JPH11135120A - Negative electrode material for nonaqueous secondary battery - Google Patents

Negative electrode material for nonaqueous secondary battery

Info

Publication number
JPH11135120A
JPH11135120A JP9293896A JP29389697A JPH11135120A JP H11135120 A JPH11135120 A JP H11135120A JP 9293896 A JP9293896 A JP 9293896A JP 29389697 A JP29389697 A JP 29389697A JP H11135120 A JPH11135120 A JP H11135120A
Authority
JP
Japan
Prior art keywords
negative electrode
compound
secondary battery
lithium
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9293896A
Other languages
Japanese (ja)
Inventor
Ryuichi Akagi
赤木  隆一
Atsushi Suzuki
淳 鈴木
Yoshio Kajiura
嘉夫 梶浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP9293896A priority Critical patent/JPH11135120A/en
Publication of JPH11135120A publication Critical patent/JPH11135120A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new negative electrode material for a nonaqueous electrolyte secondary battery with high voltage, high capacity, and superior charging/ discharging characteristics, and to provide its manufacturing method. SOLUTION: Composite particles formed by covering at least one single element or its compound selected from among groups IIIB, IVB, and VB in the periodic table, inserting/releasing lithium ions with conductive carbon are used as the negative active material of a negative electrode, a metal oxide containing a transition metal as the constituting element is used as the positive active material of a positive electrode, and a lithium ion conductive nonaqueous electrolyte prepared by dissolving a lithium compound in an organic solvent, or holding an organic solvent containing a lithium compound as a solid solution or in which a lithium compound is dissolved in a polymer is used as an electrolyte. By combining at the same time the positive electrode with negative electrode and electrolyte, a nonaqueous electrolyte secondary battery having high voltage, high capacity, and superior charging/discharging characteristics is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池に
関するものであり、さらに詳しくは非水系用二次電池用
負極材料に関する。
The present invention relates to a non-aqueous secondary battery, and more particularly, to a negative electrode material for a non-aqueous secondary battery.

【0002】[0002]

【従来の技術】3V級の電圧をもつ非水系二次電池にお
いては、負極活物質として、金属リチウム、正極活物質
としてCo,Mn,Niに代表される遷移金属の酸化物
を用いる方法が代表的である。しかし、負極に金属リチ
ウムを用いると、充放電中に金属リチウムが樹枝状の形
態(デンドライト)で成長するため内部でショートした
り、またデンドライトの活性が高く発火の危険性がある
などの問題がある。そのため、金属リチウムに代わる活
物質としてリチウムイオンを挿入・放出することのでき
る焼成炭素質材料が負極として実用化されている。しか
しながら、炭素材料は体積当たりの充放電容量が低いと
いう欠点を持っている。
2. Description of the Related Art In a non-aqueous secondary battery having a voltage of 3V class, a method of using metallic lithium as a negative electrode active material and a transition metal oxide represented by Co, Mn and Ni as a positive electrode active material is typical. It is a target. However, when metallic lithium is used for the negative electrode, the metallic lithium grows in a dendritic form (dendrite) during charge and discharge, causing a short circuit inside, and the dendrite has high activity and there is a risk of ignition. is there. For this reason, fired carbonaceous materials capable of inserting and releasing lithium ions as active materials instead of metallic lithium have been put to practical use as negative electrodes. However, carbon materials have the disadvantage that the charge / discharge capacity per volume is low.

【0003】体積当り高い充放電容量が期待できる負極
活物質として、1)TiS2,LiTiS2(米国特許第
3983476号)などの遷移金属カルコゲン化合物、
2)ルチル構造の遷移金属酸化物、例えば、WO2(米
国特許第4198476号)、3)LixFe(F
2)O4などのスピネル化合物(特開昭58−2203
62号)、4)電気化学的に合成されたFe23のリチ
ウム化合物(米国特許第4464447号)、Fe23
のリチウム化合物(特開平3−112070号)、Nb
25(特開昭62−59412号、特開平2−8244
7号)、酸化鉄、FeO,Fe23,Fe34,酸化コ
バルト、CoO,Co23,Co34(特開平3−29
1862号)などの遷移金属酸化物が知られている。一
方、5)リチウムと合金を形成することが知られている
Sn,Cd(Proceedings of the
Electrochemical Society,8
7−1,1987)Al(Solid State I
onics,20,1986),Si,Pb,Bi,S
b(Proceedings of the Elec
trochemical Society,87−1,
1987)及びこれらのリチウムとの合金(例えば特開
平7−29602号)が提案されている。
As negative electrode active materials which can be expected to have a high charge / discharge capacity per volume, 1) transition metal chalcogen compounds such as TiS 2 and LiTiS 2 (US Pat. No. 3,983,476);
2) a transition metal oxide having a rutile structure, for example, WO 2 (U.S. Pat. No. 4,198,476); 3) LixFe (F
e 2) spinels such as O 4 (JP 58-2203
No. 62), 4) Lithium compound of Fe 2 O 3 electrochemically synthesized (US Pat. No. 4,446,447), Fe 2 O 3
Lithium compound (JP-A-3-112070), Nb
2 O 5 (JP-A-62-59412, JP-A-2-8244)
No. 7), iron oxide, FeO, Fe 2 O 3, Fe 3 O 4, cobalt oxide, CoO, Co 2 O 3, Co 3 O 4 ( JP-A-3-29
No. 1862). On the other hand, 5) Sn, Cd (Proceedings of the) which are known to form an alloy with lithium.
Electrochemical Society, 8
7-1, 1987) Al (Solid State I)
onics, 20, 1986), Si, Pb, Bi, S
b (Proceedings of the Elec
Trochemical Society, 87-1,
1987) and alloys thereof with lithium (for example, JP-A-7-29602).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
Sn,Cd,Al,Si,Pb,Bi,Sb及びこれら
のリチウムとの合金は、特に高電流密度(例えば、1m
A/cm2以上)において容量が低くかつ充放電時のサ
イクル寿命が短いという問題がある。また上記1)〜
5)の負極活物質の電極電位は金属リチウムの電極電位
に対して貴であり、そのためこれら負極活物質を負極と
して正極と組み合わせ電池を構成すると、その電池の作
動電圧は負極活物質に金属リチウムを用いた場合に比べ
低くなるという問題がある。そこで本発明の目的は、
1)可逆的なリチウムイオンの挿入・放出が可能で高容
量を与える負極活物質と2)上記負極活物質の製造方法
を提供し、さらに3)高電流密度での充放電において
も、3〜4Vの高電圧、高容量、良好な充放電特性およ
びサイクル寿命をもつ非水系二次電池を提供することで
ある。
However, the above-mentioned Sn, Cd, Al, Si, Pb, Bi, Sb and their alloys with lithium have particularly high current densities (for example, 1 m
(A / cm 2 or more), there is a problem that the capacity is low and the cycle life during charge / discharge is short. In addition, 1) to above
The electrode potential of the negative electrode active material of 5) is noble with respect to the electrode potential of metallic lithium. Therefore, when a negative electrode active material is used as a negative electrode in combination with a positive electrode to form a battery, the operating voltage of the negative electrode active material is lithium metal. There is a problem that it is lower than in the case of using. Therefore, the object of the present invention is to
1) a negative electrode active material capable of reversibly inserting and releasing lithium ions and providing a high capacity; 2) a method for producing the negative electrode active material; and 3) a charge / discharge at a high current density of 3 to 10%. An object of the present invention is to provide a non-aqueous secondary battery having a high voltage of 4 V, a high capacity, good charge / discharge characteristics and cycle life.

【0005】[0005]

【課題を解決するための手段】上記の第1の目的を達成
するため、本発明の負極活物質は、少なくともリチウム
イオンを挿入・放出する1種又は2種以上の周期律表I
IIB、IVB、VB族から選ばれた元素(Siを除
く)の単体又はその化合物と炭素質材料とからなる複合
粒子であることを特徴とする。ここで上記複合粒子と
は、上記元素の単体又はその化合物を炭素質材料で被覆
したものである。また上記複合粒子がさらに導電性金属
を含むことを特徴とする。第2の目的は、上記元素の単
体又はその化合物と、熱処理により炭化可能な樹脂材料
との分散混合物としてなる複合材料を非酸化雰囲気下4
00〜1200℃で熱処理し、機械的に微粉砕すること
により炭素質材料で被覆した複合粒子を製造する方法に
より達成される。さらに第3の目的は、本発明の複合粒
子を負極活物質とし、遷移金属を構成元素として含む金
属酸化物を正極活物質とし、有機溶媒にリチウム化合物
を溶解させた、又は高分子にリチウム化合物を固溶或い
はリチウム化合物を溶解させた有機溶媒を保持させたリ
チウムイオン導電性の非水電解質を電解質として電池を
構成することにより達成される。導電性炭素との複合化
により負極活物質の導電性が向上し、さらにリチウムイ
オンの挿入・放出が円滑に進行し、活物質利用率の向上
や電池の内部抵抗の減少等の効果がもたらされ、高電
圧、高容量かつサイクル特性に優れた非水電解質二次電
池を得ることができる。
In order to achieve the first object, the negative electrode active material of the present invention comprises at least one or more periodic table I which inserts / releases lithium ions.
It is a composite particle composed of a simple substance of an element (except for Si) selected from the IIB, IVB, and VB groups or a compound thereof and a carbonaceous material. Here, the composite particles are particles obtained by coating a simple substance of the above element or a compound thereof with a carbonaceous material. The composite particles further include a conductive metal. A second object is to prepare a composite material, which is a dispersion mixture of a simple substance of the above element or a compound thereof and a resin material capable of being carbonized by heat treatment, in a non-oxidizing atmosphere.
This is achieved by a method of producing composite particles coated with a carbonaceous material by heat-treating at 00 to 1200 ° C and pulverizing mechanically. Further, a third object is to use the composite particles of the present invention as a negative electrode active material, a metal oxide containing a transition metal as a constituent element as a positive electrode active material, a lithium compound dissolved in an organic solvent, or a lithium compound in a polymer. This is achieved by forming a battery using a lithium ion conductive non-aqueous electrolyte holding an organic solvent in which a solid solution or a lithium compound is dissolved as an electrolyte. The composite with conductive carbon improves the conductivity of the negative electrode active material, further facilitates the insertion and release of lithium ions, and has the effect of improving the active material utilization rate and decreasing the internal resistance of the battery. As a result, a non-aqueous electrolyte secondary battery having high voltage, high capacity and excellent cycle characteristics can be obtained.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明では、周期律表IIIB族のB、Al、Ga、I
n及びTiからなる群、IVB族のGe、Sn及びPb
からなる群、VB族のAs、Sb及びBiからなる群か
ら選ばれた1種又は2種以上の単体又はその化合物を用
いる。単体としては好ましくは、Bi、Al、Snであ
る。化合物としては、リチウムイオンの挿入・放出が可
能であれば良く、InBi,Bi3In5,BiIn2
InSb,InAs,InP,InN,GaSb,Ga
As,GaP,GaN,Tl5Sb,Sb5Tl7,Bi2
Tl,AlSb等の化合物半導体が挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
In the present invention, B, Al, Ga, I of Group IIIB of the periodic table are used.
a group consisting of n and Ti, Ge, Sn and Pb of the IVB group
Or one or more simple substances or compounds thereof selected from the group consisting of As, Sb and Bi of the VB group. A simple substance is preferably Bi, Al, or Sn. The compound may be any compound as long as it can insert and release lithium ions. InBi, Bi 3 In 5 , BiIn 2 ,
InSb, InAs, InP, InN, GaSb, Ga
As, GaP, GaN, Tl 5 Sb, Sb 5 Tl 7, Bi 2
Compound semiconductors such as Tl and AlSb are exemplified.

【0007】また、本発明に用いる導電性金属とは、C
u,Au,Ag等貴金属やFe、Co,Ni等遷移金属
である。
The conductive metal used in the present invention is C
Noble metals such as u, Au and Ag, and transition metals such as Fe, Co and Ni.

【0008】また、本発明の樹脂材料としては、熱処理
により炭化し、かつ炭化したものが導電性を有する材料
であれば特に限定されるものではないが、具体例を挙げ
れば、フェノール樹脂、エポキシ樹脂、不飽和ポリエス
テル樹脂、フラン樹脂、尿素樹脂、メラミン樹脂、アル
キド樹脂、キシレン樹脂等の熱硬化性樹脂をそのまま又
はブレンドもしくは変性したもの、ナフタレン、アセナ
フタレン、フェナントレン、アントラセン、トリフェニ
レン、ピレン、クリセン、ナフタセン、ピセン、ペリレ
ン、ペンタフェン、ペンタエン等の縮合系多環炭化水素
化合物、その誘導体、あるいは、これらの混合物を主成
分とするピッチ等が挙げられる。
[0008] The resin material of the present invention is not particularly limited as long as it is carbonized by heat treatment and the carbonized material has conductivity. Specific examples include phenol resin and epoxy resin. Resin, unsaturated polyester resin, furan resin, urea resin, melamine resin, alkyd resin, thermosetting resin such as alkyne resin or xylene resin And condensed polycyclic hydrocarbon compounds such as naphthacene, picene, perylene, pentaphene and pentaene, derivatives thereof, and pitches mainly containing a mixture thereof.

【0009】炭素質材料が主成分となると容量が小さく
なり、また逆に少なすぎると十分な導電性が得られない
ため、上記元素の単体又はその化合物の複合粒子におけ
る含有量は20重量%以上が望ましく、さらに望ましく
は40重量%以上、95重量%以下である。
When the carbonaceous material is the main component, the capacity is reduced. On the other hand, when the content is too small, sufficient conductivity cannot be obtained. Therefore, the content of the above-mentioned element alone or in the composite particles of the compound is 20% by weight or more. And more preferably 40% by weight or more and 95% by weight or less.

【0010】本発明の負極活物質の製造方法としては、
下記の方法が挙げられるが、これに限定されるものでは
ない。IIIB,IVB,VB族の元素(Siを除く)
から選ばれた単体又はその化合物の粉末の1種又は2種
以上を、熱処理により炭化可能な樹脂材料に分散させ、
混合し、上記元素の単体又はその化合物の粉末と上記樹
脂材料との複合材料を調製する。上記元素の単体又はそ
の化合物の粉末としては、平均粒子径が1〜30μmの
粉末を用いることが望ましい。上記複合材料を非酸化雰
囲気で、好ましくは窒素、アルゴンガス中で焼成する。
400℃未満では炭化が不十分であり、1200℃を超
えると充放電に関与しない添加した単体又はその化合物
の炭化物が生成するため、いずれも容量が低下する。そ
のため焼成温度は400℃〜1200℃が望ましい。ま
た、熱処理時間は0.1時間以上が望ましい。焼成後は
振動ミル等を用い、機械的に微粉砕する。このようにし
て作製した複合粒子に結着剤を加えて混練し、ステンレ
ス網に塗布し負極とする。
The method for producing the negative electrode active material of the present invention includes:
The following method is exemplified, but not limited thereto. IIIB, IVB, VB group elements (excluding Si)
One or more of powders of a simple substance or a compound selected from the above are dispersed in a carbonizable resin material by heat treatment,
The mixture is mixed to prepare a composite material of a powder of the element alone or a compound thereof and the resin material. It is desirable to use a powder having an average particle diameter of 1 to 30 μm as a powder of the above element alone or a compound thereof. The composite material is fired in a non-oxidizing atmosphere, preferably in a nitrogen or argon gas.
If the temperature is lower than 400 ° C., the carbonization is insufficient. If the temperature exceeds 1200 ° C., carbides of the added simple substance or the compound thereof which do not participate in charge / discharge are generated, so that the capacity decreases in any case. Therefore, the firing temperature is desirably 400 ° C to 1200 ° C. Further, the heat treatment time is desirably 0.1 hours or more. After firing, the material is finely pulverized mechanically using a vibration mill or the like. A binder is added to the composite particles thus produced, kneaded and applied to a stainless steel mesh to form a negative electrode.

【0011】さらに導電性を付与する導電性金属として
Cu、Au、Ag等の貴金属やFe、Co、Ni等の遷
移金属を含む複合粒子は、以下に述べるいずれかの方法
によって作製できる。すなわち、1)上記導電性金属の
粉末から選ばれた少なくとも1種を上記炭化可能な樹脂
材料に添加後焼成する、あるいは、2)上記元素の単体
又はその化合物と炭素質材料からなる複合粒子を結着剤
を加えて混練し、上記導電性金属の箔の上に塗布し、非
酸化雰囲気で所定の温度で熱処理する。2)の方法で
は、導電性金属箔表面の導電性金属が熱処理により複合
粒子中に拡散し、新たに導電性金属を含む複合粒子を作
製できる。複合粒子中の導電性金属の量は、炭素質材料
と合わせて5重量%以上、60重量%以下であることが
望ましい。
Further, composite particles containing a noble metal such as Cu, Au and Ag and a transition metal such as Fe, Co and Ni as a conductive metal for imparting conductivity can be produced by any of the following methods. That is, 1) at least one kind selected from the conductive metal powders is added to the carbonizable resin material and then calcined, or 2) a composite particle composed of a simple substance of the element or a compound thereof and a carbonaceous material. A binder is added and kneaded, applied on the conductive metal foil, and heat-treated at a predetermined temperature in a non-oxidizing atmosphere. In the method 2), the conductive metal on the surface of the conductive metal foil is diffused into the composite particles by the heat treatment, so that composite particles containing the conductive metal can be newly produced. The amount of the conductive metal in the composite particles is desirably 5% by weight or more and 60% by weight or less in total with the carbonaceous material.

【0012】本発明の正極活物質として用いられる正極
材料は、従来公知の何れの材料も使用でき、例えば、L
ixCoO2,LixNiO2,MnO2,LiMnO2
LixMn24,LixMn2-y4,α−V25,Ti
2等が挙げられる。
As the positive electrode material used as the positive electrode active material of the present invention, any conventionally known materials can be used.
ixCoO 2 , LixNiO 2 , MnO 2 , LiMnO 2 ,
LixMn 2 O 4, LixMn 2- y O 4, α-V 2 O 5, Ti
S 2, and the like.

【0013】本発明に使用される非水電解質は、有機溶
媒にリチウム化合物を溶解させた非水電解液、又は高分
子にリチウム化合物を固溶或いはリチウム化合物を溶解
させた有機溶媒を保持させた高分子固体電解質を用いる
ことができる。非水電解液は、有機溶媒と電解質とを適
宜組み合わせて調製されるが、これら有機溶媒や電解質
はこの種の電池に用いられるものであればいずれも使用
可能である。有機溶媒としては、例えばプロピレンカー
ボネート、エチレンカーボネート、ピニレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、メ
チルエチルカーボネート、メチルエチルカーボネート、
1,2−ジメトキシエタン、1,2−ジエトキシエタン
メチルフォルメイト、ブチロラクトン、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、1−3ジオキソ
フラン、4−メチル−1、3−ジオキソフラン、ジエチ
ルエーテル、スルホラン、メチルスルホラン、アセトニ
トリル、プロピオニトリル、ブチロニトリル、バレロニ
トリル、、ベンゾニトリル、1,2−ジクロロエタン、
4−メチル−2ーペンタノン、1、4−ジオキサン、ア
ニソール、ジグライム、ジメチルホルムアミド、ジメチ
ルスルホキシド等である。これらの溶媒はその1種を単
独で使用することができるし、2種以上を併用すること
もできる。電解質としては、例えばLiClO4,Li
AsF6,LiPF6,LiBF4,LiB(C654
LiCl,LiBr,LiI,LiCH3SO3,LiC
3SO3,LiAlCl4等が挙げられ、これらの1種
を単独で使用することもできるし、2種以上を併用する
こともできる。
The non-aqueous electrolyte used in the present invention is a non-aqueous electrolyte in which a lithium compound is dissolved in an organic solvent, or a solid solution of a lithium compound in a polymer or an organic solvent in which a lithium compound is dissolved is held. A polymer solid electrolyte can be used. The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used for this type of battery. Examples of the organic solvent include propylene carbonate, ethylene carbonate, pinylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl ethyl carbonate,
1,2-dimethoxyethane, 1,2-diethoxyethanemethylformate, butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1-3 dioxofuran, 4-methyl-1,3-dioxofuran, diethyl ether, sulfolane, methylsulfolane, Acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, 1,2-dichloroethane,
4-methyl-2-pentanone, 1,4-dioxane, anisole, diglyme, dimethylformamide, dimethylsulfoxide and the like. One of these solvents can be used alone, or two or more can be used in combination. As the electrolyte, for example, LiClO 4 , Li
AsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 ,
LiCl, LiBr, LiI, LiCH 3 SO 3 , LiC
F 3 SO 3 , LiAlCl 4 and the like can be mentioned. One of these can be used alone, or two or more can be used in combination.

【0014】本発明に使用される高分子固体電解質は、
上記の電解質から選ばれる電解質を以下に示す高分子に
固溶させたものを用いることができる。例えば、ポリエ
チレンオキサイドやポリプロピレンオキサイドのような
ポリエーテル鎖を有する高分子、ポリエチレンサクシネ
ート、ポリ−カプロラクタムのようなポリエステル鎖を
有する高分子、ポリエチレンイミンのようなポリアミン
鎖を有する高分子、ポリアルキレンスルフィドのような
ポリスルフィド鎖を有する高分子が挙げられる。また、
本発明に使用される高分子固体電解質として、ポリフッ
化ビニリデン、フッ化ビニリデン−テトラフルオロエチ
レン共重合体、ポリエチレンオキサイド、ポリアクリロ
ニトリル、ポリプロピレンオキサイド等の高分子に上記
非水電解液を保持させ上記高分子を可塑化させたものを
用いることもできる。
The solid polymer electrolyte used in the present invention comprises:
A solution obtained by dissolving an electrolyte selected from the above electrolytes in the following polymer can be used. For example, a polymer having a polyether chain such as polyethylene oxide or polypropylene oxide, a polymer having a polyester chain such as polyethylene succinate, poly-caprolactam, a polymer having a polyamine chain such as polyethyleneimine, a polyalkylene sulfide And a polymer having a polysulfide chain. Also,
As the polymer solid electrolyte used in the present invention, polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, polyethylene oxide, polyacrylonitrile, holding the non-aqueous electrolyte in a polymer such as polypropylene oxide Plasticized molecules can also be used.

【0015】[0015]

【実施例】以下、実施例を用いて本発明をさらに詳細に
説明するが、本発明はかかる実施例に限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0016】実施例1.ビスマス粉末とフェノール樹脂
を当重量混合撹拌し、80℃で3日間硬化させた。ここ
で用いたフェノール樹脂はクレゾール(m−クレゾール
含有率38%)150部に30%ホルムアルデヒド水溶
液135部と25%アンモニア水7.5部を混合し、8
5℃で105分加熱後、減圧蒸留で水を除いたもの用い
た。得られたビスマス含有フェノール樹脂硬化物を11
00℃で3時間焼成し、乾式粉砕後、テフロンを結着剤
とし、20mm×15mmのSUS製メッシュに塗布し
たビスマス−カーボン複合粒子を負極として使用した。
正極は次の様にして作製した。炭酸リチウムLi2CO3
と炭酸コバルトCoCO3等をモル比で秤量し、イソプ
ロピルアルコールを用いてボールミルで湿式混合した
後、溶媒を蒸発させて800℃1時間で仮焼きを行な
う。仮焼粉を振動ミルで再粉砕した後、成型圧1.3t
on/cm2で直径16mm厚さ0.5mmのペレット
に加圧成型した後、800℃で10時間焼成したものを
正極とした。電解液はエチレンカーボネートとジメチル
カーボネートの体積比1:1混合溶媒に六フッ化リン酸
リチウムLiPF6を1モル/l溶解したものを用い
た。この様にして作製されたコイン電池を室温で一昼夜
放置エージングした後、1.5mAの定電流により、
4.2V〜2.5Vの範囲で定電流充放電試験を行っ
た。結果を表1に示す。放電電位は3.1Vで一定電位
をとり、ビスマス−カーボン複合粒子は負極活物質とし
て適した特性をもつことが判明した。
Embodiment 1 FIG. Bismuth powder and a phenol resin were mixed under equal weight and stirred, and cured at 80 ° C. for 3 days. The phenolic resin used here was prepared by mixing 150 parts of cresol (m-cresol content 38%) with 135 parts of a 30% aqueous formaldehyde solution and 7.5 parts of 25% aqueous ammonia to obtain a mixture of 8 parts.
After heating at 5 ° C. for 105 minutes, water was removed by distillation under reduced pressure. The obtained bismuth-containing phenolic resin cured product was 11
After baking at 00 ° C. for 3 hours and dry pulverization, bismuth-carbon composite particles applied to a 20 mm × 15 mm SUS mesh were used as a negative electrode with Teflon as a binder.
The positive electrode was produced as follows. Lithium carbonate Li 2 CO 3
And cobalt carbonate CoCO 3 and the like are weighed in a molar ratio and wet-mixed in a ball mill using isopropyl alcohol, and then the solvent is evaporated and calcined at 800 ° C. for 1 hour. After re-crushing the calcined powder with a vibration mill, the molding pressure is 1.3t.
After being pressed into a pellet having a diameter of 16 mm and a thickness of 0.5 mm at on / cm 2 , the pellet was fired at 800 ° C. for 10 hours to obtain a positive electrode. The electrolyte used was a solution in which lithium hexafluorophosphate LiPF 6 was dissolved at 1 mol / l in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1. After aging the coin battery thus manufactured at room temperature for a day and a night, a constant current of 1.5 mA
A constant current charge / discharge test was performed in the range of 4.2 V to 2.5 V. Table 1 shows the results. The discharge potential was 3.1 V and a constant potential was obtained, and it was found that the bismuth-carbon composite particles had characteristics suitable as a negative electrode active material.

【0017】実施例2.実施例1と同様にアルミニウム
粉末とフェノール樹脂を等重量混合撹拌し、80℃で3
日間硬化させた。アルミニウム含有フェノール樹脂硬化
物を1100℃で3時間焼成し、乾式粉砕後、テフロン
を結着剤とし、SUS製メッシュに塗布したアルミニウ
ム−カーボン複合粒子を電極とし使用した。実施例1に
示した正極を用いて、コイン電池を組み、1.5mAの
定電流で充放電評価を行った。放電電位は3.4Vで一
定電位をとり、アルミニウム−カーボン複合粒子は負極
活物質として適した特性をもつことが判明した。
Embodiment 2 FIG. As in Example 1, aluminum powder and phenol resin were mixed by equal weight and stirred.
Cured for days. The cured aluminum-containing phenolic resin was baked at 1100 ° C. for 3 hours, and after dry pulverization, Teflon was used as a binder, and aluminum-carbon composite particles applied to a SUS mesh were used as electrodes. Using the positive electrode shown in Example 1, a coin battery was assembled, and charge / discharge evaluation was performed at a constant current of 1.5 mA. The discharge potential was constant at 3.4 V, and it was found that the aluminum-carbon composite particles had characteristics suitable as a negative electrode active material.

【0018】実施例3.実施例1同様に錫粉末とフェノ
ール樹脂を等重量混合撹拌し、80℃で3日間硬化させ
た。錫含有フェノール樹脂硬化物を1100℃で3時間
焼成し、乾式粉砕後、テフロンを結着剤とし、SUS製
メッシュに塗布した錫−カーボン複合粒子を電極として
使用した。実施例1に示した正極を用いて、コイン電池
を組み、1.5mAの定電流で充放電評価を行った。放
電時の平均電位は3.2Vで一定電位をとり、錫−カー
ボン複合粒子は負極活物質として適した特性をもつこと
が判明した。
Embodiment 3 FIG. In the same manner as in Example 1, tin powder and phenol resin were mixed and stirred at an equal weight, and cured at 80 ° C. for 3 days. The cured tin-containing phenolic resin was baked at 1100 ° C. for 3 hours, and after dry pulverization, tin-carbon composite particles coated on a SUS mesh were used as electrodes, using Teflon as a binder. Using the positive electrode shown in Example 1, a coin battery was assembled, and charge / discharge evaluation was performed at a constant current of 1.5 mA. The average potential at the time of discharge was 3.2 V, which was constant, indicating that the tin-carbon composite particles had characteristics suitable as a negative electrode active material.

【0019】比較例1.実施例1で用いたフェノール樹
脂そのものを80℃で3日間硬化させた。このフェノー
ル樹脂硬化物を1100℃で3時間焼成して得られたカ
ーボンを、乾式粉砕後、テフロンを結着剤とし、SUS
製メッシュに塗布し負極とした。ビスマス−カーボン複
合粒子同様、実施例1に示した正極を用いて、コイン電
池を組み、1.5mAの定電流で充放電評価を行った。
このとき得られた放電容量は3〜4mAhと低く、また
ビスマス−カーボン複合粒子を用いた場合と異なり一定
電位での充放電特性も示さなかった。
Comparative Example 1 The phenol resin itself used in Example 1 was cured at 80 ° C. for 3 days. The carbon obtained by calcining the cured phenolic resin at 1100 ° C. for 3 hours is subjected to dry pulverization, and then Teflon is used as a binder.
A negative electrode was formed by applying the coating to a mesh. Similarly to the bismuth-carbon composite particles, a coin battery was assembled using the positive electrode shown in Example 1, and charge / discharge evaluation was performed at a constant current of 1.5 mA.
At this time, the obtained discharge capacity was as low as 3 to 4 mAh, and unlike the case where bismuth-carbon composite particles were used, the charge / discharge characteristics at a constant potential were not exhibited.

【0020】比較例2.グラファイト粉末を比較例1と
同様にテフロンを結着剤として、SUS製メッシュに塗
布し負極とした。実施例1に示した正極を用いて、コイ
ン電池を組み、1.5mAの定電流で充放電評価を行っ
た。
Comparative Example 2 Graphite powder was applied to a SUS mesh using Teflon as a binder in the same manner as in Comparative Example 1 to obtain a negative electrode. Using the positive electrode shown in Example 1, a coin battery was assembled, and charge / discharge evaluation was performed at a constant current of 1.5 mA.

【0021】[0021]

【表1】 放電容量(mAh) 実施例1 72 実施例2 21 実施例3 33 比較例1 4 比較例2 12Table 1 Discharge capacity (mAh) Example 1 72 Example 2 21 Example 3 33 Comparative example 1 4 Comparative example 2 12

【0022】[0022]

【発明の効果】以上述べた様に、本発明はリチウム導電
性の非水電解質を用いる非水系二次電池において、少な
くとも負極活物質としてリチウムイオンを挿入・放出す
る周期律表IIIB、IVB、VB族から選ばれた1種
又は2種以上の単体又はその化合物と導電性炭素からな
る複合粒子、正極活物質として遷移金属を構成元素とし
て含む金属酸化物、電解質として有機溶媒にリチウム化
合物を溶解させた、又は高分子にリチウム化合物を溶解
或いはリチウム化合物を溶解させた有機溶媒を保持させ
たリチウムイオン導電性の非水電解質を組み合わせて用
いることにより、高電圧、高容量および良好な充放電サ
イクル特性をもつ非水系二次電池が得られる。
As described above, the present invention relates to a nonaqueous secondary battery using a lithium-conductive nonaqueous electrolyte, and a periodic table IIIB, IVB, VB, VB which inserts / releases lithium ions at least as a negative electrode active material. One or two or more selected from the group consisting of a single particle or a compound thereof and conductive carbon, a metal oxide containing a transition metal as a constituent element as a positive electrode active material, and a lithium compound dissolved in an organic solvent as an electrolyte. High voltage, high capacity and good charge / discharge cycle characteristics by using a lithium ion conductive non-aqueous electrolyte in which a lithium compound is dissolved in a polymer or an organic solvent in which a lithium compound is dissolved is retained. Is obtained.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極とを有する非水系二次電池に
おいて、少なくとも負極活物質がリチウムイオンを挿入
・放出する1種又は2種以上の周期律表IIIB、IV
B、VB族から選ばれた元素(Siを除く)の単体又は
その化合物と、炭素質材料とからなる複合粒子であるこ
とを特徴とする非水系二次電池用負極材料。
1. A non-aqueous secondary battery having a positive electrode and a negative electrode, wherein at least one or more of the periodic tables IIIB and IV in which at least the negative electrode active material inserts and releases lithium ions
A negative electrode material for a non-aqueous secondary battery, wherein the negative electrode material is a composite particle composed of a simple substance or a compound of an element (excluding Si) selected from a group B or VB and a carbonaceous material.
【請求項2】 上記周期律表IIIB族元素としてB、
Al、Ga、In及びTlからなる群、IVB族元素と
してGe、Sn及びPbからなる群、VB族元素として
As、Sb及びBiからなる群から選ばれた1種又は2
種以上の元素の単体又はその化合物を用いることを特徴
とする請求項1記載の非水系二次電池用負極材料。
2. A compound represented by the formula B:
One or two selected from the group consisting of Al, Ga, In and Tl, the group consisting of Ge, Sn and Pb as Group IVB elements, and the group consisting of As, Sb and Bi as Group VB elements
The negative electrode material for a non-aqueous secondary battery according to claim 1, wherein a simple substance or a compound of at least one element is used.
【請求項3】 上記元素の単体又はその化合物を複合粒
子中に20〜95重量%含むことを特徴とする請求項1
記載の非水系二次電池用負極材料
3. A composite particle comprising a simple substance of said element or a compound thereof in an amount of 20 to 95% by weight.
Negative electrode material for non-aqueous secondary battery described
【請求項4】 上記複合粒子がさらに導電性を付与する
導電性金属を含むことを特徴とする請求項1〜3のいず
れか一つに記載の非水系二次電池用負極材料。
4. The negative electrode material for a non-aqueous secondary battery according to claim 1, wherein the composite particles further include a conductive metal imparting conductivity.
【請求項5】 周期律表IIIB、IVB、VB族から
選ばれた1種又は2種以上の元素(Siを除く)の単体
又はその化合物粉末と熱処理により炭化可能な樹脂材料
との分散混合物としてなる複合材料を、非酸化雰囲気下
400〜1200℃で熱処理し、機械的に微粉砕するこ
とにより上記元素の単体又はその化合物と炭素質材料と
からなる複合粒子を得ることを特徴とする非水系二次電
池用負極材料の製造方法。
5. A dispersion mixture of a simple substance of one or more elements (excluding Si) selected from the groups IIIB, IVB and VB of the periodic table (excluding Si) or a compound powder thereof and a resin material carbonizable by heat treatment. A composite material comprising a simple substance of the above element or a compound thereof and a carbonaceous material by heat-treating the composite material at 400 to 1200 ° C. in a non-oxidizing atmosphere and mechanically pulverizing the composite material. A method for producing a negative electrode material for a secondary battery.
【請求項6】 上記複合材料において、熱処理により炭
化可能な樹脂材料と分散混合する元素の単体又はその化
合物粉末として、平均粒子径が1〜30μmの粉末を用
いることを特徴とする請求項4記載の非水系二次電池用
負極材料の製造方法。
6. The composite material according to claim 4, wherein a powder having an average particle diameter of 1 to 30 μm is used as a simple substance or a compound powder of an element dispersed and mixed with the resin material capable of being carbonized by heat treatment. Method for producing a negative electrode material for a non-aqueous secondary battery.
【請求項7】 少なくとも周期律表IIIB、IVB、
VB族から選ばれた1種又は2種以上の元素(Siを除
く)の単体又はその化合物と炭素質材料とからなる複合
粒子を負極活物質とし、遷移金属を構成元素として含む
金属酸化物を正極活物質とし、有機溶媒にリチウム化合
物を溶解させた、又は高分子にリチウム化合物を固溶或
いはリチウム化合物を溶解させた有機溶媒を保持させた
リチウムイオン導電性の非水電解質を電解質として用い
ることを特徴とする非水系二次電池。
7. At least periodic table IIIB, IVB,
A metal oxide containing, as a negative electrode active material, a single particle of one or more elements (excluding Si) selected from the VB group or a compound thereof and a carbonaceous material, and a transition metal as a constituent element Using a lithium ion conductive non-aqueous electrolyte in which a lithium compound is dissolved in an organic solvent, or in which a lithium compound is dissolved in a polymer or an organic solvent in which a lithium compound is dissolved is held as a positive electrode active material, as an electrolyte Non-aqueous secondary battery characterized by the following.
JP9293896A 1997-10-27 1997-10-27 Negative electrode material for nonaqueous secondary battery Pending JPH11135120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9293896A JPH11135120A (en) 1997-10-27 1997-10-27 Negative electrode material for nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9293896A JPH11135120A (en) 1997-10-27 1997-10-27 Negative electrode material for nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH11135120A true JPH11135120A (en) 1999-05-21

Family

ID=17800564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9293896A Pending JPH11135120A (en) 1997-10-27 1997-10-27 Negative electrode material for nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH11135120A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033400A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
KR20010076586A (en) * 2000-01-26 2001-08-16 김순택 Negative active material for lithium secondary battery and method of preparing same
KR100315232B1 (en) * 1999-02-24 2001-11-26 김순택 Negative active material for lithium secondary battery and method of preapring the same
KR100354226B1 (en) * 1999-09-01 2002-09-27 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
US6506520B1 (en) 1998-12-02 2003-01-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US6558841B1 (en) 1999-08-30 2003-05-06 Matsushita Electric Industrial Co., Ltd. Negative electrode for non-aqueous electrolyte rechargeable batteries
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2004178922A (en) * 2002-11-26 2004-06-24 Showa Denko Kk Negative electrode material and secondary battery using the same
WO2004095612A1 (en) * 2003-04-23 2004-11-04 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing same and nonaqueous electrolyte secondary battery
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US6890685B2 (en) 2001-03-27 2005-05-10 Nec Corporation Anode for secondary battery and secondary battery therewith
KR100529069B1 (en) * 1999-12-08 2005-11-16 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
CN100340015C (en) * 2003-04-23 2007-09-26 三井金属矿业株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing same and nonaqueous electrolyte secondary battery
JP2011054438A (en) * 2009-09-02 2011-03-17 Toyota Central R&D Labs Inc All-solid lithium secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6506520B1 (en) 1998-12-02 2003-01-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
WO2000033400A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
KR100315232B1 (en) * 1999-02-24 2001-11-26 김순택 Negative active material for lithium secondary battery and method of preapring the same
US6558841B1 (en) 1999-08-30 2003-05-06 Matsushita Electric Industrial Co., Ltd. Negative electrode for non-aqueous electrolyte rechargeable batteries
KR100354226B1 (en) * 1999-09-01 2002-09-27 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
KR100529069B1 (en) * 1999-12-08 2005-11-16 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
KR20010076586A (en) * 2000-01-26 2001-08-16 김순택 Negative active material for lithium secondary battery and method of preparing same
US6890685B2 (en) 2001-03-27 2005-05-10 Nec Corporation Anode for secondary battery and secondary battery therewith
JP2004178922A (en) * 2002-11-26 2004-06-24 Showa Denko Kk Negative electrode material and secondary battery using the same
WO2004095612A1 (en) * 2003-04-23 2004-11-04 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing same and nonaqueous electrolyte secondary battery
CN100340015C (en) * 2003-04-23 2007-09-26 三井金属矿业株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing same and nonaqueous electrolyte secondary battery
JP2011054438A (en) * 2009-09-02 2011-03-17 Toyota Central R&D Labs Inc All-solid lithium secondary battery

Similar Documents

Publication Publication Date Title
JP4453111B2 (en) Negative electrode material and method for producing the same, negative electrode active material, and non-aqueous secondary battery
JP2948205B1 (en) Method for producing negative electrode for secondary battery
JP4177529B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US8628884B2 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP3992708B2 (en) Non-aqueous secondary battery electrode material, method for producing the same, and non-aqueous secondary battery using the same
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
EP1028478B1 (en) Negative electrode for secondary cell, negative plate for secondary cell, and secondary cell comprising the same
EP2522625B1 (en) Preparation of particulate positive electrode material for lithium ion cells
JP2008210618A (en) Nonaqueous electrolyte secondary battery
JPH11135120A (en) Negative electrode material for nonaqueous secondary battery
KR20020092923A (en) Nonaqueous electrolyte secondary cell
JP2012164624A (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery comprising the negative electrode active material
JP7029680B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery
KR20120069535A (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery
JP3202249B2 (en) Anode material for non-aqueous secondary battery and non-aqueous secondary battery
JP2002373648A (en) Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode
JP3771846B2 (en) Non-aqueous secondary battery and charging method thereof
JP2003317705A (en) Battery
JP2000012089A (en) Nonaqueous secondary battery
JP4016438B2 (en) Nonaqueous electrolyte secondary battery
JP4487326B2 (en) Non-aqueous electrolyte secondary battery charging method
JP4965019B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
CN116457955A (en) Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP3144832B2 (en) Non-aqueous solvent secondary battery
JP3089662B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911