JPS6283887A - Carrier for immobilizing microorganism - Google Patents

Carrier for immobilizing microorganism

Info

Publication number
JPS6283887A
JPS6283887A JP22538685A JP22538685A JPS6283887A JP S6283887 A JPS6283887 A JP S6283887A JP 22538685 A JP22538685 A JP 22538685A JP 22538685 A JP22538685 A JP 22538685A JP S6283887 A JPS6283887 A JP S6283887A
Authority
JP
Japan
Prior art keywords
carrier
dimensional structure
microorganisms
organic
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22538685A
Other languages
Japanese (ja)
Other versions
JPH0525473B2 (en
Inventor
Hiroya Kakegawa
宏弥 掛川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP22538685A priority Critical patent/JPS6283887A/en
Publication of JPS6283887A publication Critical patent/JPS6283887A/en
Publication of JPH0525473B2 publication Critical patent/JPH0525473B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:The titled carrier, having open cells, consisting of a carbonaceous three-dimensional structure having skeleton reinforced with an organic material, having good reaction efficiency and improved heat and chemical resistance and mechanical strength, freely working the shape and nontoxic to the human body. CONSTITUTION:A carrier for immobilizing a microorganism, obtained by permeating a liquid composition consisting of an organic liquid material and inorganic material through a resin foam having open cells, curing the formed composite material, firing the cured composite material in an inert gas atmosphere to give a carbonacous three-dimensional structure having open cells, impregnating the structure with an organic material carbonizable into a three-dimensional structure, heating the impregnated structure at >=450 deg.C in a nonoxidizing atmosphere and carbonizing and reinforcing the skeleton and having 1-500mu open cell diameter and >=30% porosity.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、微生物固定化用担体に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a carrier for immobilizing microorganisms.

(従来技術) 従来、微生物を固定化する方法としては、高分子ゲルの
ような微細な格子の中に微生物を包み込む(格子型)方
法、或いは半透膜性の高分子被膜によって被覆する(マ
イクロカプセル型)方法があり、これらに使用される担
体としては、ポリアクリルアミドゲル、ポリビニルアル
コール、光硬化性樹脂、デンプン、ゼラチン、アルギン
酸等の高分子或いはエチルセルロース、ポリスチレン等
の担体(以下、単に有a物担体という)があった一方、
微生物を固定化する別の方法としては、微生物を無機物
の担体に物理的に吸着させて固定化する方法かある。こ
れに使用される相体としては、多孔・質ガラス、セラミ
ックス、金属酸化物或いは活性炭等(以下、単に無aS
担体という)があった。
(Prior art) Conventional methods for immobilizing microorganisms include enveloping them in a fine lattice such as polymer gel (lattice type), or covering them with a semipermeable polymer film (microorganism). There is a capsule type) method, and carriers used in these methods include polymers such as polyacrylamide gel, polyvinyl alcohol, photocurable resin, starch, gelatin, and alginic acid, and carriers such as ethyl cellulose and polystyrene (hereinafter simply referred to as a On the other hand, there were
Another method for immobilizing microorganisms is to physically adsorb and immobilize microorganisms onto an inorganic carrier. The materials used for this purpose include porous glass, ceramics, metal oxides, activated carbon, etc. (hereinafter simply referred to as non-aS).
There was a carrier.

(発明が解決しようとする問題点) ところで、従来から使用される各種の担体には次のよう
な問題点がある。
(Problems to be Solved by the Invention) Various conventionally used carriers have the following problems.

即ち、有機物担体にあっては、Wk生物が担体によって
包まれているため、物質移動効率が低く、微生物による
反応効率が悪い。又、有機物担体は有機物よりなるため
、高温殺菌処理ができない。
That is, in the case of an organic carrier, since the Wk organisms are wrapped in the carrier, the mass transfer efficiency is low, and the reaction efficiency by microorganisms is poor. Furthermore, since the organic carrier is made of organic matter, it cannot be subjected to high temperature sterilization treatment.

更に、有機物担体は、有機溶媒、酸、アルカリ等の化学
薬品に対する抵抗力がなく、微生物によって分解されや
すく、再生利用か不可能である。更に、有機物担体は、
機械的強度が比較的小さく。
Furthermore, organic carriers have no resistance to chemicals such as organic solvents, acids, and alkalis, are easily decomposed by microorganisms, and cannot be recycled. Furthermore, the organic carrier is
Mechanical strength is relatively low.

担体自体が脱落しやすく耐久性に乏しく、形状を自由に
加工することが困難であり、連続気孔を有する三次元構
造体を任意に製造することは極めて困難である。どいつ
だ問題点があった。
The carrier itself easily falls off and has poor durability, and it is difficult to freely process the shape, making it extremely difficult to arbitrarily produce a three-dimensional structure having continuous pores. Somehow there was a problem.

一方、無機物担体にあっては、微生物等は直接基質と接
し得るため、有機物担体に比べて物質移動効率が高く、
微生物による反応効率が良い、また、無機物担体は、高
温処理が可能であり、有機溶媒、酸、アルカリ等の化学
薬品に対する抵抗力もあり、微生物によって分解されず
、再生利用も可能であるなどの利点がある。しかしなが
ら1反面、無機物担体にあっては、微生物か物理的な吸
着で担体に結合しており、その微生物の保持性が悪い、
又、′y#、機物担体物担体ては、医薬品や食品を生産
するだめの担体として使用する場合、生成物にこれらの
fi機物担体の混入があると人体に有害である0例えば
、多孔性金属は、イオン化して溶解し生成物に混入する
恐れがあり、現在のところ−[業師には余り用いられて
いない。又、これら無機物担体のうち活性炭にあっては
、炭素質よりなるため、微生物との親和性があって、微
生物との結合性をある程度高められるが、本来活性炭は
耐油処理によって著しく細孔量を増加させたものである
から、その強度が極めて弱くもろいため、担体として使
用した場合、それ自体の脱落か著しく、長期に互ってこ
の活性炭よりなる担体を使用することができない、又、
活性炭にあっては、目的の形状に加工することが機械的
強度が弱いことから極めて困難である。どいつた問題点
かあったこの発明の目的は、微生物による反応効率か晶
く、高温処理ができ、有機溶媒、酸、アルカリ等の化学
薬品に対する抵抗力があり、微生物によって分解されず
、再生利用が可能であり、又、機械的強度か比較的大き
く微生物の固定化用担体として脱落しに〈〈耐久性があ
り、更に、形状を自由に加工することができる微生物固
定化用担体を提供することにある。更に、微生物との高
い親和性を有し、人体に無害であって医薬品や食品を生
産するための担体に適する微生物固定化用担体を提供す
ることも目的としている。
On the other hand, with inorganic carriers, microorganisms etc. can come into direct contact with the substrate, so the mass transfer efficiency is higher than with organic carriers.
Advantages include high reaction efficiency by microorganisms, inorganic carriers can be treated at high temperatures, are resistant to chemicals such as organic solvents, acids, and alkalis, are not decomposed by microorganisms, and can be recycled. There is. However, on the other hand, with inorganic carriers, microorganisms are bound to the carrier by physical adsorption, and the retention of the microorganisms is poor.
In addition, when biological carriers are used as carriers for producing pharmaceuticals or foods, it is harmful to the human body if these fi biological carriers are mixed into the product.For example, Porous metals have the risk of ionizing, dissolving, and contaminating products, so they are currently not used much by professionals. Among these inorganic carriers, activated carbon is made of carbonaceous material, so it has an affinity for microorganisms and can increase its bonding ability to some extent. Since the activated carbon is activated carbon, its strength is extremely weak and brittle, so when it is used as a carrier, it may easily fall off, making it impossible to use a carrier made of activated carbon for a long period of time.
It is extremely difficult to process activated carbon into a desired shape due to its weak mechanical strength. The purpose of this invention, which had some problems, was to have a crystalline reaction efficiency using microorganisms, be able to be processed at high temperatures, be resistant to chemicals such as organic solvents, acids, and alkalis, and be able to be regenerated without being decomposed by microorganisms. Provides a carrier for immobilizing microorganisms that can be used, has relatively high mechanical strength, is durable to prevent falling off, and can be freely processed into a shape. It's about doing. A further object of the present invention is to provide a carrier for immobilizing microorganisms that has a high affinity for microorganisms, is harmless to the human body, and is suitable as a carrier for producing pharmaceuticals and foods.

(問題点を解決するための手段及び作用)この発1j者
は上記の問題点に鑑み、鋭Δ研究を重ねた結果、これら
の問題点を完全に解決し得る微生物固定化用担体を得る
ことに成功した。
(Means and effects for solving the problems) In view of the above-mentioned problems, the present inventor has conducted intensive delta research and has developed a carrier for immobilizing microorganisms that can completely solve these problems. succeeded in.

即ち、この発明は、連続気孔を有し、骨格が補強された
炭素質の三次元構造体よりなる微生物固定化用担体であ
る。
That is, the present invention is a carrier for immobilizing microorganisms, which is made of a carbonaceous three-dimensional structure having continuous pores and a reinforced skeleton.

以下にこの発明の微生物固定化用担体の8構成要素につ
いて詳細に説明する。
The eight components of the carrier for immobilizing microorganisms of the present invention will be explained in detail below.

さて、この発明の担体は、連続気孔を有すること、その
骨格か炭素質によって補強されたこと、炭素質の三次元
構造体を成すことを特徴とするものである。
The carrier of the present invention is characterized in that it has continuous pores, that its skeleton is reinforced with carbonaceous material, and that it forms a three-dimensional carbonaceous structure.

まず、三次元構造体とは、立体的な構造のことを誂い、
これは例えば、炭素質もしくは炭素化する粒tと粒子と
を互いに表面同士か接する点にて接着させててきる粒子
相91間の空隙を利用したもの或いは炭素繊維の1a誰
間の空隙を利用したもの或いは樹脂の発泡による空隙を
利用したもの等かある。
First of all, a three-dimensional structure refers to a three-dimensional structure.
For example, this method utilizes the voids between the particle phases 91 where carbonaceous or carbonized grains t and particles are bonded to each other at their surfaces or points of contact, or the voids between the carbon fibers 1a. There are also methods that utilize the voids created by foaming the resin.

連続気孔とは、基質の通過てきる孔のことを言い、粒子
や炭素taIiaを点接着させ−C形成される連続気孔
、或いは炭素化する樹脂等の泡化反応により形成される
連続気孔等がある。その連続気孔の気孔径は、1〜50
0用の範囲が好ましい。lIL以下だと気孔か小さすぎ
て微生物が孔の中に入り込むのか困難になり、500μ
以Eたと気孔が大きすぎて微生物が脱落しやすくなるか
らである。
Continuous pores refer to pores through which the substrate passes, and include continuous pores formed by dot adhesion of particles or carbon taIia, or continuous pores formed by foaming reaction of carbonized resin, etc. be. The diameter of the continuous pores is 1 to 50
A range for 0 is preferred. If it is less than 500μ, the pores will be too small and it will be difficult for microorganisms to enter the pores.
Otherwise, the pores will be too large and microorganisms will easily fall out.

しかしながら、固定化させる微生物の種類に応じて、ま
た、それらがコロニーを形成する場合には、そのコロニ
ーの大きさを考慮して、その気孔径の大きさをl〜so
o、tの範囲内で調節するのが好ましい。
However, depending on the type of microorganisms to be immobilized, and if they form a colony, the size of the pore size should be determined by taking into account the size of the colony.
It is preferable to adjust within the range of o and t.

気孔か担体の表面積に対して占める割合(気孔率)は、
@体に固定化される微生物の量及び微生−物の反応性を
考慮すると一般的には30%以■;であることが好まし
い。30%以下の場合には微生物による反応効率が著し
く低下するからである。
The ratio of pores to the surface area of the carrier (porosity) is
Considering the amount of microorganisms immobilized on the body and the reactivity of the microorganisms, it is generally preferable that the amount is 30% or more. This is because if it is less than 30%, the reaction efficiency by microorganisms will be significantly reduced.

しかしながら、この値は、これに限定されるものではな
く、微生物の種類や担体の構造によって適宜最適なもの
を選ぶことが好ましい。
However, this value is not limited to this, and it is preferable to select an optimal value depending on the type of microorganism and the structure of the carrier.

上述した炭素質の三次元構造体の製造方法としては、従
来より種17の方法か取られているが、連続気孔を有す
る炭素質の三次元構造体が製造できるものであるならば
どの方法を使用しても良い。
Conventionally, method 17 has been used as a manufacturing method for the above-mentioned carbonaceous three-dimensional structure, but which method can be used if a carbonaceous three-dimensional structure having continuous pores can be manufactured? May be used.

なお、従来、特開昭59−64511号公報に記−蔵さ
れているように、所定の大きさの8姦に充填された粒子
を適当な温度で加熱し、その表面同士が接する点にてW
いに接着させた後、不融化又は硬化させ、続いてその形
状を損なうことなく焼成炭素化して炭素質の三次元構造
体を得るといった方法を使用しても良い。
In the past, as disclosed in Japanese Patent Application Laid-Open No. 59-64511, particles filled with a predetermined size are heated at an appropriate temperature, and at the point where the surfaces touch each other, W
It is also possible to use a method in which a carbonaceous three-dimensional structure is obtained by adhering to a material, making it infusible or hardening, and then firing and carbonizing it without damaging its shape.

一方、炭素質の三次元構造体を製造する別の方法として
は、特開昭59−350i1号公報す記載されているよ
うに、炭素繊維に結合材樹脂を被覆し乾燥した塊を粉砕
し粒子を得、この粒子に所定のOf溶性粒状物質を添加
混合し、この混合物をプレス成形し、硬化処理し、前記
可溶性粒状物質を溶出させたのも、焼成炭素化すること
によって、炭素質の三次元構造体を製造する方法を使用
しても良い。
On the other hand, as another method for manufacturing a carbonaceous three-dimensional structure, as described in JP-A No. 59-350i1, carbon fibers are coated with a binder resin and the dried mass is pulverized to form particles. A predetermined Of-soluble particulate material was added to and mixed with the particles, this mixture was press-molded, hardened, and the soluble particulate material was eluted. A method of manufacturing the body may also be used.

更に別の方法としては、特開昭59−146917号公
報に記載されているように、連続気孔を有する樹脂フオ
ームに、有機液状物質と無機物質とからなる液状組成物
を浸透させた複合体を硬化後年活性ガス雰囲気中で焼成
することにより連続気孔を有する炭素質の三次元構造体
を得る方法を使用しても良い。
Yet another method, as described in JP-A-59-146917, is to create a composite in which a resin foam having continuous pores is impregnated with a liquid composition consisting of an organic liquid substance and an inorganic substance. A method of obtaining a carbonaceous three-dimensional structure having continuous pores by firing in an active gas atmosphere after curing may be used.

更に37+1の方法としては、特公昭59−4171号
公報に記載されているように、多孔性球状架橋重合体を
酸化性雰囲気中、200〜350℃の温度で熱処理し、
次いて非酸化性雰囲気中、400〜12oo’cの温度
で炭化する方法を使用しても良い。
Furthermore, as a method of 37+1, as described in Japanese Patent Publication No. 59-4171, a porous spherical crosslinked polymer is heat treated at a temperature of 200 to 350°C in an oxidizing atmosphere,
Then, a method of carbonization at a temperature of 400 to 12 oo'c in a non-oxidizing atmosphere may be used.

次に、この発明に係る微生物固定化用担体は。Next, the microorganism immobilization carrier according to the present invention.

上述したような方法等により製造された三次元構造体の
骨格に例えば、炭素化する有機物質を含浸し、これを炭
素化することにより、骨格の補強を図ることが必要であ
る。炭素化する有機物を三次元構造体の骨格に含浸させ
、これを焼成炭素化する理由は担体の機械的強度を高め
、担体自体の脱落を防ぐと共にLI的の形状に担体を加
工しやすくするためである。 ヒ記の如く有機物が熱可
塑性である場合には、含浸された三次元構造体には不融
化処理か施されることが必要である。
It is necessary to strengthen the skeleton of a three-dimensional structure produced by the method described above, for example, by impregnating an organic substance that can be carbonized and carbonizing it. The reason for impregnating the skeleton of a three-dimensional structure with an organic substance to be carbonized and then firing and carbonizing it is to increase the mechanical strength of the carrier, prevent the carrier itself from falling off, and make it easier to process the carrier into a LI shape. It is. When the organic substance is thermoplastic as described in (h), the impregnated three-dimensional structure needs to be subjected to an infusibility treatment.

不融化処理とは、右a¥@が再び溶解したり軟化して流
動化したりしないようにする処理であり、酸素又はオゾ
ン等の酸化性雰囲気中で50〜300′Cまで加熱処理
する方法や酸化性の酸及びその塩の水溶策等湿式酸化に
よって不融化する方法などがある。なお、熱硬化性樹脂
を三次元構造体の骨格に含浸した場合には、不融化処理
は不要である。なお、不融化処理の方法としては、この
方法に限らず、従来のどんな方法であっても良い7次に
、三次元構造体は、加熱することによって焼成炭素化さ
れる。なお、焼成炭素化する。方法は、従来のどんな方
法てあっても良く、−例を挙げれば、炭素化は加熱温度
450°C以−ヒ、非酸化性雰囲気中で行なわれる。そ
の際、昇温速度が遅いほど炭素化収率が大きくなる傾向
を示すが、炭素化する物質の種類によって最適の昇温速
度を選択するのが好ましい。
Infusibility treatment is a treatment that prevents the right a¥@ from melting again, softening, and becoming fluidized. There are methods of making it infusible by wet oxidation, such as dissolving oxidizing acids and their salts in water. Note that when the skeleton of the three-dimensional structure is impregnated with a thermosetting resin, no infusibility treatment is necessary. Note that the method of infusibility treatment is not limited to this method, and any conventional method may be used.7 Next, the three-dimensional structure is fired and carbonized by heating. Note that carbonization is performed by firing. The method may be any conventional method; for example, the carbonization is carried out at a heating temperature of 450 DEG C. or higher in a non-oxidizing atmosphere. At this time, the carbonization yield tends to increase as the temperature increase rate decreases, but it is preferable to select the optimum temperature increase rate depending on the type of substance to be carbonized.

このように各種の方法によって、種々の形状や気孔径を
もった三次元構造体が得られるが気孔径については微生
物のコロニーを形成する場合はそのコロニーの大きさに
合せて適宜選択することが好ましい、また、形状につい
ては、その担体の用途に合せて粒状、板状、パイプ状或
いはプロ・ンク状等に行形することが好ましい。
As described above, three-dimensional structures with various shapes and pore sizes can be obtained by various methods, but when forming a colony of microorganisms, the pore size should be selected appropriately depending on the size of the colony. Regarding the shape, it is preferable that the carrier is shaped into granules, plates, pipes, blocks, etc., depending on the use of the carrier.

なお、この発明の微生物固定化用担体は、炭素質である
がゆえに、酸化反応により容易に含酸素表面官能基を導
入することができる。又、この含酸素表面官能基は有機
化学的手法により、他の官能基1例えば、メチル基、ア
ミノ基、ニトロ基等に置換し得る。1ノたがって、この
担体の官能基と微生物に備わる官能基とを共有結合させ
ることにより、微生物と担体とを直接結合固定化するこ
ともできる。なお、この発明の微生物固定化用担体は炭
素質であるため、導゛市性を有し、′a電により発熱さ
せたり、電場を形成させることかできる。
Since the carrier for immobilizing microorganisms of the present invention is carbonaceous, oxygen-containing surface functional groups can be easily introduced through an oxidation reaction. Further, this oxygen-containing surface functional group can be substituted with another functional group 1, such as a methyl group, an amino group, a nitro group, etc., by an organic chemical method. Therefore, by covalently bonding the functional group of the carrier and the functional group of the microorganism, it is also possible to directly bond and immobilize the microorganism and the carrier. Since the carrier for immobilizing microorganisms of the present invention is carbonaceous, it has conductivity and can generate heat or form an electric field by means of an electric current.

この場合に交魔電場を形成させると、微生物を誘電泳動
によりて濃縮したり、静電的に電極である担体ヒに捕集
させることができる。
In this case, if an alternating electric field is formed, microorganisms can be concentrated by dielectrophoresis or electrostatically collected on a carrier, which is an electrode.

(発明の効果) 以上詳述した如くこの発明は、11統気孔を有し、骨格
が補強された炭素質の三次元構造体よりなる微生物固定
化用担体てあり、連続気孔を有するため、この担体は微
生物による反応効率が良い。
(Effects of the Invention) As detailed above, the present invention has a microorganism immobilization carrier made of a carbonaceous three-dimensional structure with 11 pores and a reinforced skeleton. The carrier has good reaction efficiency with microorganisms.

又、担体は炭素質によりなるため、高温殺菌処理ができ
、有機溶媒、酸、アルカリ算の化学薬品に対する抵抗力
があり、微生物によって分解されず、再生利用か可能で
ある。
Furthermore, since the carrier is made of carbonaceous material, it can be sterilized at high temperatures, has resistance to chemicals such as organic solvents, acids, and alkalis, is not decomposed by microorganisms, and can be recycled.

又、この担体は、三次元構造体をなす骨格か有機物によ
り補強されるため、その機械的強度が増し担体自体の脱
落を防止することができ、耐久性を持たせることができ
、更に、その形状を自由に加工することができる。
In addition, since this carrier is reinforced by the skeleton or organic material that forms the three-dimensional structure, its mechanical strength increases and it is possible to prevent the carrier itself from falling off, making it durable. You can freely process the shape.

一方、この担体は炭素質によりなるため、微生物に対し
て高い親和性を示すことか期待でき、これによって f
7.い結合性を得ることかできる。又、この担体は、医
薬品や食品を生産するための担体として使用した場合で
あっても人体にまったく無害である。又、この発明の担
体は、例示した如く、固定化させる微生物の種類に応じ
て、またそれらがコロニーを形成する場合には、そのコ
ロニーの大きさを考慮してそれぞれ最適の連続気孔を有
する三次元構造体を各種の製造方法を選択的に利用する
ことにより得ることかできる。
On the other hand, since this carrier is made of carbonaceous material, it can be expected that it will show a high affinity for microorganisms, and thus f
7. It is possible to obtain good connectivity. Furthermore, this carrier is completely harmless to the human body even when used as a carrier for producing pharmaceuticals or foods. Furthermore, as illustrated, the carrier of the present invention is a tertiary carrier having optimal continuous pores, depending on the type of microorganisms to be immobilized, and in the case where they form a colony, taking into account the size of the colony. The original structure can be obtained by selectively utilizing various manufacturing methods.

Claims (3)

【特許請求の範囲】[Claims] (1)連続気孔を有し骨格が補強された炭素質の三次元
構造体よりなる微生物固定化用担体。
(1) A microorganism immobilization carrier consisting of a carbonaceous three-dimensional structure with continuous pores and a reinforced skeleton.
(2)骨格の補強が炭素化された有機物によってなされ
ることを特徴とする特許請求の範囲第1項記載の微生物
固定化用担体。
(2) The carrier for immobilizing microorganisms according to claim 1, wherein the skeleton is reinforced by carbonized organic matter.
(3)前記連続気孔径が1〜500μであることを特徴
とする特許請求の範囲第1項記載の微生物固定化用担体
(3) The carrier for immobilizing microorganisms according to claim 1, wherein the continuous pore diameter is 1 to 500μ.
JP22538685A 1985-10-09 1985-10-09 Carrier for immobilizing microorganism Granted JPS6283887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22538685A JPS6283887A (en) 1985-10-09 1985-10-09 Carrier for immobilizing microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22538685A JPS6283887A (en) 1985-10-09 1985-10-09 Carrier for immobilizing microorganism

Publications (2)

Publication Number Publication Date
JPS6283887A true JPS6283887A (en) 1987-04-17
JPH0525473B2 JPH0525473B2 (en) 1993-04-13

Family

ID=16828542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22538685A Granted JPS6283887A (en) 1985-10-09 1985-10-09 Carrier for immobilizing microorganism

Country Status (1)

Country Link
JP (1) JPS6283887A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935011A (en) * 1982-08-17 1984-02-25 Kureha Chem Ind Co Ltd Molded article of porous carbon and its preparation
JPS5964511A (en) * 1982-10-05 1984-04-12 Mitsubishi Pencil Co Ltd Preparation of porous carbon
JPS59146917A (en) * 1983-02-10 1984-08-23 Mitsubishi Pencil Co Ltd Manufacture of porous carbonaceous material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935011A (en) * 1982-08-17 1984-02-25 Kureha Chem Ind Co Ltd Molded article of porous carbon and its preparation
JPS5964511A (en) * 1982-10-05 1984-04-12 Mitsubishi Pencil Co Ltd Preparation of porous carbon
JPS59146917A (en) * 1983-02-10 1984-08-23 Mitsubishi Pencil Co Ltd Manufacture of porous carbonaceous material

Also Published As

Publication number Publication date
JPH0525473B2 (en) 1993-04-13

Similar Documents

Publication Publication Date Title
CN1537075A (en) Shaped activated carbon
CN105586332A (en) Method for immobilized microorganisms by utilization of porous ore
CN1778711A (en) Fixed microbial suspension ceramic carrier and production thereof
JPS62501678A (en) Carrier for immobilizing biologically active organic materials
JPS6283887A (en) Carrier for immobilizing microorganism
JP4612789B2 (en) Environmental purification system using DNA hybrid and DNA hybrid
JPS62296878A (en) Inorganic carrier for immobilization of cell or microorganism
JP2000247622A (en) Production of molded active carbon
JPH10258228A (en) Granular sintered body and its manufacture
JPH0494736A (en) Silicon carbide barrier bonded with silicon nitride and its manufacture
JPS63296891A (en) Preparation of carrier for immobilizing microorganism
JPS5930708A (en) Manufacture of carbon product having porous-dense structure
KR101859566B1 (en) Deodorization paint composition using waterworks sludge and manufacturing method thereof
DE3267863D1 (en) Method for the preparation of integral shaped replications of shaped, porous and dissolvable materials for use as adsorbents in fixed bed adsorption processes
JPH0672065B2 (en) Method for producing inorganic porous material
DE2941881A1 (en) ORGANIC-INORGANIC MATRIX MATERIAL FOR IMMOBILIZED ENZYMS
JPH0430272B2 (en)
JPH0466196A (en) Porous granules for waste water cleaning
JPS63175695A (en) Porous carrier for microorganism
JPH01201087A (en) Production of porous silicon carbide material
JPH08245280A (en) Production of multipurpose carbon ball
JPS6279784A (en) Carrier for immobilizing enzyme or such and made of carbon material
JPS6338446B2 (en)
JPS63196291A (en) Carrier supporting immobilized microorganism and production thereof
JPH0369575A (en) Production of carbon or active carbon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees