JP4385589B2 - Negative electrode material and secondary battery using the same - Google Patents

Negative electrode material and secondary battery using the same Download PDF

Info

Publication number
JP4385589B2
JP4385589B2 JP2002342689A JP2002342689A JP4385589B2 JP 4385589 B2 JP4385589 B2 JP 4385589B2 JP 2002342689 A JP2002342689 A JP 2002342689A JP 2002342689 A JP2002342689 A JP 2002342689A JP 4385589 B2 JP4385589 B2 JP 4385589B2
Authority
JP
Japan
Prior art keywords
negative electrode
particles
electrode material
tin
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002342689A
Other languages
Japanese (ja)
Other versions
JP2004178922A (en
Inventor
悟史 飯生
努 増子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002342689A priority Critical patent/JP4385589B2/en
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to AU2003302282A priority patent/AU2003302282A1/en
Priority to US10/536,443 priority patent/US7674555B2/en
Priority to EP03811918.6A priority patent/EP1573835B1/en
Priority to PCT/JP2003/014997 priority patent/WO2004049473A2/en
Priority to CNA2003801042406A priority patent/CN1717822A/en
Priority to EP10010951.1A priority patent/EP2317592B1/en
Priority to KR1020057008901A priority patent/KR101250329B1/en
Publication of JP2004178922A publication Critical patent/JP2004178922A/en
Application granted granted Critical
Publication of JP4385589B2 publication Critical patent/JP4385589B2/en
Priority to US12/688,799 priority patent/US8623554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、充放電容量が大きく、充放電サイクル特性に優れた非水電解質二次電池用の電極材料、及びそれを用いた電極、非水電解質二次電池に関する。特に、リチウム二次電池の負極材、それを用いた負極、リチウム二次電池に関する。
【0002】
【従来の技術】
携帯機器の小型軽量化及び高性能化に伴い、リチウム二次電池の高容量化が求められている。そのため、これまでリチウム二次電池の負極材に使用されてきた黒鉛の理論容量である372mAh/gを超える材料が検討されている。黒鉛に代わる材料としては、より高容量を示すケイ素、錫、アルミニウム、タングステン材料等の非炭素系の負極材料が報告されている。ケイ素相粒子をケイ素を含む固溶体または金属間化合物の相によって被覆され、その一部、若しくは全面が繊維状炭素を含む炭素質で固定されたもの(例えば、特許文献1参照。)、ケイ素化合物と炭素材料との混合物(例えば、特許文献2参照。)が提案されている。
【0003】
【特許文献1】
特開2002−8652号公報
【0004】
【特許文献2】
特開2000−357515号公報
【0005】
【発明が解決しようとする課題】
しかしながら、非炭素系負極材料はリチウムイオンの挿入・脱離(ドープ・脱ドープ)の際に、活物質自身の体積変化が大きく、活物質粒子間に空隙が生じ、容量に有効に使用される部分が減少する。また、体積変化に伴い材料に亀裂を生じ、粒子が微細化し、微細化した材料は、粒子間に空間が生じ、粒子同士の接触による電子伝導網が分断され、電気化学的な反応に関与できない部分が増加し、充放電容量が低下し、さらに内部抵抗が増加する等が考えられる。
【0006】
すなわち、非炭素系負極材料はリチウムイオンの挿入・脱離の際に、活物質自身の体積変化が大きく、繰り返す充放電サイクルによる劣化が著しく大きく、内部抵抗、特に、低温における内部抵抗が大きくなることが課題となっている。
【0007】
特許文献1では、繊維状炭素が炭素質で固定されていて、核がケイ素粒子であるため、充放電サイクルによって微粒子化が起こり、形状が維持できず、粒子同士の接点が維持できず、サイクル特性や不可逆容量などに問題がある。
【0008】
特許文献2では、ケイ素化合物粒子と炭素材料粒子の平均粒径の比を規定することで、より粒径の大きな炭素材料が形成する空隙を粒径の小さなケイ素化合物粒子のリチウムとのドープ・脱ドープの場として利用しているが、充放電サイクルを繰り返すことで電粒子同士の接点が維持できず、サイクル特性や不可逆容量などに問題がある。
【0009】
本発明は、充放電容量が大きく、充放電サイクル特性に優れ、不可逆容量の小さいリチウムイオン二次電池を作成することができる、また、内部抵抗、特に低温における内部抵抗の値が小さなリチウムイオン二次電池を作成することができる。このリチウムイオン二次電池の負極に適した負極材料、および当該負極材料を製造する方法を提供を目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するためには、負極材料として、リチウムイオンの挿入・脱離が可能なケイ素原子または/及び錫原子を含む化合物を含有する粒子と、気相法炭素繊維との混合物を含むことを具備させることが特徴である。
【0011】
また、ケイ素原子または/及び錫原子を含む化合物を含有する粒子が、その表面を炭素質材料により少なくとも一部被覆してなる粒子であり、該炭素質材料による被覆厚さが、1〜30000nmである粒子であって、該粒子と気相法炭素繊維との混合物を含む負極材料であってもよい。例えば、当該炭素質材料を被覆した粒子を製造するには、重合体を含む組成物をケイ素原子または/及び錫原子を含む化合物を含有する粒子の少なくとも一部の表面に付着させ、該粒子に気相法炭素繊維を混合し、熱処理することで得られる。
【0012】
すなわち本発明は、
1)リチウムイオンの挿入・脱離が可能なケイ素原子または/及び錫原子を含む化合物を含有する粒子と、気相法炭素繊維との混合物を含むことを特徴とする負極材料。
2)ケイ素原子を含む化合物が、一般式MxSi(式中、MはLiを除く元素で、xが0.01以上である。)で表される化合物であることを特徴とする上記1記載の負極材料。
3)一般式MxSiが、MとしてSi、B、C、N、O、S、P、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ru、Rh、Pd、Pt、Be、Nb、Nd、Ce、W、Ta、Ag、Au、Cd、Ga、In、SbまたはBaから選ばれるいずれか1種の元素であることを特徴とする上記2記載の負極材料。
4)錫原子を含む化合物が、Sn、錫合金、酸化錫、硫化錫、ハロゲン化錫、錫化物であることを特徴とする上記1〜3のいずれかひとつに記載の負極材料。
5)負極における気相法炭素繊維の含有量が、0.01〜20質量%の範囲である上記1〜4のいずれかひとつに記載の負極材料。
6)気相法炭素繊維が、内部に中空構造を有し、外径2〜1000nm、アスペクト比10〜15000の繊維である上記1〜5のいずれかひとつに記載の負極材料。
7)気相法炭素繊維が、分岐状繊維である上記6に記載の負極材料。
8)ケイ素原子または/及び錫原子を含む化合物を含有する粒子に対して、気相法炭素繊維を0.1〜30質量%混合する上記5または6に記載の負極材料。
9)気相法炭素繊維が、X線回折法による(002)面の平均面間隔d002が0.344nm以下の炭素からなる上記1〜8のいずれかひとつに記載の負極材料。
10)ケイ素原子または/及び錫原子を含む化合物を含有する粒子の平均粒径が、0.3μm〜70μmである上記1〜9のいずれかひとつに記載の負極材料。
11)ケイ素原子または/及び錫原子を含む化合物を含有する粒子が、平均粒径0.1μm以下及び/または平均粒径85μm以上の粒子を実質的に含まない上記10に記載の負極材料。
12)ケイ素原子または/及び錫原子を含む化合物を含有する粒子が、その表面を炭素質材料により少なくとも一部被覆してなる粒子であり、該炭素質材料による被覆厚さが、1〜30000nmである上記1〜11のいずれかひとつに記載の負極材料。
13)炭素質材料が、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂、エポキシ樹脂からなる群から選択される少なくとも1種を含む重合体を含む組成物からなる上記12に記載の負極材料。
14)重合体を含む組成物が、乾性油またはその脂肪酸及びフェノール樹脂を含む組成物である上記13に記載の負極材料。
15)重合体を含む組成物をケイ素原子または/及び錫原子を含む化合物を含有する粒子の少なくとも一部の表面に付着させる工程、該粒子に気相法炭素繊維を混合する工程、重合体を含む組成物が付着したケイ素原子または/及び錫原子を含む化合物を含有する粒子を熱処理する工程を含む負極材料の製造方法。
16)重合体が、ケイ素原子または/及び錫原子を含む化合物を含有する粒子に接着性を有する重合体を含む上記15に記載の負極材料の製造方法。
17)熱処理する工程が、200℃以上の温度で行う焼成工程である上記15または16に記載の負極材料の製造方法。
18)上記1〜14のいずれかひとつに記載の負極材料と、バインダーを含む電極ペースト。
19)上記18に記載の電極ペーストの成形体である電極。
20)上記19に記載の電極を構成要素とする二次電池。
21)非水電解液及び電解質を用いた二次電池であって、該非水電解液がエチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート及びプロピレンカーボネートからなる群から選ばれる少なくとも1種である上記20に記載の二次電池。
【0013】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0014】
本発明のリチウムイオンの挿入・脱離が可能なケイ素原子または/及び錫原子を含む化合物とは、単体のケイ素、錫、ケイ素化合物、錫化合物等を示し、例えば、リチウムイオン電池において充電の際に正極からリチウムイオンが放出された後、このリチウムイオンが負極材料を形成する活物質の隙間に挿入し、化合物をつくる。この現象をドープともいう。そして、放電の際に負極材料中のリチウムがリチウムイオンとなって脱離、放出される。この現象を脱ドープともいう。このサイクルを繰り返すことで、電池として利用されている。
【0015】
本発明のリチウムイオンの挿入・脱離が可能なケイ素原子または/及び錫原子を含む化合物を含有する粒子とは、1個のケイ素原子または/及び錫原子を含む化合物を含有する粒子であってもよく、あるいは、各々がケイ素原子または/及び錫原子を含む化合物を含有する粒子が複数個集まって1つの粒子を形成しているものであってもよい。
【0016】
(ケイ素原子または/及び錫原子を含む化合物を含有する粒子)
粒子の形状としては、塊状、鱗片状、球状、繊維状等の粒子形状を有するものでよく、好ましくは球状、塊状がよい。粒子は、ケイ素原子または/及び錫原子を含む化合物のみからなる粒子、または、他の有機化合物、無機化合物と複合されて一体化され、ケイ素原子または/及び錫原子を含む化合物が含まれる粒子とすることができる。
【0017】
粒子の粒度分布は、レーザー回折式粒度分布測定機による中心粒径D50が0.3〜70μm程度であることが好ましい、より好ましくは0.3〜50μmであり、さらに好ましくは0.5〜20μmである。また、0.1μm以下及び/または85μm以上の粒子を実質的に含まない粒度分布がよい。
【0018】
これは粒度が大きいと充放電反応によって微粒子化が生じ、サイクル特性が低下するからである。また、粒度が小さいとリチウムイオンと電気化学的な反応に効率よく関与できない粒子となり、容量、サイクル特性等が低下する。
【0019】
粒度分布を調整するためには公知の粉砕方法、分級方法を利用することができる。粉砕装置としては、具体的にはハンマーミル、ジョークラッシャー、衝突式粉砕器等が挙げられる。また、分級方法には気流分級、篩による分級が可能である。気流分級装置としては例えばターボクライファイヤー、ターボプレックス等が挙げられる。
【0020】
ケイ素原子を含む化合物としては、一般式MxSi(式中、MはLiを除く元素で、xが0.01以上である。)で表される化合物を使用することができる。ここで、
MとしてSi、B、C、N、O、S、P、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ru、Rh、Pd、Pt、Be、Nb、Nd、Ce、W、Ta、Ag、Au、Cd、Ga、In、SbまたはBa等が挙げられる。なお、MがSiの場合は、Si単体を示す。また、xについては、0.01以上、好ましくは0.1以上、より好ましくは0.3以上である。
【0021】
例えば、ケイ素とアルカリ土類金属、遷移金属あるいは半金属との合金が使用でき、Be、Ag、Al、Au、Cd、Ga、In、Sb、Znとケイ素との固溶性合金、共融性合金が好ましい。合金の平均粒子径としては、0.3〜70μm、好ましくは0.3〜40μmである。
【0022】
ケイ素と金属の化合物をケイ化物と言うこともあり、その組成は必ずしも原子価を満足しないが、この化合物も使用できる。例えば、CaSi、CaSi2、Mg2Si、BaSi2、Cu5Si、FeSi、FeSi2、CoSi2、Ni2Si、NiSi2、MnSi、MnSi2、MoSi2、CrSi2、Cr3Si、TiSi2、Ti5Si3、NbSi2、NdSi2、CeSi2、WSi2、W5Si3、TaSi2、Ta5Si3、PtSi、V3Si、VSi2、PdSi、RuSi、RhSi等が用いられる。
さらに、ケイ素原子を含む化合物としては、例えばSiO2、SiC、Si34等の化合物も使用できる。
【0023】
錫原子を含む化合物としては、Sn、錫合金、酸化錫、硫化錫、ハロゲン化錫、錫化物が使用できる。例えば、SnとZn、Cd、In、Pbとの合金固溶体、SnO、SnO2、M1 4SnO4(M1はSn以外の金属元素を示す。)等の酸化錫、SnS、SnS2、M1 2SnS3等の硫化錫、SnX2、SnX4、M1SnX4(Xはハロゲン原子を示す。)等のハロゲン化錫、MgSn、Mg2Sn、FeSn、FeSn2、MoSn、MoSn2等の錫化物が挙げられる。
【0024】
(重合体)
本発明の重合体は、ケイ素原子または/及び錫原子を含む化合物を含有する粒子に接着性を有する重合体であることが好ましい。混合、攪拌、溶媒除去、熱処理等の処理において、実質的に剥離が起きない程度に圧縮、曲げ、剥離、衝撃、引っ張り、引き裂き等の力に対して抵抗力を示すものであれば重合体として適用できる。例えば、重合体としては、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂、エポキシ樹脂からなる群から選択される少なくとも1種がよい。好ましくは、フェノール樹脂、ポリビニルアルコール樹脂である。
【0025】
特に、本発明において、乾性油またはその脂肪酸を混合したフェノール樹脂を用いると緻密な炭素質材料が得られる。これは、フェノール樹脂と乾性油中の不飽和脂結合の部分が化学反応を起こして、いわゆる乾性油変性フェノール樹脂となるが、これが熱処理(または焼成)過程において分解を和らげ、発泡を防ぐことが推測される。また、乾性油は単に二重結合があると言うだけではなく、かなり長いアルキル基とエステル結合を有しており、これらも焼成過程におけるガスの抜け易さ等の面で関与していることが考えられる。
【0026】
フェノール樹脂はフェノール類とアルデヒド類との反応によりつくられ、ノボラック、レゾール等の未変性フェノール樹脂や一部変性されたフェノール樹脂が使用できる。また、必要に応じてニトリルゴム等のゴムをフェノール樹脂に混合して使用できる。フェノール類としては、フェノール、クレゾール、キシレノール、C20以下のアルキル基を有するアルキルフェノール等が挙げられる。
本発明の乾性油またはその脂肪酸を混合したフェノール樹脂には、先にフェノ
ール類と乾性油とを強酸触媒存在下に付加反応させ、その後に塩基性触媒を加えて系を塩基性となしホルマリン付加反応させたもの、またはフェノール類とホルマリンを反応させ、その後に乾性油を加えたものでよい。
【0027】
乾性油は通常知られる桐油、アマニ油、脱水ヒマシ油、大豆油、カシューナッツ油等であり、これらはその脂肪酸であってもよく、薄膜にして空気中に放置すると比較的短時間に固化乾燥する性質を有する植物油である。
【0028】
フェノール樹脂に対する乾性油またはその脂肪酸の割合は、例えば(フェノールとホルマリンの縮合物)100質量部に対し、(乾性油またはその脂肪酸)5〜50質量部が適する。50質量部より多くなると、ケイ素原子または/及び錫原子を含む化合物を含有する粒子に対する接着性が下がる。
【0029】
この重合体をアセトン、エタノール、トルエン等で希釈して粘度を調整すると付着しやすい。
【0030】
付着時の雰囲気としては、大気圧下、加圧下、減圧下のいずれであっても良いが、減圧下で付着させる場合には、炭素粒子と重合体の親和性が向上するので好ましい。
【0031】
ケイ素原子または/及び錫原子を含む化合物を含有する粒子に炭素質材料でその表面に少なくとも一部被覆する場合(全面を被覆する場合も含む)は、被覆層の厚さは1〜30000nm、好ましくは5〜3000nmである。被覆層は均一であっても不均一であってもよく、実質的に被覆状態が保てればよい。
【0032】
(混合方法)
本発明においては、気相法炭素繊維、ケイ素原子または/及び錫原子を含む化合物を含有する粒子を混合し、攪拌処理させることで気相法炭素繊維を分散させることができる。攪拌方法としては特に限定されないが、例えば、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等の装置を使用することができる。
【0033】
攪拌処理時の温度及び時間は、粒子に炭素質材料を被覆させない場合は特に限定されないが、気相法炭素繊維が分散されればよい。また、粒子に炭素質材料を被覆させる場合には、粒子及び重合体の成分及び粘度等に応じて適宜選択されるが、通常0℃〜50℃程度、好ましくは10℃〜30℃程度の範囲とする。
あるいは混合物の粘度が混合温度下で500Pa・s以下になるように混合時間及び組成物の溶媒希釈を行う。この場合溶媒としては重合体、ケイ素原子または/及び錫原子を含む化合物との親和性が良好なものであれば使用できるが、アルコール類、ケトン類、芳香族炭化水素、エステル類等が挙げられる。好ましくはメタノール、エタノール、ブタノール、アセトン、メチルエチルケトン、トルエン、酢酸エチル、酢酸ブチル等がよい。
【0034】
攪拌後、溶剤の一部もしくは全部を除去することが好ましい。除去方法は、熱風乾燥、真空乾燥等公知の方法が使用できる。
【0035】
また、乾燥温度は使用した溶媒の沸点、蒸気圧等によるが、具体的には50℃以上、好ましくは100℃以上1000℃以下、さらに好ましくは150℃以上500℃以下である。
【0036】
加熱硬化には公知の加熱装置のほとんどが使用できる。しかし、製造プロセスとしては連続処理が可能なロータリーキルンやベルト式連続炉などが生産性の点で好ましい。
【0037】
例えば、フェノール樹脂添加量は、好ましくは2質量%〜30質量%、さらに好ましくは4質量%〜25質量%、さらに好ましくは6質量%〜18質量%である。
【0038】
粒子に炭素質材料を被覆させた後に、気相法炭素繊維と混合させることが好ましいが、気相法炭素繊維が粒子に固着しなければ同時に粒子、重合体を含む組成物、気相法炭素繊維を混合してもよい。
【0039】
(熱処理条件)
ケイ素原子または/及び錫原子を含む化合物を含有する粒子に重合体を付着させる場合は、粒子中心部までに最高温度が到達していなくてもよく、皮膜の炭素質材料とケイ素原子または/及び錫原子を含む化合物を含有する粒子表面への接着性、皮膜の強度等が実用に達していればよい。
【0040】
熱処理工程において、200℃以上、好ましくは200℃以上3000℃以下、さらに好ましくは200℃以上1200℃以下である。ケイ素原子または/及び錫原子を含む化合物は、200℃以上で一部、炭化ケイ素、酸化ケイ素、酸化錫などを生成してもよい。
熱処理の為の昇温速度については、公知の装置における最速昇温速度及び最低昇温速度の範囲内では特に性能に大きく影響しない。しかし、粉体であるため、成形材等のようにひび割れの問題などがほとんどないため、コスト的な観点からも昇温速度は早いほうがよい。常温から最高到達温度までの到達時間は好ましくは12時間以下、さらに好ましくは6時間以下、特に好ましくは2時間以下である。
【0041】
焼成のための熱処理装置は、アチソン炉、直接通電加熱炉など公知の装置が利用できる。また、これらの装置はコスト的にも有利である。しかし、窒素ガスの存在が粉体の抵抗を低下させたり、酸素による酸化によって炭素質材料の強度が低下することがあるため、好ましくは炉内雰囲気をアルゴン、ヘリウムなどの不活性ガスに保持できるような構造の炉が好ましい。例えば容器自体を真空引き後ガス置換可能なバッチ炉や、管状炉で炉内雰囲気をコントロール可能なバッチ炉あるいは連続炉などである。
【0042】
ケイ素原子または/及び錫原子を含む化合物を含有する粒子は平均粒径で0.3〜70μmがよいが、好ましくは0.3〜50μm、さらに好ましくは0.5〜20μmである。この平均粒径はレーザー回折散乱法で求めることができる。平均粒径が0.3μmより小さいとアスペクト比が大きくなりやすく、比表面積が大きくなりやすい。また、例えば、電池の電極を作製する場合、一般に負極材料をバインダーによりペーストとし、それを塗布する方法が採られている。負極材料の平均粒径が0.3μm未満の場合だと、0.1μmより小さい微粉がかなり含まれていることになり、ペーストの粘度が上がり塗布性も悪くなる。
【0043】
さらに、平均粒径85μm以上のような大きな粒子が混入していると電極表面に凹凸が多くなり、電池に使用されるセパレータを傷つける原因ともなる。例えば、0.1μm以下の粒子及び85μm以上の粒子を実質的に含まないものが好適に使用できる。
【0044】
(気相法炭素繊維)
本発明に使用する気相法炭素繊維(気相成長炭素繊維)は導電性に優れている必要があるので、結晶化度の高いものが望ましい。また、当該炭素材料を電極化し、リチウムイオン二次電池に組み込んだ場合、負極全体に素早く電流を流すことが必要であるので、気相法炭素繊維繊維の結晶成長方向は繊維軸に平行であり、繊維が枝分かれ(分岐状)をしていることが好ましい。また、分岐状繊維であれば炭素粒子間が繊維によって電気的に接合し易くなり、導電性が向上する。
本発明を達成するためには、繊維軸方向に結晶が成長し、繊維が枝分かれをしている気相法炭素繊維が適している。
気相法炭素繊維は、例えば、高温雰囲気下に、触媒となる鉄と共にガス化された有機化合物を吹き込むことで製造することができる。
【0045】
気相法炭素繊維は、生成されたままでも、例えば800〜1500℃で熱処理したものでも、例えば2000〜3000℃で黒鉛化処理がされたものでもいずれも使用可能であるが、生成されたままのものあるいは1500℃程度で熱処理されたものがより好適である。
【0046】
また、本発明の気相法炭素繊維の好ましい形態として、分岐状繊維があるが、分岐部分はその部分を含めて繊維全体が互いに連通した中空構造を有している箇所があってもよい。そのため繊維の円筒部分を構成している炭素層が連続している。中空構造とは炭素層が円筒状に巻いている構造であって、完全な円筒でないもの、部分的な切断箇所を有するもの、積層した2層の炭素層が1層に結合したもの、などを含む。また、円筒の断面は完全な円に限らず楕円や多角化のものを含む。なお、炭素層の結晶性について炭素層の面間隔d002は限定されない。因みに、好ましいものはX線回折法によるd002が0.344nm以下、より好ましくは0.339nm以下、さらに好ましくは0.338nm以下であって、結晶のC軸方向の厚さLcが40nm以下のものである。
【0047】
本発明の気相法炭素繊維は、繊維外径2〜1000nm、アスペクト比10〜15000の炭素繊維であって、好ましくは繊維外径10〜500nm、繊維長1〜100μm(アスペクト比2〜2000)、あるいは繊維外径2〜50nmであって繊維長0.5〜50μm(アスペクト比10〜25000)のものである。
気相炭素繊維製造後、2000℃以上の熱処理を行うことでさらに結晶化度を上げることができ、導電性を増すことができる。また、この場合に於いても、黒鉛化度を促進させる働きのあるホウ素などを熱処理前に添加しておくことが有効である。
【0048】
負極における気相法炭素繊維の含有量が、0.01〜20質量%の範囲がよく、好ましくは0.1〜15質量%、より好ましくは0.5〜10質量%である。含有量が20質量%を超えると電気容量が小さくなり、0.01質量%未満では低温(例えば、―35℃)における内部抵抗の値が大きくなってしまう。
【0049】
ケイ素原子または/及び錫原子を含む化合物を含有する粒子が形成する空隙へ気相法炭素繊維が介入、挿入することで、例えば、気相法炭素繊維自体やケイ素原子または/及び錫原子を含む化合物を含有する粒子と同程度以下の大きさである気相法炭素繊維の絡みによって3次元構造体ができ、その構造体で衝撃を吸収できるクッションボールのような役割で、ケイ素原子または/及び錫原子を含む化合物を含有する粒子の充放電サイクルにおける体積変化を吸収できると考えられる。また、気相法炭素繊維の復元力によって負極活物質の復元力が増し、反発特性が向上すると考えられる。全体として負極の体積変化を抑えることができ、そのことでサイクル特性を向上することができる。
【0050】
本発明の気相法炭素繊維は、繊維表面の凹凸、乱れがあるものが多いが、このためにケイ素原子または/及び錫原子を含む化合物を含有する粒子との密着性が向上し、充放電を繰り返しても負極活物質と導電性補助剤としての役割も兼ねている気相法炭素繊維が解離せず密着している状態を保つことができ、電子伝導性が保持できサイクル特性が向上すると考えられる。
【0051】
また、気相法炭素繊維に含まれる分岐状繊維の割合が多い場合は、効率よくネットワークを形成することができ、高い電子伝導性や熱伝導性を得やすい。また、活物質を包むように分散することができ、負極の強度を高め、粒子間の接触も良好に保てる。
【0052】
また、粒子間に気相法炭素繊維が入ることで、電解液の保液性が大きくなり、低温環境時でもスムーズにリチウムイオンの挿入・脱離が行われる。
【0053】
(容量)
容量は、400mAh/g以上、好ましくは400〜2000mAh/g、さらに好ましくは400〜1000mAh/gが望ましい。容量は大きい方が望ましいが、負極材のSiまたはSn含有量が増えるとSiまたはSnの体積変化に伴い微粒子化が生じ、粒子同士の接点が失われ、サイクル特性が著しく低下する。さらに負極材のSiまたはSn含有量が増えることによって、充電/放電に伴う負極の膨張/収縮が生じて銅板から剥がれ易くなる。
負極材料における粒子に対するケイ素原子または/及び錫原子を含む化合物の割合を1〜20質量%の範囲で容量を400〜600mAh/gとすることで、高容量、高サイクル特性、低内部抵抗性を生かした実用性の高い負極材を完成させることができる。
【0054】
(二次電池の作製)
本発明の炭素材料を用いてリチウム二次電池を作製する場合には公知の方法が使用できる。
【0055】
リチウム電池の電極ではケイ素原子または/及び錫原子を含む化合物を含有する粒子の比表面積は小さい方がよい。本発明のケイ素原子または/及び錫原子を含む化合物を含有する粒子の比表面積(BET法)は3m2/g以下である。比表面積が3m2/gを超えると粒子の表面活性が高くなり、電解液の分解等によって、クーロン効率が低下する。さらに、電池の容量を高めるためには粒子の充填密度を上げることが重要である。そのためにもできるだけ球状に近いものが好ましい。この粒子の形状をアスペクト比(長軸の長さ/短軸の長さ)で表すとアスペクト比は6以下、好ましくは5以下である。アスペクト比は顕微鏡写真等から求めることができるが、レーザー回折散乱法で算出した平均粒子径Aと電気的検検知法(コールタ・カウンタ法)により算出した平均粒子径Bから粒子を円板と仮定し、この円板の底面直径をA、体積を4/3×(B/2)3π=Cとした場合、円板の厚みT=C/(A/2)2πで算出できる。従ってアスペクト比はA/Tで得られる。
【0056】
リチウム電池の電極ではケイ素原子または/及び錫原子を含む化合物を含有する粒子の充填性がよい、嵩密度が高い方が単位体積当たりの放電容量は高くなる。
まず、電極作製であるが、通常のように結合材(バインダー)を溶媒で希釈して負極材料と混練し、集電体(基材)に塗布することで作製できる。
【0057】
バインダーについては、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系ポリマーや、SBR(スチレンブタジエンラバー)等のゴム系等公知のものが使用できる。溶媒には、各々のバインダーに適した公知のもの、例えばフッ素系ポリマーならトルエン、N−メチルピロリドン等、SBRなら水等、公知のものが使用できる。
【0058】
バインダーの使用量は、負極材料を100質量部とした場合、1〜30質量部が適当であるが、特に3〜20質量部程度が好ましい。
【0059】
負極材料とバインダーとの混錬はリボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等、公知の装置が使用できる。
【0060】
混錬後、集電体に塗布する場合には、公知の方法により実施できるが、例えばドクターブレードやバーコーターなどで塗布後、ロールプレス等で成形する方法等が上げられる。
【0061】
集電体は、銅、アルミニウム、ステンレス、ニッケル及びそれらの合金など公知の材料が使用できる。
【0062】
セパレーターは公知のものが使用できるが、特にポリエチレンやポリプロピレン性の不織布が好ましい。
【0063】
本発明におけるリチウム二次電池における電解液及び電解質は公知の有機電解液、無機固体電解質、高分子固体電解質が使用できる。好ましくは、電気伝導性の観点から有機電解液がよい。
【0064】
有機電解液としては、ジエチルエーテル、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールフェニルエーテル等のエーテル;ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルプロピオンアミド、ヘキサメチルホスホリルアミド等のアミド;ジメチルスルホキシド、スルホラン等の含硫黄化合物;メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン;エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、2−メトキシテトラヒドロフラン、1,2−ジメトキシエタン、1,3−ジオキソラン等の環状エーテル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;γ−ブチロラクトン;N−メチルピロリドン;アセトニトリル、ニトロメタン等の有機溶媒の溶液が好ましい。さらに、好ましくはエチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン等のエステル類、ジオキソラン、ジエチルエーテル、ジエトキシエタン等のエーテル類、ジメチルスルホキシド、アセトニトリル、テトラヒドロフラン等が上げられ、特に好ましくはエチレンカーボネート、プロピレンカーボネート等のカーボネート系非水溶媒を用いることができる。これらの溶媒は、1種または2種以上の混合を行って使用することができる。
【0065】
これらの溶媒の溶質(電解質)には、リチウム塩が使用される。一般的に知られているリチウム塩にはLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、LiN(CF3SO22等がある。
【0066】
高分子固体電解質としては、ポリエチレンオキサイド誘導体及び該誘導体を含む重合体、ポリプロピレンオキサイド誘導体及び該誘導体を含む重合体、リン酸エステル重合体、ポリカーボネート誘導体及び該誘導体を含む重合体等が挙げられる。
【0067】
本発明における負極材料を使用したリチウム二次電池において、用いられる正極材料はリチウム含有遷移金属酸化物が好ましい。好ましくはTi、V、Cr、Mn、Fe、Co、Ni、Mo、Wから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物である。より好ましくは、V、Cr、Mn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物である。なお主として存在する遷移金属に対し30モルパーセント未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。上記の正極活物質の中で、一般式LixMO2(MはCo、Ni、Fe、Mnの少なくとも1種、x=0〜1.2)、またはLiyN24(Nは少なくともMnを含む。y=0〜2)で表されるスピネル構造を有する材料の少なくとも1種を用いることが好ましい。
【0068】
さらに、正極活物質はLiyMaD1-a O2(MはCo、Ni、Fe、Mnの少なくとも1種 DはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの中のM以外の少なくとも1種 y=0〜1.2、a=0.5〜1)を含む材料、またはLiz(NbE1-b )2O4(NはMn EはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの少なくとも1種、b=1〜0.2 z=0〜2)で表されるスピネル構造を有する材料の少なくとも1種を用いることが特に好ましい。
【0069】
具体的には、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixCobV1-b Oz 、LixCobFe1-b2、LixMn24、LixMncCo2-c4、LixMncNi2-c4、LixMncV2-c4、LixMncFe2-c4(ここでx=0.02〜1.2、a=0.1〜0.9、b=0.8〜0.98、c=1.6〜1.96、z=2.01〜2.3)があげられる。最も好ましいリチウム含有遷移金属酸化物としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixMn24、LixCobV1-b Oz(x=0.02〜1.2、a=0.1〜0.9、b=0.9〜0.98、z=2.01〜2.3)があげられる。なおxの値は充放電開始前の値であり、充放電により増減する。
【0070】
正極活物質の平均粒子サイズは特に限定されないが、0.1〜50μmが好ましい。0.5〜30μmの粒子の体積が95%以上であることが好ましい。粒径3μm以下の粒子群の占める体積が全体積の18%以下であり、かつ15μm以上25μm以下の粒子群の占める体積が、全体積の18%以下であることが更に好ましい。比表面積としては特に限定されないが、BET法で0.01〜50m2/gが好ましく、特に0.2m2 /g〜1m2 /gが好ましい。また正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては7以上12以下が好ましい。
上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。
【0071】
【実施例】
以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。
【0072】
(付着用フェノール樹脂作成方法)
付着材には桐油で一部変性したフェノール樹脂を用いた。桐油100質量部とフェノール150質量部、ノニルフェノール150質量部を混合して50℃に保持する。これに0.5質量部の硫酸を加えて攪拌し、徐々に昇温して120℃で1時間保持し、桐油とフェノール類との付加反応を行った。その後温度を60℃以下に下げ。ヘキサメチレンテトラミンを6質量部と37質量%ホルマリン100質量部を加え、90℃で約2時間反応し、その後真空脱水した後、メタノール100質量部、アセトン100質量部を加えて希釈し、粘度20mPa・s(20℃)のワニスを得た。以下、本ワニスをワニスAという。
【0073】
(電池評価方法)
(1)ペースト作成
負極材料1質量部に呉羽化学製KFポリマーL1320(PVDFを12質量%含有したN−メチルピロリドン(NMP)溶液品)0.1質量部を加え、プラネタリーミキサーにて混練し主剤原液とした。
(2)電極作製
主剤原液にNMPを加え、粘度を調整した後、高純度銅箔上でドクターブレードを用いて250μm厚に塗布した。これを120℃、1hr真空乾燥し、18mmφに打ち抜いた。さらに、打ち抜いた電極を超鋼製プレス板で挟み、プレス圧が電極に対して1×103〜3×103kg/cm2となるようにプレスした。
その後、真空乾燥器で120℃12hr乾燥後し、評価用電極とした。
(3)電池作成
下記の様にして3極セルを作製した。なお以下の操作は露点−80℃以下の乾燥アルゴン雰囲気下で実施した。
ポリプロピレン製のねじ込み式フタ付きのセル(内径約18mm)内において、上記(2)で作製の銅箔付き炭素電極(正極)と金属リチウム泊(負極)をセパレーター(ポリプロピレン製マイクロポ-ラスフィルム(セルガ-ド2400))で挟み込んで積層した。さらにリファレンス用の金属リチウムを同様に積層した。これに電解液を加えて試験用セルとした。
(4)電解液
▲1▼EC系 ;EC(エチレンカーボネート)8質量部及びDEC(ジエチルカーボネート)12質量部の混合品で、電解質としてLiPF6を1モル/リットル溶解した。
(5)充放電サイクル試験
電流密度0.2mA/cm2(0.1C相当)で定電流低電圧充放電試験を行った。
充電(炭素へのリチウムの挿入)はレストポテンシャルから0.002Vまで0.2mA/cm2でCC(コンスタントカレント:定電流)充電を行った。次に0.002VでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が25.4μAに低下した時点で停止させた。
放電(炭素からの放出)は0.2mA/cm2(0.1C相当)でCC放電を行い、電圧1.5Vでカットオフした。
【0074】
(実施例1)
ケイ素を粉砕、分級して、平均粒径(D50=20μm)に調整したケイ素粒子(100g)に、ワニスAにエタノールを加えて攪拌し、十分に溶解させた溶液を変成フェノール樹脂固形分がケイ素粒子に対して10質量%となるように加え、プラネタリーミキサーにて30分間混練した。更に2800℃で黒鉛化した気相法炭素繊維(平均繊維径150nm、アスペクト比100)を0.1質量%加えて攪拌、混合した。この混合物を真空乾燥機にて80℃で2時間乾燥し、エタノールを除去した。次にこの混合物を加熱炉にて、この内部を真空置換してアルゴン雰囲気下とした後、アルゴンガスを流しつつ昇温した。2900℃で10分間保持してその後冷却した。室温まで冷却後、得られた熱処理品を目開き63μmの篩により篩分けし、篩下を負極材料サンプルとした。得られた負極材料の電子顕微鏡観察(SEM)を行ったところ、気相法炭素繊維がケイ素粒子周囲に分散している状態が観察できた。このようにして実施例1の負極材料を得た。この試料を単セル式の電池評価装置にかけ、電池評価電解液はEC系を使用した。充放電サイクル試験1サイクル目の容量、50サイクル目の容量を調べた。結果を表1に示す。
【0075】
(実施例2)
気相法炭素繊維の添加量を3質量%とした以外は、実施例1と同様の方法で得た。これら試料を実施例1の試料と同様に単セル式の電池評価装置にかけ、電池評価電解液はEC系を使用した。充放電サイクル試験1サイクル目の容量、50サイクル目の容量を調べた。結果を表1に示す。
【0076】
(実施例3)
気相法炭素繊維の添加量を10質量%とした以外は、実施例1と同様の方法で得た。これら試料を実施例1の試料と同様に単セル式の電池評価装置にかけ、電池評価電解液はEC系を使用した。充放電サイクル試験1サイクル目の容量、50サイクル目の容量を調べた。結果を表1に示す。
【0077】
(実施例4)
ケイ素を炭化ケイ素に、平均粒径(D50=1μm)に調整した以外は実施例1と同様の処理を実施した。得られた負極材料の電子顕微鏡観察(SEM)を行ったところ、気相法炭素繊維が炭化ケイ素粒子周囲に分散している状態が観察できた。このようにして実施例4の負極材料を得た。この試料を単セル式の電池評価装置にかけ、電池評価電解液はEC系を使用した。充放電サイクル試験1サイクル目の容量、50サイクル目の容量を調べた。結果を表1に示す。
【0078】
(実施例5)
平均粒径(D50=20μm)に調整したケイ素粒子に、ケイ素粒子に対して気相法炭素繊維(平均繊維径150nm、アスペクト比100)を0.1質量%加えて攪拌、混合した。この負極材料を単セル式の電池評価装置にかけ、電池評価電解液はEC系を使用した。充放電サイクル試験1サイクル目の容量、50サイクル目の容量を調べた。結果を表1に示す。
【0079】
(比較例1)
平均粒径(D50=20μm)に調整したケイ素粒子を、ケイ素粒子に対して固形分が10質量%になるようにフェノール樹脂(10g)をイソプロピルアルコールに溶解させた溶液に、添加し十分に攪拌した後、溶媒を除去した。その後、気相法炭素繊維を添加することなく、実施例1と同様の方法で熱処理、篩処理を実施し複合粒子を作成した。この試料に、カーボンブラック(1g)を混合し、負極材料を作成した。
【0080】
この負極材料を単セル式の電池評価装置にかけ、電池評価電解液はEC系を使用した。充放電サイクル試験1サイクル目の容量、50サイクル目の容量を調べた。結果を表1に示す。
【0081】
(比較例2)
平均粒径(D50=20μm)に調整したケイ素粒子を、負極材料として単セル式の電池評価装置にかけ、電池評価電解液はEC系を使用した。充放電サイクル試験1サイクル目の容量、50サイクル目の容量を調べた。結果を表1に示す。
【0082】
【表1】

Figure 0004385589
【0083】
表1に示すように50サイクル目の容量は実施例1〜5の方が、比較例1、2よりも高くなっている。また、実施例1〜3の容量を比較すると気相法炭素繊維の添加量が多い試料ほど1サイクル目の容量は僅かに低下するが容量保持率は高くなる。容量保持率(50サイクル目の容量/1サイクル目の容量×100)は、実施例1〜5の方が、比較例1、2よりも大幅に高くなっている。実施例1〜5は、充放電サイクルの際、ケイ素原子または/及び錫原子を含む化合物を含有する粒子同士の接点が保持され、粒子の膨張・収縮が小さいため、高い容量保持率と高容量が得られたものと考えられる。
【0084】
【発明の効果】
▲1▼ケイ素原子または/及び錫原子を含む化合物を含有する粒子と、気相法炭素繊維との混合物を含む負極材料は、気相法炭素繊維を含まない負極材料と比較して、粒子同士の導電経路を確保し、電極の抵抗を下げ、放電電位が上昇する効果がある。
▲2▼また、気相法炭素繊維を混合することで、充電、放電を繰り返しても、粒子同士の接触が十分に保たれ、サイクル特性が向上する効果がある。
▲3▼低温におけるサイクル特性も上記の理由に加え電荷移動がスムーズになることによって向上し、内部抵抗の上昇も抑えられる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode material for a nonaqueous electrolyte secondary battery having a large charge / discharge capacity and excellent charge / discharge cycle characteristics, an electrode using the same, and a nonaqueous electrolyte secondary battery. In particular, the present invention relates to a negative electrode material for a lithium secondary battery, a negative electrode using the negative electrode material, and a lithium secondary battery.
[0002]
[Prior art]
As portable devices become smaller and lighter and have higher performance, higher capacity of lithium secondary batteries is required. For this reason, a material exceeding the theoretical capacity of 372 mAh / g, which has been used for the negative electrode material of lithium secondary batteries, has been studied. As materials replacing graphite, non-carbon negative electrode materials such as silicon, tin, aluminum, and tungsten materials having higher capacity have been reported. Silicon phase particles coated with a solid solution containing silicon or a phase of an intermetallic compound, a part or the whole of which is fixed with carbonaceous material containing fibrous carbon (see, for example, Patent Document 1), a silicon compound and A mixture with a carbon material (for example, see Patent Document 2) has been proposed.
[0003]
[Patent Document 1]
JP 2002-8652 A
[0004]
[Patent Document 2]
JP 2000-357515 A
[0005]
[Problems to be solved by the invention]
However, non-carbon-based negative electrode materials are used effectively for capacity because the volume change of the active material itself is large during insertion / desorption (doping / de-doping) of lithium ions, resulting in voids between the active material particles. The part decreases. In addition, cracks occur in the material due to volume changes, the particles become finer, and the refined material creates a space between the particles, the electron conduction network due to the contact between the particles is interrupted, and cannot participate in the electrochemical reaction. It is conceivable that the portion increases, the charge / discharge capacity decreases, and the internal resistance increases.
[0006]
That is, the non-carbon-based negative electrode material has a large volume change of the active material itself upon insertion / extraction of lithium ions, remarkably deteriorates due to repeated charge / discharge cycles, and increases internal resistance, particularly at low temperatures. This is an issue.
[0007]
In Patent Document 1, since the fibrous carbon is fixed with carbonaceous matter and the nucleus is silicon particles, the charge / discharge cycle causes fine particle formation, the shape cannot be maintained, and the contact between the particles cannot be maintained. There are problems with characteristics and irreversible capacity.
[0008]
In Patent Document 2, by defining the ratio of the average particle size of silicon compound particles and carbon material particles, the voids formed by the carbon material having a larger particle size are doped / desorbed with lithium of the silicon compound particles having a smaller particle size. Although it is used as a dope field, the contact between the electric particles cannot be maintained by repeating the charge / discharge cycle, and there are problems in cycle characteristics and irreversible capacity.
[0009]
INDUSTRIAL APPLICABILITY The present invention can produce a lithium ion secondary battery having a large charge / discharge capacity, excellent charge / discharge cycle characteristics, and a small irreversible capacity, and has a low internal resistance, particularly a low internal resistance value at a low temperature. Next battery can be created. It aims at providing the negative electrode material suitable for the negative electrode of this lithium ion secondary battery, and the method of manufacturing the said negative electrode material.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the negative electrode material includes a mixture of particles containing a compound containing silicon atoms and / or tin atoms capable of inserting / extracting lithium ions and vapor grown carbon fibers. It is the feature to provide.
[0011]
The particles containing a compound containing a silicon atom or / and a tin atom are particles formed by covering at least part of the surface with a carbonaceous material, and the coating thickness of the carbonaceous material is 1 to 30000 nm. It may be a negative electrode material including a mixture of the particle and vapor grown carbon fiber. For example, in order to produce particles coated with the carbonaceous material, a composition containing a polymer is attached to the surface of at least a part of particles containing a compound containing silicon atoms and / or tin atoms, It can be obtained by mixing vapor-processed carbon fibers and heat-treating them.
[0012]
That is, the present invention
1) A negative electrode material comprising a mixture of particles containing a compound containing a silicon atom and / or a tin atom capable of inserting and removing lithium ions, and vapor grown carbon fiber.
2) The compound according to 1 above, wherein the compound containing a silicon atom is a compound represented by the general formula MxSi (wherein M is an element excluding Li and x is 0.01 or more). Negative electrode material.
3) General formula MxSi is M as Si, B, C, N, O, S, P, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn , Mo, Ru, Rh, Pd, Pt, Be, Nb, Nd, Ce, W, Ta, Ag, Au, Cd, Ga, In, Sb or Ba 3. The negative electrode material according to 2 above.
4) The negative electrode material as described in any one of 1 to 3 above, wherein the compound containing a tin atom is Sn, a tin alloy, tin oxide, tin sulfide, tin halide, or stannate.
5) The negative electrode material as described in any one of 1 to 4 above, wherein the content of vapor grown carbon fiber in the negative electrode is in the range of 0.01 to 20% by mass.
6) The negative electrode material as described in any one of 1 to 5 above, wherein the vapor grown carbon fiber has a hollow structure inside and has an outer diameter of 2 to 1000 nm and an aspect ratio of 10 to 15000.
7) The negative electrode material as described in 6 above, wherein the vapor grown carbon fiber is a branched fiber.
8) The negative electrode material as described in 5 or 6 above, wherein 0.1 to 30% by mass of vapor grown carbon fiber is mixed with particles containing a compound containing a silicon atom or / and a tin atom.
9) Vapor grown carbon fiber has an average interplanar spacing d of (002) plane by X-ray diffraction method002The negative electrode material as described in any one of 1 to 8 above, which comprises carbon of 0.344 nm or less.
10) The negative electrode material as described in any one of 1 to 9 above, wherein an average particle diameter of particles containing a compound containing a silicon atom or / and a tin atom is 0.3 μm to 70 μm.
11) The negative electrode material as described in 10 above, wherein the particles containing a compound containing silicon atoms and / or tin atoms are substantially free of particles having an average particle size of 0.1 μm or less and / or an average particle size of 85 μm or more.
12) Particles containing a compound containing silicon atoms and / or tin atoms are particles formed by covering at least part of the surface with a carbonaceous material, and the coating thickness with the carbonaceous material is 1 to 30000 nm The negative electrode material according to any one of 1 to 11 above.
13) The above 12 wherein the carbonaceous material is composed of a composition containing a polymer containing at least one selected from the group consisting of a phenol resin, a polyvinyl alcohol resin, a furan resin, a cellulose resin, a polystyrene resin, a polyimide resin, and an epoxy resin. The negative electrode material described in 1.
14) The negative electrode material as described in 13 above, wherein the composition containing a polymer is a composition containing a drying oil or a fatty acid thereof and a phenol resin.
15) a step of attaching a composition containing a polymer to at least a part of the surface of a particle containing a compound containing a silicon atom and / or a tin atom, a step of mixing vapor grown carbon fiber in the particle, and a polymer The manufacturing method of negative electrode material including the process of heat-processing the particle | grains containing the compound containing the silicon atom or / and the tin atom which the composition containing contains.
16) The method for producing a negative electrode material as described in 15 above, wherein the polymer contains a polymer having adhesion to particles containing a compound containing a silicon atom and / or a tin atom.
17) The method for producing a negative electrode material as described in 15 or 16 above, wherein the heat treatment step is a firing step performed at a temperature of 200 ° C. or higher.
18) An electrode paste comprising the negative electrode material according to any one of 1 to 14 above and a binder.
19) An electrode which is a molded body of the electrode paste as described in 18 above.
20) A secondary battery comprising the electrode according to 19 above as a constituent element.
21) A secondary battery using a non-aqueous electrolyte and an electrolyte, wherein the non-aqueous electrolyte is at least one selected from the group consisting of ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, and propylene carbonate. The secondary battery according to 20.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0014]
The compound containing a silicon atom and / or a tin atom capable of inserting / extracting lithium ions of the present invention refers to a single silicon, tin, silicon compound, tin compound, etc., for example, when charging in a lithium ion battery. After lithium ions are released from the positive electrode, the lithium ions are inserted into the gaps of the active material forming the negative electrode material to form a compound. This phenomenon is also called dope. During discharge, lithium in the negative electrode material is desorbed and released as lithium ions. This phenomenon is also called dedoping. It is used as a battery by repeating this cycle.
[0015]
The particle containing a compound containing a silicon atom and / or tin atom capable of inserting / extracting lithium ion according to the present invention is a particle containing a compound containing one silicon atom or / and tin atom. Alternatively, a plurality of particles each containing a compound containing a silicon atom and / or a tin atom may be collected to form one particle.
[0016]
(Particles containing compounds containing silicon atoms and / or tin atoms)
The particle shape may be a particle shape such as a lump shape, a scale shape, a spherical shape, or a fibrous shape, and preferably a spherical shape or a lump shape. The particle is composed of only a compound containing a silicon atom or / and a tin atom, or a particle containing a compound containing a silicon atom and / or a tin atom which is combined and integrated with another organic compound or an inorganic compound. can do.
[0017]
The particle size distribution of the particles is preferably such that the center particle size D50 measured by a laser diffraction particle size distribution analyzer is about 0.3 to 70 μm, more preferably 0.3 to 50 μm, and even more preferably 0.5 to 20 μm. It is. Moreover, the particle size distribution which does not contain 0.1 micrometer or less and / or 85 micrometer or more substantially is good.
[0018]
This is because, when the particle size is large, fine particles are generated by the charge / discharge reaction, and the cycle characteristics deteriorate. On the other hand, if the particle size is small, the particles cannot efficiently participate in the electrochemical reaction with lithium ions, and the capacity, cycle characteristics and the like are lowered.
[0019]
In order to adjust the particle size distribution, known pulverization methods and classification methods can be used. Specific examples of the pulverizer include a hammer mill, a jaw crusher, and a collision pulverizer. The classification method can be classified by airflow classification or sieving. Examples of the airflow classifier include a turbo cryfire and a turboplex.
[0020]
As the compound containing a silicon atom, a compound represented by the general formula MxSi (wherein M is an element excluding Li and x is 0.01 or more) can be used. here,
M is Si, B, C, N, O, S, P, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Ru, Rh, Pd, Pt, Be, Nb, Nd, Ce, W, Ta, Ag, Au, Cd, Ga, In, Sb, Ba, or the like can be given. In addition, when M is Si, Si is shown. Further, x is 0.01 or more, preferably 0.1 or more, more preferably 0.3 or more.
[0021]
For example, an alloy of silicon and alkaline earth metal, transition metal or metalloid can be used, and a solid solution alloy or eutectic alloy of Be, Ag, Al, Au, Cd, Ga, In, Sb, Zn and silicon. Is preferred. The average particle size of the alloy is 0.3 to 70 μm, preferably 0.3 to 40 μm.
[0022]
A compound of silicon and metal is sometimes referred to as a silicide, and its composition does not necessarily satisfy the valence, but this compound can also be used. For example, CaSi, CaSi2, Mg2Si, BaSi2, CuFiveSi, FeSi, FeSi2CoSi2, Ni2Si, NiSi2, MnSi, MnSi2, MoSi2, CrSi2, CrThreeSi, TiSi2, TiFiveSiThree, NbSi2, NdSi2, CeSi2, WSi2, WFiveSiThree, TaSi2, TaFiveSiThree, PtSi, VThreeSi, VSi2PdSi, RuSi, RhSi, etc. are used.
Furthermore, as a compound containing a silicon atom, for example, SiO2, SiC, SiThreeNFourEtc. can also be used.
[0023]
As the compound containing a tin atom, Sn, tin alloy, tin oxide, tin sulfide, tin halide, and stannate can be used. For example, Sn and Zn, Cd, In, Pb alloy solid solution, SnO, SnO2, M1 FourSnOFour(M1Represents a metal element other than Sn. ) Tin oxide, SnS, SnS2, M1 2SnSThreeTin sulfide such as SnX2, SnXFour, M1SnXFour(X represents a halogen atom) Tin halide such as MgSn, Mg2Sn, FeSn, FeSn2, MoSn, MoSn2And the like.
[0024]
(Polymer)
The polymer of the present invention is preferably a polymer having adhesion to particles containing a compound containing silicon atoms and / or tin atoms. Polymers that exhibit resistance to forces such as compression, bending, peeling, impact, pulling, tearing, etc. to such an extent that peeling does not occur in processes such as mixing, stirring, solvent removal, and heat treatment. Applicable. For example, the polymer is preferably at least one selected from the group consisting of phenol resin, polyvinyl alcohol resin, furan resin, cellulose resin, polystyrene resin, polyimide resin, and epoxy resin. Preferable are phenol resin and polyvinyl alcohol resin.
[0025]
In particular, in the present invention, a dense carbonaceous material can be obtained by using a phenol resin mixed with a drying oil or a fatty acid thereof. This is because the unsaturated fat bond portion in the phenolic resin and the drying oil undergoes a chemical reaction to become a so-called drying oil-modified phenolic resin. Guessed. In addition, drying oil does not just have a double bond, it has a rather long alkyl group and an ester bond, and these are also involved in terms of ease of gas release during the firing process. Conceivable.
[0026]
Phenol resins are produced by the reaction of phenols and aldehydes, and unmodified phenol resins such as novolak and resol and partially modified phenol resins can be used. Moreover, rubbers, such as a nitrile rubber, can be mixed and used for a phenol resin as needed. Examples of phenols include phenol, cresol, xylenol, and alkylphenol having a C20 or lower alkyl group.
The phenolic resin mixed with the drying oil of the present invention or its fatty acid contains phenol.
Addition reaction between the alcohol and drying oil in the presence of a strong acid catalyst, followed by addition of a basic catalyst to make the system basic, or reaction with formalin, or reaction between phenols and formalin, followed by drying The oil may be added.
[0027]
Dry oils are commonly known paulownia oil, linseed oil, dehydrated castor oil, soybean oil, cashew nut oil, etc., and these may be fatty acids, which solidify and dry in a relatively short time when left in the air as a thin film. A vegetable oil with properties.
[0028]
The ratio of the drying oil or its fatty acid to the phenol resin is suitably 5 to 50 parts by mass (drying oil or its fatty acid), for example, with respect to 100 parts by mass of (condensation product of phenol and formalin). When the amount is more than 50 parts by mass, adhesion to particles containing a compound containing silicon atoms and / or tin atoms is lowered.
[0029]
When this polymer is diluted with acetone, ethanol, toluene or the like to adjust the viscosity, the polymer tends to adhere.
[0030]
The atmosphere at the time of attachment may be any of atmospheric pressure, increased pressure, and reduced pressure. However, adhesion at reduced pressure is preferable because the affinity between the carbon particles and the polymer is improved.
[0031]
When particles containing a compound containing silicon atoms and / or tin atoms are at least partially covered with a carbonaceous material (including when the entire surface is covered), the thickness of the coating layer is preferably 1 to 30000 nm, Is 5 to 3000 nm. The coating layer may be uniform or non-uniform, and it is sufficient that the coating state is substantially maintained.
[0032]
(Mixing method)
In the present invention, the vapor grown carbon fiber can be dispersed by mixing particles containing a vapor grown carbon fiber and a compound containing a silicon atom and / or a tin atom and stirring them. Although it does not specifically limit as a stirring method, For example, apparatuses, such as a ribbon mixer, a screw-type kneader, a Spartan luzer, a Redige mixer, a planetary mixer, a universal mixer, can be used.
[0033]
The temperature and time during the stirring treatment are not particularly limited when the particles are not coated with a carbonaceous material, but vapor-grown carbon fibers may be dispersed. In addition, when the particles are coated with a carbonaceous material, it is appropriately selected according to the components and viscosity of the particles and the polymer, but is usually in the range of about 0 ° C to 50 ° C, preferably about 10 ° C to 30 ° C. And
Alternatively, the mixing time and the solvent dilution of the composition are performed so that the viscosity of the mixture is 500 Pa · s or less at the mixing temperature. In this case, the solvent can be used as long as it has a good affinity with a polymer, a compound containing a silicon atom and / or a tin atom, and examples thereof include alcohols, ketones, aromatic hydrocarbons and esters. . Methanol, ethanol, butanol, acetone, methyl ethyl ketone, toluene, ethyl acetate, butyl acetate and the like are preferable.
[0034]
It is preferable to remove part or all of the solvent after stirring. As the removing method, known methods such as hot air drying and vacuum drying can be used.
[0035]
The drying temperature depends on the boiling point, vapor pressure, etc. of the solvent used, but is specifically 50 ° C. or higher, preferably 100 ° C. or higher and 1000 ° C. or lower, more preferably 150 ° C. or higher and 500 ° C. or lower.
[0036]
Most of the known heating devices can be used for heat curing. However, as a manufacturing process, a rotary kiln capable of continuous processing or a belt-type continuous furnace is preferable in terms of productivity.
[0037]
For example, the phenol resin addition amount is preferably 2% by mass to 30% by mass, more preferably 4% by mass to 25% by mass, and further preferably 6% by mass to 18% by mass.
[0038]
It is preferable that the particles are coated with a carbonaceous material and then mixed with the vapor grown carbon fiber. However, if the vapor grown carbon fiber does not adhere to the particles, the composition containing the particles, polymer, vapor grown carbon Fibers may be mixed.
[0039]
(Heat treatment conditions)
When the polymer is attached to particles containing a compound containing silicon atoms or / and tin atoms, the maximum temperature may not reach the center of the particles, and the carbonaceous material of the film and silicon atoms or / and The adhesiveness to the particle surface containing the compound containing a tin atom, the strength of the film, and the like may be achieved.
[0040]
In the heat treatment step, the temperature is 200 ° C. or higher, preferably 200 ° C. or higher and 3000 ° C. or lower, more preferably 200 ° C. or higher and 1200 ° C. or lower. A compound containing a silicon atom or / and a tin atom may partially form silicon carbide, silicon oxide, tin oxide, etc. at 200 ° C. or higher.
The temperature rising rate for the heat treatment does not significantly affect the performance within the range of the fastest heating rate and the minimum heating rate in a known apparatus. However, since it is a powder, there is almost no problem of cracking as in the case of a molded material or the like. Therefore, it is preferable that the heating rate is high from the viewpoint of cost. The arrival time from the normal temperature to the maximum temperature is preferably 12 hours or less, more preferably 6 hours or less, and particularly preferably 2 hours or less.
[0041]
As a heat treatment apparatus for firing, a known apparatus such as an Atchison furnace or a direct current heating furnace can be used. These devices are also advantageous in terms of cost. However, since the presence of nitrogen gas may decrease the resistance of the powder or the strength of the carbonaceous material may decrease due to oxidation by oxygen, the furnace atmosphere can be preferably maintained in an inert gas such as argon or helium. A furnace having such a structure is preferred. For example, a batch furnace in which the container itself can be evacuated and replaced with gas, a batch furnace in which a furnace atmosphere can be controlled with a tubular furnace, or a continuous furnace.
[0042]
Particles containing a compound containing silicon atoms and / or tin atoms may have an average particle size of 0.3 to 70 μm, preferably 0.3 to 50 μm, and more preferably 0.5 to 20 μm. This average particle diameter can be determined by a laser diffraction scattering method. If the average particle size is smaller than 0.3 μm, the aspect ratio tends to increase and the specific surface area tends to increase. Further, for example, when producing an electrode of a battery, a method is generally employed in which a negative electrode material is made into a paste with a binder and applied. When the average particle diameter of the negative electrode material is less than 0.3 μm, fine powders smaller than 0.1 μm are considerably contained, and the viscosity of the paste increases and the applicability also deteriorates.
[0043]
Furthermore, when large particles having an average particle size of 85 μm or more are mixed, irregularities are increased on the electrode surface, which may cause damage to the separator used in the battery. For example, those substantially free of particles of 0.1 μm or less and particles of 85 μm or more can be suitably used.
[0044]
(Vapor grown carbon fiber)
Since the vapor grown carbon fiber (vapor-grown carbon fiber) used in the present invention needs to be excellent in electrical conductivity, one having a high degree of crystallinity is desirable. In addition, when the carbon material is made into an electrode and incorporated in a lithium ion secondary battery, it is necessary to quickly pass a current through the entire negative electrode, so the crystal growth direction of vapor grown carbon fiber fibers is parallel to the fiber axis. The fibers are preferably branched (branched). Moreover, if it is a branched fiber, it will become easy to electrically join between carbon particles with a fiber, and electroconductivity will improve.
In order to achieve the present invention, vapor grown carbon fibers in which crystals grow in the fiber axis direction and the fibers are branched are suitable.
The vapor grown carbon fiber can be produced, for example, by blowing an organic compound gasified together with iron serving as a catalyst in a high temperature atmosphere.
[0045]
The vapor-grown carbon fiber can be used as it is produced, for example, any one heat-treated at 800 to 1500 ° C. or one graphitized at 2000 to 3000 ° C. can be used. Or those heat-treated at about 1500 ° C. are more preferred.
[0046]
Further, as a preferred form of the vapor grown carbon fiber of the present invention, there is a branched fiber, but the branched portion may have a portion having a hollow structure in which the entire fiber including the portion is in communication with each other. Therefore, the carbon layer which comprises the cylindrical part of a fiber is continuing. A hollow structure is a structure in which a carbon layer is wound in a cylindrical shape, and is not a complete cylinder, a part having a partial cut portion, a structure in which two laminated carbon layers are combined into one layer, etc. Including. Further, the cross section of the cylinder is not limited to a perfect circle, but includes an ellipse or a polygon. In addition, about the crystallinity of a carbon layer, the space | interval d of a carbon layer002Is not limited. Incidentally, a preferable one is d by X-ray diffraction method.002Is 0.344 nm or less, more preferably 0.339 nm or less, still more preferably 0.338 nm or less, and the thickness Lc in the C-axis direction of the crystal is 40 nm or less.
[0047]
The vapor grown carbon fiber of the present invention is a carbon fiber having a fiber outer diameter of 2 to 1000 nm and an aspect ratio of 10 to 15000, preferably a fiber outer diameter of 10 to 500 nm and a fiber length of 1 to 100 μm (aspect ratio of 2 to 2000). Alternatively, the fiber has an outer diameter of 2 to 50 nm and a fiber length of 0.5 to 50 μm (aspect ratio of 10 to 25000).
After the vapor-phase carbon fiber is produced, the crystallinity can be further increased by conducting a heat treatment at 2000 ° C. or higher, and the conductivity can be increased. Also in this case, it is effective to add boron or the like having a function of promoting the degree of graphitization before the heat treatment.
[0048]
The content of vapor grown carbon fiber in the negative electrode is preferably in the range of 0.01 to 20% by mass, preferably 0.1 to 15% by mass, and more preferably 0.5 to 10% by mass. When the content exceeds 20% by mass, the electric capacity decreases, and when the content is less than 0.01% by mass, the value of internal resistance at a low temperature (for example, −35 ° C.) increases.
[0049]
Vapor-grown carbon fiber intervenes and inserts into voids formed by particles containing compounds containing silicon atoms and / or tin atoms. For example, vapor-grown carbon fibers themselves or silicon atoms and / or tin atoms are contained. A three-dimensional structure can be formed by entanglement of vapor grown carbon fibers having a size equal to or less than the size of the particles containing the compound, and the structure can absorb a shock, thereby acting as a silicon atom or / and It is thought that the volume change in the charging / discharging cycle of the particle containing the compound containing a tin atom can be absorbed. Further, it is considered that the resilience of the negative electrode active material is increased by the resilience of the vapor grown carbon fiber, and the resilience characteristics are improved. As a whole, a change in volume of the negative electrode can be suppressed, which can improve cycle characteristics.
[0050]
The vapor grown carbon fiber of the present invention has many irregularities and disturbances on the fiber surface. For this reason, the adhesion with particles containing a compound containing silicon atoms and / or tin atoms is improved, and charging and discharging are performed. The vapor grown carbon fiber, which also serves as a negative electrode active material and a conductive auxiliary agent, can be kept in close contact with each other even if the process is repeated, and the electron conductivity can be maintained and the cycle characteristics can be improved. Conceivable.
[0051]
Moreover, when there are many ratios of the branched fiber contained in vapor grown carbon fiber, a network can be formed efficiently and it is easy to obtain high electronic conductivity and heat conductivity. Further, the active material can be dispersed so as to be wrapped, the strength of the negative electrode is increased, and the contact between the particles can be maintained well.
[0052]
In addition, since the vapor grown carbon fiber enters between the particles, the liquid retentivity of the electrolyte is increased, and lithium ions can be smoothly inserted and desorbed even in a low temperature environment.
[0053]
(capacity)
The capacity is 400 mAh / g or more, preferably 400 to 2000 mAh / g, more preferably 400 to 1000 mAh / g. A larger capacity is desirable, but when the Si or Sn content of the negative electrode material increases, micronization occurs with the volume change of Si or Sn, the contact between the particles is lost, and the cycle characteristics deteriorate significantly. Furthermore, when the Si or Sn content of the negative electrode material increases, the negative electrode expands / shrinks due to charging / discharging and is easily peeled off from the copper plate.
By setting the ratio of the compound containing silicon atoms and / or tin atoms to the particles in the negative electrode material in the range of 1 to 20% by mass and the capacity to 400 to 600 mAh / g, high capacity, high cycle characteristics, and low internal resistance can be obtained. A highly practical negative electrode material can be completed.
[0054]
(Production of secondary battery)
When producing a lithium secondary battery using the carbon material of this invention, a well-known method can be used.
[0055]
In the electrode of a lithium battery, the specific surface area of particles containing a compound containing silicon atoms and / or tin atoms should be small. The specific surface area (BET method) of the particles containing the compound containing silicon atoms and / or tin atoms of the present invention is 3 m.2/ G or less. Specific surface area is 3m2When the amount exceeds / g, the surface activity of the particles increases, and the Coulomb efficiency decreases due to decomposition of the electrolytic solution. Furthermore, it is important to increase the packing density of the particles in order to increase the capacity of the battery. For that purpose, a spherical shape as close as possible is preferable. When the shape of the particles is expressed by an aspect ratio (long axis length / short axis length), the aspect ratio is 6 or less, preferably 5 or less. The aspect ratio can be obtained from a micrograph or the like, but the particle is assumed to be a disk from the average particle diameter A calculated by the laser diffraction scattering method and the average particle diameter B calculated by the electrical detection detection method (Coulter counter method). The bottom diameter of this disk is A, and the volume is 4/3 × (B / 2).ThreeWhen π = C, disc thickness T = C / (A / 2)2It can be calculated by π. Therefore, the aspect ratio can be obtained by A / T.
[0056]
In the electrode of a lithium battery, the discharge capacity per unit volume is higher as the packing density of particles containing a compound containing silicon atoms and / or tin atoms is better and the bulk density is higher.
First, as for electrode preparation, it can be prepared by diluting a binder (binder) with a solvent, kneading with a negative electrode material, and applying to a current collector (base material) as usual.
[0057]
As the binder, known polymers such as a fluorine-based polymer such as polyvinylidene fluoride and polytetrafluoroethylene, and a rubber-based material such as SBR (styrene butadiene rubber) can be used. As the solvent, a known solvent suitable for each binder, for example, a fluorine-based polymer such as toluene and N-methylpyrrolidone, and a SBR that is known in water can be used.
[0058]
When the negative electrode material is 100 parts by mass, the amount of the binder used is suitably 1 to 30 parts by mass, and particularly preferably about 3 to 20 parts by mass.
[0059]
For kneading the negative electrode material and the binder, known devices such as a ribbon mixer, a screw type kneader, a Spartan rewinder, a redige mixer, a planetary mixer, and a universal mixer can be used.
[0060]
In the case of applying to the current collector after kneading, it can be carried out by a known method. For example, after applying with a doctor blade or a bar coater, a method of forming with a roll press or the like can be raised.
[0061]
As the current collector, known materials such as copper, aluminum, stainless steel, nickel, and alloys thereof can be used.
[0062]
Although a well-known thing can be used for a separator, especially polyethylene and a polypropylene nonwoven fabric are preferable.
[0063]
As the electrolyte and electrolyte in the lithium secondary battery of the present invention, known organic electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used. An organic electrolyte is preferable from the viewpoint of electrical conductivity.
[0064]
Examples of organic electrolytes include diethyl ether, dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, and ethylene glycol phenyl ether. Ether; formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethyl Acetamide, N, N-dimethylpropionamide, hexamethylphosphorylamide Amides such as dimethyl sulfoxide, sulfolane, etc .; dialkyl ketones such as methyl ethyl ketone, methyl isobutyl ketone; ethylene oxide, propylene oxide, tetrahydrofuran, 2-methoxytetrahydrofuran, 1,2-dimethoxyethane, 1,3-dioxolane, etc. Cyclic ethers; carbonates such as ethylene carbonate and propylene carbonate; γ-butyrolactone; N-methylpyrrolidone; solutions of organic solvents such as acetonitrile and nitromethane are preferred. Further preferably, esters such as ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, vinylene carbonate, γ-butyrolactone, ethers such as dioxolane, diethyl ether, diethoxyethane, dimethyl sulfoxide, acetonitrile, tetrahydrofuran, etc. Particularly preferred are carbonate-based nonaqueous solvents such as ethylene carbonate and propylene carbonate. These solvents can be used by mixing one kind or two kinds or more.
[0065]
Lithium salts are used as solutes (electrolytes) for these solvents. Commonly known lithium salts include LiClOFour, LiBFFour, LiPF6LiAlClFour, LiSbF6, LiSCN, LiCl, LiCFThreeSOThree, LiCFThreeCO2, LiN (CFThreeSO2)2Etc.
[0066]
Examples of the polymer solid electrolyte include a polyethylene oxide derivative and a polymer containing the derivative, a polypropylene oxide derivative and a polymer containing the derivative, a phosphate ester polymer, a polycarbonate derivative and a polymer containing the derivative.
[0067]
In the lithium secondary battery using the negative electrode material in the present invention, the positive electrode material used is preferably a lithium-containing transition metal oxide. Preferably, it is an oxide mainly containing at least one transition metal element selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo, W and lithium, and the molar ratio of lithium to transition metal is It is a compound of 0.3 to 2.2. More preferably, the oxide mainly contains at least one transition metal element selected from V, Cr, Mn, Fe, Co, and Ni and lithium, and the molar ratio of lithium to transition metal is 0.3 to 0.3. It is the compound of 2.2. In addition, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B, or the like may be contained within a range of less than 30 mole percent with respect to the transition metal present mainly. Among the above positive electrode active materials, the general formula LixMO2(M is at least one of Co, Ni, Fe, and Mn, x = 0 to 1.2), or LiyN2OFourIt is preferable to use at least one material having a spinel structure represented by (N includes at least Mn, y = 0 to 2).
[0068]
Further, the positive electrode active material is LiyMaD1-aO2 (M is at least one of Co, Ni, Fe, and Mn. D is Co, Ni, Fe, Mn, Al, Zn, Cu, Mo, Ag, W, Ga, In, A material containing at least one of Sn, Pb, Sb, Sr, B, and P other than M, y = 0 to 1.2, a = 0.5 to 1), or Liz (NbE1-b) 2O4 (N Mn E is at least one of Co, Ni, Fe, Mn, Al, Zn, Cu, Mo, Ag, W, Ga, In, Sn, Pb, Sb, Sr, B, P, b = 1 to 0. It is particularly preferable to use at least one material having a spinel structure represented by 2 z = 0 to 2).
[0069]
Specifically, LixCoO2LixNiO2LixMnO2LixCoaNi1-a O2LixCobV1-b Oz, LixCobFe1-b O2LixMn2OFourLixMncCo2-c OFourLixMncNi2-c OFourLixMncV2-c OFourLixMncFe2-c OFour(Where x = 0.02 to 1.2, a = 0.1 to 0.9, b = 0.8 to 0.98, c = 1.6 to 1.96, z = 2.1-2. .3). The most preferred lithium-containing transition metal oxide is LixCoO.2LixNiO2LixMnO2LixCoaNi1-a O2LixMn2OFourLixCobV1-b Oz (x = 0.02 to 1.2, a = 0.1 to 0.9, b = 0.9 to 0.98, z = 2.01 to 2.3). In addition, the value of x is a value before the start of charging / discharging, and increases / decreases by charging / discharging.
[0070]
Although the average particle size of a positive electrode active material is not specifically limited, 0.1-50 micrometers is preferable. The volume of particles of 0.5 to 30 μm is preferably 95% or more. More preferably, the volume occupied by a particle group having a particle size of 3 μm or less is 18% or less of the total volume, and the volume occupied by a particle group of 15 μm or more and 25 μm or less is 18% or less of the total volume. Although it does not specifically limit as a specific surface area, it is 0.01-50m in BET method2/ G is preferred, especially 0.2 m2 / G-1m2 / G is preferred. The pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
There are no restrictions on the selection of members necessary for battery configuration other than those described above.
[0071]
【Example】
The present invention will be described in more detail below with typical examples. Note that these are merely illustrative examples, and the present invention is not limited thereto.
[0072]
(How to make phenolic resin for adhesion)
A phenol resin partially modified with tung oil was used as the adhesive. 100 parts by mass of tung oil, 150 parts by mass of phenol, and 150 parts by mass of nonylphenol are mixed and maintained at 50 ° C. 0.5 parts by mass of sulfuric acid was added thereto and stirred, and the temperature was gradually raised and maintained at 120 ° C. for 1 hour to carry out an addition reaction between tung oil and phenols. Thereafter, the temperature is lowered to 60 ° C. or lower. 6 parts by weight of hexamethylenetetramine and 100 parts by weight of 37% by weight formalin were added, reacted at 90 ° C. for about 2 hours, and then vacuum dehydrated, and then diluted by adding 100 parts by weight of methanol and 100 parts by weight of acetone, and a viscosity of 20 mPa -The s (20 degreeC) varnish was obtained. Hereinafter, this varnish is referred to as varnish A.
[0073]
(Battery evaluation method)
(1) Paste creation
0.1 part by mass of KF polymer L1320 (N-methylpyrrolidone (NMP) solution product containing 12% by mass of PVDF) was added to 1 part by mass of the negative electrode material, and the mixture was kneaded with a planetary mixer to obtain a main ingredient stock solution.
(2) Electrode fabrication
NMP was added to the main agent stock solution to adjust the viscosity, and then applied onto a high purity copper foil to a thickness of 250 μm using a doctor blade. This was vacuum-dried at 120 ° C. for 1 hr and punched out to 18 mmφ. Further, the punched electrode is sandwiched between super steel press plates, and the press pressure is 1 × 10 against the electrode.Three~ 3x10Threekg / cm2It pressed so that it might become.
Then, it dried at 120 degreeC for 12 hours with the vacuum dryer, and was set as the electrode for evaluation.
(3) Battery creation
A triode cell was produced as follows. The following operation was carried out in a dry argon atmosphere with a dew point of -80 ° C or lower.
In a polypropylene screw-attached lid cell (inner diameter of about 18 mm), the copper electrode with carbon foil (positive electrode) and the metal lithium stay (negative electrode) produced in (2) above were separated by separator (polypropylene microporous film (Selga -Sandwiched in 2400)) and laminated. Further, metallic lithium for reference was laminated in the same manner. An electrolytic solution was added thereto to obtain a test cell.
(4) Electrolyte
(1) EC system: a mixture of 8 parts by mass of EC (ethylene carbonate) and 12 parts by mass of DEC (diethyl carbonate), and LiPF as an electrolyte61 mol / liter was dissolved.
(5) Charge / discharge cycle test
Current density 0.2mA / cm2A constant current low voltage charge / discharge test was conducted at (corresponding to 0.1 C).
Charging (insertion of lithium into carbon) is 0.2 mA / cm from rest potential to 0.002 V2Then, CC (constant current: constant current) charging was performed. Next, it switched to CV (constant voltage: constant voltage) charge at 0.002 V, and stopped when the current value decreased to 25.4 μA.
Discharge (release from carbon) is 0.2 mA / cm2CC discharge was performed at (corresponding to 0.1 C) and cut off at a voltage of 1.5 V.
[0074]
Example 1
Silicon was pulverized and classified, and silicon particles (100 g) adjusted to an average particle size (D50 = 20 μm) were added with ethanol in varnish A and stirred. It added so that it might become 10 mass% with respect to particle | grains, and it knead | mixed for 30 minutes with the planetary mixer. Furthermore, 0.1% by mass of vapor grown carbon fiber graphitized at 2800 ° C. (average fiber diameter 150 nm, aspect ratio 100) was added and stirred and mixed. This mixture was dried in a vacuum dryer at 80 ° C. for 2 hours to remove ethanol. Next, the mixture was vacuum-replaced in an oven to create an argon atmosphere, and then heated while flowing argon gas. It was kept at 2900 ° C. for 10 minutes and then cooled. After cooling to room temperature, the obtained heat-treated product was sieved with a sieve having a mesh size of 63 μm, and the lower sieve was used as a negative electrode material sample. When the obtained negative electrode material was observed with an electron microscope (SEM), it was observed that vapor grown carbon fiber was dispersed around the silicon particles. Thus, the negative electrode material of Example 1 was obtained. This sample was applied to a single cell type battery evaluation apparatus, and an EC system was used as the battery evaluation electrolyte. The capacity at the first cycle of charge / discharge cycle test and the capacity at the 50th cycle were examined. The results are shown in Table 1.
[0075]
(Example 2)
It was obtained in the same manner as in Example 1 except that the amount of the vapor grown carbon fiber was changed to 3% by mass. These samples were applied to a single cell type battery evaluation apparatus in the same manner as the sample of Example 1, and an EC system was used as the battery evaluation electrolyte. The capacity at the first cycle of charge / discharge cycle test and the capacity at the 50th cycle were examined. The results are shown in Table 1.
[0076]
(Example 3)
It was obtained in the same manner as in Example 1 except that the amount of vapor grown carbon fiber was changed to 10% by mass. These samples were applied to a single cell type battery evaluation apparatus in the same manner as the sample of Example 1, and an EC system was used as the battery evaluation electrolyte. The capacity at the first cycle of charge / discharge cycle test and the capacity at the 50th cycle were examined. The results are shown in Table 1.
[0077]
(Example 4)
The same treatment as in Example 1 was performed except that silicon was changed to silicon carbide and the average particle size (D50 = 1 μm). When the obtained negative electrode material was observed with an electron microscope (SEM), it was observed that vapor grown carbon fibers were dispersed around the silicon carbide particles. Thus, the negative electrode material of Example 4 was obtained. This sample was applied to a single cell type battery evaluation apparatus, and an EC system was used as the battery evaluation electrolyte. The capacity at the first cycle of charge / discharge cycle test and the capacity at the 50th cycle were examined. The results are shown in Table 1.
[0078]
(Example 5)
To silicon particles adjusted to an average particle size (D50 = 20 μm), 0.1% by mass of vapor grown carbon fiber (average fiber diameter 150 nm, aspect ratio 100) was added to the silicon particles and stirred and mixed. This negative electrode material was applied to a single cell type battery evaluation apparatus, and an EC system was used as the battery evaluation electrolyte. The capacity at the first cycle of charge / discharge cycle test and the capacity at the 50th cycle were examined. The results are shown in Table 1.
[0079]
(Comparative Example 1)
Silicon particles adjusted to an average particle size (D50 = 20 μm) are added to a solution in which phenol resin (10 g) is dissolved in isopropyl alcohol so that the solid content is 10% by mass with respect to the silicon particles, and sufficiently stirred. After that, the solvent was removed. Thereafter, heat treatment and sieving treatment were carried out in the same manner as in Example 1 without adding vapor grown carbon fiber to produce composite particles. Carbon black (1 g) was mixed with this sample to prepare a negative electrode material.
[0080]
This negative electrode material was applied to a single cell type battery evaluation apparatus, and an EC system was used as the battery evaluation electrolyte. The capacity at the first cycle of charge / discharge cycle test and the capacity at the 50th cycle were examined. The results are shown in Table 1.
[0081]
(Comparative Example 2)
Silicon particles adjusted to an average particle size (D50 = 20 μm) were applied to a single cell type battery evaluation apparatus as a negative electrode material, and an EC system was used as the battery evaluation electrolyte. The capacity at the first cycle of charge / discharge cycle test and the capacity at the 50th cycle were examined. The results are shown in Table 1.
[0082]
[Table 1]
Figure 0004385589
[0083]
As shown in Table 1, the capacity at the 50th cycle is higher in Examples 1 to 5 than in Comparative Examples 1 and 2. Further, comparing the capacities of Examples 1 to 3, the sample with a larger amount of the vapor grown carbon fiber has a slightly lower capacity at the first cycle but a higher capacity retention. The capacity retention ratio (capacity at 50th cycle / capacity at the first cycle × 100) is significantly higher in Examples 1 to 5 than in Comparative Examples 1 and 2. In Examples 1 to 5, the contact point between particles containing a compound containing a silicon atom or / and a tin atom is maintained during the charge / discharge cycle, and the expansion / contraction of the particle is small. Is considered to have been obtained.
[0084]
【The invention's effect】
(1) A negative electrode material containing a mixture of particles containing a compound containing silicon atoms and / or tin atoms and vapor grown carbon fiber is more in comparison with a negative electrode material not containing vapor grown carbon fiber. The conductive path is ensured, the resistance of the electrode is lowered, and the discharge potential is increased.
{Circle around (2)} By mixing vapor grown carbon fiber, even if charging and discharging are repeated, the particles are sufficiently kept in contact with each other and the cycle characteristics are improved.
{Circle around (3)} The cycle characteristics at a low temperature are also improved by smooth charge transfer in addition to the above reasons, and an increase in internal resistance can be suppressed.

Claims (3)

重合体を含む組成物をケイ素原子または/及び錫原子を含む化合物を含有する粒子の少なくとも一部の表面に付着させる工程、該粒子に気相法炭素繊維を混合する工程、重合体を含む組成物が付着したケイ素原子または/及び錫原子を含む化合物を含有する粒子を熱処理する工程を含む負極材料の製造方法。  A step of attaching a composition containing a polymer to at least a part of the surface of a particle containing a compound containing a silicon atom and / or a tin atom, a step of mixing vapor grown carbon fiber with the particle, and a composition containing a polymer A method for producing a negative electrode material, comprising a step of heat-treating particles containing a compound containing silicon atoms and / or tin atoms to which an object is attached. 重合体が、ケイ素原子または/及び錫原子を含む化合物を含有する粒子に接着性を有する重合体を含む請求項1に記載の負極材料の製造方法。The manufacturing method of the negative electrode material of Claim 1 in which a polymer contains the polymer which has adhesiveness to the particle | grains containing the compound containing a silicon atom or / and a tin atom. 熱処理する工程が、200℃以上の温度で行う焼成工程である請求項1または2に記載の負極材料の製造方法。The method for producing a negative electrode material according to claim 1 or 2 , wherein the heat treatment step is a firing step performed at a temperature of 200 ° C or higher.
JP2002342689A 2002-11-26 2002-11-26 Negative electrode material and secondary battery using the same Expired - Fee Related JP4385589B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002342689A JP4385589B2 (en) 2002-11-26 2002-11-26 Negative electrode material and secondary battery using the same
US10/536,443 US7674555B2 (en) 2002-11-26 2003-11-25 Electrode material, and production method and use thereof
EP03811918.6A EP1573835B1 (en) 2002-11-26 2003-11-25 Electrode material comprising silicon and/or tin particles and production method and use thereof
PCT/JP2003/014997 WO2004049473A2 (en) 2002-11-26 2003-11-25 Electrode material comprising silicon and/or tin particles and production method and use thereof
AU2003302282A AU2003302282A1 (en) 2002-11-26 2003-11-25 Electrode material comprising silicon and/or tin particles and production method and use thereof
CNA2003801042406A CN1717822A (en) 2002-11-26 2003-11-25 Electrode material comprising silicon and/or tin particles and production method and use thereof
EP10010951.1A EP2317592B1 (en) 2002-11-26 2003-11-25 Electrode material comprising silicon and/or tin particles and production method and use thereof
KR1020057008901A KR101250329B1 (en) 2002-11-26 2003-11-25 Electrode Material, and Production Method and Use Thereof
US12/688,799 US8623554B2 (en) 2002-11-26 2010-01-15 Electrode material, and production method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342689A JP4385589B2 (en) 2002-11-26 2002-11-26 Negative electrode material and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2004178922A JP2004178922A (en) 2004-06-24
JP4385589B2 true JP4385589B2 (en) 2009-12-16

Family

ID=32704682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342689A Expired - Fee Related JP4385589B2 (en) 2002-11-26 2002-11-26 Negative electrode material and secondary battery using the same

Country Status (2)

Country Link
JP (1) JP4385589B2 (en)
CN (1) CN1717822A (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963466B2 (en) * 2003-05-22 2007-08-22 松下電器産業株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5256403B2 (en) * 2004-09-06 2013-08-07 有限会社ジーイーエム Negative electrode active material particles for lithium secondary battery, negative electrode, and production method thereof
JP2006222073A (en) * 2005-01-11 2006-08-24 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and method of manufacturing its anode
KR101281277B1 (en) * 2005-03-23 2013-07-03 파이오닉스 가부시키가이샤 Methods for producing negative electrode active material particle for lithium secondary battery and negative electrode
JP2006339092A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its negative electrode
JP2006339093A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Wound type nonaqueous electrolyte secondary battery and its negative electrode
JP2007048692A (en) * 2005-08-12 2007-02-22 Hitachi Vehicle Energy Ltd Lithium secondary battery cathode material, cathode plate for lithium secondary battery, and lithium secondary battery using this
KR100670484B1 (en) 2005-08-25 2007-01-16 삼성에스디아이 주식회사 Anode electrode for a secondary battery and the secondary batter employing the same
KR101328982B1 (en) * 2006-04-17 2013-11-13 삼성에스디아이 주식회사 Anode active material and method of preparing the same
JP2008041465A (en) * 2006-08-08 2008-02-21 Sony Corp Negative electrode for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous secondary battery
JP4219391B2 (en) * 2006-09-29 2009-02-04 三井金属鉱業株式会社 Non-aqueous electrolyte secondary battery
US8187754B2 (en) 2006-10-11 2012-05-29 Panasonic Corporation Coin-type non-aqueous electrolyte battery
JP5313479B2 (en) * 2006-10-11 2013-10-09 パナソニック株式会社 Non-aqueous electrolyte battery
JP5104025B2 (en) * 2007-05-18 2012-12-19 パナソニック株式会社 Non-aqueous electrolyte battery
DE102007036653A1 (en) * 2007-07-25 2009-02-05 Varta Microbattery Gmbh Electrodes and lithium-ion cells with novel electrode binder
JP4725585B2 (en) 2008-02-01 2011-07-13 トヨタ自動車株式会社 Negative electrode active material, lithium secondary battery, and method for producing negative electrode active material
CA2638410A1 (en) 2008-07-28 2010-01-28 Hydro-Quebec Composite electrode material
JP5321192B2 (en) * 2009-03-27 2013-10-23 株式会社豊田自動織機 Non-aqueous secondary battery electrode and manufacturing method thereof
CN101710617B (en) * 2009-05-12 2011-10-26 大连丽昌新材料有限公司 High-energy silicon-carbon composite negative electrode material for lithium ion battery and manufacturing process thereof
JP5403544B2 (en) * 2009-09-07 2014-01-29 セイコーインスツル株式会社 Electrolytic solution for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN102479939B (en) * 2010-11-25 2016-08-03 上海交通大学 Electrode and manufacture method thereof for lithium ion battery
CN102637529A (en) * 2011-02-11 2012-08-15 张泽森 Application of nanometer silicon carbide in electrode material of supercapacitor
JP5626531B2 (en) * 2011-04-19 2014-11-19 ダイソー株式会社 Nonaqueous electrolyte secondary battery
JP5751448B2 (en) 2011-05-25 2015-07-22 日産自動車株式会社 Negative electrode active material for lithium ion secondary battery
JP5751449B2 (en) * 2011-05-25 2015-07-22 日産自動車株式会社 Negative electrode active material for lithium ion secondary battery
GB2492167C (en) * 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
EP2573845B1 (en) * 2011-09-26 2018-10-31 VARTA Micro Innovation GmbH Structural active material for battery electrodes
JP5636351B2 (en) * 2011-09-27 2014-12-03 株式会社東芝 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and method for producing negative electrode active material for nonaqueous electrolyte secondary battery
CN102412394B (en) * 2011-10-20 2013-10-09 浙江大学 Preparation method of lamellar stannic sulfide/silicon oxide nuclear shell nanorod for lithium battery
DE112012004702T5 (en) 2011-11-11 2014-08-21 Kabushiki Kaisha Toyota Jidoshokki Negative electrode material and negative electrode for use in a lithium-ion secondary battery and a lithium-ion secondary battery
WO2013146300A1 (en) 2012-03-30 2013-10-03 戸田工業株式会社 Negative electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
US10665855B2 (en) * 2012-10-05 2020-05-26 Murata Manufacturing Co., Ltd. Active material, method of manufacturing active material, electrode, and secondary battery
EP2924784B1 (en) * 2012-11-20 2019-01-09 Showa Denko K.K. Method for producing negative electrode material for lithium ion batteries
EP2924783B1 (en) 2012-11-21 2017-08-02 Showa Denko K.K. Method for producing negative electrode material for lithium ion batteries
EP2924771B1 (en) * 2012-11-22 2018-08-29 Nissan Motor Co., Ltd Negative electrode for electrical device and electrical device provided with same
KR20180031067A (en) 2012-11-22 2018-03-27 닛산 지도우샤 가부시키가이샤 Negative electrode for electrical device, and electrical device using the same
KR20150065815A (en) 2012-11-22 2015-06-15 닛산 지도우샤 가부시키가이샤 Negative electrode for electrical device, and electrical device using same
JP6011313B2 (en) * 2012-12-19 2016-10-19 株式会社豊田自動織機 NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE
US9653727B2 (en) 2013-03-14 2017-05-16 Dic Corporation Metal tin-carbon composites, method for producing said composites, anode active material for non-aqueous lithium secondary batteries which is produced using said composites, anode for non-aqueous lithium secondary batteries which comprises said anode active material, and non-aqueous lithium secondary battery
JP5827261B2 (en) * 2013-03-28 2015-12-02 信越化学工業株式会社 Silicon-containing particles, negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
FR3011234B1 (en) * 2013-09-30 2015-10-02 Renault Sa ELECTRODE FOR ELECTRIC ENERGY STORAGE BATTERY COMPRISING A GRAPHITE COMPOSITE MATERIAL / SILICON / CARBON FIBERS
DE102014118304A1 (en) * 2013-12-13 2015-06-18 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Phase-separated silicon-tin composite as negative electrode material for lithium-ion and lithium-sulfur batteries
US10535870B2 (en) 2014-01-24 2020-01-14 Nissan Motor Co., Ltd. Electrical device
EP3098892B1 (en) 2014-01-24 2018-11-14 Nissan Motor Co., Ltd Electrical device
KR101615439B1 (en) * 2014-07-17 2016-05-13 오씨아이 주식회사 Manufacturing mehtod of carbon-silicon composite
JP6184385B2 (en) 2014-09-19 2017-08-23 株式会社東芝 Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery pack
EP3213362A2 (en) * 2014-10-31 2017-09-06 PPG Industries Ohio, Inc. Lithium ion battery electrodes including graphenic carbon particles
JP6652125B2 (en) * 2015-03-13 2020-02-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JPWO2017010476A1 (en) * 2015-07-16 2018-04-26 昭和電工株式会社 Method for producing graphite-containing carbon powder for secondary battery and carbon material for battery electrode
CN107293701A (en) * 2016-03-31 2017-10-24 比亚迪股份有限公司 A kind of lithium ion battery anode active material and preparation method thereof, negative pole and the lithium ion battery comprising the negative pole
US10910632B2 (en) * 2016-11-22 2021-02-02 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
KR102278996B1 (en) 2017-10-27 2021-07-20 주식회사 엘지에너지솔루션 Silicon-carbon composite, and lithium secondary battery comprising the same
KR102377948B1 (en) * 2018-05-18 2022-03-22 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
EP3850647A4 (en) * 2018-09-14 2022-10-12 Sila Nanotechnologies Inc. Battery electrode composition comprising biomass-derived carbon
CN111293290B (en) * 2018-12-10 2021-06-04 中南大学 Sodium-rich transition metal oxide composite sodium-supplementing positive electrode active material, positive electrode, preparation method of positive electrode and application of positive electrode in sodium electrovoltaics
CN111755688A (en) * 2019-03-29 2020-10-09 住友橡胶工业株式会社 Sulfur-based active material
JP6801806B1 (en) 2019-10-24 2020-12-16 東洋インキScホールディングス株式会社 Carbon nanotube dispersion liquid for non-aqueous electrolyte secondary battery and resin composition using it, mixture slurry, electrode film, non-aqueous electrolyte secondary battery.
JP6860740B1 (en) 2020-04-27 2021-04-21 東洋インキScホールディングス株式会社 A carbon nanotube dispersion liquid, a composition for a secondary battery electrode using the carbon nanotube dispersion liquid, an electrode film, and a secondary battery.
JP6961152B1 (en) 2020-07-07 2021-11-05 東洋インキScホールディングス株式会社 Carbon nanotubes, carbon nanotube dispersion liquid, non-aqueous electrolyte secondary battery using it
WO2023002758A1 (en) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 Anode active substance, anode material and battery
CN115036482B (en) * 2022-06-23 2023-08-15 欣旺达电动汽车电池有限公司 Negative electrode material, preparation method thereof and secondary battery
CN115286998B (en) * 2022-08-31 2023-04-14 广东电网有限责任公司广州供电局 Conductive repair liquid for ablation fault of cable buffer layer and preparation method and application thereof
CN116722103B (en) * 2023-08-09 2023-10-27 中创新航科技集团股份有限公司 Lithium ion battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856525B2 (en) * 1997-05-21 2006-12-13 旭化成エレクトロニクス株式会社 Secondary battery
JPH11135120A (en) * 1997-10-27 1999-05-21 Kao Corp Negative electrode material for nonaqueous secondary battery
JPH11204105A (en) * 1998-01-08 1999-07-30 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP4218098B2 (en) * 1998-12-02 2009-02-04 パナソニック株式会社 Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP4177529B2 (en) * 1999-08-30 2008-11-05 松下電器産業株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3897709B2 (en) * 2002-02-07 2007-03-28 日立マクセル株式会社 Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Also Published As

Publication number Publication date
CN1717822A (en) 2006-01-04
JP2004178922A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP4385589B2 (en) Negative electrode material and secondary battery using the same
KR101250329B1 (en) Electrode Material, and Production Method and Use Thereof
KR102650964B1 (en) Complex for anode active material, anode including the complex, lithium secondary battery including the anode, and method of preparing the complex
JP6432519B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery
KR101919470B1 (en) Negative active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising thereof
JP5390336B2 (en) Negative electrode material for nonaqueous electrolyte secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
EP1683219B1 (en) Carbon material for battery electrode and production method and use thereof
JP4298988B2 (en) Carbon material manufacturing method
KR101571917B1 (en) Carbon material for negative electrode of lithium secondary battery, method for producing the same, negative electrode of lithium secondary battery and lithium secondary battery
JP4530647B2 (en) Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
CN108718535B (en) Negative electrode active material, method for producing negative electrode active material, material containing negative electrode active material, and lithium ion secondary battery
KR20160137518A (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
WO2016125819A1 (en) Composite active material for lithium secondary cell and method for manufacturing same
JP2006222073A (en) Nonaqueous secondary battery and method of manufacturing its anode
JP2015524154A (en) Electrode formulations containing graphene
US20050074672A1 (en) Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery using same
JP2005097010A (en) Carbon material, production method therefor and its application
JP5573149B2 (en) Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery
JP5078047B2 (en) Carbon material, production method thereof and use thereof
JP4286491B2 (en) Carbon material, method for producing the same, and use thereof
JP7100158B2 (en) Functional separation membrane, its manufacturing method and lithium secondary battery containing it
JP4416070B2 (en) Negative electrode material, production method and use thereof
JP2012059708A (en) Lithium secondary battery
JP2004241256A (en) Nonaqueous electrolyte secondary battery
JPH08236152A (en) Organic electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R150 Certificate of patent or registration of utility model

Ref document number: 4385589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151009

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees