JP5078047B2 - Carbon material, production method thereof and use thereof - Google Patents

Carbon material, production method thereof and use thereof Download PDF

Info

Publication number
JP5078047B2
JP5078047B2 JP2001290775A JP2001290775A JP5078047B2 JP 5078047 B2 JP5078047 B2 JP 5078047B2 JP 2001290775 A JP2001290775 A JP 2001290775A JP 2001290775 A JP2001290775 A JP 2001290775A JP 5078047 B2 JP5078047 B2 JP 5078047B2
Authority
JP
Japan
Prior art keywords
carbon
carbon material
material according
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001290775A
Other languages
Japanese (ja)
Other versions
JP2003100293A (en
Inventor
彰孝 須藤
千明 外輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001290775A priority Critical patent/JP5078047B2/en
Priority to TW091121259A priority patent/TW583153B/en
Priority to AU2002337497A priority patent/AU2002337497A1/en
Priority to US10/490,021 priority patent/US20040247872A1/en
Priority to KR1020047004258A priority patent/KR100951388B1/en
Priority to KR1020097020404A priority patent/KR100935129B1/en
Priority to EP02772869A priority patent/EP1442490B1/en
Priority to CN2007100891152A priority patent/CN101016153B/en
Priority to PCT/JP2002/009672 priority patent/WO2003028128A2/en
Priority to CNB028187598A priority patent/CN1316650C/en
Publication of JP2003100293A publication Critical patent/JP2003100293A/en
Application granted granted Critical
Publication of JP5078047B2 publication Critical patent/JP5078047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A carbon material includes carbon particles having a graphite structure, the particles having a carbonaceous material deposited on at least a portion of the surface thereof, and fibrous carbon. In the carbon material, the carbonaceous material is obtained by subjecting a composition containing a polymer to heat treatment. The fibrous carbon is preferably deposited to the carbon particles through a carbonaceous material obtained by subjecting a composition containing a polymer. As a result, when the carbon material is used as a negative electrode active material for a secondary battery, the electrical conductivity can be improved and large current load enduring characteristics and cycle characteristics can be improved. By coating the carbonaceous material onto the carbon particles having a graphite structure, destruction of the graphite structure by the polyethylene carbonate-based electrolytic solution can be prevented.

Description

【0001】
【発明の属する技術分野】
本発明は、炭素材料とその製造方法並びにその用途に関し、より詳細には、表層が母材の炭素質粉体と異質な炭素皮膜層である炭素材料及びその製造方法、該炭素材料を用いた二次電池用負極材、例えば非水電解液二次電池用負極材の性能を向上させた二次電池に関するものである。
【0002】
【従来の技術】
近年小型携帯電子機器の発達に伴い、高いエネルギー密度を持つリチウムイオン二次電池(以下LIBと略す)の需要が高まっている。このLIBに用いる負極材としてはリチウムイオンをインターカレーション可能な材料であるとの理由で黒鉛微粉が主流となっている。
【0003】
負極材用黒鉛材料の実用領域での放電容量は従来は300〜330mAh/gであったが、その改良が進められ近年では理論容量である372mAh/gに近い材料も開発されている。
【0004】
この放電容量は、リチウムイオンの可逆的なインターカレーション可能な量として規定した場合、黒鉛結晶が発達しているものほど高い値を示すと言うことができる。実際、天然黒鉛は人造黒鉛に比べて炭素の結晶性がすぐれ、コストも低く放電容量も高い値が得られる。
【0005】
このような黒鉛系材料を使用する場合は、電解液にエチレンカーボネート(以下ECと略す)系の電解液を使用する必要があった。ECは、黒鉛の表面において、初回の充電時にSEI(Solid Electrolyte Interface)と呼ばれる皮膜を形成することが知られている。この皮膜を形成することで、充電時において黒鉛結晶が破壊されるという欠点を克服している。
【0006】
ECは比較的優れた有機電解液であるが、常温で固体のため取り扱いが容易ではなく、低温特性も良好ではないという問題がある。
【0007】
一方、プロピレンカーボネート(以下PCと略す)も比較的優れた有機系電解液であり、しかも常温で液体で取り扱いも比較的容易であり、低温特性も優れている。しかし、SEIを形成しないため、天然黒鉛のように結晶性が優れ、表面にエッジ部分が露出した黒鉛材料では充電時に黒鉛結晶の破壊が起こり、負極として使用することが困難である。
また、黒鉛系材料としては、メソフェーズ小球体黒鉛化品が知られているが、この材料は構造上エッジが表面に露出していないため、PCを含む電解液でも比較的性能を落とさずに使用可能である。しかし放電容量は低く、理論値に近づけることは困難である。
【0008】
このような問題を解決するため、種々の方法が考案されている。例えば第2643035号公報、特開平4−370662号公報、第3139790号公報、特開平5−121066号公報等は、黒鉛粒子の表面を低結晶炭素で被覆した炭素材料を提案している。これらの炭素材料は電解液の分解を引き起こしにくい為、容量の向上や初期効率の改善に有効である。
【0009】
しかしながら第2643035号公報記載の技術によれば、炭素粒子表面に気相法により炭素被覆層を形成しているため、比較的均一で性能の優れた材料が得られるが、経済性、量産性などの実用面で問題がある。
【0010】
一方、特開平4−370662号公報、第3139790号公報、特開平5−121066号公報等は、液相炭素化を利用した手法が記載されている。これらの方法は経済性の点で有利であるが、単に液相の有機化合物と黒鉛粒子とを混合し焼成するのみでは、粒子同士が融着、凝集等を起こしやすく、再粉砕処理等が必要になるなど工程が複雑になる事に加え、破砕面のコーティングが不十分になるなどの問題が起こりやすい。
【0011】
さらに第2976299号公報では、炭素材料をピッチ、タール等の石炭系、石油系重質油に浸漬させた後、適当な有機溶剤等で洗浄後、焼成処理を行う方法が示されている。この方法では、破砕面が露出しにくいが、ピッチ等はほとんどが常温で固体であり、また発ガン性の強い有機化合物を含むなど安全性、取り扱いの点で問題がある。
【0012】
先に示した公報の中にも熱硬化性樹脂の使用に関する記述がある。しかし、これらに開示されている熱硬化性樹脂を使用した場合、硬化中のガス抜けが悪く、発泡を伴い通気口が残ってしまい実用的なものを作成することはなかなか困難であった。
【0013】
【発明が解決しようとする課題】
本発明は、比較的容易な方法で炭素材料の表面に不透過性に優れた炭素皮膜層を形成する事により、電解液についての制約が少ないリチウム二次電池用負極材料を得ることを主な目的とする。
【0014】
【課題を解決するための手段】
本発明は上記の課題を解決するため鋭意研究した結果なされたものである。フェノール樹脂やフルフリルアルコール樹脂等の熱硬化性樹脂を炭化したガラス状炭素は、不透過性に優れている事が知られている。従って、電解液との反応性が高い表面部分を被覆するには適した材料であると言える。また、ピッチなどに比べて取り扱いも容易である。
【0015】
本発明は、母材となる炭素粉体(以下母材もしくは母材炭素材料という)を、皮膜用炭素材料原料である桐油、アマニ油等の乾性油またはその脂肪酸を含むフェノール樹脂のモノマーを、黒鉛化前あるいは黒鉛化後の炭素質粉体の表面に塗布し、加熱硬化する。そして必要な場合は塗布や浸漬等の工程及び硬化工程を複数回繰り返して皮膜を厚くした後に焼成(または黒鉛)化することにより、炭素質粉体と異質な炭素質である不透過性に優れた強固な皮膜、接着性のよい皮膜を有する負極材を見いだした。本発明において、「異質な炭素質」とは、炭素皮膜層が母材の炭素粉末と異なる通気性、透過性、強度、接着性、密度、結晶化度、比表面積等の物性が異なることを意味し、母材と同じ物性を示す連続層として炭素皮膜が存在していないことである。
【0016】
すなわち本発明は、
1) 乾性油またはその脂肪酸及びフェノール樹脂を含む組成物を炭素質粉体に付着させる工程、該炭素質粉体を非酸化性雰囲気下で熱処理する工程を含む炭素材料の製造方法、
2) 熱処理する工程において、ホウ素化合物を添加して熱処理することを特徴とする上記1)に記載の炭素材料の製造方法、
3) 乾性油またはその脂肪酸及びフェノール樹脂を含む組成物を炭素質粉体に付着させる工程、次いで該炭素質粉体を硬化する工程を1回以上20回以下繰り返した後、非酸化性雰囲気下で熱処理することを特徴とする上記1)または2)に記載の炭素材料の製造方法、
4) 非酸化性雰囲気下で熱処理する工程が、2800℃以上の温度で行う焼成工程である上記1)乃至3)のいずれかひとつに記載の炭素材料の製造方法、
5) 炭素質粉体が、黒鉛粉末であって、非酸化性雰囲気下で熱処理する工程が2400℃以上の温度で行う焼成工程であることを特徴とする上記1)乃至3)のいずれかひとつに記載の炭素材料の製造方法、
6) 上記1)乃至5)のいずれかひとつに記載の炭素材料の製造方法によって得られた炭素材料、
7) 炭素質粉体の表層が、乾性油またはその脂肪酸及びフェノール樹脂を含む組成物から得られた炭素皮膜層である炭素材料、
8) 炭素皮膜層が、X線回折法による面間隔d002が0.3395nm以下の炭素からなるものである上記6)または7)に記載の炭素材料、
9) 炭素皮膜層が、ホウ素元素を含んだ炭素からなるものである上記6)または7)に記載の炭素材料、
10) 炭素皮膜層が、X線回折法による面間隔d002が0.3354〜0.3370nmの炭素からなるものである上記6)乃至8)のいずれかひとつに記載の炭素材料、
11) 炭素皮膜層が、X線回折法による面間隔d002が0.3395nm以上の炭素からなるものである上記9)に記載の炭素材料、
12) 比表面積が、3m2/g以下、アスペクト比が6以下、タッピング嵩密度が0.8g/cm3以上である上記6)乃至11)のいずれかひとつに記載の炭素材料、
13) 平均粒径が、8〜30μmである上記6)乃至12)のいずれかひとつに記載の炭素材料、
14) 平均粒径が、3μm以下及び/または53μm以上の粒子を実質的に含まない上記6)乃至13)のいずれかひとつに記載の炭素材料、
15) 上記6)乃至14)のいずれかひとつに記載の炭素材料を含む電極材料を用いた非水電解液二次電池電極、
16) 上記6)乃至14)のいずれかひとつに記載の炭素材料及び気相法炭素繊維を含む混合物を電極材料に用いた非水電解液二次電池電極、
17) 気相法炭素繊維を0.1〜20質量%含む上記16)に記載の非水電解液二次電池電極、
18) 上記15)乃至17)のいずれかひとつに記載の非水電解液二次電池電極を構成要素とする非水電解液二次電池、及び
19) 非水電解液及び電解質を用いた非水電解液二次電池において、該非水電解液がエチレンカーボネート、ジエチルカーボネート及びプロピレンカーボネートからなる群から選ばれた少なくとも1種である上記18)に記載の非水電解質二次電池。。
【0017】
【発明の実施の形態】
以下本発明を詳細に説明する。
【0018】
(被覆材)
本発明は桐油、アマニ油等の乾性油(以下詳細については後述する)またはその脂肪酸を含むフェノール樹脂を被覆材にして、炭素粉体等を被覆、硬化(重合も含む)、焼成(黒鉛化)する方法である。
【0019】
電解液の分解を防ぐ目的で負極材の被覆を行うためには、被覆材の硬化及び焼成後の亀裂、剥離などを防止し、かつ緻密にして、活性の高い炭素母材の表面と電解液の直接接触を防ぐ必要がある。そのためには、被覆材の硬化、焼成過程における被覆材の物理的、化学的挙動がきわめて大切になる。硬化、焼成中におけるガス抜けが円滑に進み、またガスが抜けた場合にはその後に通路を残さない事が重要である。これには、焼成過程における急激な分解、発泡を防ぐ化学作用、被覆材の粘度等が関与していると考えられる。
本発明において、乾性油またはその脂肪酸を混合したフェノール樹脂を用いるとなぜ緻密な炭素材が得られるか明らかではないが、フェノール樹脂と乾性油中の不飽和脂結合の部分が化学反応を起こして、いわゆる乾性油変性フェノール樹脂となるが、これが焼成過程において分解を和らげ、発泡を防ぐことが推測される。また、乾性油は単に二重結合があると言うだけではなく、かなり長いアルキル基とエステル結合を有しており、これらも焼成過程におけるガスの抜け易さ等の面で関与していることが考えられる。
【0020】
フェノール樹脂はフェノール類とアルデヒド類との反応によりつくられ、ノボラック、レゾール等の未変性フェノール樹脂や一部変性されたフェノール樹脂が使用できる。また、必要に応じてニトリルゴム等のゴムをフェノール樹脂に混合して使用できる。フェノール類としては、フェノール、クレゾール、キシレノール、C20以下のアルキル基を有するアルキルフェノール等が挙げられる。
本発明の乾性油またはその脂肪酸を混合したフェノール樹脂には、先にフェノール類と乾性油とを強酸触媒存在下に付加反応させ、その後に塩基性触媒を加えて系を塩基性となしホルマリン付加反応させたもの、またはフェノール類とホルマリンを反応させ、その後に乾性油を加えたものでよい。
【0021】
乾性油は通常知られる桐油、アマニ油、脱水ヒマシ油、大豆油、カシューナッツ油等であり、これらはその脂肪酸であってもよく、薄膜にして空気中に放置すると比較的短時間に固化乾燥する性質を有する植物油である。
【0022】
フェノール樹脂に対する乾性油またはその脂肪酸の割合は、例えば(フェノールとホルマリンの縮合物)100質量部に対し、(乾性油またはその脂肪酸)5〜50質量部が適する。50質量部より多くなると、被覆材の炭化率が下がり炭素皮膜層の密度が下がる。
【0023】
この被覆材を用いて炭素質粉体を被覆する場合、被覆材をアセトン、エタノール、トルエン等で希釈して粘度を調整すると混合被覆しやすい。
【0024】
(母材)
母材炭素質粉体の形状としては、塊状、鱗片状、球状、繊維状等の粒子形状を有するものでよく、天然黒鉛、人造黒鉛、メソカーボン小球体焼成品、樹脂焼成品等の一種類もしくは二種類以上が利用できる。
母材となる炭素質粉体の粒度分布は、レーザー回折式粒度分布測定器による中心粒径D50が0.1〜100μm程度であることが好ましい。
粒度分布を調整するためには公知の粉砕方法、分級方法を利用することができる。
【0025】
(被覆方法)
本発明においては、上記の母材となる炭素質粉体と、上記に示したフェノール樹脂を混合し、攪拌処理する。攪拌方法としては特に限定されないが、例えば、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等の装置を使用することができる。
【0026】
(攪拌条件)
攪拌処理時の温度及び時間は、母材及び被覆材の成分及び粘度等に応じて適宜選択されるが、通常フェノール樹脂の硬化(重合)が激しく進行しない温度であって、0℃〜50℃程度、好ましくは10℃〜30℃程度の範囲とする。
あるいは混合物の粘度が混合温度下で500Pa・s以下になるように混合時間及びフェノール樹脂の溶媒希釈を行う。この場合溶媒としてはフェノール樹脂との親和性が良好なものであれば使用できるが、アルコール類、ケトン類、芳香族炭化水素、エステル類等が挙げられる。好ましくはメタノール、エタノール、ブタノール、アセトン、メチルエチルケトン、トルエン、酢酸エチル、酢酸ブチル等がよい。
【0027】
攪拌時の雰囲気としては、大気圧下、加圧下、減圧下のいずれであっても良いが、減圧下で攪拌する場合には、母材と被覆材の親和性が向上するので好ましい。
【0028】
(溶媒除去)
攪拌後、溶剤の一部もしくは全部を除去することが好ましい。除去方法は、熱風乾燥、真空乾燥等公知の方法が使用できる。
【0029】
また、乾燥温度は使用した溶媒の沸点、蒸気圧等によるが、フェノール樹脂の硬化(重合)が激しく進行する温度よりは低いことが好ましい。具体的には100℃以下、好ましくは80℃以下である。
【0030】
(硬化条件)
溶媒揮発除去後、母材表面に付着しているフェノール樹脂を加熱硬化する。加熱温度はフェノール樹脂の硬化が激しく進行する100℃以上、好ましくは150℃以上である。
【0031】
加熱硬化には公知の加熱装置のほとんどが使用できる。しかし、製造プロセスとしては連続処理が可能なロータリーキルンやベルト式連続炉などが生産性の点で好ましい。
【0032】
緻密な膜(例えば、通気率が10-6cm2/秒以下)を作成可能な本発明のフェノール樹脂でも、従来のフェノール樹脂よりは少ないものの、加熱時にガスなどが発生することによる貫通孔や、塗布、浸漬等による不均一性による母材表面が皮膜がなく露出している部分が存在する可能性がある。この場合は被覆が不十分なところで電解液の分解が発生し、性能低下の原因になる。
【0033】
この様な現象は、攪拌、乾燥、硬化のプロセスを複数回実施することにより防ぐことができる。また、炭素皮膜層と母材との親和性、皮膜層の厚さを均一に、厚さを大きくするためには塗布、浸漬等の被覆回数を複数回繰り返すことも可能である。塗布、浸漬等の被覆回数は2回以上、好ましくは4回以上、さらに好ましくは6回以上である。
ただし、20回を超える回数の実施は、製造コスト的にも性能的にも好ましくない。
【0034】
また、攪拌、乾燥、硬化、焼成の一連の工程を繰り返しても効果があるが、焼成回数を増やした場合著しいコストアップになるためあまり好ましくない。
【0035】
攪拌時のフェノール樹脂添加量(母材全質量に対する樹脂固形分換算値)は塗布等の回数や所望の皮膜厚さ等により決めることが可能である。しかし、フェノール樹脂添加量が少なすぎる場合には期待する性能が発現できず、多すぎると硬化後の凝集が激しくなり好ましくない。
【0036】
フェノール樹脂添加量は、好ましくは2質量%〜30質量%、さらに好ましくは4質量%〜25質量%、さらに好ましくは6質量%〜18質量%である。
【0037】
(熱処理条件)
リチウムイオン等のインターカレーションによる充放電容量を高めるには炭素材料の結晶性を向上させることが必要である。炭素の結晶性は一般的に最高熱履歴(熱処理温度が最も高い時の温度を示す)と共に向上するため、電池性能的には熱処理温度は高い方が好ましい。好ましくは2800℃以上、さらに好ましくは2900℃以上、特に好ましくは3000℃以上である。
【0038】
最高熱履歴での保持時間は長い方が好ましいが、被加熱物が微粒子であることから、粒子の中心部まで熱が伝われば基本的には十分に性能を発揮する。また、保持時間が短い方がコスト的にも好ましい。例えば、平均粒径20μm程度の炭素質粉体では中心部まで最高温度に到達してから30分以上、好ましくは10分以上、さらに好ましくは5分以上保持すればよい。
【0039】
また、天然黒鉛や、一度熱処理を実施した人造黒鉛等のすでに炭素の結晶が発達した母材に被覆を行う場合については、被覆後の被覆材自身にもある程度の熱処理が必要である。好ましくは2400℃以上、さらに好ましくは2700℃以上、特に好ましくは2900℃以上である。この場合には、中心部までに最高温度が到達していなくてもよく、実質的に皮膜の炭素材料表面への接着性、皮膜の強度等が実用に達していればよい。
【0040】
熱処理の為の昇温速度については、公知の装置における最速昇温速度及び最低昇温速度の範囲内では特に性能に大きく影響しない。しかし、粉体であるため、成形材等のようにひび割れの問題などがほとんどないため、コスト的な観点からも昇温速度は早いほうがよい。常温から最高到達温度までの到達時間は好ましくは12時間以下、さらに好ましくは6時間以下、特に好ましくは2時間以下である。
【0041】
焼成のための熱処理装置は、アチソン炉、直接通電加熱炉など公知の装置が利用できる。また、これらの装置はコスト的にも有利である。しかし、窒素ガスの存在が粉体の抵抗を低下させたり、酸素による酸化によって炭素材料の強度が低下することがあるため、好ましくは炉内雰囲気をアルゴン、ヘリウムなどの不活性ガスに保持できるような構造の炉が好ましい。例えば容器自体を真空引き後ガス置換可能なバッチ炉や、管状炉で炉内雰囲気をコントロール可能なバッチ炉あるいは連続炉などである。
【0042】
炭素材料の結晶化度を向上させる方法として、必要に応じて公知のホウ素、ベリリウム、アルミニウム、ケイ素、その他の黒鉛化触媒を使用することができる。
【0043】
中でもホウ素は黒鉛網面結晶の中に炭素原子と置換して入ることが可能であり、その際、炭素炭素結合が一度切断され、再度結合するというような結晶構造の再構築が起こると考えられる。従って、黒鉛結晶がやや乱れた部分についても、結晶構造の再構成により、高い結晶性の粒子にすることが可能となると考えられる。炭素皮膜層にホウ素(ホウ素元素)が含まれるとは、ホウ素が一部固溶して、炭素表面、炭素六角網面の積層体層間に存在したり、炭素原子とホウ素原子が一部置換した状態をいう。
【0044】
ホウ素化合物としては、加熱によりホウ素を生成する物質であればよく、ホウ素、炭化ホウ素、ホウ素酸化物、有機ホウ素酸化物等の固体、液体、さらには気体でもよい、例えば、B単体、ホウ酸(H3BO3)、ホウ酸塩、酸化ホウ素(B23)、炭化ホウ素(B4C)、BN等使用できる。
【0045】
ホウ素化合物の添加量は、用いるホウ素化合物の化学的特性、物理的特性に依存するために限定されないが、例えば炭化ホウ素(B4C)を使用した場合には、熱処理する炭素粉体に対して0.05〜10質量%、好ましくは0.1〜5質量%の範囲がよい。
【0046】
炭素材料の粒度については、熱処理前に炭素質粉体の粒度を調整する場合は、熱処理後に特に調整する必要はないが、融着、凝集している場合には弱く解砕した後、気流分級などを実施することができる。分級は好ましくはメッシュによる篩を行うのが操作上簡便でよい。
【0047】
粒度は平均粒径で8〜30μmが好ましく、さらに好ましくは10〜25μmである。この平均粒径はレーザー回折散乱法で求めることができる。平均粒径が8μmより小さいとアスペクト比が大きくなりやすく、比表面積が大きくなりやすい。また、例えば、電池の電極を作製する場合、一般に炭素材料をバインダーによりペーストとし、それを塗布する方法が採られている。炭素材料の平均粒径が8μm未満の場合だと、8μmより小さい微粉がかなり含まれていることになり、ペーストの粘度が上がり塗布性も悪くなる。
【0048】
さらに、平均粒径53μm以上のような大きな粒子が混入していると電極表面に凹凸が多くなり、電池に使用されるセパレータを傷つける原因ともなる。例えば、3μm以下の粒子及び53μm以上の粒子を実質的に含まない(5質量%以下)の粉体は平均粒径が10〜25μmとなる。
【0049】
(二次電池の作製)
本発明の炭素材料を用いてリチウム二次電池を作製する場合には公知の方法が使用できる。
【0050】
リチウム電池の電極では炭素材料の比表面積は小さい方がよい。本発明の炭素材料の比表面積(BET法)は3m2/g以下である。比表面積が3m2/gを超えると炭素材料の表面活性が高くなり、電解液の分解等によって、クーロン効率が低下する。さらに、電池の容量を高めるためには炭素材料の充填密度を上げることが重要である。そのためにもできるだけ球状に近いものが好ましい。この粒子の形状をアスペクト比(長軸の長さ/短軸の長さ)で表すとアスペクト比は6以下、好ましくは5以下である。アスペクト比は顕微鏡写真等から求めるこtができるが、レーザー回折散乱法で算出した平均粒子径Aと電気的検検知法(コールタ・カウンタ法)により算出した平均粒子径Bから粒子を円板と仮定し、この円板の底面直径をA、体積を4/3×(B/2)3π=Cとした場合、円板の厚みT=C/(A/2)2πで算出できる。従ってアスペクト比はA/Tで得られる。
【0051】
リチウム電池の電極では炭素材料の充填性がよい、嵩密度が高い方が放電容量は高くなる。本発明の炭素材料はタッピング嵩密度が0.8g/cm3以上、好ましくは0.9g/cm3以上である。タッピング嵩密度の測定は、一定量の炭素材料(6.0g)を15mmφの測定用セルに入れ、タッピング装置にセットする。落下高さを46mm、タッピング速度を2秒/回とし、400回自由落下させた後、その体積を測定する。そして質量と体積の関係から嵩密度を算出する。
【0052】
まず、電極作製であるが、通常のように結合材(バインダー)を溶媒で希釈して負極材と混練し、集電体(基材)に塗布することで作製できる。
【0053】
バインダーについては、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系ポリマーや、SBR(スチレンブタジエンラバー)等のゴム系等公知のものが使用できる。溶媒には、各々のバインダーに適した公知のもの、例えばフッ素系ポリマーならトルエン、N−メチルピロリドン等、SBRなら水等、公知のものが使用できる。
【0054】
バインダーの使用量は、負極炭素材を100質量部とした場合、1〜30質量部が適当であるが、特に3〜20質量部程度が好ましい。
【0055】
負極材とバインダーとの混錬はリボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等、公知の装置が使用できる。
【0056】
混錬後、集電体に塗布する場合には、公知の方法により実施できるが、例えばドクターブレードやバーコーターなどで塗布後、ロールプレス等で成形する方法等が上げられる。
【0057】
集電体は、銅、アルミニウム、ステンレス、ニッケル及びそれらの合金など公知の材料が使用できる。
【0058】
セパレーターは公知のものが使用できるが、特にポリエチレンやポリプロピレン性の不織布が好ましい。
【0059】
本発明におけるリチウム二次電池における電解液及び電解質は公知の有機電解液、無機固体電解質、高分子固体電解質が使用できる。好ましくは、電気伝導性の観点から有機電解液がよい。
【0060】
有機電解液としては、ジエチルエーテル、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールフェニルエーテル等のエーテル;ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルプロピオンアミド、ヘキサメチルホスホリルアミド等のアミド;ジメチルスルホキシド、スルホラン等の含硫黄化合物;メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン;エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、2−メトキシテトラヒドロフラン、1,2−ジメトキシエタン、1,3−ジオキソラン等の環状エーテル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;γ−ブチロラクトン;N−メチルピロリドン;アセトニトリル、ニトロメタン等の有機溶媒の溶液が好ましい。さらに、好ましくはエチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン等のエステル類、ジオキソラン、ジエチルエーテル、ジエトキシエタン等のエーテル類、ジメチルスルホキシド、アセトニトリル、テトラヒドロフラン等が上げられ、特に好ましくはエチレンカーボネート、プロピレンカーボネート等のカーボネート系非水溶媒を用いることができる。これらの溶媒は、1種または2種以上の混合を行って使用することができる。
【0061】
これらの溶媒の溶質(電解質)には、リチウム塩が使用される。一般的に知られているリチウム塩にはLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、LiN(CF3SO22等がある。
【0062】
高分子固体電解質としては、ポリエチレンオキサイド誘導体及び該誘導体を含む重合体、ポリプロピレンオキサイド誘導体及び該誘導体を含む重合体、リン酸エステル重合体、ポリカーボネート誘導体及び該誘導体を含む重合体等が挙げられる。
【0063】
本発明における負極材料を使用したリチウム二次電池において、正極活物質にリチウム含有遷移金属酸化物(化学式LiXMO2、ただし、MはCo、Ni、Mn、Feから選ばれる1種以上の遷移金属、Xは0≦X≦1.2の範囲)を用いることにより安全性や高率充放電特性に優れるリチウム二次電池を得ることができる。正極活物質は特にLiXCoO2、LiXNiO2、LiXMn24、及びそれらのCo、Ni、Mnの一部を他の遷移金属などの元素で置換したものが好適である。
【0064】
上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。
【0065】
【実施例】
以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。
【0066】
(被覆用フェノール樹脂作成方法)
被覆材には桐油で一部変性したフェノール樹脂を用いた。桐油100質量部とフェノール150質量部、ノニルフェノール150質量部を混合して50℃に保持する。これに0.5質量部の硫酸を加えて攪拌し、徐々に昇温して120℃で1時間保持し、桐油とフェノール類との付加反応を行った。その後温度を60℃以下に下げ。ヘキサメチレンテトラミンを6質量部と37質量%ホルマリン100質量部を加え、90℃で約2時間反応し、その後真空脱水した後、メタノール100質量部、アセトン100質量部を加えて希釈し、粘度20mPa・s(20℃)のワニスを得た。以下、本ワニスをワニスAという。
【0067】
(X線回折法による面間隔d002測定法)
炭素材料学会117委員会が示す方法(炭素、No36、25〜34頁(1963年))を用いて測定した。
【0068】
(電池評価方法)
(1)ペースト作成
原料炭素1質量部に呉羽化学製KFポリマーL1320(PVDFを12質量%含有したNMP溶液品)0.1質量部を加え、プラネタリーミキサーにて混練し主剤原液とした。
【0069】
(2)電極作製
主剤原液にNMPを加え、粘度を調整した後、高純度銅箔▲1▼上でドクターブレードを用いて140μm厚に塗布した。これを120℃2hr真空乾燥し、18mmφに打ち抜いた。さらに、打ち抜いた電極を超鋼製プレス板で挟み、プレス圧が電極に対して1×103〜10×103kg/cm2となるようにプレスした。
その後、真空乾燥器で120℃12hr乾燥後し、評価用電極とした。
【0070】
(3)電池作成
下記の様にして3極セルを作製した。なお以下の操作は露点−80℃以下の乾燥アルゴン雰囲気下で実施した。
ポリプロピレン製のねじ込み式フタ付きのセル(内径約18mm)内において、上記(2)で作製の銅箔付き炭素電極(正極)と金属リチウム泊(負極)をセパレーター(ポリプロピレン製マイクロポーラスフィルム(セルガード2400))で挟み込んで積層した。さらにリファレンス用の金属リチウムを同様に積層した。これに電解液を加えて試験用セルとした。
【0071】
(4)電解液
以下の3種を使用した。
【0072】
▲1▼EC系 ;EC(エチレンカーボネート)8質量部及びDEC(ジエチルカーボネート)12質量部の混合品。
【0073】
▲2▼PC系1(PC濃度 約30%);PC2質量部、EC2質量部、DEC3質量部の混合品。
【0074】
▲3▼PC系2(PC濃度 約10%);PC1質量部、EC4質量部 DEC4質量部の混合品。
いずれの電解液も電解質としてLiPF6 を1モル/リットル溶解した。
【0075】
(5)充放電試験
電流密度0.2mA/cm2(0.1C相当)で定電流充放電試験を行った。充電(炭素へのリチウムの挿入)はレストポテンシャルから0.002Vまで0.2mA/cm2でCC(コンスタントカレント:定電流)充電を行った。次に0.002VでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が25.4μAに低下した時点で停止した。
放電(炭素からの放出)は0.2mA/cm2(0.1C相当)でCC放電を行い、電圧1.5Vでカットオフした。
【0076】
(実施例1)
ワニスAの樹脂固形分換算で5.4質量部にエタノール12.6質量部を加えて攪拌し、十分に溶解させた。これに塊状の天然黒鉛(D50=20μm)20質量部を加えプラネタリーミキサーにて30分間攪拌した。混錬物を真空乾燥機にて80℃で2時間乾燥し、エタノールを除去した。次に得られた乾燥粉をホットプレートに移し、室温から150℃まで30分で昇温し、150℃で3時間保持して加熱硬化した。硬化した粉体をヘンシェルミキサーにて30秒間解砕した。
【0077】
解砕した粉体を黒鉛ルツボに入れ、黒鉛炉にセットした。この内部を真空置換してアルゴン雰囲気下とした後、アルゴンガスを流しつつ昇温した。2900℃で10分間保持してその後冷却した。室温まで冷却後、得られた黒鉛粉を目開き45μmのメッシュを用いて振動篩を行い、通過物(篩下品)を負極材サンプルとした。電池評価電解液はEC系を使用した。
【0078】
(実施例2)
実施例1のサンプルをPC系1の電解液で評価した。
【0079】
(実施例3)
塗布1層目
ワニスAの樹脂固形分換算で5.4質量部にエタノール12.6質量部を加えて攪拌し、十分に溶解させた。これに塊状の天然黒鉛(D50=20μm)20質量部を加えプラネタリーミキサーにて30分間攪拌した。混錬物を真空乾燥器にて80℃で2時間乾燥し、エタノールを除去した。次に得られた乾燥粉をホットプレートに移し、室温から150℃まで30分で昇温し、150℃で3時間保持して加熱硬化した。硬化した粉体をヘンシェルミキサーにて30秒間解砕した。
【0080】
塗布2層目
ワニスAの樹脂固形分換算で5.4質量部にエタノール12.6質量部を加えて攪拌し、解砕した粉25.4質量部(母材質量20部+硬化したワニスA質量5.4部)を加えプラネタリーミキサーにて30分間攪拌した。混錬物を真空乾燥器にて80℃で2時間乾燥し、エタノールを除去した。次に乾燥粉をホットプレートに移し、室温から150℃まで30分で昇温し、150℃で3時間保持して加熱硬化した。
【0081】
このような操作を繰り返し、3、4、5層目まで被覆した。
硬化した粉体をヘンシェルミキサーにて30秒間解砕した。解砕した粉体を黒鉛ルツボに入れ、黒鉛炉にセットした。この内部を真空置換してアルゴン雰囲気下とした後、アルゴンガスを流しつつ昇温した。2900℃で10分間保持して冷却した。室温まで冷却後、得られた黒鉛粉体を目開き45μmのメッシュを用いて振動篩を行い、通過物を負極材サンプルとした。電池評価電解液はPC系1を使用した。
【0082】
(実施例4)
ワニスAの樹脂固形分換算で5.4質量部にエタノール12.6質量部を加えて攪拌し、十分に溶解させた。これに塊状の天然黒鉛(D50=20μm)20質量部を加えプラネタリーミキサーにて30分間攪拌した。混錬物を真空乾燥器にて80℃で2時間乾燥し、エタノールを除去した。次に乾燥粉をホットプレートに移し、室温から150℃まで30分で昇温し、150℃で3時間保持して加熱硬化した。硬化した粉をヘンシェルミキサーにて30秒間解砕した。
【0083】
解砕した粉体を黒鉛ルツボに入れ、炭化ホウ素(B4C)粉末1質量部を加え、黒鉛炉にセットた。この内部を真空置換してアルゴン雰囲気下とした後、アルゴンガスを流しつつで昇温した。2900℃で10分間保持して冷却した。室温まで冷却後、得られた黒鉛粉体を目開き45μmのメッシュを用いて振動篩を行い、通過物を負極材サンプルとした。電池評価電解液はEC系を使用した。
【0084】
(実施例5)
実施例4で得られた負極材サンプルについて、PC系1の電解液による電池評価を実施した。
【0085】
(実施例6)
実施例1で得られた負極材サンプルについて、PC系2の電解液による電池評価を実施した。
【0086】
(比較例1)
実施例1で使用した原料の塊状天然黒鉛(粒度調整済み)の電池評価をEC系電解液で実施した。
【0087】
(比較例2)
比較例1のサンプルでPC系1の電解液での電池評価を実施した
【0088】
(比較例3)
実施例1において、ワニスAの代わりに昭和高分子製フェノール樹脂BRS727(粘度90〜150mPa・s、不揮発分49〜53%;特殊変性ワニス)を樹脂固形分換算でワニスAと同量を使用し、同様の実験を実施した。電解液はPC系1を使用した。
【0089】
(比較例4)
実施例3において、ワニスAの代わりに昭和高分子製フェノール樹脂BRS727を樹脂固形分換算でワニスAと同量を使用し、同様の実験を実施した。電解液はPC系1を使用した。
【0090】
(比較例5)
比較例3において、BLS727の代わりに昭和高分子製フェノール樹脂BLS722(粘度400〜900mP・s、不揮発分49〜55%)を使用し、同様の実験を実施した。電解液はPC系1を使用した。
【0091】
(比較例6)
比較例3において、BLS727の代わりに昭和高分子製フェノール樹脂BLS120Z(粘度150〜250mP・s、不揮発分68〜72%;水溶性レゾール)を使用し、同様の実験を実施した。電解液はPC系1を使用した。
【0092】
(比較例7)
比較例3において、電解液としてPC系2を使用した。
【0093】
(比較例8)
比較例5において、電解液としてPC系2を使用した。
【0094】
(比較例9)
比較例6において、電解液としてPC系2を使用した。
以上の実施例及び比較例の電池評価結果を表1に示す。
【0095】
【表1】

Figure 0005078047
【0096】
【発明の効果】
本発明の炭素材料の製造方法は、経済性、量産性にすぐれ、使用する被覆材は取り扱いやすく、安全性も改善された方法であり、得られた本発明の炭素材料を電極に用いた二次電池は、エチレンカーボネートを主とする電解液、プロピレンカーボネートを主とする電解液、及びエチレンカーボネート・プロピレンカーボネートを主とする電解液でも充放電可能であり、さらに従来品より初期効率と放電容量に優れている。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a carbon material, a method for producing the same, and a use thereof, and more specifically, a carbon material whose surface layer is a carbon film layer that is different from a carbonaceous powder as a base material, a method for producing the carbon material, and the carbon material. The present invention relates to a secondary battery having improved performance of a negative electrode material for a secondary battery, for example, a negative electrode material for a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
In recent years, with the development of small portable electronic devices, demand for lithium ion secondary batteries (hereinafter abbreviated as LIB) having high energy density is increasing. As the negative electrode material used for this LIB, graphite fine powder has become the mainstream because it is a material capable of intercalating lithium ions.
[0003]
The discharge capacity in the practical range of the graphite material for the negative electrode material has conventionally been 300 to 330 mAh / g. However, improvement of the discharge capacity has been advanced, and in recent years, a material close to the theoretical capacity of 372 mAh / g has been developed.
[0004]
When this discharge capacity is defined as the amount of lithium ions that can be reversibly intercalated, it can be said that the more the graphite crystal is developed, the higher the discharge capacity is. In fact, natural graphite is superior in carbon crystallinity to artificial graphite, and can be obtained at a low cost and a high discharge capacity.
[0005]
When such a graphite material is used, it is necessary to use an ethylene carbonate (hereinafter abbreviated as EC) electrolyte solution as the electrolyte solution. It is known that EC forms a film called SEI (Solid Electrolyte Interface) on the surface of graphite at the first charge. By forming this film, the disadvantage that the graphite crystals are destroyed during charging is overcome.
[0006]
EC is a relatively excellent organic electrolyte, but it has a problem that it is not easy to handle because it is solid at room temperature and its low-temperature characteristics are not good.
[0007]
On the other hand, propylene carbonate (hereinafter abbreviated as PC) is a relatively excellent organic electrolytic solution, and is also a liquid at room temperature and relatively easy to handle, and has excellent low-temperature characteristics. However, since SEI is not formed, a graphite material having excellent crystallinity like natural graphite and having an edge portion exposed on the surface causes destruction of the graphite crystal during charging, making it difficult to use as a negative electrode.
In addition, mesophase small sphere graphitized products are known as graphite-based materials, but the edges of the materials are not exposed on the surface due to the structure, so they can be used without degrading performance even with electrolytes containing PC. Is possible. However, the discharge capacity is low and it is difficult to approach the theoretical value.
[0008]
In order to solve such a problem, various methods have been devised. For example, Japanese Patent No. 2643035, Japanese Patent Laid-Open No. 4-370662, Japanese Patent No. 3139790, Japanese Patent Laid-Open No. 5-121066, etc. propose carbon materials in which the surface of graphite particles is coated with low crystalline carbon. Since these carbon materials are unlikely to cause decomposition of the electrolytic solution, they are effective for increasing capacity and improving initial efficiency.
[0009]
However, according to the technology described in Japanese Patent No. 2643035, since a carbon coating layer is formed on the carbon particle surface by a vapor phase method, a relatively uniform and excellent performance material can be obtained. There is a problem in practical use.
[0010]
On the other hand, JP-A-4-370662, JP-A-3139790, JP-A-5-121066, etc. describe a technique using liquid phase carbonization. These methods are advantageous in terms of economy, but simply mixing a liquid phase organic compound and graphite particles and firing them, the particles tend to cause fusion, aggregation, etc., and regrinding is required. In addition to complicating the process such as becoming, problems such as insufficient crushing surface coating are likely to occur.
[0011]
Further, Japanese Patent No. 2976299 discloses a method in which a carbon material is immersed in coal-based or petroleum-based heavy oil such as pitch and tar, washed with an appropriate organic solvent, and then subjected to a firing treatment. In this method, the crushing surface is difficult to be exposed, but the pitch and the like are almost solid at room temperature, and there are problems in terms of safety and handling such as containing an organic compound having a strong carcinogenicity.
[0012]
There is also a description regarding the use of thermosetting resins in the above-mentioned publications. However, when the thermosetting resins disclosed in these are used, outgassing during curing is poor and it is difficult to produce a practical one because foaming causes a vent to remain.
[0013]
[Problems to be solved by the invention]
The main object of the present invention is to obtain a negative electrode material for a lithium secondary battery with few restrictions on the electrolyte by forming a carbon film layer having excellent impermeability on the surface of the carbon material by a relatively easy method. Objective.
[0014]
[Means for Solving the Problems]
The present invention has been made as a result of intensive studies to solve the above problems. It is known that glassy carbon obtained by carbonizing a thermosetting resin such as phenol resin or furfuryl alcohol resin is excellent in impermeability. Therefore, it can be said that the material is suitable for coating a surface portion having high reactivity with the electrolytic solution. In addition, handling is easier than pitch.
[0015]
In the present invention, carbon powder as a base material (hereinafter referred to as base material or base material carbon material), a dry oil such as paulownia oil, linseed oil, etc., which is a carbon material raw material for coating, or a phenol resin monomer containing a fatty acid thereof, It is applied to the surface of the carbonaceous powder before graphitization or after graphitization and cured by heating. And if necessary, it is excellent in impermeability, which is a carbonaceous material that is different from carbonaceous powder, by repeating the steps of coating and dipping etc. and curing step multiple times to thicken the film and then baking (or graphite) And found a negative electrode material having a strong film and a film having good adhesion. In the present invention, “heterogeneous carbonaceous” means that the carbon film layer has different physical properties such as air permeability, permeability, strength, adhesiveness, density, crystallinity, specific surface area and the like, which are different from the carbon powder of the base material. It means that the carbon film does not exist as a continuous layer showing the same physical properties as the base material.
[0016]
That is, the present invention
1) A method for producing a carbon material, comprising a step of adhering a composition containing a drying oil or a fatty acid thereof and a phenol resin to a carbonaceous powder, a step of heat-treating the carbonaceous powder in a non-oxidizing atmosphere,
2) The method for producing a carbon material according to 1) above, wherein in the heat treatment step, a boron compound is added and heat treatment is performed,
3) After repeating the step of adhering a composition containing a drying oil or a fatty acid thereof and a phenolic resin to the carbonaceous powder, and then curing the carbonaceous powder at least once and no more than 20 times, in a non-oxidizing atmosphere The method for producing a carbon material according to 1) or 2), wherein the carbon material is heat-treated at
4) The method for producing a carbon material according to any one of 1) to 3) above, wherein the heat treatment step in a non-oxidizing atmosphere is a firing step performed at a temperature of 2800 ° C. or higher.
5) Any one of the above 1) to 3), wherein the carbonaceous powder is a graphite powder, and the step of heat-treating in a non-oxidizing atmosphere is a firing step performed at a temperature of 2400 ° C. or higher. A method for producing the carbon material according to
6) A carbon material obtained by the method for producing a carbon material according to any one of 1) to 5) above,
7) The carbon material whose surface layer of carbonaceous powder is a carbon film layer obtained from the composition containing drying oil or its fatty acid, and a phenol resin,
8) The carbon coating layer has a surface spacing d by X-ray diffraction.002The carbon material according to 6) or 7) above, which is made of carbon of 0.3395 nm or less,
9) The carbon material according to 6) or 7) above, wherein the carbon coating layer is made of carbon containing a boron element.
10) The carbon coating layer has a surface spacing d by X-ray diffraction.002The carbon material according to any one of the above 6) to 8), wherein is made of carbon of 0.3354 to 0.3370 nm,
11) The carbon coating layer has an interplanar spacing d by X-ray diffraction.002The carbon material according to 9) above, wherein the carbon material is made of carbon of 0.3395 nm or more,
12) Specific surface area is 3m2/ G or less, the aspect ratio is 6 or less, and the tapping bulk density is 0.8 g / cm.ThreeThe carbon material according to any one of 6) to 11) above,
13) The carbon material according to any one of 6) to 12) above, wherein the average particle diameter is 8 to 30 μm,
14) The carbon material according to any one of 6) to 13) above, which does not substantially contain particles having an average particle diameter of 3 μm or less and / or 53 μm or more,
15) A non-aqueous electrolyte secondary battery electrode using an electrode material containing the carbon material according to any one of 6) to 14) above,
16) A nonaqueous electrolyte secondary battery electrode using, as an electrode material, a mixture containing the carbon material according to any one of 6) to 14) and a vapor grown carbon fiber,
17) The nonaqueous electrolyte secondary battery electrode according to 16) above containing 0.1 to 20% by mass of vapor grown carbon fiber,
18) A non-aqueous electrolyte secondary battery comprising the non-aqueous electrolyte secondary battery electrode according to any one of 15) to 17) as a component, and
19) The nonaqueous electrolyte secondary battery using a nonaqueous electrolyte and an electrolyte, wherein the nonaqueous electrolyte is at least one selected from the group consisting of ethylene carbonate, diethyl carbonate and propylene carbonate. Non-aqueous electrolyte secondary battery. .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0018]
(Coating material)
In the present invention, a dry oil such as paulownia oil or linseed oil (details will be described later) or a phenol resin containing a fatty acid thereof is used as a coating material, and carbon powder is coated, cured (including polymerization), fired (graphitized) ).
[0019]
In order to coat the negative electrode material for the purpose of preventing the decomposition of the electrolytic solution, the coating material is prevented from cracking and peeling after hardening and firing, and the surface of the highly active carbon base material and the electrolytic solution are made dense. It is necessary to prevent direct contact. For this purpose, the physical and chemical behavior of the coating material during the curing and firing process of the coating material is extremely important. It is important that the gas escapes smoothly during curing and firing, and that no passage is left after the gas escapes. It is considered that this involves rapid decomposition in the firing process, chemical action to prevent foaming, viscosity of the coating material, and the like.
In the present invention, it is not clear why a dense carbon material is obtained when a phenol resin mixed with drying oil or its fatty acid is used, but the unsaturated fat bond portion in the phenol resin and drying oil causes a chemical reaction. It becomes a so-called dry oil-modified phenol resin, which is presumed to reduce decomposition and prevent foaming in the firing process. In addition, drying oil does not just have double bonds, but has rather long alkyl groups and ester bonds, which are also involved in terms of ease of gas release during the firing process. Conceivable.
[0020]
Phenol resins are produced by the reaction of phenols and aldehydes, and unmodified phenol resins such as novolac and resol and partially modified phenol resins can be used. Moreover, rubbers, such as a nitrile rubber, can be mixed and used for a phenol resin as needed. Examples of phenols include phenol, cresol, xylenol, and alkylphenol having a C20 or lower alkyl group.
The phenolic resin mixed with the drying oil or fatty acid of the present invention is subjected to an addition reaction of phenols and drying oil in the presence of a strong acid catalyst, and then a basic catalyst is added to make the system basic, and formalin addition is performed. A reaction product or a product obtained by reacting phenols with formalin and then adding a drying oil may be used.
[0021]
Dry oils are commonly known paulownia oil, linseed oil, dehydrated castor oil, soybean oil, cashew nut oil, etc., and these may be fatty acids that solidify and dry in a relatively short time when left in the air as a thin film. A vegetable oil with properties.
[0022]
The ratio of the drying oil or its fatty acid to the phenol resin is suitably 5 to 50 parts by mass (drying oil or its fatty acid), for example, with respect to 100 parts by mass of (condensation product of phenol and formalin). When it exceeds 50 mass parts, the carbonization rate of a coating | covering material will fall and the density of a carbon film layer will fall.
[0023]
When the carbonaceous powder is coated using this coating material, the coating material is easily mixed and coated by adjusting the viscosity by diluting the coating material with acetone, ethanol, toluene or the like.
[0024]
(Base material)
The shape of the base material carbonaceous powder may have a particle shape such as a lump shape, a scale shape, a spherical shape, a fibrous shape, etc., and one kind of natural graphite, artificial graphite, mesocarbon microsphere fired product, resin fired product, etc. Or two or more types can be used.
As for the particle size distribution of the carbonaceous powder as the base material, the center particle size D50 measured by a laser diffraction particle size distribution analyzer is preferably about 0.1 to 100 μm.
In order to adjust the particle size distribution, known pulverization methods and classification methods can be used.
[0025]
(Coating method)
In the present invention, the carbonaceous powder as the base material and the phenol resin shown above are mixed and stirred. Although it does not specifically limit as a stirring method, For example, apparatuses, such as a ribbon mixer, a screw-type kneader, a Spartan luzer, a Redige mixer, a planetary mixer, a universal mixer, can be used.
[0026]
(Stirring conditions)
The temperature and time during the agitation treatment are appropriately selected according to the components of the base material and the coating material, the viscosity, and the like. The range is preferably about 10 ° C. to 30 ° C.
Alternatively, the mixing time and the solvent dilution of the phenol resin are performed so that the viscosity of the mixture is 500 Pa · s or less at the mixing temperature. In this case, the solvent can be used as long as it has a good affinity with the phenol resin, and examples thereof include alcohols, ketones, aromatic hydrocarbons, esters and the like. Methanol, ethanol, butanol, acetone, methyl ethyl ketone, toluene, ethyl acetate, butyl acetate and the like are preferable.
[0027]
The atmosphere at the time of stirring may be any of atmospheric pressure, increased pressure, and reduced pressure. However, stirring at reduced pressure is preferable because the affinity between the base material and the covering material is improved.
[0028]
(Solvent removal)
It is preferable to remove part or all of the solvent after stirring. As the removing method, known methods such as hot air drying and vacuum drying can be used.
[0029]
The drying temperature depends on the boiling point, vapor pressure, etc. of the solvent used, but it is preferably lower than the temperature at which the phenol resin cures (polymerizes) violently. Specifically, it is 100 ° C. or lower, preferably 80 ° C. or lower.
[0030]
(Curing conditions)
After removing the solvent by volatilization, the phenol resin adhering to the surface of the base material is cured by heating. The heating temperature is 100 ° C. or higher, preferably 150 ° C. or higher, at which the phenol resin hardens.
[0031]
Most of the known heating devices can be used for heat curing. However, as a manufacturing process, a rotary kiln capable of continuous processing or a belt-type continuous furnace is preferable in terms of productivity.
[0032]
Dense membrane (for example, air permeability is 10-6cm2Although the phenolic resin of the present invention capable of producing (/ sec. There may be exposed parts without coating. In this case, when the coating is insufficient, the electrolytic solution is decomposed, resulting in performance degradation.
[0033]
Such a phenomenon can be prevented by performing the stirring, drying and curing processes a plurality of times. In addition, in order to make the affinity between the carbon coating layer and the base material uniform, the thickness of the coating layer, and to increase the thickness, the number of coatings such as coating and dipping can be repeated a plurality of times. The number of coatings such as coating and dipping is 2 times or more, preferably 4 times or more, and more preferably 6 times or more.
However, the implementation exceeding 20 times is not preferable in terms of manufacturing cost and performance.
[0034]
Moreover, it is effective even if a series of steps of stirring, drying, curing, and baking is repeated, but it is not so preferable because the cost increases when the number of baking is increased.
[0035]
The amount of phenol resin added at the time of stirring (resin solid content conversion value with respect to the total mass of the base material) can be determined by the number of coatings, the desired film thickness, and the like. However, when the amount of the phenol resin added is too small, the expected performance cannot be exhibited, and when it is too large, the aggregation after curing becomes severe, which is not preferable.
[0036]
The phenol resin addition amount is preferably 2% by mass to 30% by mass, more preferably 4% by mass to 25% by mass, and further preferably 6% by mass to 18% by mass.
[0037]
(Heat treatment conditions)
In order to increase the charge / discharge capacity by intercalation of lithium ions or the like, it is necessary to improve the crystallinity of the carbon material. Since the crystallinity of carbon generally improves with the highest thermal history (indicating the temperature when the heat treatment temperature is the highest), the heat treatment temperature is preferably higher in terms of battery performance. Preferably it is 2800 degreeC or more, More preferably, it is 2900 degreeC or more, Most preferably, it is 3000 degreeC or more.
[0038]
Although it is preferable that the holding time at the maximum heat history is long, since the object to be heated is fine, if the heat is transmitted to the center of the particle, the performance is basically sufficiently exhibited. In addition, a shorter holding time is preferable in terms of cost. For example, in the case of carbonaceous powder having an average particle size of about 20 μm, it may be maintained for 30 minutes or more, preferably 10 minutes or more, more preferably 5 minutes or more after reaching the maximum temperature to the center.
[0039]
In addition, when coating a base material with already developed carbon crystals, such as natural graphite or artificial graphite that has been heat-treated once, a certain amount of heat treatment is also required for the coated material itself after coating. Preferably it is 2400 degreeC or more, More preferably, it is 2700 degreeC or more, Most preferably, it is 2900 degreeC or more. In this case, the maximum temperature does not have to reach the center, and it is only necessary that the adhesion of the coating to the carbon material surface, the strength of the coating, etc. reach practical use.
[0040]
The temperature rising rate for the heat treatment does not significantly affect the performance within the range of the fastest heating rate and the minimum heating rate in a known apparatus. However, since it is a powder, there is almost no problem of cracking as in the case of a molded material or the like. Therefore, it is preferable that the heating rate is high from the viewpoint of cost. The arrival time from the normal temperature to the maximum temperature is preferably 12 hours or less, more preferably 6 hours or less, and particularly preferably 2 hours or less.
[0041]
As a heat treatment apparatus for firing, a known apparatus such as an Atchison furnace or a direct current heating furnace can be used. These devices are also advantageous in terms of cost. However, since the presence of nitrogen gas may reduce the resistance of the powder or the strength of the carbon material may be reduced by oxidation with oxygen, the furnace atmosphere is preferably maintained in an inert gas such as argon or helium. A furnace with a simple structure is preferred. For example, a batch furnace in which the container itself can be evacuated and replaced with gas, a batch furnace in which a furnace atmosphere can be controlled with a tubular furnace, or a continuous furnace.
[0042]
As a method for improving the crystallinity of the carbon material, known graphitization catalysts such as boron, beryllium, aluminum, silicon and the like can be used as necessary.
[0043]
Among them, boron can enter carbon network crystals by substituting carbon atoms, and at that time, it is considered that the carbon-carbon bond is broken once and the crystal structure is restructured. . Therefore, it is considered that even a portion where the graphite crystal is somewhat disturbed can be made into highly crystalline particles by restructuring the crystal structure. When boron (boron element) is contained in the carbon coating layer, boron partially dissolves, and is present between the carbon surface and the carbon hexagonal network layer, or carbon atoms and boron atoms are partially substituted. State.
[0044]
The boron compound may be any substance that generates boron by heating, and may be a solid, liquid, or gas such as boron, boron carbide, boron oxide, or organic boron oxide, for example, B alone, boric acid ( HThreeBOThree), Borate, boron oxide (B2OThree), Boron carbide (BFourC), BN, etc. can be used.
[0045]
The amount of boron compound added is not limited because it depends on the chemical and physical properties of the boron compound used. For example, boron carbide (BFourWhen C) is used, the range is from 0.05 to 10 mass%, preferably from 0.1 to 5 mass%, based on the carbon powder to be heat-treated.
[0046]
Regarding the particle size of the carbon material, when adjusting the particle size of the carbonaceous powder before the heat treatment, it is not necessary to adjust the particle size after the heat treatment. Etc. can be implemented. For classification, it is preferable in terms of operation to perform sieving with a mesh.
[0047]
The average particle size is preferably 8 to 30 μm, more preferably 10 to 25 μm. This average particle diameter can be determined by a laser diffraction scattering method. When the average particle size is smaller than 8 μm, the aspect ratio tends to increase and the specific surface area tends to increase. Further, for example, when a battery electrode is manufactured, a method is generally employed in which a carbon material is made into a paste with a binder and applied. If the average particle size of the carbon material is less than 8 μm, fine powder smaller than 8 μm is contained considerably, and the viscosity of the paste increases and the applicability also deteriorates.
[0048]
Furthermore, when large particles having an average particle size of 53 μm or more are mixed, irregularities are increased on the electrode surface, which may cause damage to the separator used in the battery. For example, a powder that does not substantially contain particles of 3 μm or less and particles of 53 μm or more (5% by mass or less) has an average particle size of 10 to 25 μm.
[0049]
(Production of secondary battery)
When producing a lithium secondary battery using the carbon material of this invention, a well-known method can be used.
[0050]
In the electrode of a lithium battery, the carbon material should have a small specific surface area. The specific surface area (BET method) of the carbon material of the present invention is 3 m.2/ G or less. Specific surface area is 3m2If it exceeds / g, the surface activity of the carbon material increases, and the Coulomb efficiency decreases due to decomposition of the electrolytic solution. Furthermore, it is important to increase the packing density of the carbon material in order to increase the capacity of the battery. For that purpose, a spherical shape as close as possible is preferable. When the shape of the particles is expressed by an aspect ratio (long axis length / short axis length), the aspect ratio is 6 or less, preferably 5 or less. The aspect ratio can be obtained from a photomicrograph or the like, and the particles are discriminated from the average particle diameter A calculated by the laser diffraction scattering method and the average particle diameter B calculated by the electrical detection detection method (Coulter counter method). Assuming that this disk has a bottom diameter of A and a volume of 4/3 × (B / 2)ThreeWhen π = C, disc thickness T = C / (A / 2)2It can be calculated by π. Therefore, the aspect ratio can be obtained by A / T.
[0051]
In the electrode of a lithium battery, the charge capacity of the carbon material is good, and the higher the bulk density, the higher the discharge capacity. The carbon material of the present invention has a tapping bulk density of 0.8 g / cm.ThreeOr more, preferably 0.9 g / cmThreeThat's it. For the measurement of the tapping bulk density, a certain amount of carbon material (6.0 g) is put in a 15 mmφ measuring cell and set in a tapping apparatus. The drop height is 46 mm, the tapping speed is 2 seconds / time, and after dropping freely 400 times, the volume is measured. Then, the bulk density is calculated from the relationship between mass and volume.
[0052]
First, as for electrode preparation, it can be prepared by diluting a binder (binder) with a solvent, kneading with a negative electrode material, and applying to a current collector (base material) as usual.
[0053]
As the binder, known polymers such as a fluorine-based polymer such as polyvinylidene fluoride and polytetrafluoroethylene, and a rubber-based material such as SBR (styrene butadiene rubber) can be used. As the solvent, a known solvent suitable for each binder, for example, a fluorine-based polymer such as toluene and N-methylpyrrolidone, and a SBR that is known in water can be used.
[0054]
When the negative electrode carbon material is 100 parts by mass, the amount of the binder used is suitably 1 to 30 parts by mass, and particularly preferably about 3 to 20 parts by mass.
[0055]
For the kneading of the negative electrode material and the binder, a known apparatus such as a ribbon mixer, a screw type kneader, a Spartan rewinder, a redige mixer, a planetary mixer, or a universal mixer can be used.
[0056]
In the case of applying to the current collector after kneading, it can be carried out by a known method. For example, after applying with a doctor blade or a bar coater, a method of forming with a roll press or the like can be raised.
[0057]
As the current collector, known materials such as copper, aluminum, stainless steel, nickel, and alloys thereof can be used.
[0058]
Although a well-known thing can be used for a separator, especially polyethylene and a polypropylene nonwoven fabric are preferable.
[0059]
As the electrolyte and electrolyte in the lithium secondary battery of the present invention, known organic electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used. An organic electrolyte is preferable from the viewpoint of electrical conductivity.
[0060]
Examples of organic electrolytes include diethyl ether, dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, and ethylene glycol phenyl ether. Ether; formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethyl Acetamide, N, N-dimethylpropionamide, hexamethylphosphorylamide Amides such as: Sulfur-containing compounds such as dimethyl sulfoxide and sulfolane; Dialkyl ketones such as methyl ethyl ketone and methyl isobutyl ketone; ethylene oxide, propylene oxide, tetrahydrofuran, 2-methoxytetrahydrofuran, 1,2-dimethoxyethane, 1,3-dioxolane, etc. Cyclic ethers; carbonates such as ethylene carbonate and propylene carbonate; γ-butyrolactone; N-methylpyrrolidone; solutions of organic solvents such as acetonitrile and nitromethane are preferred. Further preferably, esters such as ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, vinylene carbonate, γ-butyrolactone, ethers such as dioxolane, diethyl ether, diethoxyethane, dimethyl sulfoxide, acetonitrile, tetrahydrofuran, etc. Particularly preferred are carbonate-based nonaqueous solvents such as ethylene carbonate and propylene carbonate. These solvents can be used by mixing one kind or two kinds or more.
[0061]
Lithium salts are used as solutes (electrolytes) for these solvents. Commonly known lithium salts include LiClOFour, LiBFFour, LiPF6LiAlClFour, LiSbF6, LiSCN, LiCl, LiCFThreeSOThree, LiCFThreeCO2, LiN (CFThreeSO2)2Etc.
[0062]
Examples of the polymer solid electrolyte include a polyethylene oxide derivative and a polymer containing the derivative, a polypropylene oxide derivative and a polymer containing the derivative, a phosphate ester polymer, a polycarbonate derivative and a polymer containing the derivative.
[0063]
In the lithium secondary battery using the negative electrode material in the present invention, a lithium-containing transition metal oxide (chemical formula LiXMO2However, when M is one or more transition metals selected from Co, Ni, Mn, and Fe, X is in the range of 0 ≦ X ≦ 1.2), lithium 2 having excellent safety and high rate charge / discharge characteristics. A secondary battery can be obtained. The positive electrode active material is particularly LiXCoO2, LiXNiO2, LiXMn2OFourAnd those obtained by substituting a part of Co, Ni and Mn with other elements such as transition metals.
[0064]
There are no restrictions on the selection of members necessary for battery configuration other than those described above.
[0065]
【Example】
The present invention will be described in more detail below with typical examples. Note that these are merely illustrative examples, and the present invention is not limited thereto.
[0066]
(Method of making phenolic resin for coating)
A phenol resin partially modified with tung oil was used as the covering material. 100 parts by mass of tung oil, 150 parts by mass of phenol, and 150 parts by mass of nonylphenol are mixed and maintained at 50 ° C. 0.5 parts by mass of sulfuric acid was added thereto and stirred, and the temperature was gradually raised and maintained at 120 ° C. for 1 hour to carry out an addition reaction between tung oil and phenols. Thereafter, the temperature is lowered to 60 ° C. or lower. 6 parts by weight of hexamethylenetetramine and 100 parts by weight of 37% by weight formalin were added, reacted at 90 ° C. for about 2 hours, and then vacuum dehydrated, and then diluted by adding 100 parts by weight of methanol and 100 parts by weight of acetone, and a viscosity of 20 mPa -The s (20 degreeC) varnish was obtained. Hereinafter, this varnish is referred to as varnish A.
[0067]
(Surface spacing d by X-ray diffraction method002Measurement method)
It measured using the method (Carbon, No36, 25-34 pages (1963)) which the 117th Committee of Carbon Materials Society shows.
[0068]
(Battery evaluation method)
(1) Paste creation
0.1 parts by mass of KF polymer L1320 (NMP solution containing 12% by mass of PVDF) was added to 1 part by mass of raw material carbon, and the mixture was kneaded with a planetary mixer to obtain a base material stock solution.
[0069]
(2) Electrode fabrication
NMP was added to the main agent stock solution to adjust the viscosity, and then applied onto a high-purity copper foil (1) to a thickness of 140 μm using a doctor blade. This was vacuum-dried at 120 ° C. for 2 hours and punched out to 18 mmφ. Further, the punched electrode is sandwiched between super steel press plates, and the press pressure is 1 × 10 against the electrode.Three-10x10Threekg / cm2It pressed so that it might become.
Then, it dried at 120 degreeC for 12 hours with the vacuum dryer, and was set as the electrode for evaluation.
[0070]
(3) Battery creation
A triode cell was produced as follows. The following operation was carried out in a dry argon atmosphere with a dew point of -80 ° C or lower.
In a cell with polypropylene screw-in lid (inner diameter of about 18 mm), the carbon electrode with copper foil (positive electrode) and metal lithium stay (negative electrode) produced in (2) above were separated by separator (polypropylene microporous film (Cell Guard 2400). )). Further, metallic lithium for reference was laminated in the same manner. An electrolytic solution was added thereto to obtain a test cell.
[0071]
(4) Electrolyte
The following three types were used.
[0072]
(1) EC system: a mixture of 8 parts by mass of EC (ethylene carbonate) and 12 parts by mass of DEC (diethyl carbonate).
[0073]
(2) PC system 1 (PC concentration of about 30%): a mixture of 2 parts by mass of PC, 2 parts by mass of EC, and 3 parts by mass of DEC.
[0074]
(3) PC system 2 (PC concentration: about 10%); PC 1 part by mass, EC 4 parts by mass DEC 4 parts by mass.
Any electrolyte is LiPF as electrolyte6  1 mol / liter was dissolved.
[0075]
(5) Charge / discharge test
Current density 0.2mA / cm2A constant current charge / discharge test was performed at (corresponding to 0.1 C). Charging (insertion of lithium into carbon) is 0.2 mA / cm from rest potential to 0.002 V2Then, CC (constant current: constant current) charging was performed. Next, it switched to CV (constant volt: constant voltage) charge at 0.002 V, and stopped when the current value decreased to 25.4 μA.
Discharge (release from carbon) is 0.2 mA / cm2CC discharge was performed at (corresponding to 0.1 C) and cut off at a voltage of 1.5 V.
[0076]
Example 1
12.6 parts by mass of ethanol was added to 5.4 parts by mass in terms of resin solid content of varnish A, and the mixture was sufficiently dissolved. To this was added 20 parts by mass of massive natural graphite (D50 = 20 μm), and the mixture was stirred for 30 minutes with a planetary mixer. The kneaded product was dried at 80 ° C. for 2 hours in a vacuum dryer to remove ethanol. Next, the obtained dry powder was transferred to a hot plate, heated from room temperature to 150 ° C. in 30 minutes, and kept at 150 ° C. for 3 hours to be heat-cured. The cured powder was pulverized with a Henschel mixer for 30 seconds.
[0077]
The pulverized powder was placed in a graphite crucible and set in a graphite furnace. The inside of the inside was replaced with a vacuum to obtain an argon atmosphere, and then the temperature was raised while flowing an argon gas. It was kept at 2900 ° C. for 10 minutes and then cooled. After cooling to room temperature, the obtained graphite powder was subjected to vibration sieving using a mesh having an opening of 45 μm, and a passing material (undersieved product) was used as a negative electrode material sample. The battery evaluation electrolyte used an EC system.
[0078]
(Example 2)
The sample of Example 1 was evaluated with the electrolyte solution of PC system 1.
[0079]
(Example 3)
First layer of application
12.6 parts by mass of ethanol was added to 5.4 parts by mass in terms of resin solid content of varnish A, and the mixture was sufficiently dissolved. To this was added 20 parts by mass of massive natural graphite (D50 = 20 μm), and the mixture was stirred for 30 minutes with a planetary mixer. The kneaded product was dried at 80 ° C. for 2 hours in a vacuum dryer to remove ethanol. Next, the obtained dry powder was transferred to a hot plate, heated from room temperature to 150 ° C. in 30 minutes, and kept at 150 ° C. for 3 hours to be heat-cured. The cured powder was pulverized with a Henschel mixer for 30 seconds.
[0080]
Second layer of application
15.4 parts by mass of ethanol was added to 5.4 parts by mass in terms of resin solids of varnish A, and the mixture was stirred and pulverized 25.4 parts by mass (base material mass 20 parts + cured varnish A mass 5.4) Part) was added and stirred for 30 minutes with a planetary mixer. The kneaded product was dried at 80 ° C. for 2 hours in a vacuum dryer to remove ethanol. Next, the dried powder was transferred to a hot plate, heated from room temperature to 150 ° C. in 30 minutes, and held at 150 ° C. for 3 hours to be cured by heating.
[0081]
Such operations were repeated until the third, fourth and fifth layers were coated.
The cured powder was pulverized with a Henschel mixer for 30 seconds. The pulverized powder was placed in a graphite crucible and set in a graphite furnace. The inside of the inside was replaced with a vacuum to obtain an argon atmosphere, and then the temperature was raised while flowing an argon gas. It was kept at 2900 ° C. for 10 minutes and cooled. After cooling to room temperature, the obtained graphite powder was subjected to vibration sieving using a mesh having an opening of 45 μm, and the passing material was used as a negative electrode material sample. PC system 1 was used for the battery evaluation electrolyte.
[0082]
Example 4
12.6 parts by mass of ethanol was added to 5.4 parts by mass in terms of resin solid content of varnish A, and the mixture was sufficiently dissolved. To this was added 20 parts by mass of massive natural graphite (D50 = 20 μm), and the mixture was stirred for 30 minutes with a planetary mixer. The kneaded product was dried at 80 ° C. for 2 hours in a vacuum dryer to remove ethanol. Next, the dried powder was transferred to a hot plate, heated from room temperature to 150 ° C. in 30 minutes, and held at 150 ° C. for 3 hours to be cured by heating. The hardened powder was crushed with a Henschel mixer for 30 seconds.
[0083]
The pulverized powder is put into a graphite crucible and boron carbide (BFourC) 1 part by mass of powder was added and set in a graphite furnace. The inside of the inside was replaced with a vacuum to obtain an argon atmosphere, and then the temperature was raised while flowing an argon gas. It cooled by hold | maintaining at 2900 degreeC for 10 minute (s). After cooling to room temperature, the obtained graphite powder was subjected to vibration sieving using a mesh having an opening of 45 μm, and the passing material was used as a negative electrode material sample. The battery evaluation electrolyte used an EC system.
[0084]
(Example 5)
About the negative electrode material sample obtained in Example 4, the battery evaluation by the electrolyte solution of PC system 1 was implemented.
[0085]
(Example 6)
About the negative electrode material sample obtained in Example 1, the battery evaluation by the electrolyte solution of PC type 2 was implemented.
[0086]
(Comparative Example 1)
Battery evaluation of the raw natural graphite (particle size adjusted) used in Example 1 was performed with an EC electrolyte solution.
[0087]
(Comparative Example 2)
The battery evaluation with the electrolyte solution of PC system 1 was performed on the sample of Comparative Example 1.
[0088]
(Comparative Example 3)
In Example 1, instead of varnish A, Showa Polymer phenol resin BRS727 (viscosity 90 to 150 mPa · s, nonvolatile content 49 to 53%; specially modified varnish) was used in the same amount as varnish A in terms of resin solid content. A similar experiment was conducted. The PC system 1 was used as the electrolytic solution.
[0089]
(Comparative Example 4)
In Example 3, instead of varnish A, a phenol resin BRS727 made by Showa Polymer was used in the same amount as varnish A in terms of resin solid content, and the same experiment was carried out. The PC system 1 was used as the electrolytic solution.
[0090]
(Comparative Example 5)
In Comparative Example 3, the same experiment was performed using BLS722 made of Showa High Polymer (viscosity 400 to 900 mP · s, nonvolatile content 49 to 55%) instead of BLS727. The PC system 1 was used as the electrolytic solution.
[0091]
(Comparative Example 6)
In Comparative Example 3, a similar experiment was conducted using BLS120Z (viscosity 150 to 250 mP · s, nonvolatile content 68 to 72%; water-soluble resol) instead of BLS727. The PC system 1 was used as the electrolytic solution.
[0092]
(Comparative Example 7)
In Comparative Example 3, PC system 2 was used as the electrolytic solution.
[0093]
(Comparative Example 8)
In Comparative Example 5, PC system 2 was used as the electrolytic solution.
[0094]
(Comparative Example 9)
In Comparative Example 6, PC system 2 was used as the electrolytic solution.
Table 1 shows the battery evaluation results of the above examples and comparative examples.
[0095]
[Table 1]
Figure 0005078047
[0096]
【Effect of the invention】
The method for producing the carbon material of the present invention is excellent in economic efficiency and mass productivity, the coating material used is easy to handle and the safety is improved. The obtained carbon material of the present invention is used as an electrode. The secondary battery can be charged / discharged with an electrolyte mainly composed of ethylene carbonate, an electrolyte mainly composed of propylene carbonate, and an electrolyte mainly composed of ethylene carbonate / propylene carbonate. Is excellent.

Claims (16)

乾性油またはその脂肪酸及びフェノール樹脂を含む組成物を炭素質粉体に付着させる工程、該炭素質粉体を非酸化性雰囲気下で熱処理する工程を含み、前記炭素質粉体が黒鉛粉末であり、非酸化性雰囲気下で熱処理する工程が2400℃以上の温度で行う焼成工程であることを特徴とする炭素材料の製造方法。Depositing a drying oil or a composition comprising the fatty acid and a phenol resin to carbonaceous particles, viewed including the step of heat-treating the carbonaceous powder under a non-oxidizing atmosphere, the carbonaceous powder with graphite powder A method for producing a carbon material, wherein the step of heat-treating in a non-oxidizing atmosphere is a firing step performed at a temperature of 2400 ° C. or higher . 熱処理する工程において、ホウ素化合物を添加して熱処理することを特徴とする請求項1に記載の炭素材料の製造方法。  The method for producing a carbon material according to claim 1, wherein the heat treatment is performed by adding a boron compound in the heat treatment step. 乾性油またはその脂肪酸及びフェノール樹脂を含む組成物を炭素質粉体に付着させる工程、次いで該炭素質粉体を硬化する工程を1回以上20回以下繰り返した後、非酸化性雰囲気下で熱処理することを特徴とする請求項1または2に記載の炭素材料の製造方法。  The process of adhering a composition containing a drying oil or a fatty acid thereof and a phenol resin to the carbonaceous powder, and then the process of curing the carbonaceous powder are repeated one to 20 times and then heat-treated in a non-oxidizing atmosphere. The method for producing a carbon material according to claim 1 or 2, wherein: 非酸化性雰囲気下で熱処理する工程が、2800℃以上の温度で行う焼成工程である請求項1乃至3のいずれかひとつに記載の炭素材料の製造方法。  The method for producing a carbon material according to any one of claims 1 to 3, wherein the heat treatment step in a non-oxidizing atmosphere is a firing step performed at a temperature of 2800 ° C or higher. 請求項1乃至のいずれかひとつに記載の炭素材料の製造方法によって得られた炭素材料であって、乾性油またはその脂肪酸及びフェノール樹脂を含む組成物から得られた炭素皮膜層が、X線回折法による面間隔d 002 が0.3395nm以下の炭素からなる炭素材料A carbon material obtained by the method for producing a carbon material according to any one of claims 1 to 4 , wherein the carbon film layer obtained from a composition containing a drying oil or a fatty acid thereof and a phenol resin is an X-ray. A carbon material composed of carbon having a surface distance d 002 of 0.3395 nm or less by a diffraction method . 炭素皮膜層が、ホウ素元素を含んだ炭素からなるものである請求項に記載の炭素材料。The carbon material according to claim 5 , wherein the carbon film layer is made of carbon containing boron element. 前記炭素皮膜層のX線回折法による面間隔d002が0.3354〜0.3370nmの炭素からなる請求項5または6に記載の炭素材料。Carbon material according to claim 5 or 6 faces spacing d 002 by X-ray diffraction of the carbon coating layer is formed of carbon of 0.3354~0.3370Nm. 請求項1乃至4のいずれかひとつに記載の炭素材料の製造方法によって得られた炭素材料であって、乾性油またはその脂肪酸及びフェノール樹脂を含む組成物から得られた炭素皮膜層が、X線回折法による面間隔d002が0.3395nm以上の炭素からなる炭素材料。 A carbon material obtained by the method for producing a carbon material according to any one of claims 1 to 4, wherein the carbon film layer obtained from a composition containing a drying oil or a fatty acid thereof and a phenol resin is an X-ray. charcoal material fee plane spacing d 002 is ing from more carbon 0.3395nm by diffractometry. 比表面積が、3m2/g以下、アスペクト比が6以下、タッピング嵩密度が0.8g/cm3以上である請求項5乃至8のいずれかひとつに記載の炭素材料。The carbon material according to any one of claims 5 to 8 , wherein the specific surface area is 3 m 2 / g or less, the aspect ratio is 6 or less, and the tapping bulk density is 0.8 g / cm 3 or more. 平均粒径が、8〜30μmである請求項5乃至9のいずれかひとつに記載の炭素材料。The carbon material according to any one of claims 5 to 9 , wherein an average particle diameter is 8 to 30 µm. 平均粒径が、3μm以下及び/または53μm以上の粒子を実質的に含まない請求項5乃至10のいずれかひとつに記載の炭素材料。The carbon material according to any one of claims 5 to 10 , which does not substantially contain particles having an average particle size of 3 µm or less and / or 53 µm or more. 請求項5乃至11のいずれかひとつに記載の炭素材料を含む電極材料を用いた非水電解液二次電池電極。The nonaqueous electrolyte secondary battery electrode using the electrode material containing the carbon material as described in any one of Claims 5 thru | or 11 . 請求項5乃至11のいずれかひとつに記載の炭素材料及び気相法炭素繊維を含む混合物を電極材料に用いた非水電解液二次電池電極。The non-aqueous-electrolyte secondary battery electrode which used the mixture containing the carbon material as described in any one of Claims 5 thru | or 11 , and vapor grown carbon fiber for electrode material. 気相法炭素繊維を0.1〜20質量%含む請求項13に記載の非水電解液二次電池電極。The nonaqueous electrolyte secondary battery electrode according to claim 13 containing 0.1 to 20% by mass of vapor grown carbon fiber. 請求項12乃至14のいずれかひとつに記載の非水電解液二次電池電極を構成要素とする非水電解液二次電池。The nonaqueous electrolyte secondary battery which uses the nonaqueous electrolyte secondary battery electrode as described in any one of Claims 12 thru | or 14 as a component. 非水電解液及び電解質を用いた非水電解液二次電池において、該非水電解液がエチレンカーボネート、ジエチルカーボネート及びプロピレンカーボネートからなる群から選ばれた少なくとも1種である請求項15に記載の非水電解質二次電池。In the non-aqueous electrolyte and the electrolyte a nonaqueous electrolyte secondary battery using a non-aqueous electrolyte of ethylene carbonate, non of claim 15 is at least one selected from the group consisting of diethyl carbonate and propylene carbonate Water electrolyte secondary battery.
JP2001290775A 2001-09-25 2001-09-25 Carbon material, production method thereof and use thereof Expired - Fee Related JP5078047B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2001290775A JP5078047B2 (en) 2001-09-25 2001-09-25 Carbon material, production method thereof and use thereof
TW091121259A TW583153B (en) 2001-09-25 2002-09-17 Carbon material, production method and use thereof
US10/490,021 US20040247872A1 (en) 2001-09-25 2002-09-20 Carbon material, production method and use thereof
KR1020047004258A KR100951388B1 (en) 2001-09-25 2002-09-20 Carbon material, production method and use thereof
KR1020097020404A KR100935129B1 (en) 2001-09-25 2002-09-20 Carbon material, production method and use thereof
EP02772869A EP1442490B1 (en) 2001-09-25 2002-09-20 Carbon material, production method and use thereof
AU2002337497A AU2002337497A1 (en) 2001-09-25 2002-09-20 Carbon material, production method and use thereof
CN2007100891152A CN101016153B (en) 2001-09-25 2002-09-20 Carbon material, production method and use thereof
PCT/JP2002/009672 WO2003028128A2 (en) 2001-09-25 2002-09-20 Carbon material, production method and use thereof
CNB028187598A CN1316650C (en) 2001-09-25 2002-09-20 Carbon material, production method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001290775A JP5078047B2 (en) 2001-09-25 2001-09-25 Carbon material, production method thereof and use thereof

Publications (2)

Publication Number Publication Date
JP2003100293A JP2003100293A (en) 2003-04-04
JP5078047B2 true JP5078047B2 (en) 2012-11-21

Family

ID=19113029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290775A Expired - Fee Related JP5078047B2 (en) 2001-09-25 2001-09-25 Carbon material, production method thereof and use thereof

Country Status (2)

Country Link
JP (1) JP5078047B2 (en)
KR (1) KR100935129B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063457A (en) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp Manufacturing method of carbon material for electrode
KR101027091B1 (en) * 2003-10-31 2011-04-06 쇼와 덴코 가부시키가이샤 Carbon material for battery electrode and production method and use thereof
JP2007207617A (en) * 2006-02-02 2007-08-16 Sony Corp Non-aqueous solvent, non-aqueous electrolyte composition, and non-aqueous electrolyte secondary battery
JP5061718B2 (en) * 2007-05-21 2012-10-31 中央電気工業株式会社 Carbon material powder and method for producing the same
JP5516929B2 (en) * 2008-11-25 2014-06-11 独立行政法人産業技術総合研究所 Carbon nanotube material for negative electrode and lithium ion secondary battery using the same as negative electrode
CN102576873B (en) * 2009-10-09 2016-05-11 东洋油墨Sc控股株式会社 Positive active material for lithium secondary battery material, its manufacture method and use its lithium secondary battery
US8372373B2 (en) 2009-10-22 2013-02-12 Showa Denko K.K. Graphite material, carbonaceous material for battery electrodes, and batteries
JP5081335B1 (en) 2011-04-21 2012-11-28 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery
JP5140781B2 (en) 2011-04-21 2013-02-13 昭和電工株式会社 Graphite / carbon mixed material, carbon material for battery electrode, and battery
JP6194276B2 (en) * 2013-05-28 2017-09-06 Jfeケミカル株式会社 Method for producing composite graphite particles for negative electrode of lithium ion secondary battery
CN110797513B (en) * 2018-08-03 2022-04-05 天津大学 Graphite-hard carbon coated material and preparation method thereof
CN112143384B (en) * 2020-10-20 2022-04-12 内蒙古斯诺新材料科技有限公司 Graphite crucible repairing paste and graphite crucible repairing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139790B2 (en) * 1991-10-02 2001-03-05 三菱化学株式会社 Rechargeable battery
JPH05186265A (en) * 1992-01-09 1993-07-27 Mitsubishi Petrochem Co Ltd Production of formed and carbonized material
JPH06275270A (en) * 1993-03-19 1994-09-30 A T Battery:Kk High-capacity nonaqueous secondary battery
JP2976299B2 (en) * 1995-11-14 1999-11-10 大阪瓦斯株式会社 Anode material for lithium secondary battery
JP3481063B2 (en) * 1995-12-25 2003-12-22 シャープ株式会社 Non-aqueous secondary battery
JPH10116605A (en) * 1996-10-11 1998-05-06 Tokai Carbon Co Ltd Lithium secondary battery negative electrode material and its manufacture
JPH10154511A (en) * 1996-11-21 1998-06-09 Denso Corp Nonaqueous electrolyte secondary battery
JPH1121116A (en) * 1997-06-30 1999-01-26 Nippon Steel Corp Carbonaceous powder and carbonaceous fiber, coated with boron nitride
JP3769647B2 (en) * 1998-03-31 2006-04-26 大阪瓦斯株式会社 Composite carbon material for electrode, method for producing the same, and nonaqueous electrolyte secondary battery using the same
JP4402184B2 (en) * 1998-07-15 2010-01-20 健治 橋本 Carbon material for secondary battery negative electrode material and method for producing the same
US6485864B1 (en) * 1999-02-26 2002-11-26 Adchemco Corporation Production process of material for lithium-ion secondary batteries, material obtained by the process, and batteries
JP2001106575A (en) * 1999-10-08 2001-04-17 Mitsubishi Chemicals Corp Process for producing carbonaceous compound and graphite carbon composite formed body
JP2001332263A (en) * 2000-03-16 2001-11-30 Sony Corp Secondary battery and manufacturing method for negative electrode material of carbon

Also Published As

Publication number Publication date
KR100935129B1 (en) 2010-01-07
KR20090108740A (en) 2009-10-16
JP2003100293A (en) 2003-04-04

Similar Documents

Publication Publication Date Title
EP1442490B1 (en) Carbon material, production method and use thereof
EP1683219B1 (en) Carbon material for battery electrode and production method and use thereof
EP1573835B1 (en) Electrode material comprising silicon and/or tin particles and production method and use thereof
JP4298988B2 (en) Carbon material manufacturing method
KR100751772B1 (en) Carbon material for battery electrode and production method and use thereof
JP4385589B2 (en) Negative electrode material and secondary battery using the same
JP4896381B2 (en) Carbon material for battery electrode, production method and use thereof
JP5078047B2 (en) Carbon material, production method thereof and use thereof
JP2005097010A (en) Carbon material, production method therefor and its application
JP3406583B2 (en) Graphite-carbon composite material for negative electrode of lithium secondary battery, method for producing the same, and lithium secondary battery
JP4286491B2 (en) Carbon material, method for producing the same, and use thereof
JP5311592B2 (en) Lithium secondary battery
JP4195179B2 (en) Method for producing negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4416070B2 (en) Negative electrode material, production method and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120209

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees