JP2001106575A - Process for producing carbonaceous compound and graphite carbon composite formed body - Google Patents

Process for producing carbonaceous compound and graphite carbon composite formed body

Info

Publication number
JP2001106575A
JP2001106575A JP28881499A JP28881499A JP2001106575A JP 2001106575 A JP2001106575 A JP 2001106575A JP 28881499 A JP28881499 A JP 28881499A JP 28881499 A JP28881499 A JP 28881499A JP 2001106575 A JP2001106575 A JP 2001106575A
Authority
JP
Japan
Prior art keywords
graphitic carbon
carbonaceous compound
compound
carbonaceous
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28881499A
Other languages
Japanese (ja)
Inventor
Yutaka Kawamata
裕 川俣
Kunimasa Takahashi
邦昌 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP28881499A priority Critical patent/JP2001106575A/en
Publication of JP2001106575A publication Critical patent/JP2001106575A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production process of a carbonaceous compound and a graphite carbon composite formed body which has very low gas permeability and is appropriately used as a solid polymer type fuel cell separator sheet having a complicated shape. SOLUTION: This production process involves: dry-blending the constituent particles of a fine particle component consisting essentially of carbonaceous compound particles each of which contains a self-sintering ingredient and has a <=10 μm average particle size, and fine graphite carbon particles each having a 10-70 μm average particle size; adding a binder aqueous solution to the blended fine particle component to obtain a mixture; granulating the mixture into dry granules having 0.5-20 mm granule size; subjecting the granules to press forming into a green body; and subjecting the green body to heat treatment in a non- oxidizing atmosphere to produce the objective graphite carbon composite formed body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は加熱時に自己焼結性
を呈する炭素質化合物微粒子と人造黒鉛及び天然黒鉛か
らなる群から選ばれた少なくとも1種類の黒鉛質炭素微
粒子の混合物を造粒、成形、加熱して得られる炭素質化
合物・黒鉛質炭素複合成形体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention granulates and forms a mixture of carbonaceous compound fine particles exhibiting self-sintering properties when heated and at least one type of graphitic carbon fine particles selected from the group consisting of artificial graphite and natural graphite. And a method for producing a carbonaceous compound / graphitic carbon composite molded article obtained by heating.

【0002】本発明は固体高分子型燃料電池のセパレー
タ板に要求される曲げ強度、電気伝導度、熱伝導度、ガ
ス透過率等の物理的な諸特性の内、特に重要な要素特性
であるガス透過率が極めて小さいことを特徴とする炭素
質化合物・黒鉛質炭素複合成形体の製造方法を提供す
る。本発明に従えば燃料電池の溝付きセパレータ板に見
られる複雑な形状の生成形体をプレスで一発成形したも
のを加熱処理するだけでガス透過率が極めて小さく得ら
れた生成形体と略同寸法の炭素質化合物・黒鉛質炭素複
合成形体を工業規模で極めて効率よく製造することが可
能となる。
The present invention is a particularly important elemental characteristic among physical characteristics such as bending strength, electric conductivity, thermal conductivity, gas permeability and the like required for a separator plate of a polymer electrolyte fuel cell. Provided is a method for producing a carbonaceous compound / graphitic carbon composite molded article characterized by extremely low gas permeability. According to the present invention, a formed shape having a complicated shape, which is found in a grooved separator plate of a fuel cell, is formed into a single piece by a press, and heat treatment is performed on the formed shape. The carbonaceous compound / graphitic carbon composite molded article of the above can be produced extremely efficiently on an industrial scale.

【0003】[0003]

【従来の技術】炭素質化合物、いわゆるピッチ化合物と
黒鉛質炭素とからなる複合材料の製造方法は種々提案さ
れており、炭素質化合物と黒鉛質炭素の複合の目的は種
々有るが一般的にはこれらの組合せによって黒鉛の持つ
特質を焼成成形体に賦与できることがあげられる。また
黒鉛質炭素の持つ弱点を炭素質化合物で補填する効果
(例えばりん酸型燃料電池では黒鉛質炭素単味で形成し
た成形体は強度が低い上に、作動条件下では腐食電流が
大量に流れ結果として成形体の崩壊を生起するが、炭素
質化合物を黒鉛質炭素近傍に分散させた系を1000〜
1500℃の熱処理に供して炭素質化合物を炭素質炭素
に転化した系では黒鉛質炭素粒の結晶端面が保護され、
腐食電流が劇的に低減する効果がある)があげられる。
2. Description of the Related Art Various methods for producing a composite material comprising a carbonaceous compound, a so-called pitch compound, and graphitic carbon have been proposed. The purpose of compounding a carbonaceous compound with graphitic carbon is various. It is mentioned that the characteristics of graphite can be imparted to the fired molded body by these combinations. In addition, the effect of supplementing the weakness of graphitic carbon with a carbonaceous compound (for example, in a phosphoric acid fuel cell, a molded body made of graphitic carbon alone has low strength, and a large amount of corrosion current flows under operating conditions. As a result, the molded product collapses, but the system in which the carbonaceous compound is dispersed in the vicinity of the graphitic carbon is 1000-1000.
In a system in which a carbonaceous compound is converted to carbonaceous carbon by being subjected to a heat treatment at 1500 ° C., the crystal end faces of the graphitic carbon grains are protected,
Has the effect of dramatically reducing corrosion current).

【0004】更に炭素質炭素・黒鉛質炭素複合成形体は
その炭素質炭素/黒鉛質炭素の存在比も適切に設定する
ことで生成形体/炭素化成形体の寸法を同じにできるこ
とが知られている。この特性を利用すると生成形体時点
で複雑な形状を賦与した上で焼成しても収縮による歪み
や割れの発生が無く、生成形体と同じ形状の焼成体を得
ることができる。
Further, it is known that a carbonaceous carbon / graphitic carbon composite molded article can have the same dimensions of a formed article / carbonized molded article by appropriately setting the abundance ratio of carbonaceous carbon / graphitic carbon. . Utilizing this characteristic, even if a complicated shape is given at the time of the formed body and firing is performed, no distortion or cracking occurs due to shrinkage, and a fired body having the same shape as the formed body can be obtained.

【0005】本発明者等は炭素質炭素/黒鉛質炭素の係
る特性を自動車用及び家庭用の発電装置として近来注目
を集め自動車メーカー及び電機メーカーで開発が進めら
れている固体高分子型燃料電池に用いられる複雑な形状
を有するガスセパレータ板の製造に生かすべく鋭意検討
を行ってきた。そしてすでに数々の炭素質炭素/黒鉛質
炭素複合成形体の新規な製造方法を開発した。
The present inventors have recently paid attention to the characteristics of carbonaceous carbon / graphitic carbon as power generators for automobiles and homes, and polymer electrolyte fuel cells which are being developed by automobile manufacturers and electric appliance manufacturers. Intensive investigations have been made to utilize it in the production of gas separator plates having a complicated shape used for manufacturing. We have already developed a number of new methods for producing carbonaceous carbon / graphitic carbon composite compacts.

【0006】[0006]

【発明が解決しようとする課題】本発明者等が先に行っ
た研究で得られた溝付き炭素質炭素・黒鉛質炭素複合成
形体はその後の詳細な検討で固体高分子型燃料電池のセ
パレータ板の生命線であるガス透過量に問題があること
が明らかになった。先に行った研究は1200℃で炭素
化して得た200mm角の溝付き炭素質炭素・黒鉛質炭
素成形体から25mm角の平板上試験片を切り出し、1
5mmΦの領域に窒素背圧1kg/cm2 でガス透過量
を測定して、セパレータ板に適したガス透過量を得た。
SUMMARY OF THE INVENTION The grooved carbonaceous carbon / graphitic carbon composite molded body obtained in the research conducted by the present inventors has been studied in detail in a later study. It became clear that there was a problem with the gas permeation amount, which is the lifeline of the plate. In the previous study, a 25 mm square test piece was cut out from a 200 mm square grooved carbonaceous carbon / graphitic carbon molded body obtained by carbonization at 1200 ° C.
The gas permeation amount was measured in a region of 5 mmφ under a nitrogen back pressure of 1 kg / cm 2 to obtain a gas permeation amount suitable for the separator plate.

【0007】200mm角の平板状炭素化成形体を製造
してガス透過量を測定したところガス透過量は極めて多
くなり、ガスセパレータ用途に適さない構造体であるこ
とが判明した。25mm角に15mmΦのガス与圧直径
の場合、炭素化成形体の側面からガスが漏れ出す為に、
見かけ上は少ないガス透過量が観察されたことが判っ
た。また、該炭素化成形体の細孔分布を水銀圧入法で測
定したところ、先行技術で製造したいずれの炭素化成形
体でも半径0.6μm程度の細孔が選択的に形成されて
いることが見出された。かかる特定孔径の細孔は該成形
体の原料に用いた造粒粉体が完全に崩壊しないために生
起したことは該成形体の断面の走査型電子顕微鏡写真に
よる観察からも明らかになった。
When a plate-shaped carbonized molded article of 200 mm square was manufactured and the gas permeation amount was measured, the gas permeation amount was extremely large, and it was found that the structure was not suitable for gas separator applications. In the case of a gas pressurized diameter of 15 mmΦ in a 25 mm square, gas leaks from the side surface of the carbonized molded body,
It was apparent that a small amount of gas permeation was observed. Further, when the pore distribution of the carbonized molded article was measured by a mercury intrusion method, it was found that pores having a radius of about 0.6 μm were selectively formed in any of the carbonized molded articles produced by the prior art. Was done. The fact that the granulated powder used as a raw material of the molded article did not completely collapse was generated from the observation of the cross section of the molded article by a scanning electron micrograph, which was also revealed.

【0008】[0008]

【課題を解決するための手段】本発明者等は固体高分子
型燃料電池用途の炭素質炭素・黒鉛質炭素複合成形体の
ガス透過率を悪化させる要因について鋭意検討し、以下
の因子が複合的に作用し合っていることを見出した。 (1)造粒粉体の大きさが重要な支配因子である。即ち
先の研究では造粒粉体粒子直径を0.5mm以下に設定
することとした。しかし、粒子径が細かくなるとプレス
成形時に一定圧を印加しても、個々の粒子に掛かる圧力
は相対的に小さくなる。また小さな粒子では粒間空隙に
成形圧力が分散される。結果として造粒粉体が完全に潰
れないままで生成形体の形状ができる為にガス透過が容
易な粒間が多く形成され、ガス透過量が大きくなること
が判った。
Means for Solving the Problems The present inventors have intensively studied the factors that deteriorate the gas permeability of a carbonaceous carbon / graphitic carbon composite molded article for use in polymer electrolyte fuel cells, and the following factors are complex. I found that they were acting in a way. (1) The size of the granulated powder is an important controlling factor. That is, in the previous study, the granulated powder particle diameter was set to 0.5 mm or less. However, when the particle diameter becomes smaller, even if a constant pressure is applied during press molding, the pressure applied to each particle becomes relatively small. For small particles, the molding pressure is dispersed in the intergranular space. As a result, it was found that since the shape of the formed body was formed without completely crushing the granulated powder, many inter-granules where gas permeation was easy were formed, and the gas permeation amount was increased.

【0009】従って本発明の目的である極めて低いガス
透過量を確保するには、加圧時に造粒体が容易に潰れ
て、粒間を残さないことが必須である。本発明者等は造
粒粉体直径とガス透過率=生成形体中の未破壊粒子の存
在の有無について鋭意検討を行った。その結果、造粒粉
体直径が0.5〜20mm、好ましくは1〜10mm、
より好ましくは1〜5mmに分布するときに生成形体中
の未破壊粒子は激減することを見出した。
Therefore, in order to secure an extremely low gas permeation amount, which is the object of the present invention, it is essential that the granules are easily crushed at the time of pressurization and no intergranular space is left. The present inventors have conducted intensive studies on the diameter of the granulated powder and the gas permeability = the presence or absence of unbroken particles in the formed product. As a result, the granulated powder diameter is 0.5 to 20 mm, preferably 1 to 10 mm,
More preferably, it has been found that the unbroken particles in the formed form are drastically reduced when distributed over 1 to 5 mm.

【0010】(2)造粒粉体の圧縮破壊強度も重要な支
配因子であることを見出した。即ち(1)の条件を満た
す大粒の造粒粉体が極めて大きな耐圧縮強度を有する場
合は、成形圧を印加しても潰れにくく結局は粒子間の空
隙が残りそこからガスが抜けてガス透過量を増大させる
ことになる。造粒体の圧縮強度を低下させるには同時に
二つの要素を解決する必要がある。造粒剤が乾燥造粒体
内部で強固な結合力を発揮すると粒子は潰れにくくな
る。具体的には乾燥状態での造粒剤が樹脂フィルムのよ
うな緻密な結合状態を呈する場合がこれに該当する。
(2) It has been found that the compressive fracture strength of the granulated powder is also an important controlling factor. That is, when a large granulated powder satisfying the condition (1) has an extremely high compressive strength, it is hardly crushed even when a molding pressure is applied, and eventually voids between the particles remain to allow gas to escape from there. The amount will be increased. To reduce the compressive strength of the granules, it is necessary to solve two factors at the same time. When the granulating agent exerts a strong binding force inside the dried granules, the particles are less likely to be crushed. Specifically, this corresponds to the case where the granulating agent in a dry state exhibits a dense bonding state like a resin film.

【0011】先の研究で好ましい造粒剤としてあげたポ
リエチレングリコール4000は、これを水に溶かした
のち皿に入れて110℃に加熱すると膜状の溶融体にな
った。室温に冷却すると樹脂フィルム様の亀裂のない一
体膜が形成された。ポリエチレングリコール4000の
上述特性からしてこれを用いて作製した造粒体は易崩壊
性を示さず、ガス透過率が高くなることが容易に類推さ
れる。
Polyethylene glycol 4000, which was mentioned as a preferred granulating agent in the previous study, was dissolved in water, placed in a dish, and heated to 110 ° C. to form a film-like melt. Upon cooling to room temperature, a crack-free integral film like a resin film was formed. In view of the above characteristics of polyethylene glycol 4000, it can be easily inferred that the granulated body produced by using the polyethylene glycol 4000 does not exhibit easy disintegration and the gas permeability is increased.

【0012】事実先の研究でポリエチレングリコール4
000で造粒し成形した成形体のガス透過率は蔗糖のそ
れに比較して大きくなった。一方先の研究で好ましい造
粒剤として用いた蔗糖水溶液を110℃加熱したとこ
ろ、110℃では綺麗な溶融膜が形成されたが、室温に
冷却する過程で微細な亀裂を無数に発生し室温では該膜
は指先で押すだけで容易に微細片に崩壊した。即ち造粒
剤としての適切な特性を有しつつも、成形に供する段階
での粒強度を適切な強度に維持することができる点で蔗
糖は極めて好ましい造粒剤であることが判った。
In fact, previous studies have shown that polyethylene glycol 4
The gas permeability of the molded product granulated and molded at 000 was larger than that of sucrose. On the other hand, when the aqueous solution of sucrose used as a preferable granulating agent in the previous study was heated to 110 ° C, a beautiful molten film was formed at 110 ° C, but countless fine cracks were generated in the process of cooling to room temperature. The membrane easily disintegrated into fine pieces by simply pressing with a fingertip. That is, it was found that sucrose was an extremely preferable granulating agent in that it had appropriate characteristics as a granulating agent, but was able to maintain the particle strength at an appropriate stage at the stage of forming.

【0013】(3)さらに鋭意検討した結果、造粒体中
の蔗糖含有量も造粒体の易崩壊性を支配する因子である
ことを見出した。炭素質化合物微粒子30重量部と黒鉛
質炭素微粒子70重量部からなる複合粉体100重量部
に対して蔗糖1重量部未満を添加して得られる造粒体は
比較的固い粒子を与えた。
(3) As a result of further intensive studies, it has been found that the sucrose content in the granules is also a factor that controls the easy disintegration of the granules. Granules obtained by adding less than 1 part by weight of sucrose to 100 parts by weight of a composite powder comprising 30 parts by weight of carbonaceous compound fine particles and 70 parts by weight of graphitic carbon fine particles gave relatively hard particles.

【0014】しかし該複合粉体100重量部に対して蔗
糖1〜30重量部、好ましくは2〜18重量部さらに好
ましくは5〜15重量部を加えて得られる乾燥造粒体は
指先で押すだけでバラバラになる易崩壊性の粒子を与え
た。上記の傾向はメチルセルロースでも認められた。し
かし、メチルセルロースは水への溶解度が本発明の造粒
剤添加量好適範囲要請を全域で満たすことができず、大
量使用領域ではメチルアルコールのような有機溶媒の併
用を必須とする難点がある。従ってもっとも好ましい本
発明の実施態様は蔗糖水溶液による造粒である。
However, dry granules obtained by adding 1 to 30 parts by weight of sucrose, preferably 2 to 18 parts by weight, more preferably 5 to 15 parts by weight with respect to 100 parts by weight of the composite powder, can be pressed with a fingertip. To give easily disintegrable particles. The above tendency was also observed for methylcellulose. However, the solubility of methylcellulose in water cannot satisfy the requirement of the preferred range of the amount of the granulating agent to be added in the present invention in the entire region, and there is a problem that the use of an organic solvent such as methyl alcohol is indispensable in a mass use region. Thus, the most preferred embodiment of the invention is granulation with an aqueous sucrose solution.

【0015】(4)炭素質化合物・黒鉛質炭素複合成形
体のガス透過量は上述造粒条件に加えて該複合生成形体
の焼成温度によっても支配されることを見出した。本発
明者らは先の研究においては従来のりん酸型燃料電池に
要求される低腐食電流値を固体高分子型燃料電池におい
ても達成することが必須課題と見なして、複合成形体を
1200〜1600℃で炭素化して製品を得た。
(4) It has been found that the gas permeation amount of the carbonaceous compound / graphitic carbon composite molded article is governed by the firing temperature of the composite molded article in addition to the above granulation conditions. The present inventors have considered in the previous research that achieving a low corrosion current value required for a conventional phosphoric acid fuel cell also in a polymer electrolyte fuel cell is an essential issue, The product was obtained by carbonization at 1600 ° C.

【0016】しかしその後の調査で、固体高分子型燃料
電池はその作動温度が100℃前後と低く、且つセパレ
ータ板近傍にはりん酸のような腐食性物質は共存せず純
粋な水に近い組成が保持されることから実質上腐食電流
を考慮する必要がないことが判った。また、近年の当該
分野において開示されている先行技術ではガス透過量を
小さくするために黒鉛質炭素を絶縁性のフェノール樹脂
で被覆硬化した形式の製品が主流となった技術開発が行
われていることから、本発明者等が必須事項と見なした
該成形体の小さな体積固有抵抗値も固体高分子型燃料電
池では支配因子でないことが判明した。
However, a subsequent investigation showed that the operating temperature of the polymer electrolyte fuel cell was as low as about 100 ° C., and there was no corrosive substance such as phosphoric acid near the separator plate, and the composition was close to pure water. It was found that it was not necessary to substantially consider the corrosion current from the fact that was maintained. Further, in the prior art disclosed in the field in recent years, in order to reduce the amount of gas permeation, technology development in which a product of a type obtained by coating and curing graphitic carbon with an insulating phenol resin has become mainstream has been performed. From this, it was found that the small volume resistivity of the molded article which the present inventors regarded as an essential matter was not a controlling factor in the polymer electrolyte fuel cell.

【0017】即ち本発明者等が腐食電流値及び体積固有
抵抗値をりん酸型燃料電池セパレータ並に維持するため
に必須な操作と見なしていた1200〜1600℃での
炭素化は不要なことが明らかになった。本発明者等は該
生複合成形体のガス透過量の焼成温度依存性を評価し
た。その結果、該生複合成形体を炭素質化合物中の揮発
成分の蒸発と、一部分解重合反応を伴う高分子化によっ
て該炭素質炭素化合物が固化する温度域である500℃
から600℃で焼成を止めて得られた「炭素質炭素化合
物・黒鉛質炭素複合成形体」のガス透過量は、炭素質炭
素化合物から水素が失われて炭素質炭素が形成される温
度域である900℃以上での焼成で得られる「炭素質炭
素・黒鉛質炭素複合成形体」のガス透過量より少ないこ
とを見出した。900℃焼成品のガス透過量が500〜
600℃焼成品のガス透過量より多くなる現象の原因は
以下のように推測される。
That is, carbonization at 1200 to 1600 ° C., which the present inventors considered as essential operations for maintaining the corrosion current value and the volume specific resistance value at the same level as the phosphoric acid type fuel cell separator, is unnecessary. It was revealed. The present inventors evaluated the firing temperature dependency of the gas permeation amount of the green composite molded article. As a result, the green composite molded body is heated to 500 ° C., which is a temperature range in which the carbonaceous carbon compound is solidified by evaporation of volatile components in the carbonaceous compound and polymerization due to partial decomposition polymerization.
The gas permeation amount of the “carbonaceous carbon compound / graphitic carbon composite molded article” obtained by stopping the baking at 600 ° C. is in a temperature range where hydrogen is lost from the carbonaceous carbon compound and carbonaceous carbon is formed. It was found that the gas permeation amount was smaller than that of the “carbonaceous carbon / graphitic carbon composite molded article” obtained by firing at a certain 900 ° C. or higher. Gas permeation of 900 ° C fired product is 500 ~
The cause of the phenomenon that the amount of gas permeated by the product fired at 600 ° C. is larger than that of the product fired at 600 ° C. is assumed as follows.

【0018】該複合生成形体を構成する炭素質化合物微
粒子の単独生成形体を加熱焼成していくと最終的には炭
素質炭素成形体に変化するのであるが、500〜600
℃の加熱温度域は炭素質化合物の含有する揮発性の軽質
分が放出され、重縮合反応で残存する重質分が分解ガス
を放出しつつ高分子化し炭素質化合物に変質していく過
程であることが知られている。
When a single formed body of the carbonaceous compound fine particles constituting the composite formed body is heated and baked, it finally changes into a carbonaceous carbon formed body.
In the heating temperature range of ℃, the volatile light components contained in the carbonaceous compound are released, and the heavy components remaining in the polycondensation reaction are polymerized while releasing the decomposition gas and transformed into carbonaceous compounds. It is known that there is.

【0019】この温度域では成形体の線収縮量は数%し
かないことが知られている。この現象を炭素質化合物・
黒鉛質炭素複合成形体に引き当ててみると、500〜6
00℃領域では該炭素質化合物の線収縮量は小さく、共
存する黒鉛質炭素成形体の熱膨潤を抑制し、生/焼成成
形体の寸法を事実上同じにする効果のみが発現してくる
と考えることができる。500〜600℃で得られる重
縮合して高分子化した炭素質化合物はガラス状固化物と
しての形状を与える。該ガラス状固化物はガス透過性に
乏しく本発明の目的とする低ガス透過量の炭素質化合物
・黒鉛質炭素複合成形体を与える。
In this temperature range, it is known that the linear shrinkage of the compact is only a few percent. This phenomenon is called a carbonaceous compound
When it is applied to the graphitic carbon composite molded body, it is 500-6
In the 00 ° C. region, the linear shrinkage of the carbonaceous compound is small, and only the effect of suppressing the thermal swelling of the coexisting graphitic carbon molded article and making the dimensions of the green / fired molded article substantially the same is exhibited. You can think. The polycondensed and polymerized carbonaceous compound obtained at 500 to 600 ° C. gives a shape as a glassy solid. The vitreous solidified material has poor gas permeability and provides a carbonaceous compound / graphitic carbon composite molded article having a low gas permeability which is the object of the present invention.

【0020】500〜600℃での高分子化過程を経た
炭素質化合物をさらに加熱すると700〜900℃の温
度域で炭素質化合物は水素を放出して炭素質炭素に変成
されるが、このいわゆる炭素化過程では炭素質化合物単
独成形体では10%以上の線収縮量を与え、体積として
は30%前後も収縮することが知られている。一方、本
発明の典型的な組成である70%の黒鉛質炭素を含有す
る複合成形体では900℃処理においてもその線収縮量
は1%前後に過ぎない。
When the carbonaceous compound that has undergone the polymerization process at 500 to 600 ° C. is further heated, the carbonaceous compound releases hydrogen in the temperature range of 700 to 900 ° C. and is converted into carbonaceous carbon. It is known that, during the carbonization process, a linearly compacted carbonaceous compound gives a linear shrinkage of 10% or more and shrinks by about 30% in volume. On the other hand, the composite molded body containing 70% of graphitic carbon, which is a typical composition of the present invention, has a linear shrinkage of only about 1% even at 900 ° C.

【0021】炭素質炭素単独成形体の900℃近傍焼成
で与える線収縮量と該複合成形体の収縮量の差は黒鉛質
炭素が炭素質炭素の収縮を見掛け上阻害しているためと
考えられる。しかしこのようなケースでも炭素質化合物
自体は大きな収縮量を有するために、500〜600℃
領域で形成された炭素質化合物に由来するガラス状固化
物はひび割れを起こし、ガス通過経路が大量に形成され
ガス不透過体としての機能が低下するものと推測され
る。
The difference between the amount of linear shrinkage of the carbonaceous carbon compact and the amount of shrinkage of the composite compact given baking at around 900 ° C. is considered to be due to the apparent impairment of graphitic carbon contraction of the carbonaceous carbon. . However, even in such a case, since the carbonaceous compound itself has a large amount of shrinkage, 500 to 600 ° C.
It is presumed that the vitreous solid derived from the carbonaceous compound formed in the region cracks, the gas passage is formed in a large amount, and the function as a gas impermeable body is reduced.

【0022】(5)本発明の目的とする低ガス透過率成
形体を得る他の手段として先に得られた成果の平均粒径
が10μm以下、好ましくは1〜7μmの自己焼結性炭
素質化合物微粒子と平均粒径が10〜70μm、好まし
くは15〜50μmの黒鉛質炭素微粒子を乾燥状態で撹
拌混合して得た混合物の利用は従来通り有益である。か
かる混合物は黒鉛質炭素微粒子の廻りに炭素質化合物が
均等に分布し、500〜600℃焼成時に一旦溶融した
上で固化するのでガラス質に近いガス透過抵抗体を成形
体全体に効率よく形成するに有効である。 (6)本発明の実施態様として、本発明で得られる炭素
質化合物・黒鉛質炭素複合生成形体を通常の切削加工機
で高速切削加工して複雑な固体高分子型燃料電池のセパ
レータ板形状を賦与した後に本発明の要請する加熱条件
で焼成して目的とする成形体を得る方法も有効に採用さ
れる。
(5) As another means for obtaining a low-gas-permeability molded product aimed at by the present invention, a self-sintering carbonaceous material having an average particle size of 10 μm or less, preferably 1 to 7 μm, obtained as a result of the above-mentioned results. The use of a mixture obtained by stirring and mixing the compound fine particles and the graphitic carbon fine particles having an average particle size of 10 to 70 μm, preferably 15 to 50 μm in a dry state is conventionally useful. In such a mixture, the carbonaceous compound is evenly distributed around the graphitic carbon fine particles, and once melted and solidified at the time of firing at 500 to 600 ° C., a gas-permeable resistor close to vitreous is efficiently formed on the entire molded body. It is effective for (6) As an embodiment of the present invention, the carbonaceous compound / graphitic carbon composite formed form obtained by the present invention is subjected to high-speed cutting with a normal cutting machine to form a complicated polymer electrolyte fuel cell separator plate shape. A method of obtaining the desired molded product by baking under the heating conditions required by the present invention after the application is also effectively adopted.

【0023】以上の通り本発明は、加熱時に自己焼結性
を呈する成分を含有する平均粒径が10μm以下の炭素
質化合物粒子と平均粒径が10〜70μmの黒鉛質炭素
微粒子を主たる構成成分とする複合粉体を混合、造粒、
成形、加熱して炭素質化合物・黒鉛質炭素複合成形体を
製造する方法において、該微粒子組成物を乾燥状態で混
合し、得られた均一混合粉体を水溶性且つ炭素質化合物
及び黒鉛質炭素に粘着性を有する化合物の粒子相互結着
用添加剤の少くとも一種類を含む水溶液を加えて造粒
し、得られた造粒体の水分を除去し、得られた粒直径
0.5〜20mmの乾燥造粒体をプレス成形機器を用い
て成形し、得られた生成形体を非酸化雰囲気下加熱処理
することを特徴とする炭素質炭素化合物・黒鉛質炭素複
合成形体の製造方法を要旨とするものである。
As described above, the present invention mainly comprises a carbonaceous compound particle having an average particle diameter of 10 μm or less and a graphitic carbon fine particle having an average particle diameter of 10 to 70 μm containing a component exhibiting self-sintering property when heated. Mixing, granulating,
In a method for producing a carbonaceous compound / graphitic carbon composite molded article by molding and heating, the fine particle composition is mixed in a dry state, and the obtained homogeneous mixed powder is dissolved in a water-soluble carbonaceous compound and graphitic carbon. An aqueous solution containing at least one kind of an additive for bonding particles to a compound having tackiness is added and granulated, and water of the obtained granules is removed, and the obtained granules have a diameter of 0.5 to 20 mm. A method for producing a carbonaceous carbon compound / graphitic carbon composite molded body, characterized in that the dried granulated body of the above is molded using a press molding machine, and the obtained formed body is subjected to a heat treatment under a non-oxidizing atmosphere. Is what you do.

【0024】[0024]

【発明の実施の形態】以下本発明を更に詳細に説明す
る。実施態様を、原料、混合/造粒、成形、焼成系に大
別して説明する。 原料系 (1)黒鉛質炭素微粒子としては人造黒鉛、天然黒鉛い
ずれも使用されるが、具体的には鱗片状及び土状天然黒
鉛及び人造黒鉛からなる群から選ばれた少なくとも1種
類の黒鉛質炭素微粒子を用いることができる。黒鉛の物
性及び供給安定性の両面で人造黒鉛がより好ましい。黒
鉛成形体製造業から供給される各種人造黒鉛も対象とし
て選択することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. Embodiments will be roughly described in terms of raw materials, mixing / granulation, molding, and firing systems. Raw material system (1) As the graphitic carbon fine particles, both artificial graphite and natural graphite are used. Specifically, at least one type of graphite selected from the group consisting of flaky and earthy natural graphite and artificial graphite Carbon fine particles can be used. Artificial graphite is more preferred in terms of both physical properties and supply stability of graphite. Various artificial graphites supplied from the graphite molded body manufacturing industry can also be selected.

【0025】(2)黒鉛質炭素微粒子の粒径は成形性の
観点からは幅広く選択できる。しかし、体積固有抵抗、
熱伝導度、成形体強度、生成形体と焼成成形体の寸法安
定性及びガス透過率などの諸物性値を同時に満たす観点
からは余り大きくても小さくても本発明の目的に合致し
なくなる。黒鉛微粒子の平均粒径は10〜70μm、好
ましくは15〜50μmの範囲から選ぶことができる。
本発明で用いることのできる代表的な上市製品として人
造黒鉛ではティムカル社KS44が、天然黒鉛では日本
黒鉛社CPB及びCPB精製品がある。
(2) The particle size of the graphitic carbon fine particles can be selected widely from the viewpoint of moldability. However, the volume resistivity,
From the viewpoint of simultaneously satisfying various physical properties such as thermal conductivity, strength of the molded body, dimensional stability of the formed green body and the fired green body, and gas permeability, even if it is too large or small, the object of the present invention is not met. The average particle size of the graphite fine particles can be selected from the range of 10 to 70 μm, preferably 15 to 50 μm.
Representative commercial products that can be used in the present invention include Timcal KS44 for artificial graphite, and CPB and CPB refined products of Japan Graphite for natural graphite.

【0026】(3)本発明の特徴である生成形品と炭素
化成形品の寸法が同じである製品を製造する支配因子の
一つは黒鉛質炭素含有量であり好適範囲が存在する。具
体的には自己焼結性炭素質化合物微粒子と黒鉛質炭素微
粒子からなる複合粉体組成物中の黒鉛質炭素微粒子含有
量は90〜50重量部、好ましくは85〜60重量部、
更に好ましくは80〜65重量部から選択することがで
きる。
(3) One of the controlling factors for producing a product having the same dimensions as the molded product and the carbonized molded product, which is a feature of the present invention, is the graphite carbon content, and there is a suitable range. Specifically, the content of the graphitic carbon fine particles in the composite powder composition comprising the self-sinterable carbonaceous compound fine particles and the graphitic carbon fine particles is 90 to 50 parts by weight, preferably 85 to 60 parts by weight,
More preferably, it can be selected from 80 to 65 parts by weight.

【0027】なお、この黒鉛質炭素含有量範囲は炭素質
化合物の自己焼結性にも支配される因子でもあり、自己
焼結性炭素質化合物特性をも踏まえて総合的に決定され
る。当然のことであるが黒鉛質炭素含有量が高いほど見
かけ嵩密度、電気伝導度及び熱伝導度等の黒鉛由来特性
が向上する余地がある。しかし自己焼結性炭素質化合物
の焼結特性や後述する平均粒子径等が不適切であると、
炭素化時に黒鉛質炭素が膨潤して折角の黒鉛質炭素固有
の特性を生かせなくなることもあるので、適切な設計を
要する。
Note that the range of the graphite carbon content is also a factor governed by the self-sinterability of the carbonaceous compound, and is comprehensively determined in consideration of the characteristics of the self-sinterable carbonaceous compound. As a matter of course, there is room for improvement in the graphite-derived properties such as apparent bulk density, electric conductivity, and thermal conductivity as the content of the graphitic carbon is higher. However, if the sintering characteristics of the self-sintering carbonaceous compound and the average particle diameter described below are inappropriate,
Graphitic carbon swells during carbonization and may not be able to make use of the unique characteristics of graphitic carbon, so an appropriate design is required.

【0028】(4)本発明で用いる自己焼結性を有する
炭素質化合物は種々市販されている製品から選択するこ
とができる。好ましい自己焼結性炭素質化合物としては
γ成分(キノリン可溶トルエン不溶成分)含有量が3〜
30重量%、好ましくは5〜25重量%の炭素質化合物
が用いられる。γ成分含有量が少なすぎると所望の曲げ
強度を所定物性値の要求範囲内で発現できない。一方あ
まりにも高すぎると例えばコールタールのように100
℃以下で溶けてしまい成形体形状の保持ができなくなる
ことと自己焼結性炭素質化合物の偏在化が起きることが
本発明の用にたたない。
(4) The carbonaceous compound having a self-sintering property used in the present invention can be selected from various commercially available products. Preferred self-sinterable carbonaceous compounds have a γ component (quinoline-soluble toluene-insoluble component) content of 3 to
30% by weight, preferably 5 to 25% by weight, of the carbonaceous compound is used. If the content of the γ component is too small, the desired bending strength cannot be exhibited within the required range of the predetermined physical property value. On the other hand, if it is too high, for example 100, like coal tar
The fact that the material melts at a temperature of not more than ° C and cannot maintain the shape of the molded body and the uneven distribution of the self-sintering carbonaceous compound occurs cannot be used in the present invention.

【0029】本発明で用いることができる市販の自己焼
結性を有する炭素質化合物として大阪化成社製TGPシ
リーズ、MPCシリーズ、大阪ガス社製MCMB、川崎
製鉄社製KMFC、呉羽化学社製KS等を挙げることが
できる。また、高軟化点ピッチもγ成分含有量を満たせ
ば用いることができる。本発明の要求するγ成分含有量
範囲を満たす限り、自己焼結性炭素質化合物がコールタ
ール、石油系重質油のいずれを出発原料にしていても問
題はない。また上述大阪化成社製MPC−1のように空
気酸化によって酸素含有量を大きくした素材であっても
何ら問題はない。
Commercially available carbonaceous compounds having self-sintering properties which can be used in the present invention include TGP series and MPC series manufactured by Osaka Kasei, MCMB manufactured by Osaka Gas, KMFC manufactured by Kawasaki Steel, KS manufactured by Kureha Chemical and the like. Can be mentioned. Also, a high softening point pitch can be used as long as the content of the γ component is satisfied. There is no problem if the self-sintering carbonaceous compound is made of either coal tar or petroleum heavy oil as a starting material as long as the content range of the γ component required by the present invention is satisfied. In addition, there is no problem even if the material has an increased oxygen content by air oxidation, such as MPC-1 manufactured by Osaka Kasei Co., Ltd.

【0030】(5)自己焼結性を有する炭素質化合物の
平均粒子径は本発明の実施において炭素質化合物・黒鉛
質炭素複合成形体の曲げ強度やガス透過率を支配する重
要な因子である。大阪化成社から市販されている商品
「TGP3000」を例にその粒子径効果を以下に示
す。TGP3000はγ成分含有量が21%の自己焼結
性メソフェーズ含有ピッチの粉砕品(300メッシュ篩
い下品)に位置づけられる。
(5) The average particle size of the carbonaceous compound having self-sintering properties is an important factor that governs the bending strength and gas permeability of the carbonaceous compound / graphitic carbon composite molded article in the practice of the present invention. . The particle size effect of the product “TGP3000” commercially available from Osaka Kasei is shown below. TGP3000 is positioned as a pulverized product of self-sintering mesophase-containing pitch having a γ content of 21% (under 300 mesh sieve).

【0031】TGP3000をそのまま用いても焼結体
を得ることはできる。しかし「TGP3000(300
メッシュ篩い下品)/平均粒径25μmの人造黒鉛粉=
3/7」に混合して得た複合成形体の1000℃焼成品
の曲げ強度は100kg/cm2 以下であり、燃料電池
セパレータ板に要求される曲げ強度値を満たすことがで
きなかった。また製品のガス透過率も不適の領域であっ
た。「TGP3000」をジェットミル粉砕に供して平
均粒径が10、7、3、1μmの粉砕品を得、上記比率
で成形体を作ったところ、3μm品で曲げ強度250k
g/cm2 が得られ、ガス透過率も粒径の減少に比例し
て減少した。諸物性を総合的に満たすことができる好ま
しい平均粒径は7μm以下であった。特に好ましい平均
粒径は3μm以下であった。
Even if TGP3000 is used as it is, a sintered body can be obtained. However, "TGP3000 (300
Mesh sieve) / artificial graphite powder with average particle size of 25 μm =
The bending strength of the 1000 ° C. fired product of the composite molded product obtained by mixing “3/7” was 100 kg / cm 2 or less, and could not satisfy the bending strength required for the fuel cell separator plate. The gas permeability of the product was also in an inappropriate range. "TGP3000" was subjected to jet mill pulverization to obtain pulverized products having an average particle size of 10, 7, 3, and 1 µm, and a molded product was produced at the above ratio.
g / cm 2 were obtained, and the gas permeability also decreased in proportion to the decrease in particle size. A preferable average particle size capable of comprehensively satisfying various physical properties was 7 μm or less. Particularly preferred average particle size was 3 μm or less.

【0032】この現象は自己焼結性炭素質化合物微粒子
の粒径が小さくなることで、大きな黒鉛質炭素粒子の表
面に隙間なく自己焼結性炭素質化合物粉が充填され、焼
成処理によって焼結することで強度の向上とガス透過抵
抗体としての均質なガラス状炭素質化合物の形成による
ガス透過量の低減に効果が現れると考える。即ち平均粒
径=25μmの黒鉛粒(比重=2.2)70%、平均粒
径=50μmの自己焼結性炭素粒(比重=1.8)30
%が存在するとき、自己焼結性炭素質化合物粒1個に対
して黒鉛質炭素粒15個が存在するという計算結果があ
る。
This phenomenon is caused by the fact that the particle diameter of the self-sintering carbonaceous compound fine particles is reduced, so that the surface of the large graphitic carbon particles is filled with the self-sintering carbonaceous compound powder without gaps, and sintered by a firing treatment. By doing so, it is considered that the effect of improving strength and reducing the amount of gas permeation by forming a homogeneous glassy carbonaceous compound as a gas permeation resistor appears. That is, 70% of graphite particles having an average particle size of 25 μm (specific gravity = 2.2), and 30 of self-sintering carbon particles having an average particle size of 50 μm (specific gravity = 1.8) 30.
%, There is a calculation result that there are 15 graphitic carbon particles for one self-sintering carbonaceous compound particle.

【0033】従って上記粒径関係では焼結性を担う自己
焼結性炭素質化合物粒の存在効果は余り期待できないこ
とが明らかである。自己焼結性炭素質化合物粒の平均粒
径を10、7、3μmに変えることで、黒鉛質炭素粒1
個に対して8、24、303個の自己焼結性炭素質化合
物粒が存在する計算になる。10μmの場合は1個の黒
鉛質炭素粒子表面の1/3を自己焼結性炭素質化合物粒
が被覆する計算になる。7、3μmではそれぞれ1/
2、1の表面を自己焼結性炭素質化合物粒が被覆する計
算になる。実験の結果から黒鉛質炭素粒子表面の1/2
を自己焼結性炭素質化合物粒が被覆する計算値が得られ
る状況で、曲げ強度、ガス透過率の要求値が満たされる
ことがわかる。また、3μm品では効果がより完全にな
る。
Therefore, it is apparent that the effect of the presence of the self-sintering carbonaceous compound particles that contribute to sintering cannot be expected very much in the above-mentioned particle size relationship. By changing the average particle size of the self-sintering carbonaceous compound particles to 10, 7, and 3 μm, the graphitic carbon particles 1
The calculation is such that there are 8, 24, and 303 self-sinterable carbonaceous compound grains per piece. In the case of 10 μm, the calculation is such that one-third of the surface of one graphitic carbon particle is covered with self-sinterable carbonaceous compound particles. 7 and 3 μm respectively
It is a calculation that the surface of 2, 1 is covered with the self-sinterable carbonaceous compound particles. From the experimental results, it was found that half of the surface of the graphitic carbon
It can be seen that the required values of the bending strength and the gas permeability are satisfied in a situation where the calculated value of coating with the self-sintering carbonaceous compound particles is obtained. The effect is more complete with a 3 μm product.

【0034】黒鉛質炭素粒子が大きくなれば炭素質化合
物の粒径が7μm以上でも同じ効果が得られるように思
われるが、現実には成形体の溝部分に余り大きな黒鉛質
炭素粒子を用いるとガス透過性や溝の平滑性などの物性
面で許容されない問題が発生する為に、黒鉛質炭素粒の
粒径自体も制限されるため結果として自己焼結性炭素質
化合物の平均粒径は7μmが好ましい上限となる。
It seems that the same effect can be obtained when the particle size of the carbonaceous compound is 7 μm or more as the size of the graphitic carbon particles increases. Since unacceptable problems such as gas permeability and groove smoothness occur, the particle size itself of the graphitic carbon particles is limited. As a result, the average particle size of the self-sintering carbonaceous compound is 7 μm. Is a preferred upper limit.

【0035】混合/造粒系 セパレータ板厚みは固体高分子型燃料電池システムの重
量支配因子であり薄いほど好ましい。自動車用途などの
目的では、極めて均質な物性を有する膨大な枚数のセパ
レータ板確保が前提となり、高速自動無人プレスでの成
形が工業的に必要になる。自動無人プレス機での大量且
つ均質な生産においては金型に供給される粉体の流れ性
がきわめて重要な支配因子となる。金型に供給される粉
体の迅速且つ均一な流れ性を確保するためには造粒粉体
が必須となる。黒鉛質炭素粒及び炭素質化合物粒の単純
混合物では金型への迅速且つ均一な充填はできず、大量
生産を均一に行う目的を達成できない。
Mixing / granulation system The thickness of the separator plate is a weight controlling factor of the polymer electrolyte fuel cell system, and the thinner it is, the more preferable. For purposes such as automotive applications, it is premised to secure a huge number of separator plates having extremely uniform physical properties, and it is necessary to industrially form by a high-speed automatic unmanned press. In large-scale and homogeneous production by automatic unmanned presses, the flowability of powder supplied to a mold is a very important controlling factor. Granulated powder is indispensable in order to ensure quick and uniform flow of the powder supplied to the mold. With a simple mixture of graphitic carbon particles and carbonaceous compound particles, a mold cannot be filled quickly and uniformly, and the purpose of uniform mass production cannot be achieved.

【0036】(6)本発明では1〜10μmの微細な自
己焼結性炭素質化合物粒と10〜70μmの黒鉛質炭素
粒を均一に混ぜる操作が、黒鉛質炭素粒表面を自己焼結
性炭素化合物粒で被覆することで成形体に所要の特性を
発現させる上できわめて重要になる。本発明で用いられ
る微細粒の均一混合には困難が伴う。
(6) In the present invention, the operation of uniformly mixing fine self-sintering carbonaceous compound particles having a size of 1 to 10 μm and graphitic carbon particles having a size of 10 to 70 μm is performed by changing the surface of the graphitic carbon particles to self-sintering carbon. Coating with compound particles is extremely important in expressing the required properties in a molded article. Difficulties are associated with uniform mixing of the fine particles used in the present invention.

【0037】即ち擂潰機のような圧縮を伴う混合装置を
用いると、鱗片状の構造を有し圧縮によって自己成形性
を発現する黒鉛質炭素粒特に鱗片を有する天然黒鉛粒に
顕著であるが、自己焼結性炭素質化合物粒との混合前に
黒鉛質炭素粒が相互に付着してしまい、均一な混合を前
提とした複合粉体のみが発現する所望の特性の発現が事
実上できなくなる。
That is, when a mixing device with compression such as a crusher is used, it is remarkable for graphitic carbon particles having a flaky structure and exhibiting self-forming property by compression, particularly natural graphite particles having flakes. Before mixing with the self-sintering carbonaceous compound particles, the graphitic carbon particles adhere to each other, and it is virtually impossible to exhibit the desired characteristics that only the composite powder assuming uniform mixing is exhibited. .

【0038】一方ボールミルのような粉砕機能が優先す
る混合機では原料自体が粉砕され、所定の粒径の黒鉛質
炭素粒と炭素質化合物粒が存在することを前提とした成
形体性能の発現が難しくなる。ハイスピードミキサーに
代表される撹拌混合機器では、回転羽根を用いて粉体を
自由浮遊の状態で混合するために上記のような問題が起
こりにくい。
On the other hand, in a mixer such as a ball mill, in which the pulverizing function is prioritized, the raw material itself is pulverized, and the performance of the compact is expressed on the premise that graphite carbon particles and carbon compound particles having a predetermined particle size are present. It becomes difficult. In a stirring and mixing device typified by a high-speed mixer, the above-mentioned problems hardly occur because the powder is mixed in a free floating state by using a rotary blade.

【0039】本発明者らはハイスピードミキサー(深江
パウテック社製)での最適な混合条件を探索した。炭素
質化合物粒子、黒鉛質炭素粒子の混合体は50℃以上、
好ましくは100℃前後で乾燥した2種類の粉を室温か
ら100℃の、好ましくは50〜80℃の温度範囲で、
湿気が混合槽内に入り込まないように乾燥空気や窒素ガ
スで混合槽内をパージしながら主としてアジテータを用
いた混合を行うことで得られる。
The present inventors have searched for optimal mixing conditions with a high speed mixer (Fukae Powtech). The mixture of carbonaceous compound particles and graphitic carbon particles is at least 50 ° C.
Preferably, two kinds of powders dried at around 100 ° C. are dried at room temperature to 100 ° C., preferably in a temperature range of 50 to 80 ° C.
It is obtained by mixing mainly using an agitator while purging the inside of the mixing tank with dry air or nitrogen gas so that moisture does not enter the mixing tank.

【0040】(7)また得られた混合粉体を室温で混合
しつつ水溶性且つ炭素質化合物及び黒鉛質炭素に粘着性
を有する化合物からなる粒子相互結着用添加剤を含む水
溶液を造粒液として加えることで造粒体が形成される。
造粒は蔗糖を用い、これを溶解した水溶液を造粒液に用
いることで容易に達成できる。蔗糖の使用量は該混合粉
体100重量部に対して1〜50重量部、好ましくは3
〜30重量部、造粒後に水分を乾燥除去した造粒体の直
径は0.5〜20mm、好ましくは1〜10mm、より
好ましくは1〜5mmが本発明の実施態様である。
(7) While mixing the obtained mixed powder at room temperature, an aqueous solution containing a particle binding additive composed of a compound soluble in water and sticking to a carbonaceous compound and graphitic carbon is formed into a granulating liquid. A granulated body is formed by adding as.
Granulation can be easily achieved by using sucrose and using an aqueous solution in which sucrose is dissolved for the granulation liquid. The amount of sucrose used is 1 to 50 parts by weight, preferably 3 parts by weight, per 100 parts by weight of the mixed powder.
An embodiment of the present invention has a diameter of from 0.5 to 20 mm, preferably from 1 to 10 mm, more preferably from 1 to 5 mm, from 30 to 30 parts by weight, and the diameter of the granulated body from which moisture has been removed by drying after granulation.

【0041】(8)造粒は混合が終了した粉体に撹拌状
態で蔗糖及び/又はメチルセルロース、好ましくは蔗糖
を造粒剤として含有する水溶液を添加することで達成さ
れる。セパレータ内に残存して、固体高分子型燃料電池
の高分子膜のプロトンを不活性化するイオン、具体的に
はCaイオン、Naイオン、Kイオンの含有量が少ない
ことが造粒剤及び造粒液に要求される。 (9)工業規模では混合と造粒は別々に行うことが好ま
しい。これによって水を用いた機器に乾燥粉体を導入す
る際の混合槽乾燥や付着物除去などの煩雑な工程を省く
ことができ、混合、造粒各工程をほぼ無人で操作でき
る。
(8) Granulation is achieved by adding an aqueous solution containing sucrose and / or methylcellulose, preferably sucrose as a granulating agent, to the powder after mixing, with stirring. A small amount of ions that remain in the separator and inactivate protons of the polymer membrane of the polymer electrolyte fuel cell, specifically, Ca ions, Na ions, and K ions, means that the granulating agent and the Required for granular liquids. (9) On an industrial scale, mixing and granulation are preferably performed separately. This can eliminate complicated steps such as mixing tank drying and adhering matter removal when the dry powder is introduced into an apparatus using water, and the mixing and granulating steps can be performed almost unattended.

【0042】成形系 燃料電池セパレータ板はその表面に複雑な形状の燃料ガ
ス(水素)及び酸化剤(空気)の流路を形成するものが
多い。特許公報に開示された情報からその形状は様々で
ある。片面だけに流路を形成したもの、両面に形成した
もの等製造者によって多くの提案がなされている。炭素
成形材料を扱う者においては自明のことであるが、係る
複雑な形状を炭素化または黒鉛化した板の上に形成する
ことは極めて難しく精密加工にあたっては工作機械を長
時間占有し、結果として高価な製品にならざるを得ない
のである。ましてやグラッシーカーボンのごとく高硬度
素材においては量産は極めて難しい。本発明の目的はか
かる複雑な形状をプレス金型押圧面に予め刻印すること
で、自動プレス成形時に複雑な形状も一発で成形するこ
とにある。また予め生成形体を平板形状で形成し、これ
を炭素化成形体の10倍以上の高速加工に供する方法も
本発明の実施態様として選択できる。
Molding System In many fuel cell separator plates, a flow path for fuel gas (hydrogen) and oxidant (air) having a complicated shape is formed on the surface thereof. The shape varies from the information disclosed in the patent gazette. Many proposals have been made by manufacturers such as those having a flow path formed on only one side and those having formed on both sides. Although it is obvious to those who handle carbon molding materials, it is extremely difficult to form such a complicated shape on a carbonized or graphitized plate. It has to be an expensive product. Furthermore, mass production is extremely difficult for high hardness materials such as glassy carbon. An object of the present invention is to form a complicated shape in one shot at the time of automatic press forming by engraving such a complicated shape on a press die pressing surface in advance. In addition, a method in which the formed body is formed in advance in the form of a flat plate and is subjected to high-speed processing at least 10 times that of the carbonized formed body can be selected as an embodiment of the present invention.

【0043】一発成形で複雑な形状を付与すること自体
は技術的に可能であるが、大抵は炭素化時に発生する収
縮によって複雑形状が破壊される、板全体が変形する等
の問題が起きて実用に適さないのが実状であるる 本発明者の一人が提案した方法例えば特公平6−102
530号公報では、燃料電池セパレータを黒鉛モールド
を用いて成形する方法を開示している。また、特許第2
56659号公報では造粒手段を合わせて薄肉有底の複
雑成形体を大量生産する方法を開示している。本発明で
はTGP3000というコールタール由来のβ成分含有
量が21%前後の自己焼結性炭素質化合物を代表例に黒
鉛との組み合わせで、係る生成形体と炭素化成形体の寸
法差が実質零の成形板用複合粉体を得ることができるか
否かについて検討した。
Although it is technically possible to give a complicated shape by one-shot molding, there are usually problems such as the shrinkage generated during carbonization destroying the complicated shape and deforming the entire plate. Is not suitable for practical use. The method proposed by one of the present inventors, for example, Japanese Patent Publication No. 6-102
No. 530 discloses a method of molding a fuel cell separator using a graphite mold. Patent No. 2
JP-A-56659 discloses a method for mass-producing a thin-walled, bottomed, complex molded body by combining granulation means. In the present invention, a self-sinterable carbonaceous compound having a β content of about 21% derived from coal tar called TGP3000 as a representative example is combined with graphite to form a molded article having substantially zero dimensional difference between the formed article and the carbonized article. Whether or not a composite powder for a plate could be obtained was examined.

【0044】(10)TGP3000は200〜400
℃で分解ガス成分を大量に発生する素材であり、いわゆ
るメソフェーズ含有ピッチとしては特異な物性を有す
る。しかし、TGP単独の成形体は極めて高い強度を発
現することが知られている。先に述べた各種粒度に粉体
したTGP300をハイスピードミキサーでティムカル
社製人造黒鉛「KS44」と種々比率で混合後蔗糖外割
10%で造粒し、110℃乾燥した造粒粉体を成形圧
1.5トン/cm2 で成形し、不活性ガス雰囲気下、
0.2℃/分の昇温速度で600℃まで昇温して焼成成
形体を得、焼成前後の寸法変化を観察した。
(10) TGP3000 is 200 to 400
It is a material that generates a large amount of decomposition gas components at ℃, and has unique physical properties as a so-called mesophase-containing pitch. However, it is known that a molded body made of TGP alone exhibits extremely high strength. The above-described TGP300 powdered into various particle sizes is mixed with artificial graphite “KS44” manufactured by Timcal Co., Ltd. in various ratios using a high-speed mixer, and then granulated with sucrose outside ratio of 10%, and dried at 110 ° C. to form granulated powder. Molded at a pressure of 1.5 ton / cm 2 under an inert gas atmosphere.
The temperature was raised to 600 ° C. at a rate of 0.2 ° C./min to obtain a fired molded body, and dimensional changes before and after firing were observed.

【0045】その結果TGP3000の平均粒径3μm
品ではTGP3000=30%、KS44=70%で焼
成前後で比較した線収縮率は実質零であった。TGP3
000の平均粒径の変化によってその最適値は多少変動
したがTGP=26〜30%の範囲内で線収縮率実質零
の組成を設定できる。線収縮率零の組成を設定できる
と、先に開発した技術同様の複雑形状品の一発成形がT
GP3000という特殊であるが大量生産されている商
品の再粉砕品によって可能となる。
As a result, the average particle size of TGP3000 was 3 μm.
The product had TGP3000 = 30% and KS44 = 70%, and the linear shrinkage before and after firing was substantially zero. TGP3
Although the optimum value slightly fluctuated due to the change of the average particle size of 000, a composition having a substantially zero linear shrinkage can be set within the range of TGP = 26 to 30%. If a composition with a linear shrinkage of zero can be set, one-shot molding of a complex-shaped product similar to the previously developed technology can be achieved.
This is made possible by the re-pulverized GP3000, a special but mass-produced product.

【0046】本発明者らは市販されている自己焼結性炭
素材料である「KMFC」、「MCMB」を用いて本発
明の構成要素である乾式混合、湿式造粒の工程を経て調
製した乾燥造粒粉体で同様の試験を行いTGP3000
同様線収縮率零の組成を見出すことができる。自動プレ
ス成形においては乾燥造粒体の嵩密度や成形時の圧密度
を基準に予め設定された量の造粒体より少し多目の量を
金型枠内に投入した後に下杵を所定位置まで押し上げて
型上面に溢れ出た造粒粉体を刷毛切りして充填量を定
め、所定加圧動作に移るのが一般的な手法である。この
場合、造粒粉体の嵩密度が一定であることが製品厚みを
一定にする上で重要である。また金型枠内に短時間で容
易に均一充填される流れ性も重要な因子である。
The present inventors used commercially available self-sinterable carbon materials “KMFC” and “MCMB” to dry dry and wet granulate the components of the present invention and prepared them through the dry mixing and wet granulation processes. The same test was performed on the granulated powder, and TGP3000
Similarly, a composition having a linear shrinkage of zero can be found. In the automatic press molding, the lower punch is moved to a predetermined position after a slightly larger amount than the predetermined amount of the granulated material is put into the mold frame based on the bulk density of the dried granulated material and the compaction density at the time of molding. It is a general technique to brush the granulated powder overflowing to the upper surface of the mold by brushing to determine the filling amount, and to shift to a predetermined pressing operation. In this case, it is important that the bulk density of the granulated powder is constant in order to keep the product thickness constant. An important factor is also the flowability of uniformly filling the mold frame in a short time.

【0047】成形で得られた生成形体が金型より少し大
きめの寸法を与える、いわゆるスプリングバック現象は
良く知られている。この現象が起きるときには成形体を
金型から抜き出すときに破損する確率が高くなることが
知られているが、対応策として当該業界の常識の範囲の
技術であるが金型に抜き代と呼ばれる微少なテーパを施
すことで破損を回避できる。
The so-called spring-back phenomenon, in which the molded product obtained by molding gives a slightly larger size than the mold, is well known. It is known that when this phenomenon occurs, the probability of breakage when the molded body is removed from the mold increases, but as a countermeasure this is a technique within the range of common sense in the industry, but it is a technique called a punching allowance in the mold. By applying a large taper, breakage can be avoided.

【0048】スプリングバックで金型寸法より膨潤した
生成形体は本発明の好適な焼成条件を適用することで金
型寸法と同じレベルまで線収縮させることができる。ま
た、膨張した寸法のままで焼成成形体を得ることも可能
である。複雑な形状を予め印刻した生成形体の焼成にお
いては膨潤形状そのままの焼成寸法を選択することがよ
り好ましい結果を与える。
The formed body swelled from the mold size by springback can be linearly contracted to the same level as the mold size by applying the preferable firing conditions of the present invention. It is also possible to obtain a fired molded body with the expanded dimensions. In the firing of a formed product in which a complicated shape is stamped in advance, it is more preferable to select the firing size as it is in the swollen shape.

【0049】いずれの場合も自己焼結性炭素質化合物の
混合比率を所望の線収縮率を付与するレベルに設定する
材料設計によって選択することができる。ちなみにスプ
リングバック量は成形圧の影響はほとんど無視できる。
また成形圧は0.5〜2トン/cm2 の範囲で本発明の
焼成条件下での線収縮率に影響を与えないことも確認さ
れた。
In any case, the mixing ratio of the self-sinterable carbonaceous compound can be selected by a material design that is set to a level that gives a desired linear shrinkage. Incidentally, the influence of the molding pressure on the springback amount can be almost ignored.
It was also confirmed that the molding pressure in the range of 0.5 to 2 ton / cm 2 did not affect the linear shrinkage rate under the firing conditions of the present invention.

【0050】上述の二つの発見の組み合わせによって本
発明の実施態様として金型成形時に複雑な形状を生成形
体に刻印することが可能になる。即ち表裏に幅1mm、
深さ1mm程度の溝を多数有する溝付きセパレータの場
合、成形圧によって焼成時線収縮率が異なる素材では溝
の有無に合わせて造粒粉体の仕込量を微調整して成形面
全体に均一な成形圧を確保しなければならない。しかし
大量高速生産は本発明の必須な実施態様では仕込量の微
調整は実質不可能である。従って溝近傍では成形圧が大
きく変動し、これが焼成時の線収縮率に直接影響し、焼
成成形体の歪みや割れを惹起することになる。本発明の
炭素質化合物・黒鉛質炭素複合成形体で成形圧の線収縮
量への影響が実質零である理由は鱗片状黒鉛の加熱時膨
潤が緩衝機構として作用して成形圧の変動を吸収してい
ると推測される。
The combination of the above two findings makes it possible, as an embodiment of the present invention, to imprint a complicated shape on the formed feature during molding. That is, 1mm width on both sides,
In the case of a grooved separator having a large number of grooves with a depth of about 1 mm, for materials with different linear shrinkage during firing depending on the molding pressure, finely adjust the charged amount of granulated powder according to the presence or absence of grooves, and make it uniform over the entire molding surface Molding pressure must be ensured. However, for high-volume, high-speed production, fine adjustment of the charged amount is substantially impossible in the essential embodiment of the present invention. Therefore, the molding pressure fluctuates greatly in the vicinity of the groove, which directly affects the linear shrinkage ratio during firing, and causes distortion and cracking of the fired molded body. The reason why the influence of the molding pressure on the amount of linear shrinkage in the carbonaceous compound / graphitic carbon composite molded article of the present invention is substantially zero is that the swelling of the flake graphite upon heating acts as a buffer mechanism to absorb fluctuations in the molding pressure. It is presumed that it is.

【0051】焼成系 自己焼結性炭素質化合物はその出発原料、熱処理方法及
びγ成分含有量によってその範囲が若干異なるが大凡1
50〜500℃の温度域で含有する軽質分(vorat
ile materials)を放出しつつ、一部重縮
合反応で残存成分が高分子化し非溶融性高分子化合物を
形成し、800〜900℃に至る過程で水素を放出して
高分子炭化水素化合物から芳香族縮合環の大集合体であ
る炭素質炭素へ推移していくことは良く知られている。
The range of the self-sintering carbonaceous compound slightly varies depending on the starting material, heat treatment method and content of the γ component.
Light components (vorat) contained in the temperature range of 50 to 500 ° C.
The remaining components are polymerized by a partial polycondensation reaction to form a non-fusible polymer compound while releasing hydrogen and the aromatic hydrocarbons are released from the polymer hydrocarbon compound while the temperature reaches 800 to 900 ° C. It is well known that the transition to carbonaceous carbon, which is a large aggregate of fused aromatic rings, is performed.

【0052】本発明では自己焼結性炭素質化合物がその
揮発性の軽質成分を揮散し、残存する高沸点化合物の一
部が重縮合反応を起こして非溶融性高分子炭素質化合物
に変化する温度まで不活性雰囲気下で熱処理を行うこと
で炭素質化合物・黒鉛質炭素複合成形体を得る。即ち本
発明の特徴の一つは生成形体の加熱温度域は400〜7
00℃、好ましくは450〜650℃に限定される点に
ある。成形体温度が500〜600℃に至る過程で成形
体からの揮発分及び高沸点物の分解生成物からなるガス
発生量が多すぎると、成形体内部に滞留したガスのもた
らす内圧によって成形体自体の膨潤が起き、時として成
形体としての形態を失することになる。
In the present invention, the self-sintering carbonaceous compound volatilizes its volatile light component, and a part of the remaining high-boiling compound undergoes a polycondensation reaction to change into a non-melting high-molecular carbonaceous compound. By performing heat treatment in an inert atmosphere up to the temperature, a carbonaceous compound / graphitic carbon composite molded body is obtained. That is, one of the features of the present invention is that the heating temperature range of the formed body is 400 to 7
The temperature is limited to 00 ° C, preferably 450 to 650 ° C. If the amount of gas generated from volatile matter and decomposition products of high-boiling substances is too large in the course of the temperature of the molded body reaching 500 to 600 ° C., if the amount of gas generated is too large, the molded body itself is caused by the internal pressure caused by the gas retained inside the molded body. Swelling and sometimes lose their form as a compact.

【0053】一方生成形体の面積や成形圧も滞留ガスに
よる成形体膨潤の大きな支配要素である。本発明の好ま
しい実施態様においては鱗片状黒鉛が厚み方向に重畳す
るためガスの厚み方向への逃散抵抗は極めて大きく、勢
いガスは横方向に逃げることとなり面積が大きくなるほ
どまた成形圧が高くなるほどガスは抜けにくくなる。さ
らに本発明の好ましい実施態様において使用される造粒
剤の分解、膨潤特性も昇温速度の決定において考慮すべ
き重要な因子となる。
On the other hand, the area of the formed body and the molding pressure are also major controlling factors for the swelling of the formed body due to the staying gas. In a preferred embodiment of the present invention, the escape resistance of the gas in the thickness direction is extremely large because the flaky graphite is superimposed in the thickness direction, and the momentum gas escapes in the lateral direction, so that the larger the area and the higher the molding pressure, the more the gas. Becomes difficult to come off. Further, the decomposition and swelling characteristics of the granulating agent used in the preferred embodiment of the present invention are also important factors to be considered in determining the heating rate.

【0054】即ち本発明で蔗糖及び各種重合度のメチル
セルロースが好ましい造粒剤にあげられているが、これ
ら化合物は200℃以下で溶融し一部膨潤する特性があ
る。また200〜300℃の温度域ではカルメラ焼きで
知られている蔗糖類の固化膨潤現象が起きる。従って本
発明の焼成を行うにあたっては300℃までの温度域は
造粒剤特性を踏まえて、その含有量見合いで適切な速度
で昇温する必要がある。
That is, sucrose and methylcellulose of various degrees of polymerization are mentioned as preferred granulating agents in the present invention, but these compounds have the property of melting at 200 ° C. or lower and partially swelling. Further, in the temperature range of 200 to 300 ° C., a solidification and swelling phenomenon of sucrose, which is known in carmela baking, occurs. Therefore, in performing the calcination of the present invention, it is necessary to raise the temperature in the temperature range up to 300 ° C. at an appropriate rate in consideration of the content of the granulating agent.

【0055】上述の膨潤に関わる諸因子を考慮して、本
発明の生成形体焼成における昇温速度は室温から所望焼
成温度域に至る範囲で0.01〜3℃/分、好ましくは
0.05〜2℃/分、より好ましくは0.1〜1℃/分
の範囲に設定される。焼成時に成形体に酸素が接触する
と200〜500℃の温度域では自己焼結性炭素質化合
物が酸素を吸収して酸素含有炭素質化合物になる。この
場合酸化を受けなかった炭素質化合物とは線収縮率に差
ができる為に炭素質化合物の酸素含有は成形体の歪みや
破壊をもたらすことになる。
In consideration of the factors relating to the above-mentioned swelling, the rate of temperature rise in firing the green compact of the present invention is from 0.01 to 3 ° C./min, preferably from 0.05 to 3 ° C., from room temperature to the desired firing temperature range. To 2 ° C / min, more preferably 0.1 to 1 ° C / min. When oxygen contacts the compact during firing, the self-sintering carbonaceous compound absorbs oxygen and becomes an oxygen-containing carbonaceous compound in a temperature range of 200 to 500 ° C. In this case, a difference in linear shrinkage from the carbonaceous compound which has not been oxidized can be caused, so that the oxygen content of the carbonaceous compound causes distortion and breakage of the molded body.

【0056】また400℃以上での酸素との接触は該複
合成形体構成成分の内、炭素質化合物の選択的燃焼を促
進する。このため該複合成形体は自己焼結性を失い最悪
の状態では成形体の態様を成さなくなる。従って該温度
域で焼成中は酸素の侵入を抑止することが本発明の必要
不可欠な実施態様の一つになる。
Further, contact with oxygen at 400 ° C. or more promotes selective combustion of carbonaceous compounds among the constituent components of the composite molded article. For this reason, the composite molded article loses its self-sintering property and in the worst state does not form a molded article. Therefore, it is one of the indispensable embodiments of the present invention to suppress the intrusion of oxygen during firing in the temperature range.

【0057】本発明の要請する加熱温度域での炭素質化
合物の酸素侵食を抑止する方法として、従来から知られ
ている技術であるが、不活性ガス(窒素ガスが好まし
い)雰囲気加熱があげられる。また通常用いられる炭素
化反応の充填物として用いられる「コークスプリーズ」
はこの温度域での酸素侵入抑止能力を有さないので、本
発明者らが特開平5−186265号公報で開示したコ
ークスプリーズにアマニ油を混ぜて得た酸素透過抑止層
を容器上部や下部に設置することで500℃領域までの
酸素侵入を実質零とする方法も窒素雰囲気加熱と併用す
ることができる。本発明の炭素質化合物の適切な大きさ
の粉体(例えばTGP2000)をコークスブリーズに
混ぜて生成形体を包含する方法によって該複合成形体の
酸素侵食を完全に抑止することができる。この場合窒素
を加えても良い。
As a method for suppressing the oxygen erosion of the carbonaceous compound in the heating temperature range required by the present invention, a conventionally known technique, for example, an inert gas (preferably nitrogen gas) atmosphere heating can be mentioned. . "Coke Please", which is used as a filler for carbonization reactions, which are commonly used
Does not have the ability to inhibit oxygen intrusion in this temperature range. Therefore, the present inventors have prepared an oxygen permeation inhibiting layer obtained by mixing linseed oil with coke please disclosed in Japanese Patent Application Laid-Open No. Hei 5-186265. A method of substantially eliminating oxygen penetration up to a temperature of 500 ° C. by setting the temperature at 500 ° C. can also be used in combination with heating in a nitrogen atmosphere. Oxygen erosion of the composite molded body can be completely suppressed by a method of mixing a powder having an appropriate size (for example, TGP2000) of the carbonaceous compound of the present invention with coke breath and including the formed form. In this case, nitrogen may be added.

【0058】[0058]

【実施例】以下に実施例をあげて本発明の内容を更に具
体的に説明する。 実施例1 110℃に保持された熱風循環型乾燥機で乾燥恒量に達
した平均粒子径が3μmの自己焼結性炭素質化合物微粒
子(大阪化成社製TGP3000をジェットミルで粉
砕)75gを混合槽温度を80℃に設定した深江パウテ
ック社製ハイスピードミキサー(LFS−GS−2J
型)に投入し、アジテータ及びチョッパー軸から乾燥窒
素を吹き出しつつ、アジテータ回転数800rpm、チ
ョッパー回転数1000rpmの撹拌条件下、平均粒径
が25μmのティムカル社製人造黒鉛(SFG44)1
75gをスパチュラで5分間で投入し、更に5分間撹拌
を継続した。蓋の覗き窓から観察したところ粉体はなめ
らかに混合していた。
EXAMPLES The contents of the present invention will be described more specifically with reference to the following examples. Example 1 A mixing tank containing 75 g of self-sintering carbonaceous compound fine particles having an average particle diameter of 3 μm (TGP3000 manufactured by Osaka Kasei Co., Ltd., which was pulverized by a jet mill), which reached a constant drying weight in a hot air circulation type drier kept at 110 ° C. High-speed mixer (LFS-GS-2J) manufactured by Fukae Powtech Co., Ltd.
), And while blowing out dry nitrogen from the agitator and chopper shafts, the artificial graphite (SFG44) 1 manufactured by Timkar having an average particle size of 25 μm under stirring conditions of an agitator rotation speed of 800 rpm and a chopper rotation speed of 1000 rpm.
75 g was charged with a spatula in 5 minutes, and stirring was continued for another 5 minutes. Observation through the viewing window of the lid revealed that the powder was mixed smoothly.

【0059】混合槽温度を25℃に設定した後に、蔗糖
27.5g、水155gからなる造粒用水溶液をアジテ
ータ回転数300rpm、チョッパー回転数3000r
pmで混合中の上記混合物に2分間で注入し、3分間造
粒を継続した。得られた造粒体を110℃に設定した熱
風循環型乾燥機で4時間乾燥し、室温に冷却した。粒直
径が1〜3mmの乾燥造粒体を得た。
After the temperature of the mixing tank was set to 25 ° C., an aqueous solution for granulation consisting of 27.5 g of sucrose and 155 g of water was fed with an agitator rotation speed of 300 rpm and a chopper rotation speed of 3000 r.
The mixture was injected at pm into the mixture during mixing for 2 minutes and granulation continued for 3 minutes. The obtained granules were dried with a hot-air circulation dryer set at 110 ° C. for 4 hours and cooled to room temperature. Dry granules having a grain diameter of 1 to 3 mm were obtained.

【0060】2軸600トン型プレス機に上・下部押し
型ともに平押し型とした縦・横各200mmの金型を設
置した。該乾燥造粒体210gを投入し、ガス抜き操作
後1.5トン/cm2 の成形圧で成形し、厚み3.0m
mの平板生成形体を得た。ステンレス容器に設置した平
滑面を有する厚み50mmの黒鉛板で成形体上下を挟
み、生成形体周囲及び容器内部に充填した。内容積15
0Lのマッフル炉に容器を設置し、炉内にはアルミナパ
イプから5L/分の供給速度で窒素を供給しつつ毎分
0.15℃の昇温速度で500℃まで加熱し2時間保持
した後に室温まで窒素流通下炉冷した。得られた炭素質
化合物・黒鉛質炭素複合平板成形体は生平板成形体の寸
法に比べて0.04%の線膨張率を与えた。得られた成
形体に歪みや破壊は認められなかった。得られた平板成
形体の中央部分に15mmΦの範囲で窒素を背圧1kg
/cm 2 Gで供給し、裏面の対応部位からのガス漏出量
を求めた。ガス透過率として、2×10-5cc/min
/atm/cm2 を得た。
Pressing up and down on a 2-axis 600-ton press
Both flat and horizontal 200 mm vertical and horizontal molds are installed.
Was placed. 210 g of the dried granules are charged and degassing operation is performed.
1.5 ton / cm afterTwo Molded with a molding pressure of 3.0m
m were obtained. Flat placed in a stainless steel container
The upper and lower sides of the compact are sandwiched between graphite plates with a thickness of 50 mm having a smooth surface.
And filled around the formed form and inside the container. Inner volume 15
Place the vessel in a 0L muffle furnace and place an alumina
Every minute while supplying nitrogen at a supply rate of 5 L / min from Ip
Heat to 500 ° C at a rate of 0.15 ° C and hold for 2 hours
After that, the furnace was cooled to room temperature under a nitrogen stream. The resulting carbonaceous material
The compound / graphitic carbon composite flat molded product is the size of the raw flat molded product.
This gave a coefficient of linear expansion of 0.04% compared to the method. The obtained result
No distortion or destruction was observed in the form. Obtained flat plate
Nitrogen back pressure of 1 kg in the center of the form within 15 mmΦ
/ Cm Two The amount of gas leaked from the corresponding part on the back side supplied by G
I asked. 2 × 10 as gas permeability-Fivecc / min
/ Atm / cmTwo I got

【0061】[0061]

【発明の効果】本発明はガス透過率の極めて小さい炭素
質化合物・黒鉛質炭素複合成形体を効率よく製造する方
法を提供するものであり、複雑な形状を有する固体高分
子型燃料電池のセパレータ板の生産を容易にするもので
ある。
Industrial Applicability The present invention provides a method for efficiently producing a carbonaceous compound / graphitic carbon composite molded article having an extremely small gas permeability, and is intended to provide a separator for a polymer electrolyte fuel cell having a complicated shape. This facilitates the production of boards.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 加熱時に自己焼結性を呈する成分を含有
する平均粒径が10μm以下の炭素質化合物粒子と平均
粒径が10〜70μmの黒鉛質炭素微粒子を主たる構成
成分とする複合粉体を混合、造粒、成形、加熱して炭素
質化合物・黒鉛質炭素複合成形体を製造する方法におい
て、該微粒子組成物を乾燥状態で混合し、得られた均一
混合粉体を水溶性且つ炭素質化合物及び黒鉛質炭素に粘
着性を有する化合物の粒子相互結着用添加剤の少くとも
一種類を含む水溶液を加えて造粒し、得られた造粒体の
水分を除去し、得られた粒直径0.5〜20mmの乾燥
造粒体をプレス成形機器を用いて成形し、得られた生成
形体を非酸化雰囲気下加熱処理することを特徴とする炭
素質炭素化合物・黒鉛質炭素複合成形体の製造方法。
1. A composite powder comprising a carbonaceous compound particle having an average particle diameter of 10 μm or less and a graphitic carbon fine particle having an average particle diameter of 10 to 70 μm containing a component exhibiting self-sintering property when heated. Mixing, granulating, molding and heating to produce a carbonaceous compound / graphitic carbon composite molded body, wherein the fine particle composition is mixed in a dry state, and the obtained homogeneous mixed powder is dissolved in water-soluble and carbon Granules obtained by adding an aqueous solution containing at least one kind of additive for binding particles to a porous compound and a compound having adhesiveness to graphitic carbon, and removing water from the obtained granules. A carbonaceous carbon compound / graphitic carbon composite molded body characterized in that a dried granulated body having a diameter of 0.5 to 20 mm is molded using a press molding machine, and the resulting formed body is subjected to heat treatment in a non-oxidizing atmosphere. Manufacturing method.
【請求項2】 自己焼結性を有する炭素質化合物粒子の
γ成分(キノリン可溶トルエン不溶成分)含有量が3〜
30重量%である請求項1に記載の炭素質化合物・黒鉛
質炭素複合成形体の製造方法。
2. The carbonaceous compound particles having a self-sintering property have a γ component (quinoline-soluble toluene-insoluble component) content of 3 to 3.
The method for producing a carbonaceous compound / graphitic carbon composite molded article according to claim 1, which is 30% by weight.
【請求項3】 複合粉体が炭素質化合物微粒子を10〜
50重量部と黒鉛質炭素微粒子を90〜50重量部を含
有する組成物である請求項1に記載の炭素質化合物・黒
鉛質炭素複合成形体の製造方法。
3. The composite powder has a carbonaceous compound fine particle content of 10 to 10.
The method for producing a carbonaceous compound / graphitic carbon composite molded article according to claim 1, which is a composition containing 50 parts by weight and 90 to 50 parts by weight of graphitic carbon fine particles.
【請求項4】 自己焼結性を呈する成分を含有する炭素
質化合物微粒子の平均粒径が1〜7μmであり、黒鉛質
炭素微粒子の平均粒径が15〜50μmである請求項1
に記載の炭素質化合物・黒鉛質炭素複合成形体の製造方
法。
4. An average particle size of carbonaceous compound fine particles containing a component exhibiting self-sintering property is 1 to 7 μm, and an average particle size of graphitic carbon fine particles is 15 to 50 μm.
3. The method for producing a carbonaceous compound / graphitic carbon composite molded article according to 1.).
【請求項5】 炭素質化合物微粒子が石炭由来タール及
び/又は石油由来タールの黒鉛質炭化水素化合物を熱反
応に供して所望のγ成分含有量を賦与した後に粉砕して
所望の粒度を賦与したものである請求項1に記載の炭素
質化合物・黒鉛質炭素複合成形体の製造方法。
5. The carbonaceous compound fine particles are subjected to a thermal reaction of a graphitic hydrocarbon compound of coal-derived tar and / or petroleum-derived tar to give a desired γ component content and then pulverized to give a desired particle size. The method for producing a carbonaceous compound / graphitic carbon composite molded article according to claim 1.
【請求項6】 粒子相互結着用添加剤量が「炭素質化合
物+黒鉛質炭素」100重量部に対して1〜50重量部
である請求項1に記載の炭素質化合物・黒鉛質炭素複合
成形体の製造方法。
6. The carbonaceous compound / graphitic carbon composite molding according to claim 1, wherein the amount of the additive for binding particles to each other is 1 to 50 parts by weight based on 100 parts by weight of “carbonaceous compound + graphitic carbon”. How to make the body.
【請求項7】 造粒体の水分の除去が空気中50〜12
0℃で行われる請求項1に記載の炭素質化合物・黒鉛質
炭素複合成形体の製造方法。
7. The method for removing water from a granulated body in air is 50 to 12
The method for producing a carbonaceous compound / graphitic carbon composite molded article according to claim 1, which is carried out at 0 ° C.
【請求項8】 乾燥造粒体の粒直径が1〜10mmであ
る請求項1に記載の炭素質化合物・黒鉛質炭素複合成形
体の製造方法。
8. The method for producing a carbonaceous compound / graphitic carbon composite molded article according to claim 1, wherein the particle diameter of the dried granulated substance is 1 to 10 mm.
【請求項9】 生成形体の非酸化雰囲気下での加熱処理
が400〜700℃の温度域で行われる請求項1に記載
の炭素質化合物・黒鉛質炭素複合成形体の製造方法。
9. The method for producing a carbonaceous compound / graphitic carbon composite molded article according to claim 1, wherein the heat treatment of the formed body in a non-oxidizing atmosphere is performed in a temperature range of 400 to 700 ° C.
【請求項10】 生成形体の非酸素雰囲気が該生成形体
を形成する炭素質化合物粉体とコークスブリーズの混合
物によって形成される請求項1に記載の炭素質化合物・
黒鉛質炭素複合成形体の製造方法。
10. The carbonaceous compound according to claim 1, wherein the non-oxygen atmosphere of the formed form is formed by a mixture of a carbonaceous compound powder and coke breath forming the formed form.
A method for producing a graphitic carbon composite molded article.
JP28881499A 1999-10-08 1999-10-08 Process for producing carbonaceous compound and graphite carbon composite formed body Pending JP2001106575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28881499A JP2001106575A (en) 1999-10-08 1999-10-08 Process for producing carbonaceous compound and graphite carbon composite formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28881499A JP2001106575A (en) 1999-10-08 1999-10-08 Process for producing carbonaceous compound and graphite carbon composite formed body

Publications (1)

Publication Number Publication Date
JP2001106575A true JP2001106575A (en) 2001-04-17

Family

ID=17735091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28881499A Pending JP2001106575A (en) 1999-10-08 1999-10-08 Process for producing carbonaceous compound and graphite carbon composite formed body

Country Status (1)

Country Link
JP (1) JP2001106575A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100293A (en) * 2001-09-25 2003-04-04 Showa Denko Kk Carbon material and manufacturing method and usage thereof
JP2007063112A (en) * 2005-08-05 2007-03-15 Hitachi Chem Co Ltd Method for producing gas-impermeable carbon material, and gas-impermeable carbon material obtained by the production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100293A (en) * 2001-09-25 2003-04-04 Showa Denko Kk Carbon material and manufacturing method and usage thereof
JP2007063112A (en) * 2005-08-05 2007-03-15 Hitachi Chem Co Ltd Method for producing gas-impermeable carbon material, and gas-impermeable carbon material obtained by the production method

Similar Documents

Publication Publication Date Title
WO1988000601A1 (en) Process for the production of porous shaped articles
JP2001514154A (en) Pitch-derived carbon foam and composites
KR100658158B1 (en) Method for producing a porous titanium material article
CN102718983A (en) Preparation method of polymer-based conductive microporous foam composite material
US4582632A (en) Non-permeable carbonaceous formed bodies and method for producing same
CN112174670B (en) Preparation method for densification modification of graphite material, densified graphite material obtained by preparation method and application of densified graphite material
US9403301B2 (en) Method for processing a porous article
KR102346997B1 (en) Artificial graphite powder and composite power using the same
JP2001019547A (en) Production of carbon/graphite compound molding product of complex shape
JP2001106575A (en) Process for producing carbonaceous compound and graphite carbon composite formed body
JP3412141B2 (en) Method of manufacturing fuel cell separator
JP5057260B2 (en) Method for producing separator material for fuel cell
JP4004180B2 (en) Method for producing carbon / graphite composite molded body
US8703027B2 (en) Making carbon articles from coated particles
JP2004022207A (en) Method for press molding of powder, method of manufacturing fuel cell separator, and fuel cell separator
JP4300045B2 (en) Method for producing metal oxide microspheres
JPS5935011A (en) Molded article of porous carbon and its preparation
JP2000319067A (en) Carbon/graphite composite molding
JPH1045483A (en) Porous carbon compact and its production
EP1417065B1 (en) Method of making open cell material
JPH042546B2 (en)
JP4973917B2 (en) Carbon material manufacturing method
JP4103526B2 (en) Fuel cell separator
KR20220156759A (en) Porous carbon-based material and method for manufacturing porous carbon-based material
JPS60127264A (en) Phenol resin coated carbonaceous fiber