JP5827261B2 - Silicon-containing particles, negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents

Silicon-containing particles, negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5827261B2
JP5827261B2 JP2013067742A JP2013067742A JP5827261B2 JP 5827261 B2 JP5827261 B2 JP 5827261B2 JP 2013067742 A JP2013067742 A JP 2013067742A JP 2013067742 A JP2013067742 A JP 2013067742A JP 5827261 B2 JP5827261 B2 JP 5827261B2
Authority
JP
Japan
Prior art keywords
silicon
negative electrode
secondary battery
electrolyte secondary
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013067742A
Other languages
Japanese (ja)
Other versions
JP2014192064A (en
Inventor
一行 谷口
一行 谷口
中西 鉄雄
鉄雄 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013067742A priority Critical patent/JP5827261B2/en
Priority to KR1020140034398A priority patent/KR20140118823A/en
Priority to CN201410122545.XA priority patent/CN104078662B/en
Publication of JP2014192064A publication Critical patent/JP2014192064A/en
Application granted granted Critical
Publication of JP5827261B2 publication Critical patent/JP5827261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、珪素含有粒子、これを用いた非水電解質二次電池の負極材、および、非水電解質二次電池に関する。   The present invention relates to silicon-containing particles, a negative electrode material for a non-aqueous electrolyte secondary battery using the same, and a non-aqueous electrolyte secondary battery.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の非水電解質二次電池が強く要望されている。一方で、自動車用途に於いて燃費向上、地球温暖化ガスの排出抑制を目的にハイブリッド自動車、電気自動車の開発が盛んに行われている。   In recent years, with the remarkable development of portable electronic devices, communication devices, etc., there is a strong demand for non-aqueous electrolyte secondary batteries with high energy density from the viewpoints of economy and downsizing and weight reduction of devices. On the other hand, in automobile applications, hybrid cars and electric cars have been actively developed for the purpose of improving fuel consumption and suppressing emission of global warming gas.

珪素は現在実用化されている炭素材料の理論容量372mAh/gより遙かに高い理論容量4200mAh/gを示すことから、電池の小型化と高容量化において最も期待される材料である。     Since silicon exhibits a theoretical capacity of 4200 mAh / g, which is much higher than the theoretical capacity of 372 mAh / g of carbon materials currently in practical use, it is the most promising material for reducing the size and increasing the capacity of batteries.

一方で、珪素は炭素材料に比べ充放電に伴う粒子の体積変化が非常に大きく、充放電を繰り返すことにより珪素粒子の微細化や導電助材あるいは集電体からの剥離・脱落が進行し、結果良好なサイクル特性が得られないという問題点があり、改良が求められている。   On the other hand, the volume change of particles accompanying charging / discharging is much larger than that of carbon material in silicon, and by repeating charging / discharging, silicon particles become finer and peeling / dropping from the conductive material or current collector proceeds. As a result, there is a problem that good cycle characteristics cannot be obtained, and improvement is demanded.

上記問題点を解決する手段として、例えば、特許文献1、2に示すような珪素粒子と黒鉛とを炭素性物質で複合化し、焼成による炭素化を行なう手法や、特許文献3に示すような珪素合金をアルミナ、シリカ、チタニア、炭化珪素、窒化珪素といったセラミックと混合、焼結する手法が提案されている。   As means for solving the above-mentioned problems, for example, a technique of compounding silicon particles and graphite as shown in Patent Documents 1 and 2 with a carbonaceous material and performing carbonization by firing, or silicon as shown in Patent Document 3 A method of mixing and sintering an alloy with a ceramic such as alumina, silica, titania, silicon carbide, or silicon nitride has been proposed.

特開2011−119207号公報JP 2011-119207 A 特開2012−124113号公報JP2012-124113A 特許4967839号公報Japanese Patent No. 4967839

しかしながら、本発明者が鋭意検討を行なった結果、これらの手法では珪素粒子又は珪素合金粒子の膨張を抑制することが出来ず、充放電サイクルを経過するに従って電池の容量が低下するといった課題が依然残されていた。   However, as a result of intensive studies by the present inventor, these methods cannot suppress the expansion of silicon particles or silicon alloy particles, and the problem that the capacity of the battery decreases as the charge / discharge cycle elapses still remains. It was left.

本発明は、上記問題点に鑑みてなされたものであって、非水電解質二次電池用負極活物質として用いた際に、黒鉛などと比較して高容量であるとともに、サイクル特性にも優れた非水電解質二次電池とすることができる非水電解質二次電池の負極活物質に使われる珪素含有粒子を提供することを目的とする。   The present invention has been made in view of the above problems, and when used as a negative electrode active material for a non-aqueous electrolyte secondary battery, it has a higher capacity than graphite and has excellent cycle characteristics. Another object of the present invention is to provide silicon-containing particles used for the negative electrode active material of a non-aqueous electrolyte secondary battery that can be a non-aqueous electrolyte secondary battery.

上記目的を達成するために、本発明は、非水電解質二次電池の負極活物質に使われる珪素含有粒子であって、前記珪素含有粒子が、珪素粒子の表面の少なくとも一部が熱硬化された熱硬化性樹脂で被覆されたものであり、前記熱硬化性樹脂の厚みが5nm以上、500nm以下であり、前記珪素粒子の結晶粒子径が1nm以上、300nm以下であることを特徴とする珪素含有粒子を提供する。   In order to achieve the above object, the present invention provides a silicon-containing particle used in a negative electrode active material of a non-aqueous electrolyte secondary battery, wherein the silicon-containing particle is obtained by thermally curing at least a part of the surface of the silicon particle. The silicon is coated with a thermosetting resin, the thickness of the thermosetting resin is 5 nm or more and 500 nm or less, and the crystal particle diameter of the silicon particles is 1 nm or more and 300 nm or less. Provide contained particles.

このような珪素含有粒子を非水電解質二次電池の用負極活物質に使えば、基材となる珪素粒子の充放電に伴う体積膨張が比較的小さく、かつ、表面を被覆している熱硬化性樹脂により珪素含有粒子の体積膨張をさらに抑制することができ、これにより、結着力の強い有機溶剤系バインダーはもとより、結着力の比較的弱いSBR(スチレン−ブタジエンラバー)やポリアクリル酸等の水系バインダー(水溶性バインダー)を結着剤として用いて負極活物質合材を調製し、集電体に塗布して負極を作製しても、サイクル特性の良好な非水電解質二次電池とすることができ、また、黒鉛系負極材と混合使用した場合でも良好なサイクル特性が得られる。   If such a silicon-containing particle is used as a negative electrode active material for a non-aqueous electrolyte secondary battery, the volume expansion associated with charging / discharging of the silicon particles as a base material is relatively small, and the thermosetting coating the surface The volume expansion of the silicon-containing particles can be further suppressed by the functional resin, which enables not only the organic solvent-based binder having a strong binding force but also SBR (styrene-butadiene rubber), polyacrylic acid, etc. having a relatively weak binding force. Even if a negative electrode active material mixture is prepared using an aqueous binder (water-soluble binder) as a binder and applied to a current collector to produce a negative electrode, a non-aqueous electrolyte secondary battery with good cycle characteristics is obtained. In addition, even when mixed with a graphite-based negative electrode material, good cycle characteristics can be obtained.

さらに、体積膨張により珪素粒子の微細化(すなわち、分裂)が起きた場合でも、珪素粒子表面が熱硬化性樹脂により被覆されていることにより、微細化で新たに生じた活性な珪素表面と電解液との過剰な反応を抑制することが出来るため、サイクル特性の安定した非水電解質二次電池を提供できる。   Furthermore, even when the silicon particles are refined (ie, split) due to volume expansion, the surface of the silicon particles is covered with a thermosetting resin, so that the active silicon surface newly generated by the refinement can be electrolyzed. Since excessive reaction with the liquid can be suppressed, a non-aqueous electrolyte secondary battery with stable cycle characteristics can be provided.

前記珪素粒子の真密度が2.260g/cm以上、3.500g/cm以下であることが好ましい。
真密度を2.260g/cm以上とすることで、充放電に伴う体積変化が小さく、かつサイクル特性の良い珪素粒子が得られる。また、真密度を3.500g/cm以下とすることで、重量あたりの電気容量が大きく低下することを防止できる。
The true density of the silicon particles is preferably 2.260 g / cm 3 or more and 3.500 g / cm 3 or less.
By setting the true density to 2.260 g / cm 3 or more, silicon particles having a small volume change accompanying charge / discharge and good cycle characteristics can be obtained. In addition, by setting the true density to 3.500 g / cm 3 or less, it is possible to prevent the electric capacity per weight from greatly decreasing.

このとき、前記珪素粒子は、添加元素として、ホウ素、アルミニウム、リン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ヒ素、ゲルマニウム、スズ、アンチモン、インジウム、タンタル、タングステン、ガリウムから選択される一種又は二種以上の元素が添加されたものであることが好ましい。
このような元素グループから選択される一種又は二種以上の元素が添加元素として、添加されたものであれば、体積抵抗率を低くすることができるので、電子伝導性に優れた非水電解質二次電池の負極を形成することができる。
At this time, the silicon particles, as additive elements, boron, aluminum, phosphorus, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, germanium, tin, antimony, indium, tantalum, tungsten, It is preferable that one or more elements selected from gallium are added .
If one or more elements selected from such element groups are added as additive elements , the volume resistivity can be lowered, so that the non-aqueous electrolyte with excellent electron conductivity can be reduced. The negative electrode of a secondary battery can be formed.

さらに、上述した珪素含有粒子を、非水電解質二次電池の負極活物質として、非水電解質二次電池の負極材に用いることができる。
このように、上述した珪素含有粒子を、非水電解質二次電池の負極活物質として、非水電解質二次電池の負極材に用いることで、高容量で長寿命な非水電解質二次電池を提供できる。
Furthermore, the silicon-containing particles described above can be used as a negative electrode material for a nonaqueous electrolyte secondary battery as a negative electrode active material for a nonaqueous electrolyte secondary battery.
Thus, by using the above-mentioned silicon-containing particles as a negative electrode active material for a non-aqueous electrolyte secondary battery in a negative electrode material for a non-aqueous electrolyte secondary battery, a high-capacity and long-life non-aqueous electrolyte secondary battery can be obtained. Can be provided.

また、上記の非水電解質二次電池の負極材が、水溶性のバインダーを結着剤としてさらに含んでいてもよい。
このように、本発明では、非水電解質二次電池の負極材が、決着力の比較的弱い水溶性のバインダーを結着剤として用いることができ、高容量で長寿命な非水電解質二次電池を提供できる。
Moreover, the negative electrode material of the nonaqueous electrolyte secondary battery may further include a water-soluble binder as a binder.
As described above, in the present invention, the negative electrode material of the non-aqueous electrolyte secondary battery can use a water-soluble binder having a relatively weak fixing power as a binder, and has a high capacity and long life non-aqueous electrolyte secondary battery. Battery can be provided.

また、上記の非水電解質二次電池の負極材が、黒鉛を導電剤としてさらに含んでいてもよい。
このように、黒鉛を導電剤としてさらに含むことで、非水電解質二次電池の負極材の導電性を保持することができる。
Moreover, the negative electrode material of the nonaqueous electrolyte secondary battery may further include graphite as a conductive agent.
Thus, the electrical conductivity of the negative electrode material of a nonaqueous electrolyte secondary battery can be maintained by further including graphite as a conductive agent.

ここで、非水電解質二次電池が、上述した非水電解質二次電池の負極材からなる負極成型体と、正極成型体と、前記負極成型体と、前記正極成型体とを分離するセパレーターと、非水電解質とを具備したものであることが好ましい。
このように、非水電解質二次電池が、上述した非水電解質二次電池の負極材からなる負極成型体を具備することで、高容量で長寿命の非水電解質二次電池が得られる。
Here, the nonaqueous electrolyte secondary battery includes a negative electrode molded body made of the negative electrode material of the nonaqueous electrolyte secondary battery described above, a positive electrode molded body, the negative electrode molded body, and a separator that separates the positive electrode molded body. The nonaqueous electrolyte is preferably included.
Thus, the nonaqueous electrolyte secondary battery includes the negative electrode molded body made of the negative electrode material of the nonaqueous electrolyte secondary battery described above, whereby a nonaqueous electrolyte secondary battery having a high capacity and a long life can be obtained.

上記の非水電解質二次電池は、非水電解質がリチウムイオンを含んでいるものであることが好ましい。
上述した非水電解質二次電池の負極材からなる負極成型体は、従来の黒鉛材料を活物質として含む非水電解質二次電池の負極材からなる負極成型体などと比較して高容量でかつ不可逆容量が小さく、充放電に伴う体積変化が小さくコントロールされ、サイクル特性が優れているので、非水電解質がリチウムイオンを含んでいるリチウムイオン二次電池に、好適に用いることができる。
In the above non-aqueous electrolyte secondary battery, the non-aqueous electrolyte preferably contains lithium ions.
The negative electrode molded body made of the negative electrode material of the non-aqueous electrolyte secondary battery described above has a higher capacity than a negative electrode molded body made of a negative electrode material of a non-aqueous electrolyte secondary battery containing a conventional graphite material as an active material, and the like. Since the irreversible capacity is small, the volume change accompanying charge / discharge is controlled to be small, and the cycle characteristics are excellent, the nonaqueous electrolyte can be suitably used for a lithium ion secondary battery containing lithium ions.

以上のように、本発明の珪素含有粒子を、非水電解質二次電池の負極活物質に用いることで、高容量で長寿命の非水電解質二次電池を提供することができる。   As described above, by using the silicon-containing particles of the present invention for the negative electrode active material of a non-aqueous electrolyte secondary battery, a high-capacity and long-life non-aqueous electrolyte secondary battery can be provided.

以下本発明についてより具体的に説明する。
前述のように、珪素を活物質として利用するために種々の手法が従来提案されているが、これらの手法では、珪素粒子又は珪素合金粒子の膨張を抑制することが出来ず、充放電サイクルを経過するに従い電池の容量が低下するといった課題が依然残されていた。
Hereinafter, the present invention will be described more specifically.
As described above, various methods have been proposed in order to use silicon as an active material. However, in these methods, expansion of silicon particles or silicon alloy particles cannot be suppressed, and a charge / discharge cycle is performed. The problem that the capacity of the battery decreased as time passed remained.

そこで、本発明者は、サイクル安定性を維持しながら、活物質の単位質量当たりの電池容量が、炭素材料の理論容量372mAh/gを超える珪素系活物質について鋭意検討を重ねた。
その結果、非水電解質二次電池の負極活物質に使われる珪素含有粒子として、珪素粒子の表面の少なくとも一部が熱硬化された熱硬化性樹脂で被覆されるものであり、熱硬化性樹脂の厚みが5nm以上、500nm以下であり、珪素粒子の結晶粒子径が1nm以上、300nm以下である珪素含有粒子を用いることで、炭素系活物質より高い電池容量を示す一方で、基材となる珪素粒子の充放電に伴う体積変化を粒子表面の熱硬化性樹脂が抑制し、サイクル特性を向上させることができることを見出し、本発明をなすに至った。
Therefore, the present inventor conducted extensive studies on a silicon-based active material in which the battery capacity per unit mass of the active material exceeds the theoretical capacity of 372 mAh / g of the carbon material while maintaining cycle stability.
As a result, as the silicon-containing particles used in the negative electrode active material of the nonaqueous electrolyte secondary battery, at least a part of the surface of the silicon particles is coated with a thermosetting resin that is thermoset, and the thermosetting resin By using silicon-containing particles having a thickness of 5 nm or more and 500 nm or less and a crystal particle diameter of silicon particles of 1 nm or more and 300 nm or less, a battery capacity higher than that of the carbon-based active material is exhibited, and a substrate is obtained. It has been found that the thermosetting resin on the particle surface can suppress the volume change associated with charging / discharging of the silicon particles and the cycle characteristics can be improved, and the present invention has been made.

本発明の珪素含有粒子の基材である珪素粒子の表面を熱硬化性樹脂で被覆する方法としては、熱硬化性樹脂又はその前駆体の溶液と珪素粒子を混合し、加熱条件下や減圧条件下などで溶媒を除去する方法が挙げられる。溶媒を除去する方法に特に制限は無いが、噴霧乾燥法や撹拌乾燥法を用いることでより均一に粒子表面を被覆することが可能となるためより有利である。   As a method of coating the surface of silicon particles, which are the base material of the silicon-containing particles of the present invention, with a thermosetting resin, a solution of a thermosetting resin or a precursor thereof and silicon particles are mixed, and heated or reduced pressure conditions. A method of removing the solvent under such as below. The method for removing the solvent is not particularly limited, but it is more advantageous to use a spray drying method or a stirring drying method because the particle surface can be coated more uniformly.

上記の前記熱硬化性樹脂は、例えば、フェノール樹脂、ユリア樹脂、メラミン樹脂、フラン樹脂、キシレン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性ポリイミド、熱硬化性ポリアミドイミド等、特に制限無く用いることができるが、樹脂の強度、耐熱性、耐溶剤性の観点からポリイミド又はポリアミドイミドを用いるのが好ましい。
また、これらの熱硬化性樹脂は、官能基として水酸基、カルボキシル基、アミノ基、スルホニル基が導入されていることが好ましい。これらの官能基を有する熱硬化性樹脂を用いることで、充放電の際にリチウムイオンの挿入あるいは脱離をスムーズにすることができる。
The above-mentioned thermosetting resin is used without particular limitation, for example, phenol resin, urea resin, melamine resin, furan resin, xylene resin, epoxy resin, unsaturated polyester resin, thermosetting polyimide, thermosetting polyamideimide, etc. However, it is preferable to use polyimide or polyamideimide from the viewpoint of the strength, heat resistance, and solvent resistance of the resin.
In addition, these thermosetting resins preferably have a hydroxyl group, a carboxyl group, an amino group, or a sulfonyl group introduced as a functional group. By using a thermosetting resin having these functional groups, it is possible to smoothly insert or desorb lithium ions during charging and discharging.

また、前記熱硬化性樹脂には導電材を混合しても良い。導電材はアセチレンブラック、ケッチェンブラック等のカーボンブラックや、カーボンナノファイバー等、非水電解質二次電池用の導電材として広く用いられているものであれば特に制限はなく、これらの導電材を1種類又は2種類以上混合して用いることができる。これにより、本発明により得られる珪素含有粒子の電気抵抗を下げることが出来る。   Further, a conductive material may be mixed with the thermosetting resin. The conductive material is not particularly limited as long as it is widely used as a conductive material for non-aqueous electrolyte secondary batteries, such as carbon black such as acetylene black and ketjen black, and carbon nanofibers. One type or a mixture of two or more types can be used. Thereby, the electrical resistance of the silicon-containing particles obtained by the present invention can be lowered.

珪素粒子の表面を被覆した熱硬化性樹脂の熱硬化は、常圧下又は減圧下、不活性雰囲気中で150度以上600度以下の温度で行なうのが好ましく、400度以下の温度で行なうのがより好ましい。
熱硬化温度を150度以上とすれば、加熱による熱硬化性樹脂の硬化が十分に進行し、また、熱硬化温度が600度以下とすれば、熱硬化性樹脂の炭化が起こることもないため、いずれの場合にも、充放電に伴う粒子の体積膨張を抑制する効果が十分に発揮される。
The thermosetting of the thermosetting resin covering the surface of the silicon particles is preferably performed at a temperature of 150 ° C. or more and 600 ° C. or less in an inert atmosphere under normal pressure or reduced pressure, and is preferably performed at a temperature of 400 ° C. or less. More preferred.
If the thermosetting temperature is 150 ° C. or higher, the curing of the thermosetting resin by heating proceeds sufficiently, and if the thermosetting temperature is 600 ° C. or lower, the thermosetting resin will not carbonize. In any case, the effect of suppressing the volume expansion of the particles accompanying charge / discharge is sufficiently exhibited.

珪素粒子の表面を被覆した熱硬化性樹脂は、熱硬化後において、5nm以上、500nm以下の厚みを有している。
厚みが5nmより小さい場合、充放電に伴う基材となる珪素粒子の体積膨張を抑制する効果が小さくなり、サイクル特性の向上に寄与しなくなる。
また、厚みが500nmより大きい場合、得られる珪素含有粒子において熱硬化性樹脂の占める割合が大きくなりすぎて、電池容量が低下する。
The thermosetting resin covering the surface of the silicon particles has a thickness of 5 nm or more and 500 nm or less after thermosetting.
When the thickness is smaller than 5 nm, the effect of suppressing the volume expansion of the silicon particles serving as the base material associated with charge / discharge is reduced, and it does not contribute to the improvement of the cycle characteristics.
On the other hand, when the thickness is larger than 500 nm, the proportion of the thermosetting resin in the obtained silicon-containing particles becomes too large, and the battery capacity is lowered.

本発明の珪素含有粒子は、その基体である珪素粒子の結晶粒子径として、X線回折パターンの分析において2θ=28.4°付近のSi(111)に帰属される回折線の半値全幅よりシェラー法(Scherrer法)で求められる値が、1nm以上、300nm以下である。   The silicon-containing particles of the present invention have a Scherrer as the crystal particle diameter of the silicon particles that are the substrate, from the full width at half maximum of the diffraction line attributed to Si (111) near 2θ = 28.4 ° in the analysis of the X-ray diffraction pattern. The value obtained by the method (Scherrer method) is 1 nm or more and 300 nm or less.

このような珪素含有粒子であれば、非水電解質を用いる二次電池用の負極活物質に用いた場合、充放電時の体積変化が抑制されて結晶粒界での応力が緩和されるため、珪素系活物質の高い初期効率(最初の充電容量に対する放電容量の比)と高い電池容量が維持される。
また、一般的に体積膨張の少ない黒鉛系材料との混合使用においても、珪素含有粒子のみが大きく体積膨張を起こさないことから、黒鉛材料と珪素含有粒子の分離が小さく、サイクル特性に優れた非水電解質二次電池が得られる。
With such silicon-containing particles, when used as a negative electrode active material for a secondary battery using a non-aqueous electrolyte, the volume change during charging and discharging is suppressed, and the stress at the crystal grain boundary is relieved, High initial efficiency (ratio of discharge capacity to initial charge capacity) and high battery capacity of the silicon-based active material are maintained.
In general, even when mixed with graphite-based materials having a small volume expansion, only silicon-containing particles do not cause large volume expansion, so that the separation between the graphite material and the silicon-containing particles is small and the cycle characteristics are excellent. A water electrolyte secondary battery is obtained.

以下に、X線結晶回折の測定条件を例示する。
X線回折装置としては、BRUKER AXS社製のD8 ADVANCEを使用できる。X線源はCu Kα線、Niフィルターを使用して、出力40kv/40mA、スリット幅0.3°、ステップ幅0.0164°、1ステップあたり1秒の計数時間にて10−90°まで測定する。測定後のデータ処理は強度比0.5にてKα2線を除去して、スムージング処理を行ったもので比較する。この測定によって、10−60°の範囲を詳細に観察すると、ダイヤモンド構造のSi(111)に帰属される28.4°の回折線、Si(220)に帰属される47.2°の回折線、Si(311)に帰属される56.0°の回折線の3本のシグナルが強度大で鋭いシグナルとして観測される。
Below, the measurement conditions of X-ray crystal diffraction are illustrated.
As an X-ray diffractometer, D8 ADVANCE manufactured by BRUKER AXS can be used. X-ray source is Cu Kα ray, using Ni filter, output 40kv / 40mA, slit width 0.3 °, step width 0.0164 °, measurement up to 10-90 ° with counting time of 1 second per step To do. The data processing after the measurement is performed by removing the Kα2 line at an intensity ratio of 0.5 and performing smoothing processing. By observing the range of 10-60 ° in detail by this measurement, a diffraction line of 28.4 ° attributed to Si (111) having a diamond structure and a diffraction line of 47.2 ° belonging to Si (220). , Three signals of a diffraction line of 56.0 ° attributed to Si (311) are observed as sharp signals with high intensity.

本発明の珪素含有粒子の基体である珪素粒子は、Si(111)に帰属される28.4°の回折線の半値全幅よりシェラー法(Scherrer法)によって解析を行い、結晶粒子径を算出する事によって選別される。本発明の珪素含有粒子の基体である珪素粒子の結晶粒子径は1nm以上、300nm以下であり、200nm以下であることが好ましい。   The silicon particles, which are the base of the silicon-containing particles of the present invention, are analyzed by the Scherrer method (Scherrer method) from the full width at half maximum of the 28.4 ° diffraction line attributed to Si (111), and the crystal particle diameter is calculated. Sorted by things. The crystal particle diameter of the silicon particles that are the substrate of the silicon-containing particles of the present invention is 1 nm or more and 300 nm or less, and preferably 200 nm or less.

本発明の珪素含有粒子の基体である珪素粒子の乾式密度計による真密度の値が2.260g/cmより高く3.500g/cm未満であることが好ましい。
真密度を2.260g/cm以上とすることで、充放電に伴う体積変化が小さく、かつサイクル特性の良い珪素粒子が得られる。また、真密度を3.500g/cm以下とすることで、重量あたりの電気容量が大きく低下することを防止できる。
It is preferable that the true density value of silicon particles as a substrate of the silicon-containing particles of the present invention measured by a dry densimeter is higher than 2.260 g / cm 3 and lower than 3.500 g / cm 3 .
By setting the true density to 2.260 g / cm 3 or more, silicon particles having a small volume change accompanying charge / discharge and good cycle characteristics can be obtained. In addition, by setting the true density to 3.500 g / cm 3 or less, it is possible to prevent the electric capacity per weight from greatly decreasing.

珪素粒子の真密度を測定するときの乾式密度計の測定条件を以下に例示する。
乾式密度計としては、株式会社島津製作所製のアキュピックII1340を使用することができる。パージガスはヘリウムガスとし、23℃に設定したサンプルホルダー内にて、200回のパージを繰り返した後、測定を行う。
The measurement conditions of a dry densimeter when measuring the true density of silicon particles are exemplified below.
As a dry density meter, Accupic II 1340 manufactured by Shimadzu Corporation can be used. The purge gas is helium gas, and measurement is performed after purging 200 times in a sample holder set at 23 ° C.

本発明の珪素含有粒子の基体である珪素粒子の真密度は、例えば、珪素と異なる元素を添加することによっても達成される。
添加する元素としては、ホウ素、アルミニウム、リン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ヒ素、ゲルマニウム、スズ、アンチモン、インジウム、タンタル、タングステン、ガリウムから選択される一種又は二種以上の元素とすることが特に好ましい。
このような珪素と異なる元素の添加量は必要に応じて添加され、概ね50質量%以下であれば良いが、好ましくは0.001〜30質量%であり、さらに0.01〜10質量%であることがより好ましい。
0.01質量%以上であれば体積抵抗率が確実に低下し、一方、10質量%以下であれば添加元素の偏析が生じにくく、体積膨張の増加を防止できる。
The true density of the silicon particles that are the substrate of the silicon-containing particles of the present invention can also be achieved, for example, by adding an element different from silicon.
The element to be added is one selected from boron, aluminum, phosphorus, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, germanium, tin, antimony, indium, tantalum, tungsten, and gallium. Or it is especially preferable to set it as 2 or more types of elements.
The addition amount of such an element different from silicon is added as necessary, and may be approximately 50% by mass or less, preferably 0.001 to 30% by mass, and further 0.01 to 10% by mass. More preferably.
When the content is 0.01% by mass or more, the volume resistivity is surely lowered. On the other hand, when the content is 10% by mass or less, segregation of the additive element hardly occurs, and an increase in volume expansion can be prevented.

珪素粒子に珪素と異なる元素を添加する手法としては、真空蒸着法、溶融急冷法、スパッタリング法、メカノケミカル法等が挙げられ、これらの手法は特に制限無く用いることが出来るが、量産性及び製造コストの観点から真空蒸着法が好ましい。   Examples of methods for adding an element different from silicon to silicon particles include vacuum deposition, melt quenching, sputtering, mechanochemical methods, and the like, and these methods can be used without any particular limitation. From the viewpoint of cost, vacuum deposition is preferred.

以上のようにして得られた非水電解質二次電池の負極活物質として使われる珪素含有粒子の基体である珪素粒子は、非晶質粒界及び結晶質粒界を有し、非晶質層及び結晶粒界の応力緩和効果によって、充放電サイクルでの粒子崩壊が減じられる。よって、非水電解質二次電池の負極活物質として使われる珪素含有粒子の基体に用いることによって、充放電による体積膨張変化の応力に耐えることができ、高容量で長寿命の電池特性を示す。   The silicon particles as the base of the silicon-containing particles used as the negative electrode active material of the non-aqueous electrolyte secondary battery obtained as described above have an amorphous grain boundary and a crystalline grain boundary. Due to the stress relaxation effect of the grain boundary, particle collapse in the charge / discharge cycle is reduced. Therefore, by using it as a substrate of silicon-containing particles used as the negative electrode active material of a non-aqueous electrolyte secondary battery, it can withstand the stress of volume expansion change due to charge and discharge, and exhibits high-capacity and long-life battery characteristics.

本発明の非水電解質二次電池の負極活物質に使われる珪素含有粒子の基体である珪素粒子の粉体粒子径(以下粒子径と称する)が、レーザー回折散乱式粒度分布測定法による体積平均値D50(即ち、累積体積が50%となる時の粒子径、又は、メジアン径)で、1μm以上20μm以下であることが好ましい。
50を1μm以上とすることによって、嵩密度が低下し、単位体積あたりの充放電容量が低下する危険性を極力低くすることができる。
また、D50を20μm以下とすることによって、負極膜を貫通してショートする原因となるおそれを最小限に抑えることができるとともに、電極の形成が難しくなることもなく、集電体からの剥離の可能性を十分に低いものとすることができる。
The powder particle diameter (hereinafter referred to as particle diameter) of silicon particles, which are the base of silicon-containing particles used in the negative electrode active material of the nonaqueous electrolyte secondary battery of the present invention, is a volume average measured by a laser diffraction scattering type particle size distribution measurement method. The value D 50 (that is, the particle diameter or median diameter when the cumulative volume becomes 50%) is preferably 1 μm or more and 20 μm or less.
By the D 50 or more 1 [mu] m, and reduced bulk density, charge and discharge capacity per unit volume can be as much as possible reduced risk of decrease.
Further, by making the D 50 and 20μm or less, it is possible to minimize the risk of causing a short circuit through the negative electrode film, that no formation of the electrode becomes difficult, peeling from the current collector This possibility can be made sufficiently low.

珪素粒子の粒子径を測定するのに用いるレーザー回折散乱式粒度分布測定装置としては、日機装株式会社製マイクロトラックMT3000を使用することができる。分散媒には水を用い、2回測定を行なった平均値がD50として算出される。 Nikkiso Co., Ltd. Microtrac MT3000 can be used as a laser diffraction scattering type particle size distribution measuring device used for measuring the particle size of silicon particles. The dispersion medium with water, the average value was measured twice is calculated as D 50.

本発明の珪素含有粒子の基体である珪素粒子を上記の粒子径とするために、以下に示すような公知の方法によって粉砕・分級することができる。   In order to make the silicon particles that are the base of the silicon-containing particles of the present invention have the above-mentioned particle diameter, they can be pulverized and classified by a known method as described below.

用いる粉砕機としては、例えば、ボール、ビーズなどの粉砕媒体を運動させ、その運動エネルギーによる衝撃力や摩擦力、圧縮力を利用して被砕物を粉砕するボールミル、媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミル、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミル、ハンマー、ブレード、ピンなどを固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミル、剪断力を利用するコロイドミルや高圧湿式対向衝突式分散機「アルティマイザー」などを用いることができる。
そして粉砕は、湿式、乾式共に用いることができる。
As a pulverizer to be used, for example, a ball mill, a media agitating mill, or a roller compression machine that moves a pulverizing medium such as a ball or a bead and pulverizes a material to be crushed using an impact force, a frictional force, or a compressive force due to the kinetic energy A roller mill that performs pulverization using force, and a rotor that is fixedly equipped with a jet mill, hammer, blade, pin, etc. that pulverizes the crushed material against the lining material or collides with each other at high speed and performs pulverization by the impact force of the impact A hammer mill, a pin mill, a disk mill, a colloid mill using a shearing force, a high-pressure wet facing collision disperser “Ultimizer”, or the like can be used.
The pulverization can be used for both wet and dry processes.

また、粒度分布を整えるために、粉砕後に乾式分級や湿式分級もしくはふるい分け分級が行われる。
乾式分級は、主として気流を用い、分散、分離(細粒子と粗粒子の分離)、捕集(固体と気体の分離)、排出のプロセスが逐次もしくは同時に行われる。粒子相互間の干渉、粒子の形状、気流の流れの乱れ、速度分布、静電気の影響などで分級効率を低下させないように、分級をする前に前処理(水分、分散性、湿度などの調整)を行うか、使用される気流の水分や酸素濃度を調整して行うことができる。
また、乾式で分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。
In order to adjust the particle size distribution, dry classification, wet classification or sieving classification is performed after pulverization.
In the dry classification, an air stream is mainly used, and dispersion, separation (separation of fine particles and coarse particles), collection (separation of solid and gas), and discharge are performed sequentially or simultaneously. Pre-treatment (adjustment of moisture, dispersibility, humidity, etc.) before classification so as not to reduce the classification efficiency due to interference between particles, particle shape, air flow turbulence, velocity distribution, static electricity, etc. Or by adjusting the water content and oxygen concentration of the airflow used.
Further, in a dry type in which a classifier is integrated, pulverization and classification are performed at a time, and a desired particle size distribution can be obtained.

本発明の珪素含有粒子の負極材中の配合量は、負極材全体に対して3〜97質量%とすることができる。また、上記負極材中の結着剤の配合量は、負極材全体に対して1〜20質量%(より望ましくは3〜10質量%)の割合が良い。この結着剤の配合量を上記範囲とすることによって、負極活物質が分離してしまう危険性を極力低くすることができ、また空隙率が減少して絶縁膜が厚くなり、Liイオンの移動を阻害する危険性を極力低くすることができる。   The compounding quantity in the negative electrode material of the silicon-containing particle | grains of this invention can be 3-97 mass% with respect to the whole negative electrode material. Moreover, the compounding quantity of the binder in the said negative electrode material has a good ratio of 1-20 mass% (more desirably 3-10 mass%) with respect to the whole negative electrode material. By setting the blending amount of the binder within the above range, the risk of separation of the negative electrode active material can be reduced as much as possible, the porosity is reduced, the insulating film is thickened, and Li ions move. The risk of obstructing can be reduced as much as possible.

活物質としての上記非水電解質二次電池の負極活物質用の珪素含有粒子と、結着剤とを用いて負極材を作製する場合に、黒鉛等の活物質で希釈することで、導電性を向上させるとともに、体積膨張の緩和効果をさらに得ることができる。
その場合、希釈する割合によって負極材の電池容量は低下するが、従来の黒鉛材料と比較して高容量とすることが可能であり、珪素含有粒子単独の場合と比較してサイクル特性が向上する。
When a negative electrode material is produced using silicon-containing particles for the negative electrode active material of the non-aqueous electrolyte secondary battery as an active material and a binder, the conductive material is diluted with an active material such as graphite. In addition, the effect of relaxing the volume expansion can be further obtained.
In that case, the battery capacity of the negative electrode material is reduced depending on the dilution ratio, but it is possible to increase the capacity compared to the conventional graphite material, and the cycle characteristics are improved as compared with the case of the silicon-containing particles alone. .

この場合、黒鉛材料の種類は特に限定されず、具体的には、天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛などを用いることができる。   In this case, the type of graphite material is not particularly limited. Specifically, natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, various types Graphite such as a resin fired body can be used.

黒鉛材料を用いる場合、その添加量は、負極材全体に対して2〜96質量%であり、更には60〜95質量%であっても従来の黒鉛材料と比較して高容量となる。
この導電剤の添加量・配合量を上記範囲とすることによって、負極材の導電性が乏しくなって、初期抵抗が高くなることを確実に抑制することができる。
When the graphite material is used, the addition amount is 2 to 96% by mass with respect to the whole negative electrode material, and even if it is 60 to 95% by mass, the capacity is higher than that of the conventional graphite material.
By making the addition amount and blending amount of this conductive agent within the above ranges, it is possible to reliably suppress the negative electrode material from having poor conductivity and increasing the initial resistance.

上記のように得られる本発明の非水電解質二次電池用の負極材は、例えば、以下のように負極とすることができる。
即ち、上記負極活物質と、黒鉛材料と、結着剤と、その他の添加剤とからなる負極材に、N−メチルピロリドンあるいは水などの結着剤の溶解、分散に適した溶剤を混練してペースト状の合剤とし、この合剤を集電体上にシート状に塗布する。
この場合、集電体としては、銅箔、ニッケル箔など、通常、負極の集電体として使用されている材料であれば、特に厚さ、表面処理の制限なく使用することができる。
なお、上記の合剤をシート状に成形する成形方法は特に限定されず、公知の方法を用いることができる。
このような非水電解質二次電池用負極材を含む負極は、充放電での体積変化が従来の珪素含有粒子に比べて大幅に小さい本発明の非水電解質二次電池用負極活物質用の珪素含有粒子からなる負極活物質から主に構成されており、充電前後の膜厚変化が3倍(特には2.5倍)を超えないものとなっている。
The negative electrode material for a nonaqueous electrolyte secondary battery of the present invention obtained as described above can be used as a negative electrode, for example, as follows.
That is, a negative electrode material composed of the negative electrode active material, graphite material, binder, and other additives is kneaded with a solvent suitable for dissolving and dispersing the binder such as N-methylpyrrolidone or water. The mixture is made into a paste, and this mixture is applied in a sheet form on the current collector.
In this case, as the current collector, any material that is usually used as a negative electrode current collector, such as a copper foil or a nickel foil, can be used without any particular limitation on thickness and surface treatment.
In addition, the shaping | molding method which shape | molds said mixture into a sheet form is not specifically limited, A well-known method can be used.
A negative electrode including such a negative electrode material for a non-aqueous electrolyte secondary battery is used for the negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention in which the volume change during charge / discharge is significantly smaller than that of conventional silicon-containing particles. It is mainly composed of a negative electrode active material composed of silicon-containing particles, and the change in film thickness before and after charging does not exceed 3 times (particularly 2.5 times).

このようにして得られた負極を用いた負極成型体を用いることにより、非水電解質二次電池、特にはリチウムイオン二次電池を製造することができる。
この場合、非水電解質二次電池は、上記負極成型体を用いる点に特徴を有し、その他の正極(成型体)、セパレーター、電解液、非水電解質などの材料及び電池形状などは特に限定されない。
By using the molded negative electrode using the negative electrode thus obtained, a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery can be manufactured.
In this case, the non-aqueous electrolyte secondary battery is characterized in that the negative electrode molded body is used, and other positive electrodes (molded bodies), separators, electrolytes, non-aqueous electrolyte materials, and battery shapes are particularly limited. Not.

例えば、正極活物質としては、リチウムイオンを吸蔵及び離脱することが可能な酸化物あるいは硫化物等が挙げられ、これらのいずれか1種又は2種以上のものが用いられる。
具体的には、TiS、MoS、NbS、ZrS、VSあるいはV、MoO及びMg(V等のリチウムを含有しない金属硫化物もしくは酸化物、又はリチウム及びリチウムを含有するリチウム複合酸化物が挙げられ、また、NbSe等の複合金属、オリビン酸鉄も挙げられる。中でも、エネルギー密度を高くするには、LiMetOを主体とするリチウム複合酸化物が望ましい。なお、「Met」は、コバルト、ニッケル、鉄及びマンガンのうちの少なくとも1種が良く、pは、通常、0.05≦p≦1.10の範囲内の値である。このようなリチウム複合酸化物の具体例としては、層構造を持つLiCoO、LiNiO、LiFeO、LiNiCo1−r(但し、q及びrの値は電池の充放電状態によって異なり、通常、0<q<1、0.7<r≦1)、スピネル構造のLiMn及び斜方晶LiMnOが挙げられる。
さらに高電圧対応型として置換スピネルマンガン化合物としてLiMetMn1−s(0<s<1)も使用されており、この場合のMetはチタン、クロム、鉄、コバルト、ニッケル、銅及び亜鉛等が挙げられる。
For example, examples of the positive electrode active material include oxides or sulfides capable of inserting and extracting lithium ions, and any one or two or more of these are used.
Specifically, TiS 2 , MoS 2 , NbS 2 , ZrS 2 , VS 2 or V 2 O 5 , MoO 3 and Mg (V 3 O 8 ) 2 -free metal sulfide or oxide containing no lithium, or Examples thereof include lithium and lithium composite oxides containing lithium, and also include composite metals such as NbSe 2 and iron olivate. Among these, in order to increase the energy density, a lithium composite oxide mainly composed of Li p MetO 2 is desirable. “Met” is preferably at least one of cobalt, nickel, iron, and manganese, and p is usually a value in the range of 0.05 ≦ p ≦ 1.10. Specific examples of the lithium composite oxide, LiCoO 2, LiNiO 2, LiFeO 2, Li q Ni r Co 1-r O 2 ( where, the values of q and r is a charge-discharge state of the battery with a layer structure Usually, 0 <q <1, 0.7 <r ≦ 1), spinel-structured LiMn 2 O 4 and orthorhombic LiMnO 2 are mentioned.
Furthermore, LiMet s Mn 1-s O 4 (0 <s <1) is also used as a substituted spinel manganese compound as a high-voltage compatible type, where Met is titanium, chromium, iron, cobalt, nickel, copper and zinc. Etc.

なお、上記のリチウム複合酸化物は、例えば、リチウムの炭酸塩、硝酸塩、酸化物あるいは水酸化物と、遷移金属の炭酸塩、硝酸塩、酸化物あるいは水酸化物とを所望の組成に応じて粉砕混合し、酸素雰囲気中において600〜1000℃の範囲内の温度で焼成することにより調製することができる。   The lithium composite oxide is obtained by, for example, grinding lithium carbonate, nitrate, oxide or hydroxide, and transition metal carbonate, nitrate, oxide or hydroxide according to a desired composition. It can prepare by mixing and baking at the temperature within the range of 600-1000 degreeC in oxygen atmosphere.

さらに、正極活物質としては有機物も使用することができる。例示すると、ポリアセチレン、ポリピロール、ポリパラフェニレン、ポリアニリン、ポリチオフェン、ポリアセン、ポリスルフィド化合物等である。   Furthermore, an organic substance can also be used as the positive electrode active material. Illustrative examples include polyacetylene, polypyrrole, polyparaphenylene, polyaniline, polythiophene, polyacene, polysulfide compounds and the like.

以上の正極活物質は、負極合材に使用した導電剤や結着剤と共に混練して集電体に塗布され、公知の方法により正極成型体とすることができる。   The above positive electrode active material is kneaded together with the conductive agent and binder used for the negative electrode mixture and applied to the current collector, and can be formed into a positive electrode molded body by a known method.

また、正極と負極の間に用いられるセパレーターは、電解液に対して安定であり、保液性に優れていれば特に制限はないが、一般的にはポリエチレン、ポリプロピレン等のポリオレフィン及びこれらの共重合体やアラミド樹脂などの多孔質シート又は不織布が挙げられる。これらは単層あるいは多層に重ね合わせて使用してもよく、表面に金属酸化物等のセラミックスを積層してもよい。また、多孔質ガラス、セラミックス等も使用される。   In addition, the separator used between the positive electrode and the negative electrode is not particularly limited as long as it is stable with respect to the electrolytic solution and has excellent liquid retention, but in general, polyolefins such as polyethylene and polypropylene, and copolymers thereof. Examples thereof include a porous sheet such as a polymer and an aramid resin, or a nonwoven fabric. These may be used as a single layer or multiple layers, and ceramics such as metal oxide may be laminated on the surface. Moreover, porous glass, ceramics, etc. are also used.

そして、本発明に使用される非水電解質二次電池用溶媒としては、非水電解液として使用できるものであれば特に制限はない。
一般にエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等の非プロトン性高誘電率溶媒や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、ジプロピルカーボネート、ジエチルエーテル、テトラヒドロフラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,3−ジオキソラン、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、アニソール、メチルアセテート等の酢酸エステル類あるいはプロピオン酸エステル類等の非プロトン性低粘度溶媒が挙げられる。これらの非プロトン性高誘電率溶媒と非プロトン性低粘度溶媒を適当な混合比で併用することが望ましい。
さらには、イミダゾリウム、アンモニウム、及びピリジニウム型のカチオンを用いたイオン液体を使用することができる。対アニオンは特に限定されるものではないが、BF 、PF 、(CFSO等が挙げられる。イオン液体は前述の非水電解液溶媒と混合して使用することが可能である。
The solvent for the non-aqueous electrolyte secondary battery used in the present invention is not particularly limited as long as it can be used as a non-aqueous electrolyte.
Generally, aprotic high dielectric constant solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, dipropyl carbonate, diethyl ether, tetrahydrofuran, 1,2, -Aprotic low viscosity such as acetate ester or propionate ester such as dimethoxyethane, 1,2-diethoxyethane, 1,3-dioxolane, sulfolane, methylsulfolane, acetonitrile, propionitrile, anisole, methyl acetate A solvent is mentioned. It is desirable to use these aprotic high dielectric constant solvents and aprotic low viscosity solvents in combination at an appropriate mixing ratio.
Furthermore, ionic liquids using imidazolium, ammonium, and pyridinium type cations can be used. The counter anion is not particularly limited, and examples thereof include BF 4 , PF 6 , (CF 3 SO 2 ) 2 N − and the like. The ionic liquid can be used by mixing with the non-aqueous electrolyte solvent described above.

固体電解質やゲル電解質とする場合には、シリコーンゲル、シリコーンポリエーテルゲル、アクリルゲル、シリコーンアクリルゲル、アクリロニトリルゲル、ポリ(ビニリデンフルオライド)等を高分子材料として含有することが可能である。なお、これらは予め重合していてもよく、注液後重合してもよい。これらは単独もしくは混合物として使用可能である。   When a solid electrolyte or a gel electrolyte is used, it is possible to contain a silicone gel, a silicone polyether gel, an acrylic gel, a silicone acrylic gel, an acrylonitrile gel, poly (vinylidene fluoride), or the like as a polymer material. These may be polymerized in advance or may be polymerized after injection. These can be used alone or as a mixture.

また、電解質塩としては、例えば、軽金属塩が挙げられる。
軽金属塩には、リチウム塩、ナトリウム塩、あるいはカリウム塩等のアルカリ金属塩、又はマグネシウム塩あるいはカルシウム塩等のアルカリ土類金属塩、又はアルミニウム塩などがあり、目的に応じて1種又は複数種が選択される。
例えば、リチウム塩であれば、LiBF、LiClO、LiPF、LiAsF、CFSOLi、(CFSONLi、CSOLi、CFCOLi、(CFCONLi、CSOLi、C17SOLi、(CSONLi、(CSO)(CFSO)NLi、(FSO)(CFSO)NLi、((CFCHOSONLi、(CFSOCLi、(3,5−(CFBLi、LiCF、LiAlClあるいはCBOLiが挙げられ、これらのうちのいずれか1種又は2種以上のものが混合して用いられる。
Moreover, as an electrolyte salt, a light metal salt is mentioned, for example.
Examples of the light metal salt include alkali metal salts such as lithium salt, sodium salt, or potassium salt, alkaline earth metal salts such as magnesium salt or calcium salt, or aluminum salt, and one or more kinds depending on the purpose. Is selected.
For example, in the case of a lithium salt, LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, C 4 F 9 SO 3 Li, CF 3 CO 2 Li, ( CF 3 CO 2 ) 2 NLi, C 6 F 5 SO 3 Li, C 8 F 17 SO 3 Li, (C 2 F 5 SO 2 ) 2 NLi, (C 4 F 9 SO 2 ) (CF 3 SO 2 ) NLi , (FSO 2 C 6 F 4 ) (CF 3 SO 2 ) NLi, ((CF 3 ) 2 CHOSO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, (3,5- (CF 3 ) 2 C 6 F 3 ) 4 BLi, LiCF 3 , LiAlCl 4, or C 4 BO 8 Li may be used, and any one or two or more of these may be used in combination.

非水電解液の電解質塩の濃度は、電気伝導度の点から、0.5〜2.0mol/Lが望ましい。なお、この電解質の温度25℃における導電率は0.01S/cm以上であることが望ましく、電解質塩の種類あるいはその濃度により調整される。   The concentration of the electrolyte salt in the nonaqueous electrolytic solution is preferably 0.5 to 2.0 mol / L from the viewpoint of electrical conductivity. The conductivity of the electrolyte at 25 ° C. is preferably 0.01 S / cm or more, and is adjusted according to the type or concentration of the electrolyte salt.

さらに、非水電解液中には必要に応じて各種添加剤を添加してもよい。
例えば、サイクル寿命の向上を目的としたビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4−ビニルエチレンカーボネート等や、過充電防止を目的としたビフェニル、アルキルビフェニル、シクロヘキシルベンゼン、t−ブチルベンゼン、ジフェニルエーテル、ベンゾフラン等や、脱酸や脱水を目的とした各種カーボネート化合物、各種カルボン酸無水物、各種含窒素及び含硫黄化合物が挙げられる。
Furthermore, various additives may be added to the nonaqueous electrolytic solution as necessary.
For example, vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4-vinyl ethylene carbonate for the purpose of improving cycle life, biphenyl, alkyl biphenyl, cyclohexyl benzene, t-butyl benzene, diphenyl ether for the purpose of preventing overcharge. Benzofuran and the like, various carbonate compounds for the purpose of deoxidation and dehydration, various carboxylic acid anhydrides, various nitrogen-containing compounds and sulfur-containing compounds.

そして、非水電解質二次電池の形状は任意であり、特に制限はない。一般的にはコイン形状に打ち抜いた電極とセパレーターを積層したコインタイプ、電極シートとセパレーターをスパイラル状に捲回した角型あるいは円筒型等の電池が挙げられる。   And the shape of a nonaqueous electrolyte secondary battery is arbitrary, and there is no restriction | limiting in particular. In general, a coin type battery in which an electrode punched into a coin shape and a separator are stacked, and a square type or cylindrical type battery in which an electrode sheet and a separator are wound in a spiral shape are included.

以下、実施例および比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.

(珪素粒子1の作製)
油拡散ポンプ、メカニカルブースターポンプおよび油回転真空ポンプからなる排気装置を有した真空チャンバー内部に、厚さ5mmのカーボン製ハースライナーを有する多点銅坩堝を設置し、金属珪素塊200gを投入してチャンバー内を減圧とした。2時間後の到達圧力は2×10−4Paであった。
次に、チャンバーに設置した偏向型電子銃によって徐々に出力を上げながら金属珪素塊の溶解を完結した後、出力10kW、出力密度1.2kW/cmにて蒸着を2時間継続した。蒸着中、ステンレスからなる蒸着基板の温度を600℃に制御した。チャンバーを開放して蒸着珪素塊100gを得た。
(Preparation of silicon particles 1)
A multi-point copper crucible having a carbon hearth liner with a thickness of 5 mm was placed inside a vacuum chamber having an exhaust device composed of an oil diffusion pump, a mechanical booster pump and an oil rotary vacuum pump, and 200 g of metal silicon lump was charged. The inside of the chamber was depressurized. The ultimate pressure after 2 hours was 2 × 10 −4 Pa.
Next, the melting of the metal silicon mass was completed while gradually increasing the output with a deflection electron gun installed in the chamber, and then the deposition was continued for 2 hours at an output of 10 kW and an output density of 1.2 kW / cm 2 . During vapor deposition, the temperature of the vapor deposition substrate made of stainless steel was controlled at 600 ° C. The chamber was opened to obtain 100 g of deposited silicon lump.

上記のようにして製造した蒸着珪素塊をロールクラッシャーミルおよびジェットミルを用いて粉砕・分級し、得られた珪素粉末をAr気流下にて700℃に保持されたアルミナ製炉心管を有するロータリキルンにて3時間熱処理を行うことで珪素粒子1を得た。   A rotary kiln having an alumina furnace core tube in which the deposited silicon mass produced as described above is pulverized and classified using a roll crusher mill and a jet mill, and the obtained silicon powder is held at 700 ° C. under an Ar stream. The silicon particles 1 were obtained by performing a heat treatment for 3 hours.

(珪素粒子2の作製)
珪素粒子1と同様にして、珪素粒子2を作製した。ただし、熱処理温度は200℃とした。
(Preparation of silicon particles 2)
Silicon particles 2 were produced in the same manner as silicon particles 1. However, the heat treatment temperature was 200 ° C.

(珪素粒子3の作製)
ケミカル用シリコン(SIMCOA社製)をロールクラッシャーミルおよびジェットミルを用いて粉砕・分級し珪素粒子3を得た。
(Preparation of silicon particles 3)
Silicon for chemicals (manufactured by SIMCOA) was pulverized and classified using a roll crusher mill and a jet mill to obtain silicon particles 3.

(珪素粒子4の作製)
珪素粒子1と同様にして、珪素粒子4を作製した。ただし、熱処理温度は1100℃とした。
(Preparation of silicon particles 4)
Silicon particles 4 were produced in the same manner as silicon particles 1. However, the heat treatment temperature was 1100 ° C.

珪素粒子1〜4の累積体積50%径D50、結晶粒子径、および、真密度を表1にまとめて示す。 The cumulative volume 50% diameter D 50 , crystal particle diameter, and true density of the silicon particles 1 to 4 are summarized in Table 1.

Figure 0005827261
Figure 0005827261

表1に示すように、珪素粒子1、珪素粒子4は、1結晶粒子径が1nm以上300nm以下であり、かつ真密度が2.260〜3.500g/cmであるのに対し、珪素粒子2は真密度が2.260g/cmより小さく、また珪素粒子3は結晶粒子径が300nmより大きいことが確認された。 As shown in Table 1, silicon particles 1 and silicon particles 4 have a crystal particle diameter of 1 nm to 300 nm and a true density of 2.260 to 3.500 g / cm 3 , whereas silicon particles No. 2 has a true density smaller than 2.260 g / cm 3 , and the silicon particles 3 have a crystal grain diameter larger than 300 nm.

(珪素含有粒子の作製)
(実施例1)
N−メチル−2−ピロリドン(NMP)100gに珪素粒子1を10g、ポリイミド前駆体NMP溶液(固形分30.7質量%)0.05gをそれぞれ加え、マグネチックスターラーを用いて30分間撹拌を行なった。
得られたスラリーを、乾燥温度を200℃に設定したスプレードライヤー(日本ビュッヒ製B−290)を用いて噴霧乾燥を行った後、得られた粉末をAr気流下にて400℃に保持されたアルミナ製炉心管を有するロータリキルンにて3時間熱硬化を行うことで珪素含有粒子を得た。
得られた珪素含有粒子の断面をTEM観察し、珪素含有粒子表面の樹脂層の厚みの平均値を算出したところ、7nmであった。
(Production of silicon-containing particles)
Example 1
10 g of silicon particles 1 and 0.05 g of polyimide precursor NMP solution (solid content 30.7% by mass) are added to 100 g of N-methyl-2-pyrrolidone (NMP), respectively, and stirred for 30 minutes using a magnetic stirrer. It was.
The obtained slurry was spray-dried using a spray dryer (Nihon Büch B-290) with a drying temperature set to 200 ° C., and the obtained powder was held at 400 ° C. under an Ar stream. Silicon-containing particles were obtained by performing thermosetting for 3 hours in a rotary kiln having an alumina furnace core tube.
When the cross section of the obtained silicon-containing particles was observed with a TEM and the average value of the thickness of the resin layer on the surface of the silicon-containing particles was calculated, it was 7 nm.

(実施例2)
NMP100g中に珪素粒子1を10g、ポリイミド前駆体NMP溶液(固形分30.7質量%)7gをそれぞれ加え、マグネチックスターラーを用いて30分間撹拌を行なった。
得られたスラリーを、乾燥温度を150℃に設定したスプレードライヤーを用いて噴霧乾燥を行った後、得られた粉末をAr気流下にて400℃に保持されたアルミナ製炉心管を有するロータリキルンにて3時間熱硬化を行うことで珪素含有粒子を得た。
得られた珪素含有粒子の断面をTEM観察し、珪素含有粒子表面の樹脂層の厚みの平均値を算出したところ、472nmであった。
(Example 2)
10 g of silicon particles 1 and 7 g of a polyimide precursor NMP solution (solid content: 30.7 mass%) were added to 100 g of NMP, respectively, and stirred for 30 minutes using a magnetic stirrer.
The slurry obtained was spray-dried using a spray dryer with a drying temperature set at 150 ° C., and then the resulting powder was rotary kiln having an alumina furnace core tube held at 400 ° C. under an Ar stream. The silicon-containing particles were obtained by performing thermosetting for 3 hours.
The cross section of the obtained silicon-containing particles was observed with a TEM, and the average value of the thickness of the resin layer on the surface of the silicon-containing particles was calculated to be 472 nm.

(実施例3)
NMP100g中に珪素粒子1を10g、ポリイミド前駆体のNMP溶液(固形分30.7質量%)を7g、アセチレンブラックのNMP分散物(固形分17.5%)0.12gをそれぞれ加え、マグネチックスターラーを用いて30分間撹拌を行なった。
得られたスラリーを、乾燥温度を150℃に設定したスプレードライヤーを用いて噴霧乾燥を行った後、得られた粉末をAr気流下にて400℃に保持されたアルミナ製炉心管を有するロータリキルンにて3時間熱硬化を行うことで珪素含有粒子を得た。
得られた珪素含有粒子の断面をTEM観察し、珪素含有粒子表面の樹脂層の厚みの平均値を算出したところ、487nmであった。
(Example 3)
10 g of silicon particles 1 in 100 g of NMP, 7 g of NMP solution of polyimide precursor (solid content 30.7% by mass), 0.12 g of NMP dispersion (solid content 17.5%) of acetylene black were added, respectively, and magnetic. Stirring was performed for 30 minutes using a stirrer.
The slurry obtained was spray-dried using a spray dryer with a drying temperature set at 150 ° C., and then the resulting powder was rotary kiln having an alumina furnace core tube held at 400 ° C. under an Ar stream. The silicon-containing particles were obtained by performing thermosetting for 3 hours.
It was 487 nm when the cross section of the obtained silicon containing particle was observed by TEM and the average value of the thickness of the resin layer of the silicon containing particle surface was computed.

(実施例4)
NMP100g中に珪素粒子1を10g、ポリアミドイミド前駆体のNMP溶液(固形分29.8質量%)を9g、アセチレンブラックのNMP分散物(固形分17.5%)0.12gをそれぞれ加え、マグネチックスターラーを用いて30分間撹拌を行なった。
得られたスラリーを、乾燥温度を150℃に設定したスプレードライヤーを用いて噴霧乾燥を行った後、得られた粉末をAr気流下にて400℃に保持されたアルミナ製炉心管を有するロータリキルンにて3時間熱硬化を行うことで珪素含有粒子を得た。
得られた珪素含有粒子の断面をTEM観察し、珪素含有粒子表面の樹脂層の厚みの平均値を算出したところ、452nmであった。
Example 4
10 g of silicon particles 1 in 100 g of NMP, 9 g of NMP solution of polyamideimide precursor (solid content 29.8% by mass), and 0.12 g of NMP dispersion (solid content 17.5%) of acetylene black were added respectively. Stirring was performed for 30 minutes using a tic stirrer.
The slurry obtained was spray-dried using a spray dryer with a drying temperature set at 150 ° C., and then the resulting powder was rotary kiln having an alumina furnace core tube held at 400 ° C. under an Ar stream. The silicon-containing particles were obtained by performing thermosetting for 3 hours.
It was 452 nm when the cross section of the obtained silicon containing particle was observed by TEM and the average value of the thickness of the resin layer of the silicon containing particle surface was computed.

(実施例5)
アセトン100g中に珪素粒子1を10g、レゾール樹脂のアセトン溶液(固形分30.0質量%)を0.3g、アセチレンブラックのアセトン分散物(固形分17.5%)0.12gをそれぞれ加え、マグネチックスターラーを用いて30分間撹拌を行なった。
得られたスラリーを、乾燥温度を80℃に設定したスプレードライヤーを用いて噴霧乾燥を行った後、得られた粉末をAr気流下にて170℃に保持されたアルミナ製炉心管を有するロータリキルンにて3時間熱硬化を行うことで珪素含有粒子を得た。
得られた珪素含有粒子の断面をTEM観察し、珪素含有粒子表面の樹脂層の厚みの平均値を算出したところ、15nmであった。
(Example 5)
10 g of silicon particles 1 in 100 g of acetone, 0.3 g of an acetone solution of resol resin (solid content 30.0% by mass), 0.12 g of acetone dispersion of acetylene black (solid content 17.5%) were added, Stirring was performed for 30 minutes using a magnetic stirrer.
The resulting slurry was spray dried using a spray dryer whose drying temperature was set to 80 ° C., and then the obtained powder was rotary kiln having an alumina furnace core tube held at 170 ° C. under an Ar stream. The silicon-containing particles were obtained by performing thermosetting for 3 hours.
When the cross section of the obtained silicon-containing particles was observed with a TEM and the average value of the thickness of the resin layer on the surface of the silicon-containing particles was calculated, it was 15 nm.

(実施例6)
NMP100g中に珪素粒子4を10g、ポリイミド前駆体NMP溶液(固形分30.7質量%)0.05gをそれぞれ加え、マグネチックスターラーを用いて30分間撹拌を行なった。
得られたスラリーを、乾燥温度を150℃に設定したスプレードライヤーを用いて噴霧乾燥を行った後、得られた粉末をAr気流下にて400℃に保持されたアルミナ製炉心管を有するロータリキルンにて3時間熱硬化を行うことで珪素含有粒子を得た。
得られた珪素含有粒子の断面をTEM観察し、珪素含有粒子表面の樹脂層の厚みの平均値を算出したところ、6nmであった。
(Example 6)
10 g of silicon particles 4 and 0.05 g of a polyimide precursor NMP solution (solid content: 30.7% by mass) were added to 100 g of NMP, respectively, and stirred for 30 minutes using a magnetic stirrer.
The slurry obtained was spray-dried using a spray dryer with a drying temperature set at 150 ° C., and then the resulting powder was rotary kiln having an alumina furnace core tube held at 400 ° C. under an Ar stream. The silicon-containing particles were obtained by performing thermosetting for 3 hours.
When the cross section of the obtained silicon-containing particles was observed with a TEM and the average value of the thickness of the resin layer on the surface of the silicon-containing particles was calculated, it was 6 nm.

(実施例7)
NMP100g中に珪素粒子4を10g、ポリイミド前駆体NMP溶液(固形分30.7質量%)0.05gをそれぞれ加え、マグネチックスターラーを用いて30分間撹拌を行なった。
得られたスラリーを、乾燥温度を150℃に設定したスプレードライヤーを用いて噴霧乾燥を行った後、得られた粉末をAr気流下にて400℃に保持されたアルミナ製炉心管を有するロータリキルンにて3時間熱硬化を行うことで珪素含有粒子を得た。
得られた珪素含有粒子の断面をTE観察し、珪素含有粒子表面の樹脂層の厚みの平均値を算出したところ、487nmであった。
(Example 7)
10 g of silicon particles 4 and 0.05 g of a polyimide precursor NMP solution (solid content: 30.7% by mass) were added to 100 g of NMP, respectively, and stirred for 30 minutes using a magnetic stirrer.
The slurry obtained was spray-dried using a spray dryer with a drying temperature set at 150 ° C., and then the resulting powder was rotary kiln having an alumina furnace core tube held at 400 ° C. under an Ar stream. The silicon-containing particles were obtained by performing thermosetting for 3 hours.
It was 487 nm when TE observation of the cross section of the obtained silicon-containing particle | grain and the average value of the thickness of the resin layer of the silicon-containing particle | grain surface was computed.

(比較例1)
珪素粒子1に熱硬化性樹脂の被覆を行なわず、Ar気流下にて400℃に保持されたアルミナ製炉心管を有するロータリキルンにて3時間熱処理を行った。
(Comparative Example 1)
The silicon particles 1 were not coated with a thermosetting resin, and were subjected to heat treatment for 3 hours in a rotary kiln having an alumina core tube maintained at 400 ° C. under an Ar stream.

(比較例2)
NMP100g中に珪素粒子1を10g、ポリイミド前駆体のNMP溶液(固形分8.7質量%)0.02gをそれぞれ加え、マグネチックスターラーを用いて30分間撹拌を行なった。
得られたスラリーを、乾燥温度を150℃に設定したスプレードライヤーを用いて噴霧乾燥を行った後、得られた粉末をAr気流下にて400℃に保持されたアルミナ製炉心管を有するロータリキルンにて3時間熱硬化を行うことで珪素含有粒子を得た。
得られた珪素含有粒子の断面をTEM観察し、珪素含有粒子表面の樹脂層の厚みの平均値を算出したところ、2nmであった。
(Comparative Example 2)
10 g of silicon particles 1 and 0.02 g of an NMP solution of a polyimide precursor (solid content: 8.7% by mass) were added to 100 g of NMP, respectively, and stirred for 30 minutes using a magnetic stirrer.
The slurry obtained was spray-dried using a spray dryer with a drying temperature set at 150 ° C., and then the resulting powder was rotary kiln having an alumina furnace core tube held at 400 ° C. under an Ar stream. The silicon-containing particles were obtained by performing thermosetting for 3 hours.
The cross section of the obtained silicon-containing particles was observed with a TEM, and the average value of the thickness of the resin layer on the surface of the silicon-containing particles was calculated to be 2 nm.

(比較例3)
NMP100g中に珪素粒子1を10g、ポリイミド前駆体のNMP溶液(固形分8.7質量%)28gをそれぞれ加え、マグネチックスターラーを用いて30分間撹拌を行なった。
得られたスラリーを、乾燥温度を150℃に設定したスプレードライヤーを用いて噴霧乾燥を行った後、得られた粉末をAr気流下にて400℃に保持されたアルミナ製炉心管を有するロータリキルンにて3時間熱硬化を行うことで珪素含有粒子を得た。
得られた珪素含有粒子の断面をTEM観察し、珪素含有粒子表面の樹脂層の厚みの平均値を算出したところ、541nmであった。
(Comparative Example 3)
10 g of silicon particles 1 and 28 g of an NMP solution of polyimide precursor (solid content: 8.7% by mass) were added to 100 g of NMP, respectively, and stirred for 30 minutes using a magnetic stirrer.
The slurry obtained was spray-dried using a spray dryer with a drying temperature set at 150 ° C., and then the resulting powder was rotary kiln having an alumina furnace core tube held at 400 ° C. under an Ar stream. The silicon-containing particles were obtained by performing thermosetting for 3 hours.
It was 541 nm when the cross section of the obtained silicon containing particle was observed by TEM and the average value of the thickness of the resin layer of the silicon containing particle surface was computed.

(実施例8)
実施例1と同様にして珪素含有粒子を作製した。ただし、珪素粒子として珪素粒子2を用いた。得られた珪素含有粒子の断面をTEM観察し、珪素含有粒子表面の樹脂層の厚みの平均値を算出したところ、6nmであった。
(Example 8)
Silicon-containing particles were produced in the same manner as in Example 1. However, silicon particles 2 were used as silicon particles. When the cross section of the obtained silicon-containing particles was observed with a TEM and the average value of the thickness of the resin layer on the surface of the silicon-containing particles was calculated, it was 6 nm.

(比較例4)
実施例1と同様にして珪素含有粒子を作製した。ただし、珪素粒子として珪素粒子3を用いた。得られた珪素含有粒子の断面をTEM観察し、珪素含有粒子表面の樹脂層の厚みの平均値を算出したところ、10nmであった。
(Comparative Example 4)
Silicon-containing particles were produced in the same manner as in Example 1. However, silicon particles 3 were used as silicon particles. The cross section of the obtained silicon-containing particles was observed with a TEM and the average value of the thickness of the resin layer on the surface of the silicon-containing particles was calculated to be 10 nm.

実施例1―8、比較例1―4の珪素含有粒子の基材珪素粒子、熱硬化性樹脂の種類及び厚みを表2にまとめて示す。   Table 2 summarizes the types and thicknesses of the base silicon particles and the thermosetting resin of the silicon-containing particles of Examples 1-8 and Comparative Examples 1-4.

Figure 0005827261
Figure 0005827261

<電池特性の評価>
実施例1−8、比較例1−4の珪素含有粒子について、負極活物質としての有用性を確認するため、電池特性の評価を行った。
負極活物質として実施例1−8および比較例1−4の珪素含有粒子を15質量%と、導電剤として人造黒鉛(平均粒子径D50=10μm)を79.5%と、CMC(カルボキシメチルセルロース)粉を1.5質量%混合した。これにアセチレンブラックの水分散物(固形分17.5%)を固形分換算で2.5質量%とSBR(スチレン−ブタジエンラバー)の水分散物(固形分40%)を固形分換算で1.5質量%を加え、イオン交換水で希釈してスラリーとした。
<Evaluation of battery characteristics>
The silicon-containing particles of Example 1-8 and Comparative Example 1-4 were evaluated for battery characteristics in order to confirm their usefulness as a negative electrode active material.
15% by mass of the silicon-containing particles of Examples 1-8 and Comparative Example 1-4 as the negative electrode active material, 79.5% of artificial graphite (average particle diameter D 50 = 10 μm) as the conductive agent, CMC (carboxymethylcellulose) ) 1.5% by mass of powder was mixed. To this, an aqueous dispersion of acetylene black (solid content 17.5%) was 2.5% by mass in terms of solid content and an aqueous dispersion of SBR (styrene-butadiene rubber) (solid content 40%) was 1 in terms of solid content. 0.5% by mass was added and diluted with ion-exchanged water to obtain a slurry.

このスラリーを厚さ12μmの銅箔に150μmのドクターブレードを使用して塗布し、予備乾燥後60℃のローラープレスにより電極を加圧成形し、160℃で2時間乾燥後、2cmに打ち抜き、負極成型体とした。 This slurry was applied to a copper foil having a thickness of 12 μm using a 150 μm doctor blade, and after preliminary drying, the electrode was pressure-formed by a roller press at 60 ° C., dried at 160 ° C. for 2 hours, and then punched to 2 cm 2 . A negative electrode molded body was obtained.

上記のようにして得られた負極成型体を、対極にリチウム箔を使用し、非水電解質としてリチウムビス(トリフルオロメタンスルホニル)イミドをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1mol/Lの濃度で溶解した非水電解質溶液を用い、セパレーターに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を各4個作製した。
そして作製したリチウムイオン二次電池を一晩室温でエージングし、この内2個を解体して、負極の厚み測定を行い、電解液膨潤状態での初期重量に基づく電極密度を算出した。なお、電解液及び充電によるリチウム増加量は含まないものとした。
The negative electrode molded body obtained as described above was prepared using a lithium foil as a counter electrode, and lithium bis (trifluoromethanesulfonyl) imide as a nonaqueous electrolyte in a 1/1 (volume ratio) mixture of ethylene carbonate and diethyl carbonate. Four lithium ion secondary batteries for evaluation each using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L and a polyethylene microporous film having a thickness of 30 μm as a separator were prepared.
Then, the produced lithium ion secondary battery was aged overnight at room temperature, two of them were disassembled, the thickness of the negative electrode was measured, and the electrode density based on the initial weight in the electrolyte solution swollen state was calculated. Note that the amount of increase in lithium due to the electrolyte and charging was not included.

また、2個を二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで0.15cの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が0.02cを下回った時点で充電を終了し、充電容量を算出した。なお、cは負極の理論容量を1時間で充電する電流値である。   In addition, using a secondary battery charge / discharge test device (manufactured by Nagano Co., Ltd.), charge two with a constant current of 0.15c until the voltage of the test cell reaches 0V. Charging was performed by decreasing the current so as to keep the voltage at 0V. And charging was complete | finished when the electric current value fell below 0.02c, and charge capacity was computed. Note that c is a current value for charging the theoretical capacity of the negative electrode in one hour.

充電終了後、これらの評価用リチウムイオン二次電池を解体し、負極の厚みを測定した。測定した厚みから同様にして電極密度を算出し、充電時の体積当たり充電容量を求めた。その結果を表2に示す。   After the completion of charging, these evaluation lithium ion secondary batteries were disassembled, and the thickness of the negative electrode was measured. Similarly, the electrode density was calculated from the measured thickness, and the charge capacity per volume during charging was determined. The results are shown in Table 2.

<サイクル特性の評価>
得られた負極成型体のサイクル特性を評価するために、実施例1−8、比較例1−4の負極活物質から作製した負極成型体を準備した。正極材料としてLiCoOを正極活物質、集電体としてアルミ箔を用いた単層シート(パイオニクス(株)製、商品名;ピオクセル C−100)を用いて、正極成型体を作製した。非水電解質には六フッ化リン酸リチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1mol/Lの濃度で溶解した非水電解質溶液を用い、セパレーターに厚さ30μmのポリエチレン製微多孔質フィルムを用いたコイン型リチウムイオン二次電池を作製した。
<Evaluation of cycle characteristics>
In order to evaluate the cycle characteristics of the obtained molded negative electrode, a molded negative electrode prepared from the negative electrode active materials of Example 1-8 and Comparative Example 1-4 was prepared. A positive electrode molded body was produced using a single layer sheet (trade name: PIOCSEL C-100, manufactured by Pionics Corporation) using LiCoO 2 as a positive electrode material and a positive electrode active material and an aluminum foil as a current collector. For the non-aqueous electrolyte, a non-aqueous electrolyte solution in which lithium hexafluorophosphate was dissolved in a 1/1 (volume ratio) mixture of ethylene carbonate and diethyl carbonate at a concentration of 1 mol / L was used, and a polyethylene having a thickness of 30 μm was used as the separator. A coin-type lithium ion secondary battery using the manufactured microporous film was produced.

作製した4種類のコイン型リチウムイオン二次電池を、二晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が4.2Vに達するまで1.2mA(正極基準で0.25c)の定電流で充電を行い、4.2Vに達した後は、セル電圧を4.2Vに保つように電流を減少させて充電を行った。そして、電流値が0.3mAを下回った時点で充電を終了した。
放電は0.6mAの定電流で行い、セル電圧が3.3Vに達した時点で放電を終了し、放電容量を求めた。
After the four types of coin-type lithium ion secondary batteries produced were left at room temperature overnight, using a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the voltage of the test cell reached 4.2V Charging was performed at a constant current of 1.2 mA (0.25 c based on the positive electrode), and after reaching 4.2 V, charging was performed by decreasing the current so as to keep the cell voltage at 4.2 V. The charging was terminated when the current value was less than 0.3 mA.
The discharge was performed at a constant current of 0.6 mA, and when the cell voltage reached 3.3 V, the discharge was terminated and the discharge capacity was determined.

上記の充放電を200サイクル継続して、初回の放電容量と100サイクル、200サイクル後の放電容量を初回の放電容量で割った値(容量維持率)を表3に示した。   Table 3 shows values (capacity retention ratio) obtained by dividing the above-described charging / discharging for 200 cycles and dividing the initial discharge capacity and the discharge capacity after 100 cycles and 200 cycles by the initial discharge capacity.

Figure 0005827261
Figure 0005827261

表3に示すように、充電容量については、実施例1−8及び比較例1−4の全てにおいて黒鉛の充電容量(372mAh/g)と比較して高い充電容量を示す負極材を形成していることが確認された。次に、実施例1と比較例4を比較すると、結晶粒子径が1nm以上300nm以下である珪素粒子1を用いた実施例1は、結晶粒子径が前記範囲を満たさない比較例4と比べて体積膨張率が低くかつ容量維持率が高く、優位性が確認された。また、真密度が2.260g/cm以上3.500g/cm以下である珪素粒子1を用いた実施例1は、真密度が前記範囲を満たさない珪素粒子2を用いた実施例8と比べて容量維持率がより高くなっていることがわかる。また、実施例1−8と比較例1−3を比較すると、珪素粒子の表面を被覆する熱硬化性樹脂の厚みが5nm以上500nm以下である実施例1−8は、前記範囲を満たさない比較例1―3と比べて充電容量または容量維持率が高く、優位性が確認された。また、珪素粒子表面を熱硬化性樹脂で被覆しない比較例1は、実施例1−8、比較例2−4と比較し体積膨張率が高くかつ容量維持率が低いことから、熱硬化性樹脂による被覆が体積膨張率の低下及び容量維持率の向上に効果があることが確認された。 As shown in Table 3, with respect to the charge capacity, in all of Examples 1-8 and Comparative Examples 1-4, a negative electrode material having a higher charge capacity than that of graphite (372 mAh / g) was formed. It was confirmed that Next, when Example 1 and Comparative Example 4 are compared, Example 1 using silicon particles 1 having a crystal particle diameter of 1 nm to 300 nm is compared with Comparative Example 4 in which the crystal particle diameter does not satisfy the above range. The volume expansion rate was low and the capacity retention rate was high, confirming the superiority. Further, Example 1 using silicon particles 1 having a true density of 2.260 g / cm 3 or more and 3.500 g / cm 3 or less is similar to Example 8 using silicon particles 2 whose true density does not satisfy the above range. It can be seen that the capacity retention rate is higher than that. Further, when Example 1-8 is compared with Comparative Example 1-3, Example 1-8 in which the thickness of the thermosetting resin covering the surface of the silicon particles is 5 nm or more and 500 nm or less is a comparison that does not satisfy the above range. Compared with Example 1-3, the charge capacity or capacity maintenance rate was high, and superiority was confirmed. Further, Comparative Example 1 in which the surface of the silicon particles is not coated with the thermosetting resin has a higher volume expansion rate and a lower capacity retention rate than those of Examples 1-8 and Comparative Example 2-4. It has been confirmed that the coating by is effective in lowering the volume expansion rate and improving the capacity retention rate.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Claims (8)

非水電解質二次電池の負極活物質に使われる珪素含有粒子であって、
前記珪素含有粒子が、珪素粒子の表面の少なくとも一部が熱硬化された熱硬化性樹脂で被覆されたものであり、
前記熱硬化性樹脂の厚みが5nm以上、500nm以下であり、
前記珪素粒子の結晶粒子径が1nm以上、300nm以下であることを特徴とする珪素含有粒子。
Silicon-containing particles used in the negative electrode active material of a non-aqueous electrolyte secondary battery,
The silicon-containing particles are coated with a thermosetting resin in which at least a part of the surface of the silicon particles is thermoset,
The thickness of the thermosetting resin is 5 nm or more and 500 nm or less,
Silicon-containing particles, wherein the silicon particles have a crystal particle diameter of 1 nm or more and 300 nm or less.
前記珪素粒子の真密度が2.260g/cm以上、3.500g/cm以下であることを特徴とする、請求項1に記載の珪素含有粒子。 2. The silicon-containing particle according to claim 1, wherein a true density of the silicon particle is 2.260 g / cm 3 or more and 3.500 g / cm 3 or less. 前記珪素粒子は、添加元素として、ホウ素、アルミニウム、リン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ヒ素、ゲルマニウム、スズ、アンチモン、インジウム、タンタル、タングステン、ガリウムから選択される一種又は二種以上の元素が添加されたものであることを特徴とする請求項1又は請求項2に記載の珪素含有粒子。 The silicon particles are selected from boron, aluminum, phosphorus, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, germanium, tin, antimony, indium, tantalum, tungsten, and gallium as additive elements. The silicon-containing particles according to claim 1 or 2, wherein one or two or more elements to be added are added . 請求項1乃至請求項3のいずれか一項に記載する珪素含有粒子を、非水電解質二次電池の負極活物質として含むことを特徴とする非水電解質二次電池の負極材。   A negative electrode material for a non-aqueous electrolyte secondary battery comprising the silicon-containing particles according to any one of claims 1 to 3 as a negative electrode active material for a non-aqueous electrolyte secondary battery. 前記非水電解質二次電池の負極材が、結着剤として、水溶性バインダーをさらに含むことを特徴とする請求項4に記載の非水電解質二次電池の負極材。   The negative electrode material of the nonaqueous electrolyte secondary battery according to claim 4, wherein the negative electrode material of the nonaqueous electrolyte secondary battery further includes a water-soluble binder as a binder. 前記非水電解質二次電池の負極材が、導電剤として、黒鉛をさらに含むことを特徴とする請求項4又は請求項5に記載の非水電解質二次電池の負極材。   The negative electrode material for a nonaqueous electrolyte secondary battery according to claim 4 or 5, wherein the negative electrode material for the nonaqueous electrolyte secondary battery further contains graphite as a conductive agent. 請求項4乃至請求項6のいずれか一項に記載の非水電解質二次電池用負極材からなる負極成型体と、
正極成型体と、
前記負極成型体と、前記正極成型体とを分離するセパレーターと、
非水電解質と、
を具備するものであることを特徴とする非水電解質二次電池。
A negative electrode molded body comprising the negative electrode material for a nonaqueous electrolyte secondary battery according to any one of claims 4 to 6,
A positive electrode molded body,
A separator for separating the molded negative electrode and the molded positive electrode;
A non-aqueous electrolyte,
A non-aqueous electrolyte secondary battery comprising:
前記非水電解質がリチウムイオンを含むものであることを特徴とする請求項7記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 7, wherein the nonaqueous electrolyte contains lithium ions.
JP2013067742A 2013-03-28 2013-03-28 Silicon-containing particles, negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Active JP5827261B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013067742A JP5827261B2 (en) 2013-03-28 2013-03-28 Silicon-containing particles, negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR1020140034398A KR20140118823A (en) 2013-03-28 2014-03-25 Silicon-containing particles, negative electrode material of nonaqueous electrolytic secondary battery and nonaqueous electrolytic secondary battery
CN201410122545.XA CN104078662B (en) 2013-03-28 2014-03-28 The negative material and rechargeable nonaqueous electrolytic battery of silicon-containing particle, rechargeable nonaqueous electrolytic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067742A JP5827261B2 (en) 2013-03-28 2013-03-28 Silicon-containing particles, negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2014192064A JP2014192064A (en) 2014-10-06
JP5827261B2 true JP5827261B2 (en) 2015-12-02

Family

ID=51599806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067742A Active JP5827261B2 (en) 2013-03-28 2013-03-28 Silicon-containing particles, negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Country Status (3)

Country Link
JP (1) JP5827261B2 (en)
KR (1) KR20140118823A (en)
CN (1) CN104078662B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102548023B1 (en) 2017-02-03 2023-06-26 후지필름 와코 준야쿠 가부시키가이샤 Binder composition for lithium battery
CN107658450A (en) 2017-09-18 2018-02-02 江苏道赢科技有限公司 A kind of microcapsule-type silicon-carbon composite cathode material and its preparation method and application
CN110010851B (en) 2018-04-28 2020-08-28 宁德时代新能源科技股份有限公司 Lithium ion battery
KR102131262B1 (en) * 2018-08-14 2020-08-05 울산과학기술원 an anode active material, a method of preparing the anode active material, and Lithium secondary battery comprising an anode including the anode active material
CN112310356B (en) * 2019-07-29 2022-06-07 宁德时代新能源科技股份有限公司 Negative electrode active material and secondary battery
KR20230082187A (en) * 2021-12-01 2023-06-08 오씨아이홀딩스 주식회사 Anode material for secondary battery and preparing method of the same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235427B1 (en) * 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
JP3941235B2 (en) * 1998-05-13 2007-07-04 宇部興産株式会社 Non-aqueous secondary battery
JP5000979B2 (en) * 1998-05-13 2012-08-15 宇部興産株式会社 Non-aqueous secondary battery
JP2000048807A (en) * 1998-07-29 2000-02-18 Sekisui Chem Co Ltd Nonaqueous electrolyte secondary battery
JP2000048806A (en) * 1998-07-29 2000-02-18 Sekisui Chem Co Ltd Nonaqueous electrolyte secondary battery
TWI278429B (en) * 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP4385589B2 (en) * 2002-11-26 2009-12-16 昭和電工株式会社 Negative electrode material and secondary battery using the same
KR100742227B1 (en) * 2005-04-12 2007-07-24 주식회사 엘지화학 Lithium Secondary Battery Containing Silicon-based or Tin-based Anode Active Material
US7662514B2 (en) * 2005-11-17 2010-02-16 Panasonic Corporation Non-aqueous electrolyte secondary battery and method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP5072323B2 (en) * 2005-11-17 2012-11-14 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method for producing negative electrode material for nonaqueous electrolyte secondary battery
JP5398962B2 (en) * 2006-06-30 2014-01-29 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP5500758B2 (en) * 2006-10-20 2014-05-21 エア・ウォーター・ベルパール株式会社 Non-heat-meltable granular phenol resin powder and method for producing the same
JP5468723B2 (en) * 2006-12-19 2014-04-09 Necエナジーデバイス株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
KR101252904B1 (en) * 2007-09-06 2013-04-09 캐논 가부시끼가이샤 Method for producing lithium ion storage/release material, lithium ion storage/release material, electrode structure using the material, and electricity storage device
JP2009099523A (en) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd Lithium secondary battery
US20090087731A1 (en) * 2007-09-27 2009-04-02 Atsushi Fukui Lithium secondary battery
KR101406013B1 (en) * 2008-03-17 2014-06-11 신에쓰 가가꾸 고교 가부시끼가이샤 Non-aqueous electrolyte secondary battery, negative electrode material, and making method
JP4844764B2 (en) * 2008-03-17 2011-12-28 信越化学工業株式会社 Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using the same
JP5666378B2 (en) * 2010-05-24 2015-02-12 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery
CN102549815A (en) * 2010-06-29 2012-07-04 松下电器产业株式会社 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6060896B2 (en) * 2011-03-28 2017-01-18 日本電気株式会社 Secondary battery and manufacturing method thereof
CN104040763B (en) * 2011-08-31 2017-04-05 国立大学法人东北大学 Si/C composites, its manufacture method and electrode
JP2013235685A (en) * 2012-05-07 2013-11-21 Furukawa Electric Co Ltd:The Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries arranged by use thereof, and lithium ion secondary battery arranged by use thereof

Also Published As

Publication number Publication date
CN104078662A (en) 2014-10-01
JP2014192064A (en) 2014-10-06
KR20140118823A (en) 2014-10-08
CN104078662B (en) 2018-05-01

Similar Documents

Publication Publication Date Title
JP5390336B2 (en) Negative electrode material for nonaqueous electrolyte secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6006662B2 (en) Method for producing silicon-containing particles, method for producing negative electrode material for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
KR101461220B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
JP5960053B2 (en) Negative electrode active material for lithium secondary battery
JP2018006358A (en) Carbon material for nonaqueous secondary battery, negative electrode using the same, and lithium ion secondary battery
JP5827261B2 (en) Silicon-containing particles, negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2014092141A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery
JP5801775B2 (en) Silicon-containing particles, negative electrode material for non-aqueous electrolyte secondary battery using the same, non-aqueous electrolyte secondary battery, and method for producing silicon-containing particles
JP2015164127A (en) Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2012079471A (en) Method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN102428595B (en) Anode active material for lithium secondary battery, negative electrode for lithium secondary battery electrode, use their vehicle-mounted lithium secondary battery and the manufacture method of anode active material for lithium secondary battery
US10050259B2 (en) Production method for negative electrode active material for lithium secondary battery, and lithium secondary battery
JP2017174649A (en) Iron oxide powder for lithium ion secondary battery negative electrode, method for producing the same, and lithium ion secondary battery
JP6739142B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2016081920A (en) Negative electrode active material and secondary battery including the same
JP5239153B2 (en) Electrode material composite method, electrode and lithium ion battery
WO2020110942A1 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery
JP2016189294A (en) Negative electrode active material for lithium ion secondary battery and manufacturing method for the same
JP6797519B2 (en) Negative electrode material for lithium secondary battery and its manufacturing method, composition for forming negative electrode active material layer, negative electrode for lithium secondary battery, lithium secondary battery, and resin composite silicon particles
CN114902446A (en) Slurry containing low-oxygen-type nano-silicon particles, negative electrode active material, negative electrode, and lithium ion secondary battery
WO2020110943A1 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery
EP4354547A1 (en) Negative electrode active material, negative electrode and lithium ion secondary battery
JP6771900B2 (en) Method for manufacturing negative electrode material for lithium secondary battery, method for improving lithium secondary battery, and its charge / discharge characteristics and cycle characteristics
KR20230118085A (en) Negative active material and non-aqueous electrolyte secondary battery
JP2014067642A (en) Composite carbon material for nonaqueous secondary battery and method for manufacturing the same, negative electrode, and nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151015

R150 Certificate of patent or registration of utility model

Ref document number: 5827261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150