JP3769647B2 - Composite carbon material for electrode, method for producing the same, and nonaqueous electrolyte secondary battery using the same - Google Patents

Composite carbon material for electrode, method for producing the same, and nonaqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP3769647B2
JP3769647B2 JP08721498A JP8721498A JP3769647B2 JP 3769647 B2 JP3769647 B2 JP 3769647B2 JP 08721498 A JP08721498 A JP 08721498A JP 8721498 A JP8721498 A JP 8721498A JP 3769647 B2 JP3769647 B2 JP 3769647B2
Authority
JP
Japan
Prior art keywords
carbon material
negative electrode
composite carbon
secondary battery
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08721498A
Other languages
Japanese (ja)
Other versions
JPH11279785A (en
Inventor
生龍 王
仁 西野
克英 沖見
和弘 竹崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP08721498A priority Critical patent/JP3769647B2/en
Publication of JPH11279785A publication Critical patent/JPH11279785A/en
Application granted granted Critical
Publication of JP3769647B2 publication Critical patent/JP3769647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池などの非水電解液電池の負極材料として有用な炭素材料およびその製造方法並びに非水電解液電池に関する。
【0002】
【従来の技術とその問題点】
近年電子機器の小型化に伴って、より高いエネルギー密度を有する二次電池が要求される様になっている。特に、非水電解液電池の中でも、リチウム二次電池は、高エネルギー密度型二次電池として注目されている。一般に、リチウム二次電池においては、金属リチウムを負極材料とし、これとリチウムを含む正極および非プロトン性有機溶媒に塩を溶解させた電解液が使用されている。
【0003】
しかしながら、負極材料として金属リチウムを使用する二次電池においては、充放電の繰り返しにより、電極表面にリチウムデントライドが析出する。このリチウムデンドライドは、隔膜を貫通して次第に成長し、正極との間で短絡する危険性が大きいので、二次電池の充放電のサイクル寿命が短くなる。
【0004】
この間題を解決する改善策として、負極材料として黒鉛を用いることが提案されている。この改良型二次電池では、黒鉛を負極として、リチウムを含む正極とともに非水電解液中で充電を行うことにより、リチウムが層状構造を有する黒鉛に吸蔵され、黒鉛層間化合物が生成する。逆に、放電を行う場合には、負極黒鉛層間化合物中のリチウムは、黒鉛層間から放出され、正極に戻る。
【0005】
この改良型リチウム二次電池においては、電気化学的な充電により、負極黒鉛とリチウムとが、層間化合物が生成して、炭素6個に対してリチウム1個が配位する状態(C6Li)の時に、最大で372mAh/g・carbonまで、負極の放電容量を高めることができる。しかしながら、このリチウム二次電池では、それ以上の高容量化は不可能である。
【0006】
この問題を解決すべく、特開平5-121066号公報では、黒鉛粒子の表面を低結晶性炭素で被覆した炭素負極が提案されている。また、特開平8-45499号公報では、黒鉛の粒子表面に酸化銅を生成させることが提案されている。しかしながら、いずれの場合にも、黒鉛の理論最大放電容量は、達成されていない。特開平8-273702号公報は、黒鉛の粒子表面にリチウムと合金を形成し得るAgの微粒子を生成させることにより、二次電池の高容量化とサイクル寿命の延長化をはかることが提案されている。しかしながら、この技術は、二次電池のコストを高めるので、実用上大きな問題点がある。
【0007】
一方、金属酸化物は、炭素材料に比して、真比重が高く、リチウムを大量に吸収することができることが最近見出されている。例えば、SnOに対しては、リチウムイオン8個が配位することができる。しかしながら、SnOの結晶構造が不安定なので、負極として利用するためには、サイクル特性が不安定であることが、実用化の障害となっている。
【0008】
【発明が解決しようする課題】
従って、本発明は、サイクル寿命特性に優れ、電池容量が黒鉛電極の理論放電容量(372mAh/g・carbon)を上回る非水電解液電池用負極材料を提供することを主な目的とする。
【0009】
【課題を解決するための手段】
本発明者は、上記の様な従来技術の問題点に留意しつつ、研究を重ねた結果、粒子状黒鉛に有機材料と特定の金属化合物とを混合し、特定の条件下に熱処理する場合には、粒子状黒鉛と金属化合物と有機材料との反応により生成した反応物がその表面を覆っている複合炭素材料が得られること、熱処理により有機材料に由来する被覆層と金属化合物との間である種の化学結合が形成されること、およびこの化学結合を形成された複合炭素材料が非水電解液二次電池用の負極材料として優れた特性を備えていることを見出した。
【0010】
すなわち、本発明は、下記の電極用炭素材料およびその製造方法並びにこれを負極として用いる非水電解液二次電池を提供する。
【0011】
1.粒子状黒鉛表面に有機材料と金属化合物とに由来する被覆層が形成されており、金属元素を3〜20重量%含有することを特徴とする電極用複合炭素材料。
【0012】
2.X線回析により求めた粒子状黒鉛のC軸とA軸方向の結晶子サイズをそれぞれLcとLaとし、002面の面間隔をd002とした場合に、LcとLaがそれぞれ300Å以上であり、d002が3.37Å以下である上記項1に記載の電極用複合炭素材料。
【0013】
3.粒子状黒鉛と有機材料と金属化合物とを混合し、熱処埋することを特徴とする、表面に有機材料と金属化合物とに由来する被覆層が形成されており、金属元素を3〜20重量%含有する電極用複合炭素材料の製造方法。
【0014】
4.上記項1または2に記載の複合炭素材料を構成材料とすることを特徴とする非水電解液二次電池用負極。
【0015】
5.上記項1または2に記載の複合炭素材料を負極とすることを特徴とする非水電解液二次電池。
【0016】
6.上記項1または2に記載の複合炭素材料を構成材料とすることを待徴とするリチウムイオン二次電池用負極。
【0017】
7.上記項1または2に記載の複合炭素材料を負極とすることを待徴とするリチウムイオン二次電池。
【0018】
【発明の実施の形態】
本発明においては、粒子状黒鉛と、石油系および/または石炭系のタール、ピッチ、芳香族系樹脂、高分子材料などの有機材料の少なくとも1種と、特定の金属化合物および複合金属化合物の少なくとも1種とを混合し、熱処理する。この熱処理により、粒子状黒鉛の表面を、粒子状黒鉛と有機材料と金属化合物との反応生成物が覆っている新しい複合炭素材料が得られる。
【0019】
得られた複合炭素材料は、非水電解液二次電池の負極材料として優れた機能を発揮する。これは、上記の熱処理により、有機材料に由来する被覆層とと金属化合物との間にある種の化学結合が形成されるので、金属化合物の結晶構造が充放電に際しての負極炭素材料の安定化に寄与するためと考えられる。
【0020】
本発明においては、複合炭素材料の芯材となる黒鉛材料として、粒子状(鱗片状、球状)の天然黒鉛、人造黒鉛、メソカーボンメークロビーズなどを使用することができるが、これらに限定されるものではない。黒鉛材料としては、X線広角回析法による(002)面の平均面間隔(d002)が3.37Å以下、C軸方向((002)方向)の結晶子厚みLcが300Å以上、A軸方向((110)方向)の結晶子厚みLaが300Å以上である結晶性の高い黒鉛材料を使用することが好ましい。黒鉛材料の粒径は、特に限定されないが、通常1〜500μm程度であり、より好ましくは10〜100μm程度である。
【0021】
有機材料としては、代表的なものとして、a)石油系および石炭系のタールおよびピッチ、b)炭化可能なポリマー(フェノール樹脂、フラン樹脂、ポリアクロリニトリル、レーヨン、セルロース、ポリアセン、ポリカーポネート、ポリパラフェニレンなど)、c)芳香族成分が架橋剤により架橋した芳香族樹脂などが例示されるが、これらに限定されるものではない。これらの有機材料は、それぞれ単独で使用しても良く、或いは2種以上を併用しても良い。
【0022】
金属化合物としては、代表的なものとして、錫、アルミニウム、亜鉛およびケイ素の金属化合物の少なくとも1種或いは2種以上の混合物(以下、「特定金属化合物」という)が挙げられる。特定金属化合物としては、例えば、錫酸化物、酢酸錫などのカルボン酸錫塩、塩化第1錫などハロゲン化錫、リン酸錫などの無機酸錫塩などの錫化合物;アルミニウム酸化物、水酸化アルミニウム、アセトアルコキシアルミニウムジイソプロピレートなどのアルミニウム化合物;水酸化亜鉛、リン酸亜鉛などの無機酸亜鉛塩など;二酸化ケイ素、四塩化ケイ素、ケイ酸などのケイ素化合物などが挙げられる。特定金属化合物は、単独で使用しても良く、或いは2種以上を併用しても良い。
【0023】
本発明による複合炭素材料は、以下の様にして製造することができる。まず、粒子状黒鉛100重量部に対し、有機材料1〜100重量部程度(より好ましくは10〜50重量部程度)と特定金属化合物1〜100重量部程度(より好ましくは5〜30重量部程度)を配合した後、窒素雰囲気下1〜24時間程度、100〜380℃程度の条件で撹拌し、混合する。その結果、有機材料と特定金属化合物により被覆された黒鉛粒子が得られる。
【0024】
次いで、得られた被覆黒鉛粒子を洗浄することにより、被覆層の厚さを調整する。洗浄に用いる有機溶媒としては、トルエン、キノリン、アセトンなどが挙げられる。洗浄時の温度は、最終的に得られる複合黒鉛材料の被覆層の厚みなどによっても変わるが、10〜100℃程度とすることが好ましい。
【0025】
次いで、洗浄を終えた被覆黒鉛粒子を空気雰囲気下0.1〜10℃/分程度の昇温速度で200〜400℃程度まで昇温した後、同温度に1〜5時間程度保持することにより、有機材料由来の被覆層と金属化合物とが架橋反応する。加熱処理終了後、生成物を常温まで冷却する。次いで、加熱処理生成物を5〜50℃/分の速度で800〜1200℃程度、より好ましくは900〜1150℃程度、さらに好ましくは1000〜1125℃程度まで昇温し、所定温度で1〜2時間程度保持して、所望の複合炭素材料を得る。
【0026】
この様にして得られた新しい複合炭素材料は、実質的に芯材と被覆層とからなっており、粒子状黒鉛に由来する高結晶性の炭素成分が75〜96重量%程度、有機材料に由来する低結晶性炭素が2〜15重量%程度、金属化合物に由来する金属元素が2〜15重量%程度からなっている。
【0027】
本発明による複合炭素材料は、非水電解液二次電池、特にリチウムイオン二次電池の負極用材料として適している。
【0028】
図1は、この様なリチウイオンム二次電池の一例を示す概略断面図である。このリチウムイオン二次電池は、前記複合炭素材料を含む負極3、正極1、電解液、セパレータ2、集電体6、絶縁パッキン7、封口板5、ケース4などの電池構成要素を用いて、常法に従って、組み立てることができる。本発明による複合炭素材料を含む負極3以外の構成要素としては、公知の材料をそのまま使用することができる。
【0029】
正極活物質としては、例えば、一般式LiMO2(ただし、Mは、Co、NiおよびMnの少なくとも1種を表わす)で表される複合金属酸化物、リチウムを含んだ層間化合物が好適で、特にLiCoO2を使用する場合に、良好な特性を発揮する。
【0030】
また、電解液用溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、1,2-ジメトキシエタン(DME)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)などが、単独で或いは2種以上の混合物として用いられる。
【0031】
電解液としては、上記溶媒にLiPF6、LiClO4、LiBF4、LiAsF6などの溶媒和しにくいアニオンを生成する塩を溶解した溶液が、使用される。
【0032】
また、セパレータとしては保液性を有する材料、例えば、多孔質ポリプロピレン製不織布などのポリオレフィン系多孔質膜などが使用される。
【0033】
本発明による非水電解質二次電池は、ポータブル電子機器の電源;各種メモリー、ソーラーバッテリなどのバックアップ電源;電気自動車用電源、ロードレベリング用などの広い用途に使用される。
【0034】
【発明の効果】
本発明により得られる新しい複合炭素材料を非水電解液二次電池、特にリチウムイオン二次電池の負極に用いる場合には、以下の様な顕著な効果が達成される。
【0035】
負極活物質の放電容量は、黒鉛理論容量372mAh/g・carbonを超える大きな値となる。従って、本発明による負極材料を用いる場合には、通常の黒鉛を使用する場合に比して、高容量でかつ高密度であるため、負極を小型化し、ひいては電池全体を小型化しても、十分な電池容量が得られる。従って、高エネルギー密度と共にサイクル寿命待性に優れる二次電池の開発に大きく貢献することができる。
【0036】
【実施例】
以下、実施例に基づいて本発明をより詳細に説明する。
【0037】
実施例1コ−ルタール(有機化合物)25gとSnO(金属化合物)5gと平均粒径10μmの人造黒鉛粒子90gとをオートクレープ中に入れ、常圧の窒素雰囲気下80℃で1時間撹拌し、混合した。得らた被覆黒鉛粒子を常温下アセトンで洗浄した。その後、空気雰囲気中10℃/分の速度て300℃まで昇温した後、同温度に1時間保持して、反応物を架橋処理した。次いで、架橋反応生成物を常温まで冷却した後、50℃/分の速度で1050℃まで昇温し、1050℃にて1時間炭化して、電極用複合炭素材料を得た。
【0038】
使用した人造黒鉛粒子のX線広角回析法による(002)面の平均面間隔(d002)は3.37Å以下、C軸:(002)方向の結晶子厚みLcは300Å以上、A軸:(110)方向の結晶子厚みLaは300Å以上であった。
【0039】
得られた複合炭素材料中の金属錫の含有率は、IPC分析により、5.2重量%であることが確認された。
【0040】
得られた複合炭素材料の負極材としての特性を以下の様にして測定した。
【0041】
得られた複合電極材料に対し、バインダーとして複合電極材料の10重量%に相当する量のポリフッ化ピニリデンを加えた後、N-メチル-2-ピロリドンを溶媒として混合した。得られた混合物を厚み18μmの電解銅箔の片面に塗布し、空気中80℃で30分間乾燥し、0.5ton/cm2の圧力で成型した後、200℃で2時間真空乾燥した。
【0042】
得られた成形体を負極とし、ポリプロピレン多孔質膜を介して、ステンレススチールネットに押しつけたリチウムシートを対極として、LiClO4を1.0モル含むエチレンカーボネート/ジエチルカーボネート混合電解液(体積1:1)中で1.0mA/cm2の電流密度で対Li/Li+電位1mVまで定電流で充電し、定電圧1mVで合計12時間充電した。放電は、1.0mA/cm2で対Li/Li+電位1.2Vまで行い、その結果に基づいて、放電容量を求め、負極活物質重量当たりの放電電気量として、mAh/gで表示した。
【0043】
このようにして求めた炭素材料中の金属錫の含有率と負極活物質の放電容量との関係を表1に示す。
【0044】
実施例2〜4
金属化合物としてSnO量はそれぞれ10g、15gおよび20gとした以外は実施例1と同様にして、負極材料を製作した。
【0045】
炭素材料中の金属錫の含有率と負極活物質の放電容量との関係を実施例1と同様にして求めた。その結果を表1に併せて示す。
【0046】
実施例5
天然黒鉛90gを使った以外は実施例1と同様にして負極材料を製作した。使用した高純度化処理天然黒鉛において、X線広角回析法による(002)面の平均面間隔(d002)は3.37Å以下、(002)方向の結晶子厚みは300Å以上、(110)方向の結晶子厚みは300Å以上であった。
【0047】
炭素材料中の金属錫の含有率と負極活物質の放電容量との関係を実施例1と同様にして求めた。その結果を表1に併せて示す。
【0048】
実施例6
SnO5gに代えて、Sn2P2O75gとSiO23gとを使用する以外は実施例1と同様にして、負極材料を製作した。
【0049】
炭素材料中の金属錫の含有率と負極活物質の放電容量との関係を実施例1と同様にして求めた。その結果を表1に併せて示す。
【0050】
実施例7
SnO5gに代えて、SnO5gとAl2O33gを使用する以外は実施例1と同様にして、負極材料を製作した。
【0051】
炭素材料中の金属錫の含有率と負極活物質の放電容量との関係を実施例1と同様にして求めた。その結果を表1に併せて示す。
【0052】
比較例1
有機化合物としてコールタール25gと人造黒鉛90gとを使用する以外は実施例1と同様にして、負極材料を製作した。
【0053】
得られた負極材料を使用する電池の放電容量を実施例1と同様にして求めた。その結果を表1に併せて示す。
【0054】
比較例2
有機化合物としてコールタール25gと天然黒鉛90gとを使用する以外は実施例1と同様にして、負極材料を製作した。
【0055】
得られた負極材料を使用する電池の放電容量を実施例1と同様にして求めた。その結果を表1に併せて示す。
【0056】
【表1】

Figure 0003769647

【図面の簡単な説明】
【図1】リチウム二次電池の一例を示す概略断面図である。
【符号の説明】
1:正極
2:セパレータ
3:負極
4:ケース
5:封口板
6:集電体
7:絶縁パッキン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon material useful as a negative electrode material for a non-aqueous electrolyte battery such as a lithium secondary battery, a method for producing the same, and a non-aqueous electrolyte battery.
[0002]
[Prior art and its problems]
In recent years, with the miniaturization of electronic devices, secondary batteries having higher energy density have been required. In particular, among non-aqueous electrolyte batteries, lithium secondary batteries are attracting attention as high energy density type secondary batteries. In general, in a lithium secondary battery, metallic lithium is used as a negative electrode material, and a positive electrode containing lithium and an electrolyte solution in which a salt is dissolved in an aprotic organic solvent are used.
[0003]
However, in a secondary battery using metallic lithium as a negative electrode material, lithium dentride is deposited on the electrode surface by repeated charge and discharge. Since this lithium dendride grows gradually through the diaphragm and has a high risk of short-circuiting with the positive electrode, the cycle life of the secondary battery is shortened.
[0004]
As an improvement measure to solve this problem, it has been proposed to use graphite as a negative electrode material. In this improved secondary battery, when graphite is used as a negative electrode and is charged in a non-aqueous electrolyte together with a positive electrode containing lithium, lithium is occluded in graphite having a layered structure, and a graphite intercalation compound is generated. On the contrary, when discharging, lithium in the negative electrode graphite intercalation compound is released from the graphite layer and returns to the positive electrode.
[0005]
In this improved lithium secondary battery, the negative electrode graphite and lithium form an intercalation compound by electrochemical charging, and the lithium is coordinated to 6 carbons (C6Li). The discharge capacity of the negative electrode can be increased up to 372 mAh / g · carbon. However, it is impossible to increase the capacity further with this lithium secondary battery.
[0006]
In order to solve this problem, Japanese Patent Application Laid-Open No. 5-121066 proposes a carbon negative electrode in which the surface of graphite particles is coated with low crystalline carbon. Japanese Patent Application Laid-Open No. 8-45499 proposes that copper oxide is generated on the surface of graphite particles. However, in any case, the theoretical maximum discharge capacity of graphite has not been achieved. JP-A-8-273702 proposes to increase the capacity of the secondary battery and extend the cycle life by generating Ag fine particles capable of forming an alloy with lithium on the graphite particle surface. Yes. However, since this technique increases the cost of the secondary battery, there is a large practical problem.
[0007]
On the other hand, it has recently been found that a metal oxide has a higher true specific gravity than a carbon material and can absorb a large amount of lithium. For example, eight lithium ions can coordinate to SnO. However, since the crystal structure of SnO is unstable, in order to use it as a negative electrode, the unstable cycle characteristic is an obstacle to practical use.
[0008]
[Problems to be solved by the invention]
Accordingly, the main object of the present invention is to provide a negative electrode material for a non-aqueous electrolyte battery that has excellent cycle life characteristics and has a battery capacity exceeding the theoretical discharge capacity (372 mAh / g · carbon) of a graphite electrode.
[0009]
[Means for Solving the Problems]
As a result of repeated research while paying attention to the problems of the prior art as described above, the present inventor has mixed an organic material and a specific metal compound into particulate graphite and heat-treated under specific conditions. Is obtained between the coating layer derived from the organic material and the metal compound by heat treatment to obtain a composite carbon material covering the surface with a reaction product generated by the reaction of the particulate graphite, the metal compound and the organic material. It has been found that a certain type of chemical bond is formed, and that the composite carbon material formed with this chemical bond has excellent characteristics as a negative electrode material for a non-aqueous electrolyte secondary battery.
[0010]
That is, this invention provides the following carbon material for electrodes, its manufacturing method, and the nonaqueous electrolyte secondary battery using this as a negative electrode.
[0011]
1. A composite carbon material for an electrode, wherein a coating layer derived from an organic material and a metal compound is formed on the surface of particulate graphite and contains 3 to 20% by weight of a metal element.
[0012]
2. When the crystallite size in the C-axis and A-axis directions of the particulate graphite obtained by X-ray diffraction is Lc and La, respectively, and when the surface spacing of the 002 plane is d002, Lc and La are each 300 mm or more, Item 2. The composite carbon material for electrodes according to Item 1, wherein d002 is 3.37 mm or less.
[0013]
3. A coating layer derived from an organic material and a metal compound is formed on the surface, which is characterized by mixing particulate graphite, an organic material, and a metal compound, and heat-embedding, and 3 to 20 weight of metal element The manufacturing method of the composite carbon material for electrodes which contains%.
[0014]
4). 3. A negative electrode for a non-aqueous electrolyte secondary battery comprising the composite carbon material according to item 1 or 2 as a constituent material.
[0015]
5. A non-aqueous electrolyte secondary battery comprising the composite carbon material according to item 1 or 2 as a negative electrode.
[0016]
6). A negative electrode for a lithium ion secondary battery, characterized in that the composite carbon material according to item 1 or 2 is used as a constituent material.
[0017]
7). A lithium ion secondary battery characterized in that the composite carbon material according to Item 1 or 2 is used as a negative electrode.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, particulate graphite, at least one organic material such as petroleum-based and / or coal-based tar, pitch, aromatic resin, polymer material, and at least a specific metal compound and a composite metal compound are used. One kind is mixed and heat-treated. By this heat treatment, a new composite carbon material in which the surface of the particulate graphite is covered with a reaction product of the particulate graphite, the organic material, and the metal compound is obtained.
[0019]
The obtained composite carbon material exhibits an excellent function as a negative electrode material of a non-aqueous electrolyte secondary battery. This is because a certain type of chemical bond is formed between the coating layer derived from the organic material and the metal compound by the above heat treatment, so that the crystal structure of the metal compound stabilizes the negative electrode carbon material during charge and discharge. It is thought that it contributes to.
[0020]
In the present invention, particulate (scale-like, spherical) natural graphite, artificial graphite, mesocarbon macrobeads, and the like can be used as the graphite material as the core material of the composite carbon material, but are not limited thereto. It is not a thing. For graphite materials, the average spacing (d002) of (002) plane by X-ray wide angle diffraction method is 3.37 mm or less, crystallite thickness Lc in the C-axis direction ((002) direction) is 300 mm or more, A-axis direction ( It is preferable to use a highly crystalline graphite material having a (110) direction) crystallite thickness La of 300 mm or more. The particle size of the graphite material is not particularly limited, but is usually about 1 to 500 μm, more preferably about 10 to 100 μm.
[0021]
Typical organic materials include: a) petroleum and coal-based tars and pitches, b) carbonizable polymers (phenolic resins, furan resins, polyacrylonitrile, rayon, cellulose, polyacene, polycarbonates, Examples include, but are not limited to, polyparaphenylene and the like, and c) an aromatic resin in which an aromatic component is crosslinked by a crosslinking agent. These organic materials may be used alone or in combination of two or more.
[0022]
Typical examples of the metal compound include at least one of a metal compound of tin, aluminum, zinc and silicon (hereinafter referred to as “specific metal compound”). Specific metal compounds include, for example, tin compounds such as tin oxide, tin carboxylates such as tin acetate, tin halides such as stannous chloride, and inorganic acid tin salts such as tin phosphate; aluminum oxide, hydroxylated Aluminum compounds such as aluminum and acetoalkoxyaluminum diisopropylate; inorganic acid zinc salts such as zinc hydroxide and zinc phosphate; and silicon compounds such as silicon dioxide, silicon tetrachloride and silicic acid. A specific metal compound may be used independently or may use 2 or more types together.
[0023]
The composite carbon material according to the present invention can be produced as follows. First, about 100 parts by weight of particulate graphite, about 1 to 100 parts by weight of organic material (more preferably about 10 to 50 parts by weight) and about 1 to 100 parts by weight of a specific metal compound (more preferably about 5 to 30 parts by weight) After mixing, the mixture is stirred and mixed under a nitrogen atmosphere for about 1 to 24 hours under conditions of about 100 to 380 ° C. As a result, graphite particles coated with the organic material and the specific metal compound are obtained.
[0024]
Next, the thickness of the coating layer is adjusted by washing the obtained coated graphite particles. Examples of the organic solvent used for washing include toluene, quinoline, and acetone. The temperature at the time of washing varies depending on the thickness of the coating layer of the composite graphite material finally obtained, but is preferably about 10 to 100 ° C.
[0025]
Next, the coated graphite particles that have been washed are heated to about 200 to 400 ° C. at a temperature rising rate of about 0.1 to 10 ° C./min in an air atmosphere, and then kept at the same temperature for about 1 to 5 hours, thereby organically The coating layer derived from the material and the metal compound undergo a crosslinking reaction. After completion of the heat treatment, the product is cooled to room temperature. Next, the temperature of the heat treatment product is increased to about 800 to 1200 ° C., more preferably about 90 to 1150 ° C., more preferably about 1000 to 1125 ° C. at a rate of 5 to 50 ° C./min, and 1 to 2 at a predetermined temperature. Holding for about an hour, a desired composite carbon material is obtained.
[0026]
The new composite carbon material thus obtained is substantially composed of a core material and a coating layer, and the highly crystalline carbon component derived from particulate graphite is about 75 to 96% by weight in an organic material. The derived low crystalline carbon is about 2 to 15% by weight, and the metal element derived from the metal compound is about 2 to 15% by weight.
[0027]
The composite carbon material according to the present invention is suitable as a negative electrode material for a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery.
[0028]
FIG. 1 is a schematic cross-sectional view showing an example of such a lithium ion secondary battery. This lithium ion secondary battery uses battery components such as the negative electrode 3, the positive electrode 1, the electrolyte solution, the separator 2, the current collector 6, the insulating packing 7, the sealing plate 5, and the case 4 containing the composite carbon material, Can be assembled according to conventional methods. As components other than the negative electrode 3 containing the composite carbon material according to the present invention, known materials can be used as they are.
[0029]
As the positive electrode active material, for example, a composite metal oxide represented by the general formula LiMO 2 (wherein M represents at least one of Co, Ni, and Mn) and an intercalation compound containing lithium are preferable. Good performance when using LiCoO 2 .
[0030]
Examples of the electrolyte solution solvent include propylene carbonate (PC), ethylene carbonate (EC), 1,2-dimethoxyethane (DME), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), and the like. Or it is used as a mixture of two or more.
[0031]
As the electrolytic solution, a solution in which a salt that forms an anion that is difficult to solvate, such as LiPF 6 , LiClO 4 , LiBF 4 , or LiAsF 6 , is dissolved in the above solvent.
[0032]
Further, as the separator, a material having liquid retention property, for example, a polyolefin-based porous film such as a porous polypropylene nonwoven fabric is used.
[0033]
The non-aqueous electrolyte secondary battery according to the present invention is used in a wide range of applications such as power sources for portable electronic devices; backup power sources such as various memories and solar batteries; power sources for electric vehicles, and load leveling.
[0034]
【The invention's effect】
When the new composite carbon material obtained by the present invention is used for a negative electrode of a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery, the following remarkable effects are achieved.
[0035]
The discharge capacity of the negative electrode active material is a large value exceeding the theoretical graphite capacity of 372 mAh / g · carbon. Therefore, when the negative electrode material according to the present invention is used, since it has a higher capacity and higher density than when ordinary graphite is used, it is sufficient even if the negative electrode is downsized and the entire battery is downsized. Battery capacity can be obtained. Therefore, it can greatly contribute to the development of a secondary battery that has high energy density and excellent cycle life waiting.
[0036]
【Example】
Hereinafter, the present invention will be described in more detail based on examples.
[0037]
Example 1 25 g of coal tar (organic compound), 5 g of SnO (metal compound) and 90 g of artificial graphite particles having an average particle size of 10 μm were placed in an autoclave and stirred at 80 ° C. for 1 hour in a nitrogen atmosphere at normal pressure. Mixed. Resulting et al The coated graphite particles were washed at room temperature acetone. Thereafter, the temperature was raised to 300 ° C. at a rate of 10 ° C./min in an air atmosphere, and then maintained at the same temperature for 1 hour to crosslink the reaction product. Next, the cross-linked reaction product was cooled to room temperature, then heated to 1050 ° C. at a rate of 50 ° C./min, and carbonized at 1050 ° C. for 1 hour to obtain a composite carbon material for an electrode.
[0038]
The average surface spacing (d002) of the (002) plane by the X-ray wide-angle diffraction method of the used artificial graphite particles was 3.37 mm or less, the crystallite thickness Lc in the C axis: (002) direction was 300 mm or more, and the A axis: (110 The crystallite thickness La in the) direction was 300 mm or more.
[0039]
The content of metallic tin in the obtained composite carbon material was confirmed to be 5.2% by weight by IPC analysis.
[0040]
The characteristics of the obtained composite carbon material as a negative electrode material were measured as follows.
[0041]
Polyvinylidene fluoride in an amount corresponding to 10% by weight of the composite electrode material was added as a binder to the obtained composite electrode material, and then mixed with N-methyl-2-pyrrolidone as a solvent. The obtained mixture was applied to one side of an electrolytic copper foil having a thickness of 18 μm, dried in air at 80 ° C. for 30 minutes, molded at a pressure of 0.5 ton / cm 2 , and then vacuum dried at 200 ° C. for 2 hours.
[0042]
The obtained molded body was used as a negative electrode, and a lithium sheet pressed against a stainless steel net through a polypropylene porous membrane as a counter electrode, in an ethylene carbonate / diethyl carbonate mixed electrolyte (volume 1: 1) containing 1.0 mol of LiClO 4 At a current density of 1.0 mA / cm 2 , the battery was charged with a constant current to Li / Li + potential of 1 mV and charged with a constant voltage of 1 mV for a total of 12 hours. Discharge was performed at 1.0 mA / cm 2 up to Li / Li + potential 1.2 V. Based on the result, the discharge capacity was obtained and expressed as mAh / g as the discharge electricity amount per weight of the negative electrode active material.
[0043]
Table 1 shows the relationship between the metal tin content in the carbon material thus determined and the discharge capacity of the negative electrode active material.
[0044]
Examples 2-4
A negative electrode material was produced in the same manner as in Example 1 except that the amount of SnO as the metal compound was 10 g, 15 g, and 20 g, respectively.
[0045]
The relationship between the content of metallic tin in the carbon material and the discharge capacity of the negative electrode active material was determined in the same manner as in Example 1. The results are also shown in Table 1.
[0046]
Example 5
A negative electrode material was produced in the same manner as in Example 1 except that 90 g of natural graphite was used. In the highly purified natural graphite used, the average spacing (d002) of (002) plane by X-ray wide angle diffraction method is 3.37 mm or less, crystallite thickness in (002) direction is 300 mm or more, and (110) direction The crystallite thickness was 300 mm or more.
[0047]
The relationship between the content of metallic tin in the carbon material and the discharge capacity of the negative electrode active material was determined in the same manner as in Example 1. The results are also shown in Table 1.
[0048]
Example 6
Instead of SnO5g, except for using the Sn 2 P 2 O 7 5g and SiO 2 3 g in the same manner as in Example 1, was fabricated negative electrode material.
[0049]
The relationship between the content of metallic tin in the carbon material and the discharge capacity of the negative electrode active material was determined in the same manner as in Example 1. The results are also shown in Table 1.
[0050]
Example 7
A negative electrode material was produced in the same manner as in Example 1 except that SnO5g and Al 2 O 3 3g were used instead of SnO5g.
[0051]
The relationship between the content of metallic tin in the carbon material and the discharge capacity of the negative electrode active material was determined in the same manner as in Example 1. The results are also shown in Table 1.
[0052]
Comparative Example 1
A negative electrode material was produced in the same manner as in Example 1 except that 25 g of coal tar and 90 g of artificial graphite were used as the organic compound.
[0053]
The discharge capacity of the battery using the obtained negative electrode material was determined in the same manner as in Example 1. The results are also shown in Table 1.
[0054]
Comparative Example 2
A negative electrode material was produced in the same manner as in Example 1 except that 25 g of coal tar and 90 g of natural graphite were used as the organic compound.
[0055]
The discharge capacity of the battery using the obtained negative electrode material was determined in the same manner as in Example 1. The results are also shown in Table 1.
[0056]
[Table 1]
Figure 0003769647

[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a lithium secondary battery.
[Explanation of symbols]
1: Positive electrode 2: Separator 3: Negative electrode 4: Case 5: Sealing plate 6: Current collector 7: Insulation packing

Claims (7)

粒子状黒鉛表面に有機材料と金属化合物とに由来する被覆層が形成された非水電解液電池の電極活物質用複合炭素材料であって、金属化合物が、錫酸化物、カルボン酸錫塩、ハロゲン化錫、無機酸錫塩、アルミニウム酸化物、水酸化アルミニウム、アセトアルコキシアルミニウムジイソプロピレート、水酸化亜鉛、無機酸亜鉛塩、及びケイ素化合物からなる群より選ばれる1種又は2種以上の混合物であり、被覆層中の有機材料が炭化されており、複合炭素材料中に金属元素を2 15重量%含有することを特徴とする非水電解液電池の電極活物質用複合炭素材料。A composite carbon material for an electrode active material of a non-aqueous electrolyte battery in which a coating layer derived from an organic material and a metal compound is formed on a particulate graphite surface, wherein the metal compound is tin oxide, carboxylic acid tin salt, One or a mixture of two or more selected from the group consisting of tin halides, inorganic acid tin salts, aluminum oxide, aluminum hydroxide, acetoalkoxyaluminum diisopropylate, zinc hydroxide, inorganic acid zinc salts, and silicon compounds A composite carbon material for an electrode active material of a non-aqueous electrolyte battery, wherein the organic material in the coating layer is carbonized and the composite carbon material contains 2 to 15 % by weight of a metal element. 粒子状黒鉛が、X線回析によC軸とA軸方向の結晶子サイズをそれぞれLcとLaとし、002面の面間隔をd002とした場合に、LcとLaがそれぞれ300Å以上であり、d002が3.37Å以下である請求項1に記載の複合炭素材料。 Particulate graphite, that by the X-ray diffraction C-axis and A-axis direction of the crystallite size was between Lc and La, respectively, when a d002 interplanar spacing of 002 surface, Lc and La are located at each of 300Å or more , double if carbon material according to claim 1 d002 is less than 3.37 Å. 粒子状黒鉛と有機材料と、錫酸化物、カルボン酸錫塩、ハロゲン化錫、無機酸錫塩、アルミニウム酸化物、水酸化アルミニウム、アセトアルコキシアルミニウムジイソプロピレート、水酸化亜鉛、無機酸亜鉛塩、及びケイ素化合物からなる群より選ばれる1種又は2種以上の混合物からなる金属化合物とを混合し、800 1200 ℃にて熱処埋することを特徴とする、請求項1に記載の複合炭素材料の製造方法。Particulate graphite and organic materials, tin oxide, carboxylic acid tin salt , tin halide, inorganic acid tin salt, aluminum oxide, aluminum hydroxide, acetoalkoxyaluminum diisopropylate, zinc hydroxide, inorganic acid zinc salt, and a metal compound composed of one or a mixture of two or more selected from the group consisting of silicon compound are mixed, characterized by embedding the heat treatment at 800 ~ 1200 ° C., double coupling according to claim 1 A method for producing a carbon material. 請求項1または2に記載の複合炭素材料を構成材料とすることを特徴とする非水電解液二次電池用負極。  A negative electrode for a non-aqueous electrolyte secondary battery comprising the composite carbon material according to claim 1 or 2 as a constituent material. 請求項1または2に記載の複合炭素材料を負極とすることを特徴とする非水電解液二次電池。  A non-aqueous electrolyte secondary battery comprising the composite carbon material according to claim 1 as a negative electrode. 請求項1または2に記載の複合炭素材料を構成材料とすることを待徴とするリチウムイオン二次電池用負極。  A negative electrode for a lithium ion secondary battery, characterized in that the composite carbon material according to claim 1 or 2 is used as a constituent material. 請求項1または2に記載の複合炭素材料を負極とすることを待徴とするリチウムイオン二次電池。  A lithium ion secondary battery having a negative electrode of the composite carbon material according to claim 1.
JP08721498A 1998-03-31 1998-03-31 Composite carbon material for electrode, method for producing the same, and nonaqueous electrolyte secondary battery using the same Expired - Fee Related JP3769647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08721498A JP3769647B2 (en) 1998-03-31 1998-03-31 Composite carbon material for electrode, method for producing the same, and nonaqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08721498A JP3769647B2 (en) 1998-03-31 1998-03-31 Composite carbon material for electrode, method for producing the same, and nonaqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH11279785A JPH11279785A (en) 1999-10-12
JP3769647B2 true JP3769647B2 (en) 2006-04-26

Family

ID=13908686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08721498A Expired - Fee Related JP3769647B2 (en) 1998-03-31 1998-03-31 Composite carbon material for electrode, method for producing the same, and nonaqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3769647B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062025A (en) 2013-09-26 2016-06-01 도판 인사츠 가부시키가이샤 Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052774A1 (en) * 1999-03-04 2000-09-08 Japan Storage Battery Co., Ltd. Composite active material and method for preparing active material, electrode and method for preparing electrode, and non-aqueous electrolyte cell
JP5078047B2 (en) * 2001-09-25 2012-11-21 昭和電工株式会社 Carbon material, production method thereof and use thereof
TW583153B (en) * 2001-09-25 2004-04-11 Showa Denko Kk Carbon material, production method and use thereof
KR100413816B1 (en) * 2001-10-16 2004-01-03 학교법인 한양학원 Electrode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries using the same
JP3957692B2 (en) * 2004-02-27 2007-08-15 Jfeケミカル株式会社 Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP3995050B2 (en) * 2003-09-26 2007-10-24 Jfeケミカル株式会社 Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN202977600U (en) * 2009-12-21 2013-06-05 A123系统公司 Anode material
US9299978B2 (en) * 2012-05-02 2016-03-29 Showa Denko K.K. Negative electrode material for lithium battery
CN111697219B (en) * 2020-06-30 2023-04-21 深圳市金牌新能源科技有限责任公司 Silicon-carbon composite material, preparation method thereof, negative electrode and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062025A (en) 2013-09-26 2016-06-01 도판 인사츠 가부시키가이샤 Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries

Also Published As

Publication number Publication date
JPH11279785A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
KR101073223B1 (en) anode mixture for lithium secondary battery and Lithium secondary battery using the same
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
JP2008282819A (en) Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte secondary battery provided thereby
JP5271975B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5245201B2 (en) Negative electrode, secondary battery
JP2001006683A (en) Active material for lithium battery
JP4752085B2 (en) Negative electrode for lithium secondary battery
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
JP2012151129A (en) Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte battery provided thereby
JP3769647B2 (en) Composite carbon material for electrode, method for producing the same, and nonaqueous electrolyte secondary battery using the same
EP1265307B1 (en) Polymer cell
JP4354723B2 (en) Method for producing graphite particles
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JP5463208B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP2000268879A (en) Lithium secondary battery
JP4120771B2 (en) Non-aqueous secondary battery
JP4085244B2 (en) Non-aqueous secondary battery
JP3236170B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries
JP4205410B2 (en) Non-aqueous lithium storage element and method for manufacturing the same
JP2012084554A (en) Anode, secondary battery, and method for manufacturing anode
JP3720959B2 (en) Secondary battery electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees