本手法では、内部に導電性のナノチューブを含んだ薄い熱分解炭素層は内部抵抗の低い活物質として利用が見込める。
したがって、本発明においては、ナノチューブ側、熱分解炭素側、双方から互いの欠点を補うことの可能なC/Cコンポジット負極材料として用いることが可能となる。
また、本発明で得られる炭素被覆カーボンナノチューブ材料は、リチウム挿入空間が多彩であり、より黒鉛に比べ大きな電気容量が望めると共に巨大なSEI層の生成を著しく抑制し、1V付近の不可逆容量が大幅に低減され、しかも優れた導電性を有し、酸化物電極などと異なり導電助剤が不要であるといった多くのメリットを有するので、リチウムイオン二次電池の負極材料として極めて有用なものである。
The carbon-coated carbon nanotube material of the present invention can suppress the direct contact of the electrolyte solution with the nanotube by covering the exposed surface of the carbon nanotube material with pyrolytic carbon. As a result, SEI is generated only on pyrolytic carbon, suppresses the generation of a huge SEI layer generated at 1 V, which is characteristic of the carbon nanotube electrode shown in FIG. 8, and greatly reduces its initial irreversible capacity. be able to. On the other hand, since lithium can pass through both SEI and pyrolytic carbon, the encapsulated carbon nanotube can exhibit the conventional lithium insertion / extraction behavior.
Carbon generated from the thermal decomposition of the polymer that coats the surface itself is an active material capable of lithium insertion / extraction, but it has low conductivity because of low-temperature treatment, and by itself is not suitable for high-power batteries. Although unsuitable, in this method, a thin pyrolytic carbon layer containing conductive nanotubes can be used as an active material with low internal resistance.
Therefore, in this invention, it becomes possible to use as a C / C composite negative electrode material which can make up for each other's fault from both the nanotube side and the pyrolytic carbon side.
In addition, the carbon-coated carbon nanotube material obtained by the present invention has a wide variety of lithium insertion spaces, and can have a larger electric capacity than graphite, and remarkably suppress the formation of a huge SEI layer, greatly increasing the irreversible capacity around 1V. Therefore, it is extremely useful as a negative electrode material for a lithium ion secondary battery because it has many advantages that it has excellent electrical conductivity, and unlike a oxide electrode, does not require a conductive aid.

本発明の炭素被覆カーボンナノチューブ材料を負極材料としたリチウムイオン二次電池において、正極材料、電解液(電解質、溶媒)等の構成部材としては、炭素系材料を負極とするこの種のリチウムイオン二次電池において使用されるものがそのまま適用できる。   In the lithium ion secondary battery using the carbon-coated carbon nanotube material of the present invention as a negative electrode material, the positive electrode material, the electrolytic solution (electrolyte, solvent), and the like are used as constituent members of this type of lithium ion secondary battery having a carbon-based material as a negative electrode. Those used in the secondary battery can be applied as they are.

正極材料としては、従来公知のものがすべて適用され、たとえば、リチウムコバルト酸化物、リチウムマンガン酸化物、および、リチウム鉄酸化物などがあげられる。   As the positive electrode material, all conventionally known materials are applied, and examples thereof include lithium cobalt oxide, lithium manganese oxide, and lithium iron oxide.

電解液に含有させる電解質としては、電解液中でリチウムイオンを形成するものであれば特に限定されない。例えば、LiPF6 、LiClO4 、LiBF4 、LiAsF6 、LiAlCl4 、LiCF3 SO3 、LiSbF6 等が挙げられる。これら電解質は、単独でもよいが、組み合わせて使用してもよい。
また、電解液の溶媒としては、この種の有機溶媒として公知のものがすべて使用できる。例えば、プロピレンカーボネート、ジメチルカーボネート、エチレンカーボネート、テトラヒドロフラン、ジメチルスルホキシド、γ−ブチロラクロン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−ジメトキシエタン、2−メチルテトラヒドロフラン、スルホラン、ジエチルカーボネート、ジメチルホルムアミド、アセトニトリル等が挙げられる。これら有機溶媒は、単独でもよいが、組み合わせて使用してもよい。
ここで、特筆すべきことは、低温での動作特性が極めて有用な溶媒でありながら、黒鉛の層間にリチウムイオンと共に挿入し黒鉛の層間剥離を惹起し、黒鉛系を負極とするリチウムイオン二次電池では使用不可とされているプロピレンカーボネート溶媒も、カーボンナノチューブ、被覆アモルファス炭素、ともに使用が可能であり、これらに組み合わせによる電極も、必然的にプロピレンカーボネートの使用が可能である点である。
なお、本発明のリチウムイオン二次電池におけるセパレータや結着剤などの周辺部材、集電体金属材料等も炭素系材料を負極とするこの種のリチウムイオン二次電池において使用されるもの同様に使用することが可能であり、なんら制限を受けるものではない。
The electrolyte to be contained in the electrolytic solution is not particularly limited as long as it forms lithium ions in the electrolytic solution. For example, LiPF 6, LiClO 4, LiBF 4, LiAsF 6, LiAlCl 4, LiCF 3 SO 3, LiSbF 6 , and the like. These electrolytes may be used alone or in combination.
In addition, as the solvent for the electrolytic solution, all known organic solvents of this type can be used. For example, propylene carbonate, dimethyl carbonate, ethylene carbonate, tetrahydrofuran, dimethyl sulfoxide, γ-butyrolaclone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, sulfolane, Examples include diethyl carbonate, dimethylformamide, and acetonitrile. These organic solvents may be used alone or in combination.
What should be noted here is that the operating characteristics at low temperatures are extremely useful solvents, but intercalated with lithium ions between the graphite layers to cause delamination of the graphite, and the lithium ion secondary with graphite as the negative electrode. The propylene carbonate solvent which cannot be used in a battery can be used for both carbon nanotubes and coated amorphous carbon, and an electrode based on a combination thereof can inevitably use propylene carbonate.
In addition, peripheral members such as separators and binders in the lithium ion secondary battery of the present invention, current collector metal materials, and the like are the same as those used in this type of lithium ion secondary battery having a carbon-based material as a negative electrode. It can be used and is not subject to any restrictions.

以下、本発明を実施例により更に詳細に説明する。
(炭素被覆カーボンナノチューブ材料およびこれを用いた電極の作製)
市販のHiPco法単層カーボンナノチューブ(Unidym社製、Purified Grade、以下SWNTsと略記)とポリ塩化ビニルを表1の混合比で混ぜたものを、窒素気流中(200mL/min.)、昇温速度5℃/min.で900℃で30分加熱を行った。得られた試料のBET比表面積を77Kでの窒素吸着法により測定した。この試料を、結着材となる10wt%のポリフッ化ビニリデン(PVdF)と共にN−メチルピロリドン中でスラリーとし、ニッケルメッシュ上に塗布・150℃で乾燥し、電極を得た。この電極を作用極、リチウム金属を対極と参照極とし、1MのLiBF4を溶かしたエチレンカーボネ−ト/ジエチルカーボネート(50:50)の混合電解液中で、負極充放電特性を評価した。電流密度は、50〜2000mA/gとし、3V〜0Vを充放電測定範囲(カットオフ電位)とした。
Hereinafter, the present invention will be described in more detail with reference to examples.
(Production of carbon-coated carbon nanotube material and electrode using the same)
A commercially available HiPco single-walled carbon nanotube (Unidym, Purified Grade, hereinafter abbreviated as SWNTs) and polyvinyl chloride mixed in the mixing ratio shown in Table 1 in a nitrogen stream (200 mL / min.) And the heating rate Heating was performed at 900 ° C. for 30 minutes at 5 ° C./min. The BET specific surface area of the obtained sample was measured by a nitrogen adsorption method at 77K. This sample was made into a slurry in N-methylpyrrolidone together with 10 wt% polyvinylidene fluoride (PVdF) serving as a binder, applied onto a nickel mesh, and dried at 150 ° C. to obtain an electrode. Using this electrode as a working electrode, lithium metal as a counter electrode and a reference electrode, the negative electrode charge / discharge characteristics were evaluated in a mixed electrolyte of ethylene carbonate / diethyl carbonate (50:50) in which 1M LiBF4 was dissolved. The current density was 50 to 2000 mA / g, and 3 V to 0 V was the charge / discharge measurement range (cut-off potential).

図2に、代表的な試料の、被覆処理前後の窒素吸着等温線、および、表1にBET比表面積を示す。図1から、炭素被覆後は、少量のPVC混合比でも大きく窒素吸着量が減っていることがわかる。また、表1からBET比表面積は被覆炭素量が小さくてもかなりの減少が見られることから、ナノチューブ表面を炭素質が覆い、チューブ凝集体粉末中の細孔を埋めて、窒素分子のアクセスを妨げていることが容易に想像できる。PVC量が少ない段階では、単純にSWNTsの等温線が低下しているが、ある程度のPVC量を超えると、今度は等温線自体に変化が見られ、中相対圧域以上ではさらに減少するが、低相対圧域はむしろ増加する結果となる。これは、PVC由来炭素のミクロ孔の増加とSWNTs由来のメソ孔の減少を示しており、PVC炭素が表面に増加することで、PVC炭素の表面性質が徐々に主となることを意味している。一方、PVC炭のみではほとんど表面積はゼロに近いため、表面積の大きなナノチューブの基材上にPVC炭素が付着している、とみなすことができる。このように、SWNTsの大きな表面積を損なうことなく、別種の炭素質と複合させることが可能である。このように、炭素被覆によって、ナノチューブ粉体を別の炭素で埋包してしまうことで表面性状をコントロールすることが可能であることがわかる。   FIG. 2 shows a nitrogen adsorption isotherm before and after the coating treatment of a representative sample, and Table 1 shows a BET specific surface area. From FIG. 1, it can be seen that after carbon coating, the nitrogen adsorption amount is greatly reduced even with a small amount of PVC mixing ratio. In addition, from Table 1, the BET specific surface area shows a considerable decrease even when the amount of coated carbon is small, so that the carbon surface covers the nanotube surface, fills the pores in the tube aggregate powder, and accesses the nitrogen molecules. You can easily imagine that it is blocking. At the stage where the amount of PVC is small, the SWNTs isotherm is simply lowered. However, if the amount of PVC exceeds a certain level, the isotherm itself will change, and it will decrease further above the middle relative pressure range. The low relative pressure range will rather increase. This indicates an increase in the micropores of the PVC-derived carbon and a decrease in the mesopores derived from the SWNTs, which means that the surface properties of the PVC carbon gradually become main as PVC carbon increases on the surface. Yes. On the other hand, since the surface area of PVC charcoal is almost zero, it can be considered that PVC carbon is attached to the base material of the nanotube having a large surface area. Thus, it is possible to make a composite with another kind of carbonaceous material without damaging the large surface area of SWNTs. Thus, it can be seen that the surface properties can be controlled by embedding the nanotube powder with another carbon by carbon coating.

図3および図4に、1000度処理SWNTs、および、いくつかの炭素被覆SWNTsの充放電曲線(50mA/g)を示す。一回目の充電曲線においては、SWNTsは既知のとおり、1V付近に1500mAh/g近い大きな不可逆容量のプラトーがあり、その後、0V付近に近づくにつれて、可逆的なリチウム挿入のプラトーがある。これに対し、PVC被覆SWNTsは、PVC混入量が増えるに従い、1Vのプラトーは劇的に短くなるが、0V付近の曲線はすべて相似形である。このことは、SWNTsのリチウム挿入特性はなんら変わらずに、1Vで生じる電解液の電気化学分解量が低下していることを示している。1000度でのPVCからの炭素収率は5wt%程度であることを考慮すると、PVC-4においても被覆炭素量は全体の20%程度にとどまるため、ごく少量のPVA由来炭素質が、SWNTs粉体表面を覆い、電解液とSWNTs表面との接触を抑えていることを意味するものである。表2には、各試料の初期充電容量、初期不可逆容量、2回目以降の可逆容量、2回目以降の0-1.0Vのみで計算した放電容量、および、初期充放電効率を一覧にした。初期不可逆容量については定義がないため、0.5−1.0Vの間の充電容量をそれとした。明らかに、PVC添加率が増えると、初期不可逆容量は被覆前の1323mAh/gからその約1/5の251mAh/gまで劇的に小さくなっていくのがわかる。放電容量については、PVC量が少ない場合は、SWNTsとほとんど容量は変わらない。PVC量が大きくなると減少するものの、SWNTsからのリチウム脱離に相当する0V〜1V程度付近に限った放電量にはすべての試料を通じてあまり変化が無く、むしろ、比較的貴な電位での放電量が減っている。PVC量が増えると、図3に見られるように放電曲線が直線的に変化していることから、PVC炭の割合が増えたため、高電位でもリチウム脱離が生じるPVC炭の性質が現れてきているものと推測できる。以上のように、PVCの熱分解で炭素質をSWNTs表面に被覆することで、SWNTsの本来のリチウム挿入脱離特性を損なうことなく、1Vでの溶媒分解量を3分の1以下まで劇的に減らすことが可能となった。一方、初期充放電効率はSWNTs単独の場合の0.26から0.4まで増加した。   3 and 4 show the charge / discharge curves (50 mA / g) of 1000 degree-treated SWNTs and some carbon-coated SWNTs. In the first charge curve, SWNTs have a plateau with a large irreversible capacity near 1500 mAh / g near 1V, and then a plateau with reversible lithium insertion as it approaches 0V. In contrast, with PVC-coated SWNTs, the 1V plateau decreases dramatically as the amount of PVC mixed increases, but all curves near 0V are similar. This indicates that the amount of electrochemical decomposition of the electrolytic solution generated at 1 V is reduced without changing the lithium insertion characteristics of SWNTs. Considering that the carbon yield from PVC at 1000 degrees is about 5 wt%, the amount of coated carbon in PVC-4 is only about 20% of the total, so a very small amount of carbon derived from PVA is SWNTs powder. It means that the body surface is covered and the contact between the electrolyte and the SWNTs surface is suppressed. Table 2 lists the initial charge capacity, initial irreversible capacity, reversible capacity after the second time, discharge capacity calculated only from 0-1.0 V after the second time, and initial charge / discharge efficiency of each sample. Since there is no definition for the initial irreversible capacity, the charge capacity between 0.5 and 1.0 V was used. Clearly, as the PVC addition rate increases, the initial irreversible capacity decreases dramatically from 1323 mAh / g before coating to about 1/5 of 251 mAh / g. Regarding the discharge capacity, when the amount of PVC is small, the capacity is almost the same as that of SWNTs. Although the amount of PVC decreases as the amount of PVC increases, the amount of discharge limited to around 0V to 1V, which corresponds to lithium desorption from SWNTs, does not change much across all samples. Is decreasing. As the amount of PVC increases, the discharge curve changes linearly as seen in Fig. 3, so the proportion of PVC charcoal has increased, and the properties of PVC charcoal that causes lithium desorption even at high potentials have emerged. I can guess that. As described above, by covering the SWNTs with the carbonaceous material by thermal decomposition of PVC, the amount of solvent decomposition at 1V can be dramatically reduced to one third or less without impairing the original lithium insertion / release characteristics of SWNTs. It became possible to reduce it. On the other hand, the initial charge / discharge efficiency increased from 0.26 to 0.4 for SWNTs alone.

図5に、様々な電流密度における、1000度処理SWNTsと炭素被覆SWNTs(PVC-4)の容量維持率を示す。SWNTs単独では低電流密度においては大きな容量を示すが、高電流密度では非常に小さな容量のみが得られ、1000mA/gのような大電流密度ではほとんど放電容量を得ることができない。これは、一回目の充電時に生じる1Vでの大量の溶媒分解性生物がSWNTs電極の導電性を下げているためと見られる。これに対し、SWNTsをPVC炭で被覆したものは、比較的大電流密度においても容量を維持することが可能である。なお、PVC炭単独では、50mA/gでも容量が計算できないくらい小さい。これは、PVC炭単独では導電性が小さいため、熱消費によって電流がロスされたものと考えられる。したがって、SWNTsとPVC炭、それぞれ単独では大電流密度においては容量を発現することができないが、SWNTsに少量のPVC炭素を被覆することで、表面皮膜生成物の過剰な生成を抑制し、かつ、SWNTsの導電性が被覆PVC炭へのリチウム挿入をサポートすることで、大電流密度での充放電が可能となっていることが明らかである。このように、互いの欠点を補い、大容量ハイパワー電池用途としての可能性を示すことができる。   FIG. 5 shows capacity retention rates of 1000 degree SWNTs and carbon-coated SWNTs (PVC-4) at various current densities. SWNTs alone shows a large capacity at a low current density, but only a very small capacity can be obtained at a high current density, and a discharge capacity can hardly be obtained at a large current density such as 1000 mA / g. This seems to be due to the large amount of solvent-decomposable organisms at 1 V that are generated during the first charge, reducing the conductivity of the SWNTs electrode. In contrast, SWNTs coated with PVC charcoal can maintain capacity even at relatively large current densities. With PVC charcoal alone, the capacity cannot be calculated even at 50 mA / g. This is thought to be because the current was lost due to heat consumption because PVC charcoal alone has low conductivity. Therefore, SWNTs and PVC charcoal alone cannot express capacity at a large current density, but by covering SWNTs with a small amount of PVC carbon, excessive production of surface film products is suppressed, and It is clear that charging / discharging at large current density is possible because the conductivity of SWNTs supports lithium insertion into coated PVC charcoal. In this way, it is possible to make up for each other's drawbacks and show the potential as a high-capacity high-power battery application.

本発明の負極用炭素被覆カーボンナノチューブ材料の模式図Schematic diagram of carbon-coated carbon nanotube material for negative electrode of the present invention 原料SWNT、PVC、および本発明の負極用炭素被覆カーボンナノチューブ材料の1000℃処理品の窒素吸着塔温泉(77K)Nitrogen adsorption tower hot spring (77K) of raw material SWNT, PVC and 1000 ° C treated carbon-coated carbon nanotube material for negative electrode of the present invention 本発明の炭素被覆カーボンナノチューブ材料電流密度50mA/gでの充電曲線Charging curve at a current density of 50 mA / g of the carbon-coated carbon nanotube material of the present invention 本発明の炭素被覆カーボンナノチューブ材料電流密度50mA/gでの放電曲線Discharge curve of carbon-coated carbon nanotube material of the present invention at a current density of 50 mA / g 無被覆SWNTs(PVC-0)および炭素被覆SWNTs(PVC-4)のレート特性Rate characteristics of uncoated SWNTs (PVC-0) and carbon-coated SWNTs (PVC-4) カーボンナノチューブのリチウム挿入部位の模式図Schematic diagram of the carbon nanotube lithium insertion site 従来の黒鉛を用いたリチウムイオン電池の充放電曲線Charge / discharge curves of conventional lithium-ion batteries using graphite 従来の市販HiPco法によるカーボンナノチューブを用いたリチウムイオン電池の充放電曲線Charging / discharging curves of lithium-ion batteries using carbon nanotubes by conventional HiPco method

Claims (2)

カーボンナノチューブの露出面がアモルファス状炭素で被覆された、炭素被覆カーボンナノチューブ材料からなる負極用炭素材料の製造方法であって、カーボンナノチューブと熱可塑性樹脂との混合物を不活性ガス中で熱処理すること、及び、熱可塑性樹脂が、液相を経由して炭素化する樹脂であることを特徴とする、炭素被覆カーボンナノチューブ材料からなる負極用炭素材料の製造方法(ただし、“リチウムと合金化可能な金属粒子と、繊維状黒鉛質材料と、を混合・攪拌処理して複合粒子とした後、該複合粒子と炭素質材料の前駆体とを混合し、熱処理する”ものを除外する。) A method for producing a carbon material for a negative electrode made of a carbon-coated carbon nanotube material, wherein an exposed surface of the carbon nanotube is coated with amorphous carbon, and heat-treating a mixture of the carbon nanotube and the thermoplastic resin in an inert gas and, a thermoplastic resin, characterized in that it is a resin carbonized via liquid phase, method of manufacturing the negative electrode carbon material consisting of carbon-containing coated carbon nanotube material (however, "capable of being alloyed with lithium Excluding those that are mixed and agitated with a mixture of metallic particles and fibrous graphite material to form composite particles, and then mixed and heat-treated with the composite particles and a precursor of the carbonaceous material . 液相を経由して炭素化する樹脂が、ポリ塩化ビニルまたはポリビニルアルコールであることを特徴とする請求項に記載の炭素被覆カーボンナノチューブ材料からなる負極用炭素材料の製造方法。 Resin carbonized via liquid phase, method of manufacturing the negative electrode carbon material consisting of carbon coated carbon nanotube material according to claim 1, wherein the polyvinyl chloride or polyvinyl alcohol.
JP2008298925A 2008-11-25 2008-11-25 Carbon nanotube material for negative electrode and lithium ion secondary battery using the same as negative electrode Active JP5516929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298925A JP5516929B2 (en) 2008-11-25 2008-11-25 Carbon nanotube material for negative electrode and lithium ion secondary battery using the same as negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298925A JP5516929B2 (en) 2008-11-25 2008-11-25 Carbon nanotube material for negative electrode and lithium ion secondary battery using the same as negative electrode

Publications (2)

Publication Number Publication Date
JP2010129169A JP2010129169A (en) 2010-06-10
JP5516929B2 true JP5516929B2 (en) 2014-06-11

Family

ID=42329440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298925A Active JP5516929B2 (en) 2008-11-25 2008-11-25 Carbon nanotube material for negative electrode and lithium ion secondary battery using the same as negative electrode

Country Status (1)

Country Link
JP (1) JP5516929B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115206A1 (en) * 2011-02-23 2012-08-30 日本ケミコン株式会社 Negative-electrode active material, method for producing negative-electrode active material, lithium-ion secondary battery using negative-electrode active material
WO2013183187A1 (en) 2012-06-06 2013-12-12 日本電気株式会社 Negative electrode active material and manufacturing process therefor
WO2015025722A1 (en) 2013-08-23 2015-02-26 日本電気株式会社 Carbon negative-electrode material, method for producing same, and lithium-ion battery containing negative electrode material
KR101538596B1 (en) * 2014-12-26 2015-07-22 세종대학교산학협력단 Method of manufacturing superhydrophobic carbonnanotube and carbonnanotube manufactured thereby
KR101548089B1 (en) * 2014-12-26 2015-08-28 세종대학교산학협력단 Method of manufacturing superhydrophobic carbonnanotube and carbonnanotube manufactured thereby
KR102285981B1 (en) 2018-04-06 2021-08-05 주식회사 엘지에너지솔루션 Electrode, secondary battery comprising the same, and method for preparing the electrode

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139790B2 (en) * 1991-10-02 2001-03-05 三菱化学株式会社 Rechargeable battery
JP2526789B2 (en) * 1993-06-24 1996-08-21 日本電気株式会社 Non-aqueous electrolyte secondary battery
JPH07296795A (en) * 1994-04-25 1995-11-10 Mitsubishi Cable Ind Ltd Negative electrode for lithium secondary battery, and lithium secondary battery using it
JPH09320570A (en) * 1996-05-23 1997-12-12 Hitachi Maxell Ltd Lithium ton secondary battery
JPH10116605A (en) * 1996-10-11 1998-05-06 Tokai Carbon Co Ltd Lithium secondary battery negative electrode material and its manufacture
JPH10125321A (en) * 1996-10-18 1998-05-15 Sony Corp Battery negative electrode carbonaceous material and nonaqueous electrolyte secondary battery
JP3698516B2 (en) * 1997-03-18 2005-09-21 パイロットプレシジョン株式会社 Film electrode and manufacturing method thereof
JPH1116570A (en) * 1997-06-23 1999-01-22 Hitachi Ltd Lithium secondary battery and electronic equipment using it
JP4446510B2 (en) * 1998-05-21 2010-04-07 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery and lithium secondary battery
JP4446415B2 (en) * 2000-03-16 2010-04-07 日立マクセル株式会社 Non-aqueous secondary battery negative electrode, method for producing the same, and non-aqueous secondary battery using the negative electrode
JP2002241117A (en) * 2001-02-13 2002-08-28 Osaka Gas Co Ltd Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JP5078047B2 (en) * 2001-09-25 2012-11-21 昭和電工株式会社 Carbon material, production method thereof and use thereof
JP2003313019A (en) * 2002-04-22 2003-11-06 Hitachi Ltd Carbon material and manufacturing method for the same
JP2004303613A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Negative electrode material, negative electrode using the same, and lithium ion secondary battery using the negative electrode
TWI246212B (en) * 2003-06-25 2005-12-21 Lg Chemical Ltd Anode material for lithium secondary cell with high capacity
JP4809617B2 (en) * 2004-03-22 2011-11-09 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5062989B2 (en) * 2005-11-15 2012-10-31 一般財団法人ファインセラミックスセンター Electrode material and use thereof
JP2007329001A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery using it
JP2008112710A (en) * 2006-10-03 2008-05-15 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP2008277232A (en) * 2007-04-05 2008-11-13 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery

Also Published As

Publication number Publication date
JP2010129169A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
Ren et al. Germanium–graphene composite anode for high-energy lithium batteries with long cycle life
US9112210B2 (en) Rechargeable lithium cell having a phthalocyanine-based high-capacity cathode
KR101515464B1 (en) Composite electrode material
JP6586105B2 (en) Negative electrode active material and method for producing the same
US9147874B2 (en) Rechargeable lithium cell having a meso-porous conductive material structure-supported phthalocyanine compound cathode
US9362555B2 (en) Rechargeable lithium cell having a chemically bonded phthalocyanine compound cathode
KR101266022B1 (en) Nano graphene platelet-based composite anode compositions for lithium ion batteries
US9093693B2 (en) Process for producing nano graphene reinforced composite particles for lithium battery electrodes
Wang et al. Onion-like carbon matrix supported Co 3 O 4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability
US11515518B2 (en) Immobilized selenium, a method of making, and uses of immobilized selenium in a rechargeable battery
JP7185669B2 (en) secondary battery
KR20180056395A (en) Porous silicone composite cluster strucutre, carbon composite including the same, preparing method thereof, electrode, lithium battery, and device including the same
WO2012039477A1 (en) Lithium ion battery, and battery module utilizing same
Gaikwad et al. Enhanced catalytic graphitization of resorcinol formaldehyde derived carbon xerogel to improve its anodic performance for lithium ion battery
CN111656580B (en) Negative electrode active material for lithium secondary battery, negative electrode comprising same, and lithium ion secondary battery comprising same
KR102278633B1 (en) Anode active material for lithium secondary battery, Anode comprising the same and Lithium secondary battery comprising the same
JP4866611B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery using the negative electrode material, and non-aqueous electrolyte secondary battery
JP5516929B2 (en) Carbon nanotube material for negative electrode and lithium ion secondary battery using the same as negative electrode
JP2019067579A (en) Lithium ion secondary battery and negative electrode material for lithium ion secondary battery
WO2016121711A1 (en) Method for manufacturing graphite powder for negative-electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2020163864A1 (en) Immobilized selenium in a porous carbon with the presence of oxygen, and uses in a rechargeable battery
WO2014069117A1 (en) Anode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP2007294374A (en) Negative electrode material for nonaqueous electrolytic liquid secondary battery, negative electrode for nonaqueous electrolytic liquid secondary battery using negative electrode material, and nonaqueous electrolytic liquid secondary battery
JP2003017051A (en) Negative electrode active material, manufacturing method of the same, and non-aqueous electrolyte secondary battery
WO2020213628A1 (en) Composite carbon particles, method for manufacturing same and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5516929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250