JPS5935011A - Molded article of porous carbon and its preparation - Google Patents

Molded article of porous carbon and its preparation

Info

Publication number
JPS5935011A
JPS5935011A JP57142486A JP14248682A JPS5935011A JP S5935011 A JPS5935011 A JP S5935011A JP 57142486 A JP57142486 A JP 57142486A JP 14248682 A JP14248682 A JP 14248682A JP S5935011 A JPS5935011 A JP S5935011A
Authority
JP
Japan
Prior art keywords
fiber
particulate material
manufacturing
soluble particulate
porous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57142486A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fukuda
弘之 福田
Hisatsugu Kaji
加治 久継
Hiroto Fujimaki
藤巻 洋人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP57142486A priority Critical patent/JPS5935011A/en
Publication of JPS5935011A publication Critical patent/JPS5935011A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To mold the titled molded article having a high porosity, sharp pore diameter distribution and improved mechanical strength, by molding a mixture of short carbon fiber, binder resin, and soluble particulate substance under heating and pressure, eluting the soluble paticulate substance, calcining the resultant substance. CONSTITUTION:A mixed mass of (A) 100pts.wt. short carbon fiber having about 3-30 diameter of fiber and <= about 2mm. length of fiber and (B) 20-100pts.wt. bnder resin (e.g., phenol resin) is crushed. 100pts.wt. prepared crushed material is blended with (C) 20-100pts.wt. soluble particulate substance having a given particle diameter and prticle size distribution, the blend is pressed under heating and molded into the desired shape. The prepared molded article is immersed in (D) a solvent and the soluble particulate substance is dissolved and removed. The resultant substance is dried, calcined at about 800-1,200 deg.C, and carbonized. For example, polystyrene and benzene, starch and water, etc. may be used as a combination of the soluble particulate substance and the solvent.

Description

【発明の詳細な説明】 本発明は炭素縁HD.を基材とする多孔質炭素成形間お
よびその製造方法に係る。更に詳しくは、気孔率が大き
く1つ細孔径の分布がシャープであり、機械的強度に優
れる多孔質炭素成形品およびその製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides carbon edge HD. The present invention relates to a porous carbon molding machine using as a base material and a method for producing the same. More specifically, the present invention relates to a porous carbon molded product having a large porosity, a sharp pore size distribution, and excellent mechanical strength, and a method for producing the same.

炭素繊維を基材とする多孔質炭素成形品は、濾過材およ
び燃料電池用電極基板などの分野で近年ます捷す取閥視
されて来ている。特に後者においては、導電性、化学的
安定性および機械的強度に優れ、気孔率が大きく且つオ
ープンポアーの細孔径分布がシャープな多孔質炭素成形
品廖品が要求される。
In recent years, porous carbon molded products based on carbon fibers have become increasingly popular in fields such as filter materials and electrode substrates for fuel cells. In particular, the latter requires a porous carbon molded product with excellent conductivity, chemical stability and mechanical strength, high porosity and a sharp open pore size distribution.

炭素繊維を基+4とする多孔質炭素繊維成形品は以下に
述べるような種々の方法で製造されている。
Porous carbon fiber molded products based on carbon fibers are manufactured by various methods as described below.

一つの方法として、化学的安定性により炭素繊維のウェ
ブを熱分解炭素で被横する方法がある(米国l特許11
 3 、 829 、 327号)。この方法で得られ
る炭素繊維紙ケよ、化学的安定性、香気性および導m性
の点で優れているが、費用のかかる蒸着工程を含むため
経囁的でなく、気孔率を太きくしようとすると機械的強
度が低下するという欠点がある。
One method is to coat a web of carbon fibers with pyrolytic carbon due to its chemical stability (U.S. Patent No. 11
3, 829, 327). The carbon fiber paper obtained by this method has excellent chemical stability, aroma, and conductivity, but it is not economical because it involves an expensive vapor deposition process, and it is necessary to increase the porosity. This has the disadvantage that mechanical strength decreases.

多孔′pL炭素シート状成形品を製造する他の方法は、
150℃以上の沸点を有するアルコールがピッチ繊維マ
ットを形成するための予備的な結合材として使用され、
次いで、とのぎツチ横維マットを非酸化雰囲気中で炭化
処理することを含む熱処理が行なわれる方法である(米
国特許第3,991,169号)。この方法によると、
気孔率が大きく且つ導電性も良好であるが機械的強度が
必ずしも優れているとはいえない多孔質炭素シート状成
形品しか得られない。
Another method for producing a porous 'pL carbon sheet-like molded product is as follows:
An alcohol with a boiling point of 150° C. or higher is used as a preliminary binder to form the pitch fiber mat;
This method then heat-treats the Tonogitsuchi weft fiber mat in a non-oxidizing atmosphere (US Pat. No. 3,991,169). According to this method,
Only porous carbon sheet-like molded products with high porosity and good conductivity but not necessarily excellent mechanical strength can be obtained.

更に他の方法として、ブロー紡糸により製造されたピッ
チ繊維からなるウェブを不融化、炭化処理して得られる
炭素繊維性ウェブを開示している(米国特許第3,96
0,601号)。この方法によると導電性に優れた多孔
質炭素シートが得られるが、気孔率を大金〈シようとす
ると機械的強度が低下するという欠点がある。
Furthermore, as another method, a carbon fibrous web obtained by infusible and carbonized webs made of pitch fibers produced by blow spinning is disclosed (US Pat. No. 3,966).
No. 0,601). According to this method, a porous carbon sheet with excellent electrical conductivity can be obtained, but it has the disadvantage that mechanical strength decreases if the porosity is significantly reduced.

上記の欠点に加えて以上の方法に共通する欠点としては
、細孔径の分布を巾狭くコントロールすることが困雛で
、イ(1られた炭素成形品を例えば燃料電池用電極基板
として用いた場合、ガスの拡散に関して基板表面でムラ
が生じやすく、このため効率が低下する恐れがある。
In addition to the above-mentioned drawbacks, a common drawback of the above methods is that it is difficult to narrowly control the pore size distribution; , unevenness tends to occur on the substrate surface with respect to gas diffusion, which may reduce efficiency.

本発明の目的は、従来の炭素成形品にみられる上記欠点
を解消し、気孔率が大きく且つ細孔径分布がW来のそれ
に比べてシャープであり、更に導電性および機械的強度
に優れる多孔質炭素成形品を提供することである。更に
このような多孔質炭素成形品の製造方法を提供すること
を目的とする。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of conventional carbon molded products, and to create a porous product that has a large porosity and a sharp pore size distribution compared to that of W products, and has excellent electrical conductivity and mechanical strength. Our goal is to provide carbon molded products. A further object of the present invention is to provide a method for producing such a porous carbon molded article.

本発明によって得られる多孔質炭素成形品は連続気孔を
有しており、その気孔率は50〜85%、機械的強度、
特に王権破壊強度は50Kg/lyn”以上である。ま
た細孔半径は所望とする炭素成形品の目的に応じて3〜
150μの範囲で任意に選択され得、しかも細孔中(・
¥]の分布は極めて狭い。すなわち、添附の第1図およ
び第3図に示されるような細孔半径1」【−数分布ヒス
トグラムにおいて、細孔の60%以上が、その下限細孔
半径と上限細孔半径との差が20μ以内の範囲に分布す
る細孔半径を有する。このような分布は細孔の60%以
上が、例えばIO〜30/7,30〜50μ、特に平均
細孔半径が小さい場合には5〜10μのような狭い範囲
内に入る細孔半径を肩する分布である。これらの特性は
、従来の多孔質炭素成形品に比べて極めて優れた二次特
性をもたらす。
The porous carbon molded product obtained by the present invention has continuous pores, the porosity is 50-85%, the mechanical strength is
In particular, the crushing strength is 50Kg/lyn" or more.The pore radius is 3 to 30% depending on the purpose of the desired carbon molded product.
The diameter can be arbitrarily selected within the range of 150μ, and in the pores (・
¥] distribution is extremely narrow. That is, in the pore radius 1'' [- number distribution histogram shown in the attached Figures 1 and 3, more than 60% of the pores have a difference between the lower limit pore radius and the upper limit pore radius. It has a pore radius distributed within a range of 20μ. Such a distribution covers pore radii in which more than 60% of the pores fall within a narrow range, such as IO~30/7, 30-50μ, and especially 5-10μ when the average pore radius is small. This is the distribution. These properties provide extremely superior secondary properties compared to conventional porous carbon molded articles.

上記の特性を有する多孔質炭素成形品は本発明に係る製
造方法によって得られる。すなわち、燻炭素質繊維およ
び結合材樹脂から成る混合物に、可溶性粒状物質を混合
、加熱加圧成形後、可溶性粒状物質を溶出させ、更に焼
成する。
A porous carbon molded article having the above characteristics can be obtained by the manufacturing method according to the present invention. That is, a soluble particulate material is mixed into a mixture of smoked carbonaceous fibers and a binder resin, and after heating and pressure molding, the soluble particulate material is eluted and further fired.

本発明に用いる燻炭素質繊維は、繊維径3〜30μの炭
素質繊維を2?1III+以下に裁断し九ものである、
繊維長が?、咽を超えると、成形に至る工程でからみ合
い、毛玉状になり、所望の気孔率および細孔径分布が得
られない。炭素質繊維前躯体としてtxt 。
The smoked carbonaceous fiber used in the present invention is obtained by cutting carbonaceous fiber with a fiber diameter of 3 to 30 μ into pieces of 2 to 1III+ or less.
What is the fiber length? If it exceeds the throat, it will become entangled and pill-like during the process leading to molding, making it impossible to obtain the desired porosity and pore size distribution. txt as a carbonaceous fiber precursor.

ピッチ、ポリアクリロニトリル又はレーヨン等いずれの
ものでも使用でき得る。
Any material such as pitch, polyacrylonitrile or rayon can be used.

本発明に用いる結合材樹脂は、フェノール樹脂又はフル
フリルアルコール樹脂等、炭化後戻素質結合材として炭
素繊維間の結合に役立つものである。結合材樹脂の混合
量は、前記短炎素質繊維ioo重」部に対して20〜1
00重散部である。結合材樹脂の混合量が20重置部よ
り少ないと、結合材樹脂が少な過ぎて成形時に繊維を完
全に固定できない。また、100重量部より多い結合材
樹脂を混合すると、可溶性粒状物質の表rfiiを結合
材樹脂で被覆するため、可溶性粒状物質の溶出が不完全
になり所定の連続した細孔径および気孔率を得られなく
なる。
The binder resin used in the present invention is a phenol resin, furfuryl alcohol resin, or the like, which serves as a bonding material after carbonization and is useful for bonding between carbon fibers. The mixing amount of the binder resin is 20 to 1 part by weight of the short flame fiber.
00 polydispersion part. If the amount of the binder resin mixed is less than 20 overlapping parts, the binder resin will be too small to completely fix the fibers during molding. Furthermore, if more than 100 parts by weight of the binder resin is mixed, the surface rfii of the soluble particulate matter is coated with the binder resin, resulting in incomplete elution of the soluble particulate matter and a predetermined continuous pore diameter and porosity. I won't be able to do it.

本発明の炭車成形品の細孔は実質的に可溶性粒状物質罠
よって決まるものであり、本発明による製造方法eこお
いては気孔率および細孔径を調節するために、唄に所定
の粒径分布を有する可溶性粒状物質を、上記の燻炭素質
繊維と結合材樹脂の混合物に添加する。
The pores of the coal car molded article of the present invention are substantially determined by soluble particulate matter traps, and in the production method of the present invention, a predetermined particle size is used in order to adjust the porosity and pore size. A soluble particulate material having a distribution is added to the smoked carbonaceous fiber and binder resin mixture described above.

μ以内の範囲に分布するような分布である。The distribution is within μ.

可溶性粒状物質は、成形時の温度で固体であり適当な溶
媒に可溶なものであれば有機質および無機質いずれでも
よい。第1表に本発明で使用し得る有磯質可溶性粒状物
質を示す。成形後前記可溶性粒状物質を溶解除去する溶
媒としては粒状物質を溶解し得るものであれば任意のも
のが1史用できるが、回用する粒状物質の種類に応じて
、例えば第1表にあげたもののうちから適切な溶媒を選
択して使用する。
The soluble particulate material may be either organic or inorganic as long as it is solid at the temperature during molding and is soluble in a suitable solvent. Table 1 shows soluble particulate matter that can be used in the present invention. As the solvent for dissolving and removing the soluble particulate matter after molding, any solvent can be used as long as it can dissolve the particulate matter. Select and use an appropriate solvent from those listed below.

(以−ド〈自) 第    1    表 (注)DMF・・・ジメチルホルムアミド、THF・・
・テトラヒPロフラン、 MPK・・・メチルエチルケトン 可溶性粒状物質の粒径は、所望とする炭素成形品の細孔
径に応じて任意に決定できるが、第2表に1例を示すよ
うに粒径分布は適宜選択しなければならない。しかし2
ながら、勿論これに限定されるものではない。
(Own) Table 1 (Note) DMF...dimethylformamide, THF...
・TetrahyP Lofuran, MPK...The particle size of the methyl ethyl ketone soluble particulate material can be arbitrarily determined depending on the pore size of the desired carbon molded product, but the particle size distribution is as shown in Table 2 as an example. You must choose accordingly. But 2
However, it is of course not limited to this.

第    2    表 例えば、有機質可溶性粒状物質を用いて、細孔の60%
Ill上が5〜10μの範囲内の細孔半径を有する炭涜
成形品を製造する場合、使用する有機質可溶性粒状物質
の粒半径は第2表の最上欄の行に示される10〜50μ
の粒半径範囲内にあり且つその70重泄%以上が20〜
40μの粒半径範囲内にある有機賀粒状物質を選択する
Table 2 For example, using organic soluble particulate matter, 60% of the pores
When manufacturing a charcoal molded product having a pore radius within the range of 5 to 10μ, the particle radius of the organic soluble particulate material used is 10 to 50μ as shown in the top row of Table 2.
is within the grain radius range and more than 70% of the excretion
Select organic particulate materials within the 40 micron particle radius range.

可溶性粒状物質の添加扉は、所望とする炭素成形品の気
孔率および細孔半径に応じて、上記の短炭素質繊維と結
合材樹脂の混合物100重量部に対して20〜100重
敏部の範囲から選ばれる。
The amount of soluble particulate matter to be added is in the range of 20 to 100 parts by weight based on 100 parts by weight of the mixture of short carbon fiber and binder resin, depending on the desired porosity and pore radius of the carbon molded product. selected from.

以F本発明の多孔質炭素成形品の和遣方法を更に具体的
に詳述する。以下の記載では特にピッチ全炭素質繊維前
駆体として用いた場合について述べる。
Hereinafter, the method for preparing a porous carbon molded article of the present invention will be described in more detail. In the following description, the case where the pitch is used as an all-carbon fiber precursor will be particularly described.

原料のピッチ繊維を不融化処理した酸化ピッチ繊維を成
形時に折損あるいは破壊されないような強度を保持さす
るべく不活性ガス雰囲気中で400〜800℃の熱処理
をする。熱処理し九炭素質繊維(以下これを単に炭素質
繊維とい、う)を2鰭以下の長さに裁断する。
Oxidized pitch fibers obtained by infusibility treatment of raw material pitch fibers are heat-treated at 400 to 800° C. in an inert gas atmosphere in order to maintain strength so as not to break or break during molding. Heat-treated nine carbon fibers (hereinafter simply referred to as carbon fibers) are cut into lengths of two fins or less.

メタン、−ル等の溶媒にフェノール樹脂等の結合材樹脂
を混合し、完全に樹脂が溶解した溶液に、裁断した炭素
質繊維を30分〜2時間浸漬し、炭素質繊維表面上にほ
ぼ均一に結合材樹脂を付着コートさせる。浸漬時間が短
あ・過ぎると、炭素質繊維表面に付着する一結合材樹脂
が少な過ぎて、成形時に繊#4@を完全に固定できない
。また、2時間以ヒの場合は特に問題はないが生産性上
好ましくない。
A binder resin such as a phenol resin is mixed with a solvent such as methane or alcohol, and cut carbon fibers are immersed in a solution in which the resin is completely dissolved for 30 minutes to 2 hours, so that the carbon fiber surface is almost uniformly coated. Coat the bonding material resin. If the dipping time is too short, too little binder resin will adhere to the surface of the carbonaceous fibers, making it impossible to completely fix fiber #4 during molding. Further, if the heating time is longer than 2 hours, there is no particular problem, but it is not preferable in terms of productivity.

所定の時間浸漬した後、フィルターを用いて4過し50
〜70℃の適温で30分〜2時間加熱乾燥する。乾燥温
度が高過ぎると結合材樹脂がこの時点で溶融、固化して
しまうので温度は適切に選ばねはならない。同様な理由
で乾燥時間も適切に選択する。
After soaking for a specified period of time, pass through a filter for 4 to 50 minutes.
Heat and dry at an appropriate temperature of ~70°C for 30 minutes to 2 hours. If the drying temperature is too high, the binder resin will melt and solidify at this point, so the temperature must be selected appropriately. For the same reason, the drying time should also be selected appropriately.

乾燥終了後、生成した塊を破砕し、破砕物に所定の粒径
分布を有する可溶性粒状物質を添加、混合する。この際
、粒状物質と炭素質繊維を均一に混合しないと成形品中
の細孔に疎密のムラが生じる。
After the drying is completed, the produced lumps are crushed, and soluble granular substances having a predetermined particle size distribution are added to and mixed with the crushed pieces. At this time, if the particulate matter and the carbonaceous fibers are not mixed uniformly, uneven density will occur in the pores in the molded product.

このようにして得られた均一混合物は、結合材樹脂の種
類、所望とする成形品の大きさ、厚さおよび形状に応じ
て適切に設定した温度および圧力で、金型ゾレス又はロ
ーラーを使用する連続プレス等の方法でプレス成形され
る。成形時の温度が高過ぎると添加した粒状物質の種類
によっては変質して後に溶媒に溶出し離くなる。温度が
低過ぎると硬化するのに長時間を要し生産性の点で好ま
しくない。また、圧力が高過ぎると炭素質繊維が折損し
可溶性粒状物質の変形をきたし所望の気孔率および細孔
径が得難くなる。圧力が低過ぎると結合材樹脂による結
合に不完全な箇所ができて成形品に層状のクラックが生
じ易くなる。
The homogeneous mixture thus obtained is processed using a mold Sores or a roller at an appropriately set temperature and pressure depending on the type of binder resin and the desired size, thickness and shape of the molded product. Press-formed using methods such as continuous pressing. If the temperature during molding is too high, depending on the type of granular material added, it may change in quality and later be eluted into the solvent and become separated. If the temperature is too low, it will take a long time to cure, which is unfavorable in terms of productivity. Furthermore, if the pressure is too high, the carbonaceous fibers will break and the soluble particulate matter will be deformed, making it difficult to obtain the desired porosity and pore diameter. If the pressure is too low, there will be areas where the bonding by the binder resin is incomplete, and layered cracks will likely occur in the molded product.

成形後、成形品の厚みに応じて1mmの厚みにつき30
分〜1時間適切な温度で後硬化処理する。
After molding, 30% per 1mm thickness depending on the thickness of the molded product.
Post-cure at a suitable temperature for minutes to 1 hour.

後硬化後、前記可溶性粒状物質を溶解し得る適当な溶I
J1に成形品を30分〜4時間浸漬し、粒状物質を溶出
させる。この際、有機質粒状物質の場合には、粒状物質
が完全に溶出しなくても後の高温焼成の際に炭化される
ので炭素成形品への不純物の混入等の恐れは全くないが
、粒状物質が有機質であると無機質であると金問わず、
溶出が不完全な場合には焼成後の細孔の形状が複雑にな
り拡散能が低下するので、溶出時間は充分に長い方が良
好な成形品が得られる。ただし、長過ぎると生産性の低
下につながる。
After post-curing, a suitable solution I capable of dissolving the soluble particulate material
The molded product is immersed in J1 for 30 minutes to 4 hours to elute particulate matter. At this time, in the case of organic particulate matter, even if the particulate matter is not completely eluted, it will be carbonized during the subsequent high-temperature firing, so there is no risk of contamination of impurities into the carbon molded product. Regardless of whether it is organic, inorganic, or gold,
If the elution is incomplete, the shape of the pores after firing becomes complicated and the diffusion ability is reduced, so a sufficiently long elution time will yield a better molded product. However, if it is too long, it will lead to a decrease in productivity.

粒状物質を溶出させた成形体を歪金生じないように0.
05〜I K17cm”程度の荷重をかけながら乾燥す
る。
0.0 to prevent distortion of the molded product from which the particulate matter has been eluted.
Dry while applying a load of about 05 to I K17 cm.

乾燥後、800〜1200℃の温度で焼成、炭化する。After drying, it is fired and carbonized at a temperature of 800 to 1200°C.

この際、表面活性を有する炭素質繊維と結合材樹脂が親
和性よく互いに接着1〜、その結果として炭素質繊維同
士が結合材を弁(7て強固に結びつけられる。
At this time, the carbonaceous fibers having surface activity and the binder resin adhere to each other with good affinity (1), and as a result, the carbonaceous fibers are firmly bonded to each other by using the binder (7).

−1に必要に応じて1800〜2400℃で焼成する。-1, and bake at 1800 to 2400°C as necessary.

以下、実施例によって本発明をH明する。The present invention will be explained below with reference to Examples.

実施例 1 600℃で熱処理した平均直径1271のピッチ全原料
とする炭素質繊維を2能以下に裁断]7、メタノール1
00屯撒部にフェノール樹脂45市階部全溶解した結合
材樹脂溶液中に1時間浸漬、濾過し、更に60〜70℃
で約3時間乾煙し之。炭素質繊維表面に付肩し7χフエ
ノール樹脂は炭素質繊維100重風部に対し30重量部
であった。
Example 1 Carbonaceous fibers heat-treated at 600°C and having an average diameter of 1271 and used as a pitch raw material are cut to a size of 2 or less] 7, methanol 1
00 tons of phenolic resin 45 layers were immersed in a binder resin solution for 1 hour, filtered, and further heated at 60 to 70°C.
Dry smoked for about 3 hours. The amount of 7χ phenol resin attached to the surface of the carbonaceous fiber was 30 parts by weight per 100 parts by weight of the carbonaceous fiber.

この乾燥混合物を破砕し、乾燥混合物100重緻重縦対
して、粒半径10〜50μ(このうち約70電歇%が2
0〜40μ)に予め篩分されたポリビニルアルコール粒
子67 爪jn:部を添加、均一に混合した。
This dry mixture is crushed, and the particle radius is 10 to 50μ (about 70% of which is 2
67 parts of polyvinyl alcohol particles previously sieved to a particle size of 0 to 40μ) were added and mixed uniformly.

このようにして得られた均一混合物を金型に入れ、70
Kq/lyn”、140℃の条件で加圧成形した。
The homogeneous mixture thus obtained was put into a mold, and
Pressure molding was carried out under the conditions of 140°C and 140°C.

更に140℃の炉内に4時間静置し、フェノール樹脂を
充分硬化しfc、。
Furthermore, the phenol resin was left to stand still in a 140°C oven for 4 hours to fully harden the fc.

このようKL7て得られた成形体を70℃の温水に約4
時間浸油した。この際、成形体中のポリビニルアルコー
ルf1.150%以上温水中に溶出した。
The molded product obtained by KL7 in this way was immersed in hot water at 70°C for about 4 hours.
Soaked in oil for an hour. At this time, 150% or more of the polyvinyl alcohol f1 in the molded body was eluted into the warm water.

1)1に成形体fK:140’C10、1Kg/c−の
荷重下で乾燥した。その後1000℃で次いで2000
℃で焼成した。
1) The molded body fK: 140'C10 was dried under a load of 1 Kg/c-. Then 1000℃ and then 2000℃
Calcined at ℃.

このようにして1!)られた炭素成形品は、気孔率68
%、圧縮破壊強度100に9/cm”、体積固有抵抗(
面内) 9X 10−”Ω副であった。
In this way, 1! ) The carbon molded product has a porosity of 68
%, compressive breaking strength 100 to 9/cm”, volume resistivity (
(in-plane) 9×10-”Ω sub.

!t、九、lの炭素成形品中の細孔半径の度数分イ■ヒ
ヌトグラムを第1図に示した。
! Fig. 1 shows the number of pore radius nutograms in carbon molded articles of t, 9, and l.

第1図に示されたように75%以上の細孔が5〜lOμ
の範囲内の細孔半径をイ可しており、従来得られなかっ
たシャープな細孔半径分布を示した。
As shown in Figure 1, more than 75% of the pores are 5~10μ
This allows the pore radius to be within the range of , and shows a sharp pore radius distribution that was previously unobtainable.

なお、従来の70%程度の気孔率を有する多孔質炭素成
形品は圧縮破壊強度が低かったが、本発明によって得ら
れた多孔質炭素成形品ははるかに優れている。
Although conventional porous carbon molded articles having a porosity of about 70% had low compressive fracture strength, the porous carbon molded article obtained by the present invention is far superior.

また比較のfiCめに、本実施例と同様に調整された炭
素質繊維と、フェノール樹脂のみ(即ち有機粒状物質で
あるポリビニルアルコールケ含まない系)から成る炭素
成形品を得た。
In addition, for comparison fiC, a carbon molded article was obtained which was made of carbon fiber prepared in the same manner as in this example and only a phenol resin (that is, a system that did not contain polyvinyl alcohol, which is an organic particulate material).

該炭素成形品の細孔半径の度数分布ヒストグラムを1@
2図に示す。該炭素成形品は5〜1()μの範囲内に約
40%の細孔半径が含まれおり、本発明の炭素成形品に
比較すると、イロードな分布であつ/こ。
The frequency distribution histogram of the pore radius of the carbon molded product is 1@
Shown in Figure 2. The carbon molded product contains about 40% of the pore radius within the range of 5 to 1()μ, and has a more eroded distribution compared to the carbon molded product of the present invention.

また計算された気孔率は約25%であり本発明の目的と
する、多孔体ではなかった。
Moreover, the calculated porosity was about 25%, and the material was not porous, which is the object of the present invention.

申た更に、ポリビニルアルコールを使用せずに炭素質繊
維と結合材フェノールの比率を変え、気孔率が約70%
である多孔質炭素成形品を製造したが、圧縮破壊強度は
測定出来ない程もろがった。
Furthermore, the ratio of carbon fiber and binder phenol is changed without using polyvinyl alcohol, and the porosity is approximately 70%.
A porous carbon molded article was manufactured, but the compressive fracture strength was so brittle that it could not be measured.

衷岸阻しノー 実施例1と同様にして得られた破砕した乾燥混合物io
o重喰重圧部して、粒半径30〜70μに予め篩分され
た砂糖粒子60重量部を添加、均一に混合しプヒ。
Crushed dry mixture io obtained in the same manner as in Example 1
o Add 60 parts by weight of sugar particles, which have been sieved to a grain radius of 30 to 70 μm, to the heavy press section and mix uniformly.

このようにして得られた均一混合物を金型に入れ、70
 k(q /(J、140℃の条件で加圧成形した。
The homogeneous mixture thus obtained was put into a mold, and
Pressure molding was carried out under the conditions of k(q/(J) and 140°C.

さらに140℃の炉内に4時間静置し、フェノール樹脂
を充分硬化した。このようにして得られた成形体を80
℃の温水中に約4時間浸漬した。
Furthermore, the phenol resin was left to stand still in a 140° C. oven for 4 hours to fully cure the phenol resin. The molded body thus obtained was
It was immersed in warm water at ℃ for about 4 hours.

第1図 成形体中の砂糖は約60%温水中に溶出した。Figure 1 Approximately 60% of the sugar in the molded body was dissolved into the hot water.

さらに成形体を140℃、0.1Kf/crn2の荷γ
に下で乾燥した。その後1000℃次いで2000℃で
焼成した。このようにして得られた炭素成形品は、気孔
率65%、圧縮破壊強度110 Kg/cmt、体積固
有抵抗9X10−”Ωcfn(面内)であった。
Furthermore, the molded body was heated at 140°C with a load γ of 0.1 Kf/crn2.
Dry under. Thereafter, it was fired at 1000°C and then at 2000°C. The thus obtained carbon molded product had a porosity of 65%, a compressive breaking strength of 110 Kg/cmt, and a volume resistivity of 9×10-”Ωcfn (in-plane).

また、この炭素成形品中の細孔半径の度数分布ヒストグ
ラムを第3図に示した。第3図に示されたように、70
%以上の細孔が10〜30 /7の範囲内の細孔半径金
有しており、シャープなイ111孔径分布を示した。
Further, a frequency distribution histogram of the pore radius in this carbon molded product is shown in FIG. As shown in Figure 3, 70
More than % of the pores had a pore radius within the range of 10 to 30/7, showing a sharp pore size distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明(実施例1)の多孔質炭素成形品のイ(
1孔半径の度数分布ヒストグラム、第2図は比較のため
可溶性粒状物質f!−使用しないで得た雇素成形品の細
孔半径の度数分布ヒストグラム、第3図は本発明(実施
例2)の多孔質炭素成形品の細孔半径の度数分布ヒスト
グラムである。 mJL半性(JJ) 絽孔牛1量(、u) 第3図 矧孔半イ杢(JJ)
Figure 1 shows the shape of the porous carbon molded product of the present invention (Example 1).
The frequency distribution histogram of one hole radius, Figure 2 is for comparison of soluble particulate matter f! - Histogram of the frequency distribution of the pore radius of the molded product obtained without using carbon fibers. FIG. 3 is the histogram of the frequency distribution of the pore radius of the porous carbon molded product of the present invention (Example 2). mJL half-sex (JJ) 1000 yen (, u) Fig. 3 2000 yen (JJ)

Claims (1)

【特許請求の範囲】 (1)  気孔率が50〜85%且つ細孔径の分布がシ
ャーシであり、圧縮破壊強度が50Kg/♂以上である
ことを特徴とする炭素繊維を基材とする多孔・^炭素成
形品。 ことを特徴とする特許請求の範囲第1項に記載の多孔質
炭素成形品。 (3)細孔の60%以上が5〜19μの範囲内の細(1
,半径を有することを特徴とする特許請求の範囲第1項
に記載の多孔質炭素成形品。 (4)  細孔の60%以上が10〜30μの範囲内の
細孔半径を有することを特徴とする特許請求の範囲第1
項に記載の多孔質炭素成形品。 67− (5)細孔の60%以上が30〜59μの範11旧ノコ
の細孔半径を有することを特徴とする特許請求の範囲第
1項に記載の多孔質炭素成形品。 (6)  短尺素質繊維100重竜部および結合材樹脂
20〜100重欧部から成る混合物塊を得、該混合物塊
を破砕し、更に所定の粒径分布を有する可溶性粒状物質
を前記混合物100重鰍部に対して20〜1ooxi部
添加混合し、加熱加圧成形後、前記可溶性粒状物質を溶
解し得る溶媒中に浸漬して成形品から可溶性粒状物質を
除去し、更に、焼成することを特徴とする炭素繊維を基
材とする多孔質炭素成形品の製造方法。 (7)  前記可溶性粒状物質の70重LX以−ヒが、
囲第6項に記載の製造方法。 (8)前記燻炭素質繊維が、繊維径3〜30μおよび繊
維長2喘以下であることを特徴とする特許請求の範囲第
6項又はf47項に記載の製造方法。 (9)  前記燻炭素質繊維が、酸化ピッチ繊維を不活
性ガス雰囲気中で400〜800℃の温度で熱処理した
炭素質繊維であることを特徴とする特許請求の範囲第6
坊乃至第8項のいずれかに記載の製造方法。 0+)前記結合材樹脂が、フェノール樹脂又はフルフリ
ルアルコール樹脂であることを特徴とする% l?’F
訃1求の範囲第6項乃至第9項のいずれかに記載の製造
方法。 θ1)前記可溶性粒状物質が、ポリビニルアルコール、
νJ?り塩化ビニル、ポリスチレン、ポリメチルメタク
リレート、砂糖および澱粉から選ばれる有機7q可溶性
粒状物質であることを特徴とする特許 れかに記載の製遣方゜法。 02  前記有機質可溶性粒状物質の粒半径が10〜5
 0 /1の範囲内にあり、このうち少なくとも70重
量%の粒状物質の粒半径が20〜40μの範囲内にある
ことを特徴とする特許請求の範囲第11項に記載の製造
方法。 0[有] 前記有機質可溶性粒状物質の粒半径が30〜
70μの範囲内にあり、このうち少なくとも70重量%
の粒状物質の粒半径が40〜60μの範囲内にあること
を特徴とする特許請求の範囲第11項に記載の製造方法
。 0荀 前記有機質可溶性粒状物質の粒半径が40〜10
0μの範囲内にあり、このうち少なくとも70重神%の
粒状物質の粒半径が60〜80μの範囲内にあることを
特徴とする特許請求の範囲第11項に記載の製造方法。
[Scope of Claims] (1) A porous carbon fiber-based material having a porosity of 50 to 85%, a pore size distribution of a chassis, and a compressive breaking strength of 50 kg/♂ or more. ^ Carbon molded product. A porous carbon molded article according to claim 1, characterized in that: (3) More than 60% of the pores are fine (1
, a porous carbon molded article according to claim 1, having a radius of . (4) Claim 1, characterized in that 60% or more of the pores have a pore radius within the range of 10 to 30μ.
The porous carbon molded product described in . 67- (5) The porous carbon molded product according to claim 1, wherein 60% or more of the pores have a pore radius in the range 11 to 59μ. (6) A mixture mass consisting of 100 parts of short fiber and 20 to 100 parts of binder resin is obtained, the mixture mass is crushed, and soluble granular material having a predetermined particle size distribution is added to 100 parts of the mixture. It is characterized by adding and mixing 20 to 1 ooxi parts to the fishtail, molding under heat and pressure, removing the soluble particulate material from the molded product by immersing it in a solvent that can dissolve the soluble particulate material, and then firing. A method for manufacturing a porous carbon molded product using carbon fiber as a base material. (7) The 70-weight LX of the soluble particulate material is
The manufacturing method according to item 6. (8) The manufacturing method according to claim 6 or f47, wherein the smoked carbonaceous fiber has a fiber diameter of 3 to 30 μm and a fiber length of 2 mm or less. (9) Claim 6, wherein the smoked carbonaceous fiber is a carbonaceous fiber obtained by heat-treating oxidized pitch fiber at a temperature of 400 to 800°C in an inert gas atmosphere.
9. The manufacturing method according to any one of Items 1 to 8. 0+) The binder resin is a phenolic resin or a furfuryl alcohol resin. 'F
1. The manufacturing method according to any one of items 6 to 9. θ1) The soluble particulate material is polyvinyl alcohol,
νJ? The manufacturing method described in any of the patents is characterized in that the organic 7Q-soluble particulate material is selected from vinyl chloride, polystyrene, polymethyl methacrylate, sugar and starch. 02 The particle radius of the organic soluble particulate material is 10 to 5
12. The manufacturing method according to claim 11, wherein the particle radius of at least 70% by weight of the particulate material is in the range of 20 to 40 microns. 0 [Yes] The particle radius of the organic soluble particulate material is 30~
within the range of 70μ, of which at least 70% by weight
12. The manufacturing method according to claim 11, wherein the particle radius of the granular material is within a range of 40 to 60 microns. 0 荀 The organic soluble particulate material has a particle radius of 40 to 10
12. The manufacturing method according to claim 11, wherein the particle radius of at least 70% of the particulate material is within the range of 60 to 80 microns.
JP57142486A 1982-08-17 1982-08-17 Molded article of porous carbon and its preparation Pending JPS5935011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57142486A JPS5935011A (en) 1982-08-17 1982-08-17 Molded article of porous carbon and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142486A JPS5935011A (en) 1982-08-17 1982-08-17 Molded article of porous carbon and its preparation

Publications (1)

Publication Number Publication Date
JPS5935011A true JPS5935011A (en) 1984-02-25

Family

ID=15316436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142486A Pending JPS5935011A (en) 1982-08-17 1982-08-17 Molded article of porous carbon and its preparation

Country Status (1)

Country Link
JP (1) JPS5935011A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283887A (en) * 1985-10-09 1987-04-17 Ibiden Co Ltd Carrier for immobilizing microorganism
JPS6338939A (en) * 1986-08-04 1988-02-19 Konica Corp Silver halide color photographic sensitive material having superior color reproducibility
JPS63175850A (en) * 1987-01-16 1988-07-20 Konica Corp Silver halide color photographic sensitive material
EP0563985A1 (en) 1992-04-03 1993-10-06 Fuji Photo Film Co., Ltd. Silver halide color photographic material
CN104903233A (en) * 2012-09-06 2015-09-09 百拉得动力系统公司 Method of processing porous article
CN110001087A (en) * 2019-04-28 2019-07-12 燕山大学 A kind of carbon fiber plate preparation facilities and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283887A (en) * 1985-10-09 1987-04-17 Ibiden Co Ltd Carrier for immobilizing microorganism
JPH0525473B2 (en) * 1985-10-09 1993-04-13 Ibiden Co Ltd
JPS6338939A (en) * 1986-08-04 1988-02-19 Konica Corp Silver halide color photographic sensitive material having superior color reproducibility
JPS63175850A (en) * 1987-01-16 1988-07-20 Konica Corp Silver halide color photographic sensitive material
EP0563985A1 (en) 1992-04-03 1993-10-06 Fuji Photo Film Co., Ltd. Silver halide color photographic material
CN104903233A (en) * 2012-09-06 2015-09-09 百拉得动力系统公司 Method of processing porous article
CN110001087A (en) * 2019-04-28 2019-07-12 燕山大学 A kind of carbon fiber plate preparation facilities and method

Similar Documents

Publication Publication Date Title
JPS6150912B2 (en)
JPH0136670B2 (en)
JP5191078B2 (en) Conductive sheet material
FR2527517A1 (en) METHOD FOR MANUFACTURING COMPLEX SHAPE ARTICLES HAVING A FIBER-REINFORCED GLASS ARRAY COMPOSITE STRUCTURE
US4080413A (en) Porous carbon fuel cell substrates and method of manufacture
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
US5705106A (en) Heat-insulating structural carbon material and process for producing heat-insulating structural carbon material
JPS5935011A (en) Molded article of porous carbon and its preparation
JPH03150266A (en) Production of carbon/carbon composite material
US4619805A (en) Method of producing porous carbon bodies of high permeability
JP4273195B2 (en) Method for producing silicon carbide heat-resistant lightweight porous structure
KR100471652B1 (en) Method of manufacturing reaction-bonded silicon carbide
JPS6385116A (en) Heat insulating material of carbon fiber
JP4004180B2 (en) Method for producing carbon / graphite composite molded body
JPS59141170A (en) Electrode substrate for fuel cell and manufacturing method thereof
JPH0416331A (en) Manufacture of screw member
JPH03215307A (en) Production of porous sic whisker pellet
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JP5691409B2 (en) C / C composite material and method for producing C / C composite material
JPS61186211A (en) Production of carbon porous body
JPH0414464B2 (en)
JPS62171908A (en) Production of carbon plate
JPH01294573A (en) Production of heat-insulating carbonaceous structure
JP3131911B2 (en) Method for producing thick porous carbon material
JPH013085A (en) Porous carbon material and its manufacturing method