CN115286998B - Conductive repair liquid for ablation fault of cable buffer layer and preparation method and application thereof - Google Patents
Conductive repair liquid for ablation fault of cable buffer layer and preparation method and application thereof Download PDFInfo
- Publication number
- CN115286998B CN115286998B CN202211052396.5A CN202211052396A CN115286998B CN 115286998 B CN115286998 B CN 115286998B CN 202211052396 A CN202211052396 A CN 202211052396A CN 115286998 B CN115286998 B CN 115286998B
- Authority
- CN
- China
- Prior art keywords
- buffer layer
- cable
- component
- conductive
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008439 repair process Effects 0.000 title claims abstract description 39
- 239000007788 liquid Substances 0.000 title claims abstract description 35
- 238000002679 ablation Methods 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 239000011231 conductive filler Substances 0.000 claims abstract description 14
- 229920002545 silicone oil Polymers 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 238000003756 stirring Methods 0.000 claims description 13
- JUZTWRXHHZRLED-UHFFFAOYSA-N [Si].[Cu].[Cu].[Cu].[Cu].[Cu] Chemical compound [Si].[Cu].[Cu].[Cu].[Cu].[Cu] JUZTWRXHHZRLED-UHFFFAOYSA-N 0.000 claims description 12
- 229910021360 copper silicide Inorganic materials 0.000 claims description 12
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 11
- 239000002041 carbon nanotube Substances 0.000 claims description 11
- 239000000839 emulsion Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 9
- 229920002554 vinyl polymer Polymers 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 239000003054 catalyst Substances 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 8
- 239000002562 thickening agent Substances 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- -1 polydimethylsiloxane Polymers 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000004094 surface-active agent Substances 0.000 claims description 5
- 229910052582 BN Inorganic materials 0.000 claims description 4
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- 239000002518 antifoaming agent Substances 0.000 claims description 4
- 239000006229 carbon black Substances 0.000 claims description 4
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 229920000570 polyether Polymers 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 2
- HDERJYVLTPVNRI-UHFFFAOYSA-N ethene;ethenyl acetate Chemical group C=C.CC(=O)OC=C HDERJYVLTPVNRI-UHFFFAOYSA-N 0.000 claims description 2
- XWRLQRLQUKZEEU-UHFFFAOYSA-N ethyl(hydroxy)silicon Chemical compound CC[Si]O XWRLQRLQUKZEEU-UHFFFAOYSA-N 0.000 claims description 2
- 229920001038 ethylene copolymer Polymers 0.000 claims description 2
- 125000005456 glyceride group Chemical group 0.000 claims description 2
- 150000003058 platinum compounds Chemical group 0.000 claims description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 2
- 150000005846 sugar alcohols Polymers 0.000 claims description 2
- 125000003944 tolyl group Chemical group 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 11
- 230000002950 deficient Effects 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- 229910002027 silica gel Inorganic materials 0.000 abstract description 4
- 239000000741 silica gel Substances 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract description 3
- 239000013590 bulk material Substances 0.000 abstract description 2
- 239000003795 chemical substances by application Substances 0.000 abstract description 2
- 239000006185 dispersion Substances 0.000 abstract description 2
- 238000009775 high-speed stirring Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 229920002379 silicone rubber Polymers 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 239000004945 silicone rubber Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 241000519995 Stachys sylvatica Species 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 240000005572 Syzygium cordatum Species 0.000 description 2
- 235000006650 Syzygium cordatum Nutrition 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229920003020 cross-linked polyethylene Polymers 0.000 description 2
- 239000004703 cross-linked polyethylene Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 238000006459 hydrosilylation reaction Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940042596 viscoat Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
- C08K2003/382—Boron-containing compounds and nitrogen
- C08K2003/385—Binary compounds of nitrogen with boron
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/202—Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/14—Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Electric Cable Installation (AREA)
- Organic Insulating Materials (AREA)
Abstract
The invention belongs to the technical field of cable buffer layer repair, and discloses a conductive repair liquid for ablation faults of a cable buffer layer, and a preparation method and application thereof. The invention adopts bi-component AB addition type silica gel as a base material of the repair liquid, fills proper nano conductive filler, and uniformly disperses the nano conductive filler in the repair liquid of the curing agent B in a high-speed stirring and super dispersion technology mode. This can reduce the bulk material volume resistivity. And reacting the prepared solution B with the prepared solution A in a proper proportion, and curing to form a conductive shielding repair liquid layer with stable chemical properties. The repair liquid is injected into the cable with the buffer layer defect, so that the release amount of the cable under the laboratory condition can be reduced. After the cables containing white spot defects are injected, the release amount of the defective cables can be 1.5U 0 (U 0 =64 kV) was decreased by 20pC.
Description
Technical Field
The invention belongs to the technical field of cable buffer layer repair, and particularly relates to a conductive repair liquid for ablation faults of a cable buffer layer, and a preparation method and application thereof.
Background
In recent years, a large number of domestic high-voltage XLPE (cross-linked polyethylene) cables have suffered from bulk failures, which are mainly manifested as large-area "spark-over" between the metal sheath and the outer semiconducting layer. Unlike the conventional cable fault (i.e. occurring at the cable accessories or main insulation) discharge of 110kV and above, such large-area discharge is concentrated between the cable metal sheath and the insulation shielding layer, and the discharge point position of the buffer layer region is schematically shown in fig. 1. A large number of ablation points exist on the insulation shielding layer, some ablation points even damage the main insulation, and the ablation defect of the buffer layer causes great trouble for cable operation and maintenance personnel.
It is reported that cable failure caused by ablation of the cable buffer layer accounts for about 30-60% of the failure of the high-voltage cable body. By 2018, the total length of the high-voltage cables of 110kV and above of national grid companies is 14423, the total length is almost thirty kilometers, if most of the cables have the defect of ablation of a buffer layer, on one hand, the cost for replacing the cables is too high, and on the other hand, a large number of hidden danger defective cables cannot be replaced immediately, so that a large number of cables can be operated in a 'sick' manner, and great risk is brought to the safe operation of a power grid.
In the polymer field, because of having good conductivity and stable chemical properties, the liquid conductive silicone rubber is widely applied to the fields of electromagnetic shielding, wave absorption, sensing and the like, and the presently disclosed preparation method of the conductive silicone rubber specifically discloses a preparation method of the conductive silicone rubber, which comprises vinyl silicone oil, a platinum catalyst, hydrogen-containing silicone oil, an inhibitor, conductive carbon black, conductive carbon fibers, a tackifier, a dispersant, fumed silica and a volatile solvent, and the obtained conductive silicone rubber has good conductivity and mechanical properties.
The reason for the ablation of the cable buffer layer is that the cable enters water to cause the non-conductive white spots on the contact surface between the buffer layer and the aluminum sheath, so that the buffer layer and the aluminum sheath cannot be well electrically connected. However, the prior art has the following defects:
1. no corresponding improvement of compatibility is carried out aiming at the internal operating environment of the cable body, if the conductive silicon rubber is injected into the cable body, other serious results (generation of corrosion products is accelerated, or the cable body is punctured due to water trees and the like) are probably caused;
2. the thermal conductivity of the internal structure of the cable body is not improved, and the air gap between the metal sheath and the buffer layer of most defective cables is large (the schematic diagram of the air gap layer of the high-voltage cable is shown in fig. 2), so that the thermal conductivity of the repair liquid itself needs to be considered;
3. similar documents disclosed so far are all directed to accessories of cables with the voltage class of 35kV and below, and do not have materials developed for high-voltage (110 kV) cable bodies, nor do they have related improvements for reducing the partial discharge of the cable bodies.
Disclosure of Invention
In order to overcome the defects and shortcomings of the prior art, the invention mainly aims to provide a conductive repair liquid for ablation faults of a cable buffer layer.
The invention also aims to provide a preparation method of the conductive repair liquid for the ablation fault of the cable buffer layer.
The invention further aims to provide application of the conductive repair liquid for the cable buffer layer ablation fault in repairing the cable buffer layer.
The purpose of the invention is realized by the following scheme:
a conductive repair liquid for ablation faults of a cable buffer layer comprises an A component and a B component which are 3:7-7:3 (preferably 1:1) in mass ratio, wherein the A component comprises the following raw materials in parts by mass:
the component B comprises the following raw materials in parts by mass:
the vinyl silicone oil is at least one of vinyl-terminated polydimethylsiloxane and vinyl-terminated polymethylvinylsiloxane.
The conductive filler is a blend of nano copper silicide and at least one of nano conductive filler carbon nanotube, graphene and carbon black, wherein the mass ratio of the nano copper silicide to the at least one of carbon nanotube, graphene and carbon black is 6:1-100, and preferably is 20;
more preferably, the conductive filler is a blend of carbon nanotubes and nano copper silicide with a mass ratio of 25:1, wherein the carbon nanotubes are selected from SCC-8 produced by Jiaxing new nano material Co., ltd, the nano copper silicide is selected from Cuke produced by Zhongke, and the mixing of the nano copper silicide and the carbon nanotube powder not only improves the conductivity of the carbon nanotubes, but also can prevent the agglomeration phenomenon of the carbon nanotube powder.
The catalyst is a platinum compound, preferably chloroplatinic acid.
The surfactant is at least one of fatty glyceride, polyhydric alcohol and triethanolamine.
The waterproof emulsion is vinyl acetate-ethylene copolymer emulsion, preferably with pH of 7 and viscosity of not more than 600mpa.s at 25 ℃. The addition of the water-proof emulsion can neutralize the penetration of water vapor in the air.
The addition of the nano boron nitride can effectively improve the thermal conductivity of the cured silica gel and improve the strength of the cured silica gel.
The hydrogen-containing silicone oil is at least one of methyl siloxane, ethyl siloxane and methyl phenyl siloxane. The hydrogen-containing silicone oil used preferably has a viscosity of 1000 to 3000.
The thickening agent is acrylic acid, preferably anionic acrylic acid. The thickening agent is added into the component B to adjust the viscosity of the liquid, so that the viscosity of the component B is similar to that of the component A after the conductive filler is added.
The defoaming agent is selected from one of non-silicon type, polyether type, organic silicon type and polyether modified organic silicon type.
The preparation method of the conductive repair liquid for the ablation fault of the cable buffer layer comprises the following steps:
(1) Adding the raw materials of the component A into a stirrer with a heat and pressure reduction system, and uniformly stirring and mixing to obtain a component A;
(2) Adding the raw materials of the component B into a stirrer with a heat and pressure reduction system, and uniformly stirring and mixing to obtain a component B;
(3) When in use, the component A and the component B are mixed according to the mass ratio and are solidified.
The stirring and mixing in the step (1) refers to stirring for 1-3 hours at 50-70 ℃ under reduced pressure;
the stirring and mixing in the step (2) means stirring at 50 to 70 ℃ under reduced pressure for 1 to 3 hours.
The conductive repairing liquid can be cured at room temperature and can be cured by heating, the higher the temperature is, the faster the curing is, and the conductive repairing liquid does not generate any by-product in the curing reaction.
The preparation method does not add water in any step. If moisture is introduced into the cable, under the combined action of electricity and heat during long-time operation of the cable, a water tree defect occurs on an insulating layer of the cable, and the defect can cause the electric field concentration on the surface of the insulating layer, so that the performance of the insulating layer can be directly damaged in severe cases, and the cable is punctured. The influence of water on the effect of the invention is minimized by strict control in the preparation process and addition of the waterproof emulsion.
The conductive repair liquid for the cable buffer layer ablation fault is applied to the cable buffer layer repair. In particular for the repair of cable buffer layers for high voltage (110 kV) cables.
The invention adopts bi-component AB addition type silica gel as a base material of the repair liquid, fills proper nano conductive filler, and uniformly disperses the nano conductive filler in the repair liquid of the curing agent B in a high-speed stirring and super dispersion technology mode. This can reduce the bulk material volume resistivity. And reacting the prepared solution B with the prepared solution A in a proper proportion, and curing to form a conductive shielding repair liquid layer with stable chemical properties. The reaction mechanism of A, B liquid is as follows: under the action of Pt catalyst, vinyl silicone oil and hydrogen-containing silicone oil produce hydrosilylation reaction to form cross-linked macromolecule. After the repair liquid permeates into the buffer layer, the potential difference caused by corrosion products can be reduced, and the risk of partial discharge is reduced.
Compared with the prior art, the invention has the following advantages and beneficial effects:
(1) The introduction of moisture can cause deterioration of the electrical properties of the buffer layer and the insulation layer in the cable body. The reliability of the cable body in operation is deteriorated. Therefore, no water is added in the preparation process, and the compatibility of the conductive repairing liquid and the cable body (particularly the compatibility of the conductive silicon rubber, the cable buffer layer and the aluminum sheath) can be enhanced.
(2) The cured conductive silicone rubber has good dispersibility, and the equivalent resistance between the buffer layer and the aluminum sheath can be effectively reduced after the defect cable is injected.
(3) The nano filling material can effectively reduce the thermal resistance of the repair liquid, and the current-carrying capacity of the cable can be improved after the repair liquid is injected into the cable body. From the perspective of economy and heat conductivity, 0.1-0.5 parts of nano copper silicide and 2-3 parts of boron nitride are added.
(4) The pH value of the repair liquid material is controlled to be 7, so that corrosion to the cable aluminum sheath and the buffer layer in an alkaline or acidic environment is prevented, and good compatibility between the repair liquid and the cable body is ensured;
(5) The repair liquid is injected into the cable with the buffer layer defect, so that the release amount of the cable under the laboratory condition can be reduced. After the cables containing white spots are injected, the release amount of the defective cables can be kept at 1.5U 0 (U 0 =64 kV) was decreased by 20pC.
Drawings
FIG. 1 is a schematic diagram of a discharge point position in a buffer layer region.
Fig. 2 is a schematic view of an air gap layer of a high-voltage cable.
Fig. 3 is a schematic diagram of wiring and layout in the partial discharge test.
Fig. 4 is a diagram of a partial discharge signal before repair of a defective cable.
Fig. 5 is a diagram of a partial discharge signal after repair of a defective cable.
Detailed Description
The present invention will be described in further detail with reference to examples and drawings, but the embodiments of the present invention are not limited thereto. The examples, in which specific conditions are not specified, were conducted under conventional conditions or conditions recommended by the manufacturer. The reagents or instruments used are not indicated by the manufacturer, and are all conventional products available commercially.
In the embodiment, the vinyl silicone oil is Shandong Xinglong Da 5846; the conductive filler is a mixture of a carbon nano tube and nano copper silicide mixed according to the mass ratio of 25 to 1, wherein the carbon nano tube is selected from SCC-8 produced by Jiaxing nano new material company Limited; the catalyst is a platinum catalyst produced by Shanghai Aladdin Biotechnology GmbH; the surfactant is triethanolamine produced by Shanghai Aladdin Biotechnology Limited; the waterproof emulsion is Achima ENCOR 5132; the nano copper silicide is produced by adopting the Chinese science excellent; the nanometer boron nitride is produced by Guangzhou Hongwu new material company; the hydrogen-containing silicone oil adopts Zhejiang Jiashan JF-201 silicone oil with the viscosity of 2000; the defoamer selects and uses the chemical PLX-4060 of Bo Te of Quzhou city; viscoat 46 thickener was used as the thickener, and was neutralized with aqueous ammonia to pH =7 before use.
In the examples, parts are by mass.
Examples
Adding 91.2 parts of vinyl silicone oil, 3 parts of conductive filler, 1 part of catalyst, 1 part of surfactant, 1.5 parts of waterproof emulsion, 0.3 part of nano copper silicide and 2 parts of boron nitride into a stirrer with a heating and pressure reducing system, heating to 60 ℃, and stirring under reduced pressure for 1 hour to obtain the component A.
According to requirements, 73.7 parts of vinyl silicone oil, 25 parts of hydrogen-containing silicone oil, 0.3 part of defoaming agent and 1 part of thickening agent are heated to 60 ℃ and stirred under reduced pressure for 1 hour to prepare the component B.
When used, the components A, B were mixed at the mass ratio shown in table 1 and cured.
The product can be cured at room temperature and also can be cured by heating, has the characteristic of faster curing at higher temperature, and does not generate any by-product in the curing reaction.
The following table 1 shows the measurement data of various performance indexes.
TABLE 1 measurement data of Performance indicators at different ratios
Table 2 measurement data of various performance indexes in example 3
The component A and the component B prepared in the embodiment 3 are fully stirred and mixed according to the proportion, and then the mixture is injected into the high-voltage cable with the defect buffer layer, so that the cable laying amount can be effectively reduced. Partial discharge signal test 1.5U of record is carried out according to GB/T11017.1-2014 partial discharge test standard 0 And (5) a corresponding partial discharge signal is sent down. The background noise of the test site was about 1.22pC, the center frequency of the partial discharge signal filter was set to 205kHz, and the bandwidth of the partial discharge signal filter was 350kHz. Fig. 3 is a schematic of the wiring and layout of the test. Fig. 4 partial discharge measurement diagram before cable repair, where PD:21.97pC HV:96.38kV. Fig. 5 is a partial discharge measurement diagram after cable repair, where PD:1.12pC HV:96.07kV. Namely, after the cables containing white spots are injected, the release amount of the defective cables can be kept at 1.5U 0 (U 0 =64 kV) was decreased by 20pC.
The above embodiments are preferred embodiments of the present invention, but the present invention is not limited to the above embodiments, and any other changes, modifications, substitutions, combinations, and simplifications which do not depart from the spirit and principle of the present invention should be construed as equivalents thereof, and all such modifications are intended to be included in the scope of the present invention.
Claims (7)
1. A conductive repair liquid for ablation faults of a cable buffer layer is characterized by comprising an A component and a B component which have the mass ratio of 5:5-7:3, wherein,
the component A comprises the following raw materials in parts by mass:
78 to 95.5 portions of vinyl silicone oil;
3 to 10 parts of conductive filler;
1 to 10 parts of a catalyst;
0.5-2 parts of a surfactant;
0.5-2 parts of waterproof emulsion;
0.1-0.5 parts of nano copper silicide;
2-3 parts of boron nitride;
the component B comprises the following raw materials in parts by mass:
44.5 to 78.9 parts of vinyl silicone oil;
20 to 50 parts of hydrogen-containing silicone oil;
1-5 parts of a thickening agent;
0.1-0.5 part of defoaming agent;
the conductive filler is a blend of nano copper silicide and at least one of nano conductive filler carbon nano tube, graphene and carbon black; the mass ratio of at least one of the nano conductive filler carbon nano tube, the graphene and the carbon black to the nano copper silicide is 20:1-30:1;
the waterproof emulsion is vinyl acetate-ethylene copolymer emulsion with pH of 7 and viscosity of not more than 600mpa.s at 25 ℃.
2. The conductive repair liquid for cable buffer layer ablation failure according to claim 1, characterized in that:
the vinyl silicone oil is at least one of vinyl-terminated polydimethylsiloxane and vinyl-terminated polymethylvinylsiloxane.
3. The conductive repair fluid for cable buffer layer ablation failure according to claim 1, characterized in that:
the hydrogen-containing silicone oil is at least one of methyl siloxane, ethyl siloxane and methyl phenyl siloxane;
the catalyst is a platinum compound.
4. The conductive repair liquid for cable buffer layer ablation failure according to claim 1, characterized in that:
the surfactant is at least one of fatty glyceride, polyhydric alcohol and triethanolamine;
the thickening agent is an acrylic thickening agent;
the defoaming agent is selected from one of non-silicon type, polyether type, organic silicon type and polyether modified organic silicon type.
5. A preparation method of the conductive repair liquid for the cable buffer layer ablation fault according to any one of claims 1 to 4, characterized by comprising the following steps:
(1) Adding the raw materials of the component A into a stirrer with a heat and pressure reduction system, and uniformly stirring and mixing to obtain a component A;
(2) Adding the raw materials of the component B into a stirrer with a heat and pressure reduction system, and uniformly stirring and mixing to obtain a component B;
(3) When in use, the component A and the component B are mixed according to the mass ratio and are solidified.
6. The preparation method of the conductive repairing liquid for the cable buffer layer ablation fault, according to claim 5, is characterized in that:
the stirring and mixing in the step (1) refers to stirring for 1-3 hours at 50-70 ℃ under reduced pressure;
the stirring and mixing in the step (2) means stirring at 50 to 70 ℃ under reduced pressure for 1 to 3 hours.
7. Use of the conductive repair liquid for cable buffer ablation failure according to any one of claims 1 to 4 in cable buffer repair.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211052396.5A CN115286998B (en) | 2022-08-31 | 2022-08-31 | Conductive repair liquid for ablation fault of cable buffer layer and preparation method and application thereof |
JP2023133039A JP2024035119A (en) | 2022-08-31 | 2023-08-17 | Conductive restoration liquid for ablation failure of power cable buffer layer, and production method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211052396.5A CN115286998B (en) | 2022-08-31 | 2022-08-31 | Conductive repair liquid for ablation fault of cable buffer layer and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115286998A CN115286998A (en) | 2022-11-04 |
CN115286998B true CN115286998B (en) | 2023-04-14 |
Family
ID=83832589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211052396.5A Active CN115286998B (en) | 2022-08-31 | 2022-08-31 | Conductive repair liquid for ablation fault of cable buffer layer and preparation method and application thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024035119A (en) |
CN (1) | CN115286998B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115322377B (en) * | 2022-09-01 | 2024-03-26 | 广东电网有限责任公司广州供电局 | Pre-condensed power cable insulation aging repair liquid and preparation method and application thereof |
CN116640489B (en) * | 2023-06-21 | 2024-06-07 | 西安交通大学 | Semiconductive repair liquid for ablation defect of high-voltage cable buffer layer and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004178922A (en) * | 2002-11-26 | 2004-06-24 | Showa Denko Kk | Negative electrode material and secondary battery using the same |
WO2016170952A1 (en) * | 2015-04-21 | 2016-10-27 | 日東電工株式会社 | Self-repairing electrical insulation resin composition and electrical wire using same |
CN110791103A (en) * | 2018-08-01 | 2020-02-14 | 江西蓝星星火有机硅有限公司 | Novel conductive liquid silicone rubber and preparation method and application thereof |
CN110845851A (en) * | 2019-11-22 | 2020-02-28 | 新安天玉有机硅有限公司 | Liquid conductive adhesive for power cable accessories and preparation method thereof |
-
2022
- 2022-08-31 CN CN202211052396.5A patent/CN115286998B/en active Active
-
2023
- 2023-08-17 JP JP2023133039A patent/JP2024035119A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004178922A (en) * | 2002-11-26 | 2004-06-24 | Showa Denko Kk | Negative electrode material and secondary battery using the same |
CN1717822A (en) * | 2002-11-26 | 2006-01-04 | 昭和电工株式会社 | Electrode material comprising silicon and/or tin particles and production method and use thereof |
WO2016170952A1 (en) * | 2015-04-21 | 2016-10-27 | 日東電工株式会社 | Self-repairing electrical insulation resin composition and electrical wire using same |
CN110791103A (en) * | 2018-08-01 | 2020-02-14 | 江西蓝星星火有机硅有限公司 | Novel conductive liquid silicone rubber and preparation method and application thereof |
CN110845851A (en) * | 2019-11-22 | 2020-02-28 | 新安天玉有机硅有限公司 | Liquid conductive adhesive for power cable accessories and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115286998A (en) | 2022-11-04 |
JP2024035119A (en) | 2024-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115286998B (en) | Conductive repair liquid for ablation fault of cable buffer layer and preparation method and application thereof | |
EP2094773B2 (en) | Semi-conducting polymer compositions for the preparation of wire and cable | |
CN107337902B (en) | Glass fiber and carbon nanotube co-modified epoxy composite material and preparation method thereof | |
CN110669316B (en) | Insulating material for bus duct | |
CN107858002A (en) | A kind of shrinkage cable liquid silicon rubber composition and preparation method thereof | |
CN113292859B (en) | Nano-modified rapid-forming high-molecular insulating material and preparation method thereof | |
Nazir et al. | Synergistic effect of additives on electrical resistivity, fire and smoke suppression of silicone rubber for high voltage insulation | |
Liu et al. | Effect of different coupling agents on the interfacial properties of tube–internally insulated foam materials interface in a composite cross‐arm under water environment | |
CN116669412B (en) | Heterostructure heat-conducting electromagnetic shielding silicone rubber and preparation method thereof | |
Chen et al. | Insulating polysiloxane coating for XLPE‐Si‐rubber interfaces with high long‐term stability | |
CN113667309A (en) | Organic-inorganic hybrid crosslinked heat-conducting silica gel and preparation method thereof | |
CN105255022A (en) | Semi-conductive ethylene-propylene-diene monomer rubber material for high-voltage direct current cable accessory and preparation method thereof | |
CN116285219A (en) | Epoxy resin composite material with excellent tracking resistance, preparation method and application thereof | |
CN112898779B (en) | Recyclable self-repairing flexible compliant electrode and preparation method thereof | |
CN107936343A (en) | A kind of electromagnetic shield rubber material | |
Shang et al. | Investigation of MQ Resin Enhanced Material Used for On-Site Insulating Bare Conductors | |
CN110591386A (en) | Curable insulating vinyl silicone grease material and preparation method and application thereof | |
CN113388181B (en) | High-pressure-resistant heating material, preparation method thereof and self-heating deicing cable | |
Sun et al. | Effect of one-dimensional tetra-needle-like ZnO whiskers on the electrical properties of montmorillonite/silicon carbide/epoxy micro-nanocomposites | |
Li et al. | Collaborative improvement of electrical‐thermal‐mechanical properties of kaolin‐filled ethylene propylene diene monomer and mechanism analysis | |
Li et al. | Thermal aged XLPE cables restoration by injecting hydrolyzable voltage stabilizer | |
CN112280306B (en) | Liquid repairing agent for improving electric corrosion of water-blocking buffer belt of high-voltage and ultrahigh-voltage cable, and preparation method, filling equipment and filling method thereof | |
CN116640489B (en) | Semiconductive repair liquid for ablation defect of high-voltage cable buffer layer and preparation method thereof | |
CN115322377B (en) | Pre-condensed power cable insulation aging repair liquid and preparation method and application thereof | |
Yin et al. | Revitalising high voltage cable: Exploring effective repair methods and influential factors for buffer layer defects using conductive silicone rubber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |