JP4195179B2 - Method for producing negative electrode material for lithium ion secondary battery, and lithium ion secondary battery - Google Patents
Method for producing negative electrode material for lithium ion secondary battery, and lithium ion secondary battery Download PDFInfo
- Publication number
- JP4195179B2 JP4195179B2 JP2000338257A JP2000338257A JP4195179B2 JP 4195179 B2 JP4195179 B2 JP 4195179B2 JP 2000338257 A JP2000338257 A JP 2000338257A JP 2000338257 A JP2000338257 A JP 2000338257A JP 4195179 B2 JP4195179 B2 JP 4195179B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- secondary battery
- negative electrode
- ion secondary
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高性能のリチウムイオン二次電池用負極材料を製造する方法、およびその製造方法により得られた負極材料を用いたリチウムイオン二次電池に関するものである。
【0002】
【従来の技術】
〈二次電池の負極材料〉
近年、電子機器の小型化および軽量化の要求に伴い、鉛蓄電池やニッカド電池に替わる高容量二次電池の開発が急務になっている。炭素材料を負極材料に用いたリチウムイオン二次電池は、その高いエネルギー密度、安全性、すぐれたサイクル特性により注目され、実用化されている。特に黒鉛は、これをリチウム二次電池の負極材料として用いた場合、電位が平坦であるため大きなエネルギーを取り出すことができるという特長があり、携帯電話用をはじめとするリチウムイオン二次電池の目的に広く用いられている。
【0003】
しかしながら、一般にリチウムイオン二次電池の負極材料にあっては、初回の充放電時に充電されたリチウムが完全には放電されず、不可逆容量が発現する。この不可逆容量は、負極材料表面での電解液の電気分解反応に起因すると考えられており、負極材料表面の反応性との相関が大きい。すなわち、負極材料表面の反応性が低いほど不可逆容量は小さい。電解液と負極材料表面との反応を抑制することは、不可逆容量のみならず、負荷特性、充電特性、サイクル特性など様々な電池特性の改善の一つの対策として有効である。
【0004】
〈黒鉛粒子表面の被覆処理〉
負極材料表面と電解液との反応を抑制するために、以下に引用するように、黒鉛の表面を電解液との反応性の低い低結晶性炭素で被覆するための様々な表面処理法が提案されている。
【0005】
(イ)特開平9−213328号公報には、黒鉛性炭素質物の表面に、その黒鉛性炭素質物100重量部に対する残炭量として 0.1〜12重量部の有機物の炭化物を付着してなる複合炭素質物からなる非水溶媒二次電池用電極材料が示されている。有機物の例は、重質油、天然高分子、熱硬化性樹脂などである。操作は、黒鉛性炭素質物と有機物とを溶媒でスラリー化し、ついで脱気と溶媒の揮発を行ってから、熱処理することにより行っている。
【0006】
(ロ)特開平10−12241号公報には、黒鉛粒子の核と、化学蒸着処理法によりその黒鉛粒子の表面を被覆した炭素層とよりなる黒鉛−炭素複合材であり、その黒鉛−炭素複合材の比表面積が1m2/g以下であり、かつ平衡吸着水分量が 0.3重量%以下であるリチウムイオン二次電池用負極材料が示されている。化学蒸着処理の熱分解炭素源の例は、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ジフェニル、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロロベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン、ガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油、アセチレン、エチレン、プロピレン、イソプロピレン、ブタジエンなどである。
【0007】
(ハ)特開平10−284080号公報には、黒鉛性炭素質物の表面を炭素化可能な有機物で被覆し、焼成し、粉砕して得られる非晶質炭素被覆黒鉛系炭素質物を、酸性またはアルカリ性溶液で処理した炭素質物を負極として用いたリチウムイオン二次電池が示されている。炭素化可能な有機物の例は、コールタールピッチ、石炭系重質油、石油系重質油、芳香族炭化水素、各種合成樹脂、天然高分子などである。
【0008】
(ニ)特開平11−54123号公報には、塊状の黒鉛粉末を核とし、その核の表面に炭素前駆体を被覆後、不活性ガス雰囲気下で700〜2800℃の温度範囲で焼成し、炭素質物の表層を形成させた複層構造の炭素質粉末を用いた非水電解質二次電池が示されている。炭素前駆体の例は、コールタールピッチ、石炭系重質油、石油系重質油、各種合成樹脂、天然高分子などの有機物である。黒鉛粉末への炭素前駆体の被覆は、有機物を溶媒に溶解希釈して、黒鉛粒子核の表面に付着させることにより行っている。この公報には、従来技術の説明の個所において、特開平6−295725号公報、特開平7−134988号公報、特開平5−307959号公報についても引用されている。
【0009】
(ホ)本出願人らの出願にかかる特開平11−167920号公報には、炭素前駆体と黒鉛材とを混合後、不活性ガス雰囲気中にて1000〜3000℃で熱処理すること、およびその熱処理後の混合物に占める炭素前駆体由来の熱処理物の比率が1〜70重量%である非水系二次電池用負極材の製造法が示されている。炭素前駆体の例は、石油ピッチ、石炭ピッチ、芳香族有機化合物、高分子化合物、コークスなどである。
【0010】
(ヘ)特開2000−90925号公報には、人造黒鉛または天然黒鉛と揮発成分を含有する炭素材料との混合物の焼成体からなる負極用炭素材料が示されている。揮発成分を含有する炭素材料としては、人造黒鉛、天然黒鉛、メソカーボンマイクロビーズの炭化品および黒鉛化品、樹脂類の炭化品および黒鉛化品などの炭素材料粒子表面の一部または全部が重質油に由来する揮発成分により被覆されている炭素材料;メソカーボンマイクロビーズ、カーボンファイバー、メソフェーズピッチ、等方性ピッチ、樹脂類などがあげられるとしている。この公報には、従来技術の説明の個所において、「特開平4−368778号公報、特開平4−370662号公報、特開平5−94838号公報、特開平5−121066号公報、特開平9−213328号公報には、芯材となる黒鉛粒子表面を低結晶性炭素で被覆した炭素材料が提案されている」旨の記載がなされている。
【0011】
【発明が解決しようとする課題】
上記(イ)〜(ヘ)の従来技術は、黒鉛粒子表面に、乾式法や湿式法、あるいは、液相法、気相法または部分気相法などにより炭素被覆層を設けているが、これらのうち湿式法ないし液相法は、コート剤が黒鉛表面で偏析しやすく、さらにはコート剤をバインダーとして黒鉛粒子の凝集が起こりやすいという欠点があり、また、黒鉛表面全体をコートするためにコート剤の添加量を増やすと、負極材料としての容量が低下するという問題点を生じる。一方、乾式法ないし気相法または部分気相法は、量産に適しておらず、処理コストが高いこと、負極材料としての容量が低下することなどの問題を生じ、いずれにせよ解決すべき課題を有している。
【0012】
本発明は、このような背景下において、黒鉛粒子の高い充放電容量を維持したまま、電解液との反応性を下げることにより、不可逆容量が小さく、かつ初期効率、負荷特性、充電特性およびサイクル特性にすぐれた高性能のリチウムイオン二次電池用負極材料を製造する工業的な方法を提供すること、およびそのようにして得られた二次電池用負極材料を用いたリチウムイオン二次電池を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
本発明のリチウムイオン二次電池用負極材料の製造法は、
黒鉛粒子(1) 100重量部とポリスチレン粒子(2) 0.5 〜50重量部とを物理的に混合すること、
不活性ガス雰囲気中、この混合物を前記ポリスチレン粒子(2) の熱分解温度以上の温度で熱処理すること、
この熱処理により、前記ポリスチレン粒子 (2) の熱分解成分を気相で拡散させて前記黒鉛粒子(1) の表面に該熱分解成分による被膜層を形成させると共に該被膜層が炭化して被覆層となった複合粒子を得ること、
を特徴とするものである。
【0014】
本発明のリチウムイオン二次電池は、上記の方法により得られた複合粒子を負極材料として用いてなるものである。
【0015】
【発明の実施の形態】
以下本発明を詳細に説明する。
【0016】
本発明においては、まず黒鉛粒子(1) とポリスチレン粒子(2) とを物理的に混合し、ついでそのポリスチレン粒子(2) の熱分解温度以上の温度で熱処理する。
【0017】
黒鉛粒子(1) としては、天然黒鉛または人造黒鉛が用いられる。これらは、適当な方法で粉砕したものであってもよく、球形化などの改質を行ったものであってもよい。球形化改質の例は、本出願人の出願にかかる特開平11−263612号公報に開示がある。黒鉛粒子(1) の平均粒子径(D50)は、特に限定はないものの、通常は1〜60μm 程度、好ましくは10〜50μm 程度とするのが実際的である。
【0018】
黒鉛粒子(1) の相手方の粒子としては、ポリスチレン粒子(2) が用いられる。ポリスチレンを用いかつ該ポリスチレンを粒子として用いることが、電解液との反応抑制効果、経済性などの点で、本発明の目的にとって最適であるからである。
【0019】
ポリスチレン粒子(2) の平均粒子径は、黒鉛粒子(1) との混合効率を高めるため、20mm以下、好ましくは10mm以下とすることが多い。粒子径の下限は 0.1μm 程度、殊に1μm 程度までとすることが多い。
【0020】
黒鉛粒子(1) とポリスチレン粒子(2) との混合割合は、黒鉛粒子(1) 100重量部に対し、ポリスチレン粒子(2) の割合が 0.5〜50重量部となるようにする。黒鉛粒子(1) に対するポリスチレン粒子(2) の混合量がこの範囲よりも少ないときは、黒鉛粒子(1) 表面へのポリスチレン粒子(2) の熱分解成分による被膜層(さらには該被膜層が炭化した被覆層)の形成量が不充分であるため、電解液との反応が充分には抑制されない。一方、黒鉛粒子(1) に対するポリスチレン粒子(2) の混合量がこの範囲よりも多いときは、高容量/高エネルギー密度に寄与する黒鉛粒子(1) の割合が小さくなるため、電池容量の低下を来たす。
【0021】
黒鉛粒子(1) とポリスチレン粒子(2) との物理的な混合物の熱処理は、ポリスチレン粒子(2) の熱分解温度以上の温度でなされる。このときの熱処理は、得られる複合粒子のリチウムイオン二次電池用負極材料としての要求特性に応じて、炭化温度領域または黒鉛化温度領域で行われる。炭化温度領域は、500〜2000℃程度、好ましくは600〜1300℃程度である。黒鉛化温度領域は、2000〜3000℃程度、好ましくは2500〜3000℃程度である。熱処理温度が余りに低いときには、ポリスチレン粒子(2) の熱分解成分の黒鉛粒子(1) 上への被膜層(さらには該被膜層が炭化した被覆層)の形成が不充分となり、一方熱処理温度が余りに高いときには、設備面および所要電力の点で不利となる。
【0022】
上記の熱処理は、N2 、Ar、He、CO2 等の不活性ガス雰囲気中で行われる。このときには、ポリスチレン粒子(2) の熱分解により生じた熱分解成分が滞留して、黒鉛粒子(1) の表面を覆いやすい密閉雰囲気中で行うことが好ましい。
【0023】
上述の方法により、不可逆容量が小さく、かつ初期効率、負荷特性、充電特性およびサイクル特性にすぐれた目的の複合粒子を得ることができる。
【0024】
本発明においては、このようにして得た複合粒子を、リチウムイオン二次電池用の負極材料として用いる。
【0025】
リチウムイオン二次電池における正極材料としては、改質MnO2、LiCoO2、LiNiO2、LiNi1-yCoyO2、LiMnO2、LiMn2O4 、LiFeO2などが用いられる。電解液としては、エチレンカーボネートなどの有機溶媒や、該有機溶媒とジメチルカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシメタン、エトキシメトキシエタンなどの低沸点溶媒との混合溶媒に、LiPF6 、LiBF4 、LiClO4、LiCF3SO3などの電解液溶質を溶解した溶液が用いられる。
【0026】
〈作用〉
本発明においては、黒鉛粒子(1) とポリスチレン粒子(2) とを物理的に混合し、不活性ガス雰囲気中、この混合物をポリスチレン粒子(2) の熱分解温度以上の温度で熱処理して、黒鉛粒子(1) の表面に、ポリスチレン粒子(2) の熱分解成分による被膜層(さらには該被膜層が炭化した被覆層)が形成された複合粒子を得ている。
【0027】
昇温の過程で生成したポリスチレン粒子(2) の熱分解成分は、気相で黒鉛粒子(1) の隅々にまで拡散し、黒鉛表面の活性な部分と反応、添着して、薄くて均一な被膜層を形成する。そしてこれをさらに所定の温度まで昇温して熱処理することにより、被膜層は炭化し、安定なカーボン層を形成する。
【0028】
このようにして得られた複合粒子にあっては、黒鉛粒子(1) の活性なサイト(特にエッジ面)が被覆層で被覆されているので、電解液との反応が抑制される。また、粒子としての嵩密度が向上する上、安息角が小さくなり、これを負極材料として用いた際には、黒鉛としてのすぐれた特性は維持されたまま、電解液との反応性が低くなり、不可逆容量が小さく、かつ初期効率、負荷特性、充電特性およびサイクル特性にすぐれた負極極板を得ることができる。
【0029】
ポリスチレン粒子(2) の代わりに、たとえばフェノール樹脂のように熱分解に際して炭化物を残すようなポリマー粒子を用いると、熱処理後に炭化物が残って黒鉛粒子が固着したり炭化物の塊ができたりするため、所期の目的を充分には果たすことができず、またエチレンやスチレン(モノマー)のようなガスや液体を用いたときには、黒鉛表面の活性な部分との反応、添着が不充分となり、やはり所期の目的を充分には果たすことができない。ポリマーとしてポリスチレンを選択し、かつそれを粒子として用いたときに、リチウムイオン二次電池用の負極材料として最適の結果が得られるのである。
【0030】
なお、リチウムイオン二次電池の充放電反応は下記の通りであり、リチウムイオンが正極と負極の間を行き来する。左辺から右辺への反応が充電反応、右辺から左辺への反応が放電反応である。
6C + LiCoO2 = C6Li + CoO2
【0031】
【実施例】
次に実施例をあげて本発明をさらに説明する。以下「部」とあるのは重量部である。
【0032】
[複合粒子の製造]
下記のようにして、複合粒子を製造した。
【0033】
実施例1(参考例)
平均粒子径22μm の天然黒鉛粒子100部と、粒子径3mmのポリエチレン粒子10部とを、粒子同士で物理的に混合し、窒素雰囲気中、800℃で2時間熱処理を行った。この熱処理により、黒鉛粒子の表面に、ポリエチレン粒子の熱分解成分による被覆層が形成された複合粒子 101.1部が得られた。
【0034】
実施例2
実施例1(参考例)で用いた平均粒子径22μm の天然黒鉛粒子100部と、粒子径3mmのポリスチレン粒子10部とを混合し、窒素雰囲気中、800℃で2時間熱処理を行った。この熱処理により、黒鉛粒子の表面に、ポリスチレン粒子の熱分解成分による被覆層が形成された複合粒子 101.8部が得られた。
【0035】
実施例3
実施例1(参考例)で用いた平均粒子径22μm の天然黒鉛粒子100部と、粒子径3mmのポリスチレン粒子2部とを混合し、窒素雰囲気中、800℃で2時間熱処理を行った。この熱処理により、黒鉛粒子の表面に、ポリスチレン粒子の熱分解成分による被覆層が形成された複合粒子 100.4部が得られた。
【0036】
比較例1
実施例1(参考例)で用いた平均粒子径22μm の天然黒鉛粒子を、熱処理することなく、そのまま用いた。
【0037】
[粒子径の測定、電極性能の評価]
(黒鉛粒子の粒子径の測定)
株式会社島津製作所製の「SALD−2000」レーザー回折式粒度分布測定装置を用いて測定を行い、平均粒子径(D50)を求めた。
【0038】
(電極性能評価)
負極材料100重量部と、バインダーとしてのポリフッ化ビニリデン3重量部と、溶媒としてのN−メチルピロリドンの適量とを混合し、液相で均一に撹拌した。得られたスラリーを銅箔上に塗布し、乾燥後、プレス機により加圧成形し、負極極板を作成してから、150℃で6時間真空乾燥を行った。リチウム箔をステンレス板に圧着したものをセパレータを介して対極とし、2極式セルを組み立てた。組み立ては、水分値20ppm 以下に調整したドライボックス内で行い、電解液としては 1M-LiPF6/(EC+DEC(1:1)) 、すなわちエチレンカーボネートとジエチルカーボネートとの容積比で1:1の混合溶媒にLiPF6 を1Mの割合で溶解したものを用いた。
【0039】
充電は、0.2mA/cm2 (0.05C) の定電流値で0Vになるまで充電した後、0Vの定電位で電流値が0.01mA/cm2となるまで行った。放電は、0.2mA/cm2 の電流値で1Vになるまで行った。各サンプルの1回目の充電容量と放電容量とにより、
初期効率(%)=100×放電容量/充電容量
を計算した。
【0040】
負荷特性は、10時間で放電した放電容量に対する、30分で放電した放電容量の割合(%)である。
【0041】
充電特性は、10時間で充電した定電流充電容量に対する、1時間で充電した定電流充電容量の割合(%)である。
【0042】
[負極材料の性状とそれを用いた電池の電極性能]
実施例1(参考例)、実施例2〜3および比較例1の負極材料の性状とそれを用いた電池の電極性能を表1に示す。
【0043】
【表1】
性 状 電 極 性 能
粒子径 被覆量 放電容量 初期効率 負荷特性 充電特性
( μ m) (部) (mAh/g) (%) (%) (%)
比較例1 22 - 366 91.7 90 54
実施例1(参考例) 22 1.1 366 92.5 92 67
実施例2 22 1.8 366 92.7 94 70
実施例3 22 0.4 366 93.0 92 68
【0044】
表1から、実施例2〜3においては、オリジナルの黒鉛粒子の粒子径と放電容量を維持したまま、初期効率、負荷特性および充電特性が向上していることがわかる。すなわち、黒鉛材料の高い容量は維持されたまま、電解液と黒鉛表面の反応抑制により、不可逆容量が低減されている。
【0045】
【発明の効果】
本発明の製造方法により得られたリチウムイオン二次電池用負極材料は、黒鉛粒子の高い充放電容量を維持したまま、電解液との反応性を下げることにより、不可逆容量が小さく、かつ初期効率、負荷特性、充電特性およびサイクル特性にすぐれた高性能のものである。
【0046】
またこのようにして得られた負極材料は、黒鉛粒子と特定のポリマー粒子であるポリスチレン粒子との物理的混合物を熱処理するだけで容易に製造することができるので、工業的な生産性、コストの点でも有利である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high performance negative electrode material for a lithium ion secondary battery , and a lithium ion secondary battery using the negative electrode material obtained by the production method .
[0002]
[Prior art]
<Anode material for secondary battery>
In recent years, with the demand for downsizing and weight reduction of electronic devices, there is an urgent need to develop high-capacity secondary batteries that replace lead-acid batteries and nickel-cadmium batteries. Lithium ion secondary batteries using a carbon material as a negative electrode material have attracted attention and are put into practical use because of their high energy density, safety, and excellent cycle characteristics. Graphite, in particular, has the feature that when it is used as a negative electrode material for a lithium secondary battery, it has a feature that a large potential can be taken out because the potential is flat, and the purpose of lithium ion secondary batteries including mobile phones Widely used in
[0003]
However, in general, in a negative electrode material of a lithium ion secondary battery, lithium charged at the first charge / discharge is not completely discharged, and an irreversible capacity appears. This irreversible capacity is considered to result from the electrolytic reaction of the electrolytic solution on the negative electrode material surface, and has a large correlation with the reactivity of the negative electrode material surface. That is, the lower the reactivity of the negative electrode material surface, the smaller the irreversible capacity. Suppressing the reaction between the electrolytic solution and the negative electrode material surface is effective as one measure for improving not only irreversible capacity but also various battery characteristics such as load characteristics, charging characteristics, and cycle characteristics.
[0004]
<Coating of graphite particle surface>
In order to suppress the reaction between the negative electrode material surface and the electrolyte, various surface treatment methods for coating the surface of graphite with low crystalline carbon, which has a low reactivity with the electrolyte, are proposed. Has been.
[0005]
(A) Japanese Patent Application Laid-Open No. 9-213328 discloses a composite carbon obtained by adhering 0.1 to 12 parts by weight of an organic carbide as a residual carbon amount with respect to 100 parts by weight of the graphitic carbonaceous material on the surface of the graphitic carbonaceous material. An electrode material for a non-aqueous solvent secondary battery made of a material is shown. Examples of the organic substance are heavy oil, natural polymer, thermosetting resin, and the like. The operation is performed by slurrying the graphitic carbonaceous material and the organic material with a solvent, and then performing degassing and volatilization of the solvent, followed by heat treatment.
[0006]
(B) JP-A-10-12241 discloses a graphite-carbon composite material comprising a graphite particle nucleus and a carbon layer covering the surface of the graphite particle by a chemical vapor deposition method. A negative electrode material for a lithium ion secondary battery having a specific surface area of 1 m 2 / g or less and an equilibrium adsorbed water content of 0.3 wt% or less is shown. Examples of pyrolytic carbon sources for chemical vapor deposition include benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, diphenyl, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, gas light oil, creo Sort oil, anthracene oil, naphtha cracked tar oil, acetylene, ethylene, propylene, isopropylene, butadiene and the like.
[0007]
(C) In JP-A-10-284080, an amorphous carbon-coated graphite-based carbonaceous material obtained by coating the surface of a graphitic carbonaceous material with a carbonizable organic material, firing, and pulverizing is acidic or A lithium ion secondary battery using a carbonaceous material treated with an alkaline solution as a negative electrode is shown. Examples of organic substances that can be carbonized include coal tar pitch, coal-based heavy oil, petroleum-based heavy oil, aromatic hydrocarbons, various synthetic resins, natural polymers, and the like.
[0008]
(D) In JP-A-11-54123, a lump of graphite powder is used as a nucleus, and the surface of the nucleus is coated with a carbon precursor and then fired in a temperature range of 700 to 2800 ° C. in an inert gas atmosphere. A nonaqueous electrolyte secondary battery using a carbonaceous powder having a multilayer structure in which a surface layer of a carbonaceous material is formed is shown. Examples of the carbon precursor are organic substances such as coal tar pitch, coal-based heavy oil, petroleum-based heavy oil, various synthetic resins, and natural polymers. The carbon precursor is coated on the graphite powder by dissolving and diluting an organic substance in a solvent and attaching it to the surface of the graphite particle nucleus. In this publication, reference is made to JP-A-6-295725, JP-A-7-134988, and JP-A-5-307959 in the description of the prior art.
[0009]
(E) Japanese Patent Application Laid-Open No. 11-167920 relating to the applicant's application discloses that after carbon precursor and graphite material are mixed, heat treatment is performed at 1000 to 3000 ° C. in an inert gas atmosphere, and The manufacturing method of the negative electrode material for non-aqueous secondary batteries whose ratio of the heat processing thing derived from the carbon precursor to the mixture after heat processing is 1 to 70 weight% is shown. Examples of the carbon precursor are petroleum pitch, coal pitch, aromatic organic compound, polymer compound, coke and the like.
[0010]
(F) Japanese Patent Application Laid-Open No. 2000-90925 discloses a carbon material for a negative electrode comprising a fired product of a mixture of artificial graphite or natural graphite and a carbon material containing a volatile component. As carbon materials containing volatile components, some or all of the surface of carbon material particles such as artificial graphite, natural graphite, carbonized and graphitized products of mesocarbon microbeads, carbonized products and graphitized products of resins are heavy. Carbon materials coated with volatile components derived from quality oil; mesocarbon microbeads, carbon fibers, mesophase pitch, isotropic pitch, resins, and the like. In this publication, in the description of the prior art, “JP-A-4-368778, JP-A-4-370662, JP-A-5-94838, JP-A-5-121066, JP-A-9-900 No. 213328 discloses a carbon material in which the surface of graphite particles as a core material is coated with low crystalline carbon.
[0011]
[Problems to be solved by the invention]
In the prior arts (a) to (f), a carbon coating layer is provided on the surface of graphite particles by a dry method, a wet method, a liquid phase method, a gas phase method, or a partial gas phase method. Among them, the wet method or the liquid phase method has a drawback that the coating agent is easily segregated on the graphite surface, and further, the coating agent is used as a binder, and the graphite particles are likely to aggregate. When the amount of the additive added is increased, the capacity as the negative electrode material is reduced. On the other hand, the dry method, the gas phase method or the partial gas phase method is not suitable for mass production, and causes problems such as high processing costs and a decrease in capacity as a negative electrode material. have.
[0012]
Under such circumstances, the present invention reduces the irreversible capacity by reducing the reactivity with the electrolytic solution while maintaining the high charge / discharge capacity of the graphite particles, and the initial efficiency, load characteristics, charge characteristics and cycle are reduced. To provide an industrial method for producing a high-performance lithium-ion secondary battery negative electrode material having excellent characteristics, and to provide a lithium-ion secondary battery using the secondary battery negative-electrode material thus obtained. It is intended to provide.
[0013]
[Means for Solving the Problems]
The method for producing a negative electrode material for a lithium ion secondary battery of the present invention
Physically mixing 100 parts by weight of graphite particles (1) and 0.5 to 50 parts by weight of polystyrene particles (2) ;
Heat treating the mixture at a temperature equal to or higher than the thermal decomposition temperature of the polystyrene particles (2) in an inert gas atmosphere ;
By this heat treatment, the coating layer coating film layer is carbonized with to form a coating layer by the thermal decomposition component on the surface of the thermal decomposition component is diffused in the gas phase the graphite particles (1) of the polystyrene particles (2) to obtain composite particles becomes,
It is characterized by.
[0014]
The lithium ion secondary battery of the present invention is obtained by using the composite particles obtained by the above method as a negative electrode material.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0016]
In the present invention, the graphite particles (1) and the polystyrene particles (2) are first physically mixed and then heat-treated at a temperature equal to or higher than the thermal decomposition temperature of the polystyrene particles (2) .
[0017]
As the graphite particles (1), natural graphite or artificial graphite is used. These may be pulverized by an appropriate method or may be subjected to modification such as spheroidization. An example of spheroidization modification is disclosed in Japanese Patent Application Laid-Open No. 11-263612 filed by the present applicant. The average particle diameter (D50) of the graphite particles (1) is not particularly limited, but it is practically about 1 to 60 μm, preferably about 10 to 50 μm.
[0018]
Polystyrene particles (2) are used as the counterpart particles of the graphite particles (1). This is because using polystyrene and using the polystyrene as particles is optimal for the purpose of the present invention in terms of the effect of suppressing the reaction with the electrolytic solution, economy, and the like.
[0019]
In order to increase the mixing efficiency with the graphite particles (1), the average particle diameter of the polystyrene particles (2) is often 20 mm or less, preferably 10 mm or less. The lower limit of the particle size is often about 0.1 μm, especially about 1 μm.
[0020]
The mixing ratio of the graphite particles (1) and polystyrene particles (2), graphite particles (1) with respect to 100 parts by weight, so that the proportion of polystyrene particles (2) is 0.5 to 50 parts by weight. When the amount of the polystyrene particles (2) mixed with the graphite particles (1) is less than this range , the coating layer (and further the coating layer is formed by the pyrolysis component of the polystyrene particles (2) on the surface of the graphite particles (1). Since the formation amount of the carbonized coating layer) is insufficient, the reaction with the electrolytic solution is not sufficiently suppressed. On the other hand, when the amount of the polystyrene particles (2) mixed with the graphite particles (1) is larger than this range , the ratio of the graphite particles (1) contributing to high capacity / high energy density becomes small, so that the battery capacity decreases. Come.
[0021]
Heat treatment of a physical mixture of graphite particles (1) and polystyrene particles (2) is made by thermal decomposition temperature or more of polystyrene particles (2). The heat treatment at this time is performed in a carbonization temperature region or a graphitization temperature region depending on required characteristics of the obtained composite particles as a negative electrode material for a lithium ion secondary battery. The carbonization temperature region is about 500 to 2000 ° C, preferably about 600 to 1300 ° C. The graphitization temperature region is about 2000 to 3000 ° C, preferably about 2500 to 3000 ° C. When the heat treatment temperature is too low, the formation of a coating layer (and a coating layer obtained by carbonizing the coating layer ) on the graphite particles (1) of the pyrolysis component of the polystyrene particles (2) becomes insufficient, while the heat treatment temperature is low. If it is too high, it is disadvantageous in terms of equipment and power requirements.
[0022]
The above heat treatment, N 2, Ar, He, carried out in an inert gas atmosphere such as CO 2. At this time, it is preferable to carry out in a sealed atmosphere in which pyrolysis components generated by pyrolysis of the polystyrene particles (2) are retained and the surfaces of the graphite particles (1) are easily covered .
[0023]
By the above-described method, target composite particles having a small irreversible capacity and excellent initial efficiency, load characteristics, charge characteristics, and cycle characteristics can be obtained.
[0024]
In the present invention, the composite particles thus obtained are used as a negative electrode material for a lithium ion secondary battery.
[0025]
As the cathode material in a lithium ion secondary battery, reforming MnO 2, LiCoO 2, LiNiO 2 , LiNi 1-y Co y O 2, LiMnO 2, LiMn 2 O 4, LiFeO 2 and the like are used. As the electrolytic solution, an organic solvent such as ethylene carbonate, or a mixed solvent of the organic solvent and a low boiling point solvent such as dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxymethane, ethoxymethoxyethane In addition, a solution in which an electrolyte solute such as LiPF 6 , LiBF 4 , LiClO 4 , or LiCF 3 SO 3 is dissolved is used.
[0026]
<Action>
In the present invention, graphite particles (1) and polystyrene particles (2) are physically mixed, and the mixture is heat-treated at a temperature equal to or higher than the thermal decomposition temperature of polystyrene particles (2) in an inert gas atmosphere . Composite particles are obtained in which a coating layer (and a coating layer obtained by carbonizing the coating layer) of the polystyrene particles (2) is formed on the surface of the graphite particles (1).
[0027]
The pyrolysis component of the polystyrene particles (2) produced during the heating process diffuses to the corners of the graphite particles (1) in the gas phase, reacts with and adheres to active parts of the graphite surface, and is thin and uniform. A thick coating layer is formed. Then, this is further heated to a predetermined temperature and subjected to heat treatment, whereby the coating layer is carbonized to form a stable carbon layer.
[0028]
In the composite particles thus obtained, the active sites (particularly the edge surfaces) of the graphite particles (1) are covered with the coating layer, so that the reaction with the electrolytic solution is suppressed. In addition, the bulk density as particles is improved and the angle of repose is reduced. When this is used as a negative electrode material, the excellent properties as graphite are maintained, and the reactivity with the electrolyte is lowered. Thus, a negative electrode plate having a small irreversible capacity and excellent initial efficiency, load characteristics, charging characteristics and cycle characteristics can be obtained.
[0029]
Instead of polystyrene particles (2), for example, polymer particles that leave carbides during pyrolysis, such as phenol resin, the carbides remain after heat treatment, and the graphite particles stick or a lump of carbides is formed. The intended purpose cannot be fully achieved, and when a gas or liquid such as ethylene or styrene (monomer) is used, the reaction and attachment with the active part of the graphite surface becomes insufficient, and it is still the case. The purpose of the period cannot be fully fulfilled. Polystyrene select as the polymer, and when using it as a particle, it is the best result is obtained as the negative electrode material for a lithium ion secondary battery.
[0030]
The charge / discharge reaction of the lithium ion secondary battery is as follows, and lithium ions travel between the positive electrode and the negative electrode. The reaction from the left side to the right side is a charge reaction, and the reaction from the right side to the left side is a discharge reaction.
6C + LiCoO 2 = C 6 Li + CoO 2
[0031]
【Example】
The following examples further illustrate the invention. Hereinafter, “parts” means parts by weight.
[0032]
[Production of composite particles]
Composite particles were produced as follows.
[0033]
Example 1 (Reference Example)
100 parts of natural graphite particles having an average particle diameter of 22 μm and 10 parts of polyethylene particles having a particle diameter of 3 mm were physically mixed with each other and heat-treated at 800 ° C. for 2 hours in a nitrogen atmosphere. By this heat treatment, 101.1 parts of composite particles in which a coating layer formed of the pyrolytic component of polyethylene particles was formed on the surface of the graphite particles were obtained.
[0034]
Example 2
Example 1 100 parts of natural graphite particles having an average particle diameter of 22 μm used in Reference Example and 10 parts of polystyrene particles having a particle diameter of 3 mm were mixed and heat-treated at 800 ° C. for 2 hours in a nitrogen atmosphere. By this heat treatment, 101.8 parts of composite particles in which a coating layer of pyrolytic components of polystyrene particles was formed on the surface of the graphite particles were obtained.
[0035]
Example 3
Example 1 100 parts of natural graphite particles having an average particle diameter of 22 μm used in Reference Example and 2 parts of polystyrene particles having a particle diameter of 3 mm were mixed and heat-treated at 800 ° C. for 2 hours in a nitrogen atmosphere. By this heat treatment, 100.4 parts of composite particles in which a coating layer made of a pyrolysis component of polystyrene particles was formed on the surface of the graphite particles were obtained.
[0036]
Comparative Example 1
The natural graphite particles having an average particle diameter of 22 μm used in Example 1 (Reference Example) were used as they were without heat treatment.
[0037]
[Measurement of particle diameter, evaluation of electrode performance]
(Measurement of particle size of graphite particles)
Measurement was performed using a “SALD-2000” laser diffraction particle size distribution measuring apparatus manufactured by Shimadzu Corporation, and an average particle diameter (D50) was determined.
[0038]
(Electrode performance evaluation)
100 parts by weight of the negative electrode material, 3 parts by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methylpyrrolidone as a solvent were mixed and stirred uniformly in a liquid phase. The obtained slurry was applied onto a copper foil, dried, and then pressure-formed with a press machine to prepare a negative electrode plate, followed by vacuum drying at 150 ° C. for 6 hours. A lithium electrode pressed onto a stainless steel plate was used as a counter electrode through a separator to assemble a bipolar cell. The assembly is performed in a dry box adjusted to a moisture value of 20 ppm or less, and the electrolyte is 1M-LiPF 6 / (EC + DEC (1: 1)), that is, 1: 1 by volume ratio of ethylene carbonate and diethyl carbonate. A solution obtained by dissolving LiPF 6 at a ratio of 1M in a mixed solvent was used.
[0039]
Charging was carried out until the current value reached 0.01 mA / cm 2 at a constant potential of 0 V after charging at a constant current value of 0.2 mA / cm 2 (0.05 C) until it reached 0 V. Discharging was performed until the voltage reached 1 V at a current value of 0.2 mA / cm 2 . By the first charge capacity and discharge capacity of each sample,
Initial efficiency (%) = 100 × discharge capacity / charge capacity was calculated.
[0040]
The load characteristic is the ratio (%) of the discharge capacity discharged in 30 minutes to the discharge capacity discharged in 10 hours.
[0041]
The charge characteristic is a ratio (%) of the constant current charge capacity charged in 1 hour to the constant current charge capacity charged in 10 hours.
[0042]
[Characteristics of negative electrode material and battery electrode performance using the same]
Example 1 (Reference Example), the electrode performance characteristics and a battery using the negative electrode material of Example 2-3 and Comparative Example 1 shown in Table 1.
[0043]
[Table 1]
Property Electrode Performance
Particle size Coverage Discharge capacity Initial efficiency Load characteristics Charging characteristics
( μm ) (part) (mAh / g) (%) (%) (%)
Comparative Example 1 22 - 366 91.7 90 54
Example 1 (Reference Example) 22 1.1 366 92.5 92 67
Example 2 22 1.8 366 92.7 94 70
Example 3 22 0.4 366 93.0 92 68
[0044]
From Table 1, it can be seen that in Examples 2 to 3 , the initial efficiency, load characteristics and charging characteristics are improved while maintaining the particle diameter and discharge capacity of the original graphite particles. That is, the irreversible capacity is reduced by suppressing the reaction between the electrolytic solution and the graphite surface while maintaining the high capacity of the graphite material.
[0045]
【The invention's effect】
The negative electrode material for a lithium ion secondary battery obtained by the production method of the present invention has low irreversible capacity and low initial efficiency by reducing the reactivity with the electrolyte while maintaining the high charge / discharge capacity of the graphite particles. It has high performance with excellent load characteristics, charging characteristics and cycle characteristics.
[0046]
In addition, the negative electrode material thus obtained can be easily manufactured simply by heat-treating a physical mixture of graphite particles and polystyrene particles that are specific polymer particles. This is also advantageous.
Claims (2)
不活性ガス雰囲気中、この混合物を前記ポリスチレン粒子(2) の熱分解温度以上の温度で熱処理すること、
この熱処理により、前記ポリスチレン粒子 (2) の熱分解成分を気相で拡散させて前記黒鉛粒子(1) の表面に該熱分解成分による被膜層を形成させると共に該被膜層が炭化して被覆層となった複合粒子を得ること、
を特徴とするリチウムイオン二次電池用負極材料の製造法。Physically mixing 100 parts by weight of graphite particles (1) and 0.5 to 50 parts by weight of polystyrene particles (2) ;
Heat treating the mixture at a temperature equal to or higher than the thermal decomposition temperature of the polystyrene particles (2) in an inert gas atmosphere ;
By this heat treatment, the coating layer coating film layer is carbonized with to form a coating layer by the thermal decomposition component on the surface of the thermal decomposition component is diffused in the gas phase the graphite particles (1) of the polystyrene particles (2) to obtain composite particles becomes,
A method for producing a negative electrode material for a lithium ion secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000338257A JP4195179B2 (en) | 2000-11-06 | 2000-11-06 | Method for producing negative electrode material for lithium ion secondary battery, and lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000338257A JP4195179B2 (en) | 2000-11-06 | 2000-11-06 | Method for producing negative electrode material for lithium ion secondary battery, and lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002151069A JP2002151069A (en) | 2002-05-24 |
JP4195179B2 true JP4195179B2 (en) | 2008-12-10 |
Family
ID=18813489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000338257A Expired - Fee Related JP4195179B2 (en) | 2000-11-06 | 2000-11-06 | Method for producing negative electrode material for lithium ion secondary battery, and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4195179B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011060467A (en) * | 2009-09-07 | 2011-03-24 | Kansai Coke & Chem Co Ltd | Negative electrode material for lithium ion secondary battery and method for manufacturing the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1478038B1 (en) | 2002-01-25 | 2012-03-14 | Toyo Tanso Co., Ltd. | Negative electrode material for lithium ion secondary battery |
KR101096936B1 (en) * | 2009-07-23 | 2011-12-22 | 지에스칼텍스 주식회사 | Negative active material for rechargeable lithium battery, method of manufacturing the same and rechargeable lithium battery having the same |
WO2014156892A1 (en) | 2013-03-25 | 2014-10-02 | Jsr株式会社 | Electrode active material, electrode, and electricity-storage device |
CN114864869A (en) * | 2022-05-30 | 2022-08-05 | 上海瑞浦青创新能源有限公司 | Negative electrode and preparation method and application thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3139790B2 (en) * | 1991-10-02 | 2001-03-05 | 三菱化学株式会社 | Rechargeable battery |
JP3164458B2 (en) * | 1993-03-09 | 2001-05-08 | 三菱化学株式会社 | Manufacturing method of electrode material |
JPH08227714A (en) * | 1995-02-21 | 1996-09-03 | Mitsubishi Pencil Co Ltd | Carbon material for negative electrode of lithium ion secondary battery and manufacture thereof |
JPH08315821A (en) * | 1995-05-16 | 1996-11-29 | Tokai Carbon Co Ltd | Negative electrode material for lithium secondary battery and manufacture thereof |
JPH11167920A (en) * | 1997-12-05 | 1999-06-22 | Kansai Coke & Chem Co Ltd | Manufacture of negative electrode material for nonaqueous secondary battery |
JP4187347B2 (en) * | 1998-04-02 | 2008-11-26 | 三星エスディアイ株式会社 | Method for producing negative electrode active material for lithium ion battery |
US6482547B1 (en) * | 1998-05-21 | 2002-11-19 | Samsung Display Devices Co., Ltd. | Negative active material for lithium secondary battery and lithium secondary battery using the same |
JP2000090930A (en) * | 1998-09-14 | 2000-03-31 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery and manufacture of negative electrode thereof |
JP3878383B2 (en) * | 2000-02-10 | 2007-02-07 | 東洋炭素株式会社 | Manufacturing method of negative electrode |
JP3844931B2 (en) * | 2000-02-10 | 2006-11-15 | 東洋炭素株式会社 | Negative electrode and secondary battery |
-
2000
- 2000-11-06 JP JP2000338257A patent/JP4195179B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011060467A (en) * | 2009-09-07 | 2011-03-24 | Kansai Coke & Chem Co Ltd | Negative electrode material for lithium ion secondary battery and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2002151069A (en) | 2002-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5898572B2 (en) | Method for producing negative electrode material for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery | |
JP4161376B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3152226B2 (en) | Non-aqueous electrolyte secondary battery, method for producing the same, and carbon material composition | |
JP4104829B2 (en) | Carbonaceous material and lithium secondary battery | |
JP5611453B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode | |
JP2001102049A (en) | Non-aqueous electrolyte secondary battery | |
JP3436033B2 (en) | Non-aqueous electrolyte secondary battery | |
KR20040040473A (en) | Carbon material, production method and use thereof | |
CA2889306A1 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
KR20130097224A (en) | Composite graphite particles and use of same | |
KR101124893B1 (en) | Anode active material improved safety and secondary battery employed with the same | |
JP3709987B2 (en) | Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material | |
JP2011060467A (en) | Negative electrode material for lithium ion secondary battery and method for manufacturing the same | |
JP4818498B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3406583B2 (en) | Graphite-carbon composite material for negative electrode of lithium secondary battery, method for producing the same, and lithium secondary battery | |
KR101140866B1 (en) | Anode active material for lithium secondary battery And Lithium secondary battery comprising the same | |
JP2007122975A (en) | Nonaqueous electrolyte secondary battery | |
WO2019064547A1 (en) | Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery | |
JP4195179B2 (en) | Method for producing negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
JP6315258B2 (en) | Conductive material for lithium ion secondary battery, composition for forming negative electrode of lithium ion secondary battery, composition for forming positive electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary Secondary battery | |
JP4734707B2 (en) | Non-aqueous electrolyte battery | |
JP2016157648A (en) | Nonaqueous electrolyte secondary battery | |
JP2003226510A (en) | Carbon material, production method and use thereof | |
JP5567232B1 (en) | Composite carbon particles and lithium ion secondary battery using the same | |
US20220127146A1 (en) | Carbon material for negative electrode of lithium ion secondary battery and method of producing the same, and negative electrode and lithium ion secondary battery using the carbon material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080609 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080918 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080925 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131003 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131003 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131003 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |