JPS59146917A - Manufacture of porous carbonaceous material - Google Patents
Manufacture of porous carbonaceous materialInfo
- Publication number
- JPS59146917A JPS59146917A JP58019681A JP1968183A JPS59146917A JP S59146917 A JPS59146917 A JP S59146917A JP 58019681 A JP58019681 A JP 58019681A JP 1968183 A JP1968183 A JP 1968183A JP S59146917 A JPS59146917 A JP S59146917A
- Authority
- JP
- Japan
- Prior art keywords
- substance
- foam
- liquid
- dimensional network
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、三次元網目構造を有する樹脂フオームに、有
機液状物質と無機物質とから々る液状組成物を浸透させ
た複合体を、不活性ガス雰囲気中で焼成してなる三次元
網目構造を有する炭素多孔体の製造方法で、当該多孔体
は、基となる樹脂フオームの構造を忠実に再現したもの
であり、高強度を有し、製造が極めて容易な炭素多孔体
の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention involves baking a composite in which a resin foam having a three-dimensional network structure is impregnated with a liquid composition consisting of an organic liquid substance and an inorganic substance in an inert gas atmosphere. This is a method for producing a porous carbon material having a three-dimensional network structure, which faithfully reproduces the structure of the base resin foam, and has high strength and is extremely easy to manufacture. Concerning a method of manufacturing a body.
本願明細書において、炭素という用語は、炭素質及び黒
鉛質を包含する。As used herein, the term carbon includes carbonaceous and graphitic substances.
従来炭素多孔体を製造する方法としては、フェノール、
ウレタン等の樹脂フオームを焼成して作成する方法があ
るが、これらの方法では一般に樹脂の炭化収率が低いた
めに、焼成により出発物質のフオームは極めて大きな容
積収縮を起し、強度の出ない欠点があった。これらの欠
点を改良した方法としてウレタンフオーム等の樹脂フオ
ームにフラン等の樹脂を浸透させ、それを焼成すること
で炭素多孔体を製造する方法が提案されている(特公昭
53−7536等)しかしこれらの方法は、含浸物が全
て有機物質のみから成るものである為に、発明者らの追
試によれば、焼成後の炭素多孔体の強度も脆弱で使用に
耐えず、焼成収縮率も犬すク、焼成後の寸法精度が小さ
いという欠点を有していた。Conventional methods for producing porous carbon materials include phenol,
There are methods to create resin foams such as urethane by firing, but these methods generally have a low carbonization yield of the resin, so the starting material foam undergoes extremely large volumetric shrinkage during firing, resulting in poor strength. There were drawbacks. As a method to improve these drawbacks, a method has been proposed in which a porous carbon material is produced by impregnating a resin foam such as urethane foam with a resin such as furan and firing it (Japanese Patent Publication No. 53-7536, etc.). In these methods, since the impregnated material is entirely composed of organic substances, the inventors' additional tests revealed that the strength of the carbon porous material after firing was too weak to withstand use, and the firing shrinkage rate was also low. However, the dimensional accuracy after firing was low.
本発明の目的は、上記欠点を克服した、安価で三次元網
目構造より力る連続気孔を有し、高強度かつ簡易な製造
方法によシ炭素多孔体を製造することにある。An object of the present invention is to overcome the above-mentioned drawbacks, to produce a carbon porous body that is inexpensive, has continuous pores that have a three-dimensional network structure, has high strength, and uses a simple manufacturing method.
本願発明者らは、上記目的を達成せんが為に鋭意研究し
た結果、三次元網目構造を有する樹脂フオームに、有機
液状物質と無機物質とからなる液状組成物を浸透させた
複合体を硬化後不活註ガス雰凹気中で焼成することによ
シ三次元網目構造を有する炭素多孔体を得ることに到達
した。As a result of intensive research in order to achieve the above object, the inventors of the present application have developed a composite material in which a liquid composition consisting of an organic liquid substance and an inorganic substance is infiltrated into a resin foam having a three-dimensional network structure. We have succeeded in obtaining a porous carbon material having a three-dimensional network structure by firing in an inert gas atmosphere.
本発明の炭素多孔体の製造方法について以下に具体的に
説明する。The method for producing a carbon porous body of the present invention will be specifically explained below.
本発明に用いる三次元網目構造を有する樹脂フォームド
ハウレタンフオーム、フェノールフオーム等の熱硬化性
樹脂フオームであり、その外径は01〜数mの範囲で気
孔率は5%〜最大98%の物である。Thermosetting resin foam such as resin foamed haurethane foam or phenol foam having a three-dimensional network structure used in the present invention, with an outer diameter in the range of 0.1 to several meters and a porosity of 5% to 98% maximum. It is.
壕ず、この樹脂フオームに有機液状物質と無機物質とか
らなる液状組成物を浸透させる。この液状組成物中の有
機液状物質とは、不活性ガス雰囲気中での焼成により5
%以上の炭化収率を示す有機物質であり、常温で液状を
示さないものはその物質の初期縮合物や溶剤を用いて液
状体とする。A liquid composition consisting of an organic liquid substance and an inorganic substance is impregnated into this resin foam without any trenches. The organic liquid substance in this liquid composition is obtained by calcination in an inert gas atmosphere.
% or more and which does not exhibit a liquid state at room temperature is made into a liquid state using an initial condensate of the material or a solvent.
この有機物質としては、ポリ塩化ビニル、ポリアクリロ
ニトリル、ポリビニルアルコール、ポリ塩化ビニル−酢
酸ビニル共重合体等の熱可塑性樹脂、フェノール樹脂、
フラン樹脂、エポキシ樹脂、不飽和ポリエステル等の熱
硬化性樹脂、リグニン、セルロース等の天然高分子物質
、ナフタレンスルホン酸のホルマリン縮合物等の縮合多
環芳香族を分子の基本構造内に有する合成高分子物質、
石油アスファルトコールタールピンチ、ナフサ分解ピン
チ、合成樹脂等の炭化水素化合物の400℃以下の乾留
物等である。Examples of this organic substance include thermoplastic resins such as polyvinyl chloride, polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride-vinyl acetate copolymers, phenolic resins,
Thermosetting resins such as furan resins, epoxy resins, and unsaturated polyesters; natural polymers such as lignin and cellulose; and synthetic polymers containing condensed polycyclic aromatics in the basic molecular structure such as formalin condensates of naphthalene sulfonic acid. molecular substances,
These include petroleum asphalt coal tar pinch, naphtha decomposition pinch, and carbonized products of hydrocarbon compounds such as synthetic resins at temperatures below 400°C.
また液状組成物中の無機物質とは、鱗状黒鉛、生状黒鉛
、カーボンブランク微粉末である。この液状組成物とは
、上記有機液状物質一種もしくは二種以上を95〜10
重量部と上記無機物質の一種もしくは二種以上を5〜9
0重量部とをヘンシエルミキザー等の混合機で混合する
と・とにより得られる。The inorganic substances in the liquid composition include scaly graphite, green graphite, and carbon blank fine powder. This liquid composition refers to one or more of the above organic liquid substances containing 95 to 100%
5 to 9 parts by weight and one or more of the above inorganic substances
When mixed with 0 parts by weight using a mixer such as a Henschel mixer, it is obtained.
次に樹脂フオ゛−ムの表面から浸透しないでいる余剰液
状組成物を除去する。なお液状組成物の無機物質として
粒度の太きいものを使用することで樹脂フオームに、無
機物質が浸透しカい場合には、樹脂フオーム表面((付
着している無機物質を取り去らない様にする。次にこの
複合体を硬化させる。Next, excess liquid composition that has not permeated the surface of the resin foam is removed. In addition, if the inorganic substance has a large particle size as the inorganic substance in the liquid composition and the inorganic substance is difficult to penetrate into the resin foam, the resin foam surface ((take care not to remove the attached inorganic substance) .The composite is then cured.
この硬化操作とは、熱硬性樹脂を使°用した液状組成物
を用いる場合は樹脂を硬化反応させることであり、溶剤
を使用した液状組成体は溶剤を除去する操作を行うこと
である。This curing operation means, in the case of using a liquid composition using a thermosetting resin, to cause the resin to undergo a curing reaction, and in the case of a liquid composition using a solvent, to perform an operation of removing the solvent.
次に硬化操作の終わった複合体を、炭素前駆体化処理し
、得られた炭素前駆体に’J素、アルゴン等の不活性ガ
ス雰囲気中で800℃以上、好ましくは1000C以上
に加熱昇温し、炭素化する。Next, the composite after the hardening operation is subjected to a carbon precursor treatment, and the resulting carbon precursor is heated to 800°C or higher, preferably 1000°C or higher in an inert gas atmosphere such as J element, argon, etc. and carbonize it.
焼成温度の上限には制限がなく、必要に応じて3000
℃程度に至る迄加熱しても艮い、昇温速度は500℃迄
は、3〜b
〜b
きい程最終生成物の強度も低下する欠点がある。There is no upper limit to the firing temperature, and if necessary
Even if it is heated up to about 500°C, there is no effect, and if the heating rate is up to 500°C, there is a drawback that the strength of the final product decreases by about 3 to 50°C.
従って500℃迄は]、 00℃/1]以上の昇温速度
は避けた方が良い、50.0’C以」二については、加
熱方法によるところが多いが、昇温速度は特に制限はな
い。Therefore, it is better to avoid a heating rate of more than 00°C/1] up to 500°C.For temperatures above 50.0°C, it depends on the heating method, but there is no particular restriction on the heating rate. .
以上の方法に従って得られた炭素多孔体は、元の樹脂フ
オームの形状を忠実に保ち、その収縮率は、浸透させる
液状組成体中の有機物質、無機物質の種類及び配合組成
により5係〜80係となる。The carbon porous material obtained according to the above method faithfully maintains the shape of the original resin foam, and its shrinkage rate ranges from 5 to 80 depending on the type and composition of the organic and inorganic substances in the liquid composition to be infiltrated. Become the person in charge.
該炭素多孔体は、樹脂フオームと有機物質、無機物質と
からなる炭素多孔体の為、樹脂フオームに有機物質のみ
を浸透させ作成した炭素多孔体や、樹脂フオームのみか
ら作成した炭素多孔体に比べ、応力拡散が可能となる。This porous carbon material is composed of a resin foam, an organic substance, and an inorganic substance, so it has a lower carbon porous material than a carbon porous material made by infiltrating only an organic substance into a resin foam, or a carbon porous material made only from a resin foam. , stress diffusion becomes possible.
この方法により得られる炭素多孔体は、各種フィルター
、触媒坦体、軽量構造材、面状発熱体、化学吸着剤、電
波シールド材等の使用に適している。The carbon porous body obtained by this method is suitable for use in various filters, catalyst carriers, lightweight structural materials, planar heating elements, chemical adsorbents, radio wave shielding materials, and the like.
次に実施例により本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.
実施例1
フラン初期縮合物(■日V化成製ヒタフランVF302
)80重量部、平均粒度23μの黒鉛10重量部、カー
ボンブランク(■電気化学製デンカ次元網目構造を有す
るポリウレタンフォームを用意し、上記液状組成物kl
o分間浸透させた。次に孔を防いでいる、浸透していな
い余剰液状組成物を取り除いた。この複合体を100℃
乾燥機中で3時間かけ硬化反応させた、次に180℃乾
燥機中で10時間かけ炭素前駆体処理を行った。この前
駆体処理物をN2ガス中20″C/hで500℃まで焼
成し、500℃以上1ooo℃までは100’C/hで
焼成し、1000℃2時間医持した後、常温捷で空冷し
炭素多孔体を得た。得られた炭素多孔体の緒特性を表1
に示す。Example 1 Furan initial condensate (■ Hitafuran VF302 manufactured by Nippon Kasei Co., Ltd.
) 80 parts by weight, 10 parts by weight of graphite with an average particle size of 23μ, carbon blank (■ Denki Kagaku Denka polyurethane foam having a dimensional network structure was prepared, and the above liquid composition kl was prepared.
Allowed to penetrate for o minutes. The unpenetrated excess liquid composition that prevented the pores was then removed. This complex was heated to 100°C.
A curing reaction was performed in a dryer for 3 hours, and then a carbon precursor treatment was performed in a 180° C. dryer for 10 hours. This precursor treated product was fired in N2 gas at 20"C/h to 500°C, then fired at 100'C/h from 500°C to 100°C, kept at 1000°C for 2 hours, and then cooled in air at room temperature. A porous carbon material was obtained.The characteristics of the obtained porous carbon material are shown in Table 1.
Shown below.
比較例1
実施例1と同一フラン初期、縮合物を、同一寸法のポリ
ウレタンフォームに10分間浸透させた。Comparative Example 1 The same furan initial stage as in Example 1 and the condensate were infiltrated into a polyurethane foam of the same size for 10 minutes.
その後同様操作により、硬化、前駆体処理、焼成を行い
、炭素多孔体を得た。Thereafter, curing, precursor treatment, and firing were performed in the same manner to obtain a carbon porous body.
得られた炭素多孔体の緒特性を表1に示す。Table 1 shows the properties of the obtained porous carbon material.
実施例2
塩素含有率67%、重合度740の塩素化塩化ビニル樹
脂粉末(■日本カーバイト製二カテンプT−870)7
0重量部平均粒径3μの黒鉛15重量部、カーボンブラ
ンク(■電気化学展デンカブランク)15重量部をヘン
/エルミキサーで混合し、さらに溶剤としてテトラヒド
ロフランを加え縦 横 高さ
液状組成体とした。4 cm X 4 cm X 4.
on (気孔率80チ)の三次元網目構造を有するポ
リウレタンフォームを用意し、上記組成物を10分間浸
透させた。Example 2 Chlorinated vinyl chloride resin powder with chlorine content of 67% and degree of polymerization of 740 (■ Nikatemp T-870 manufactured by Nippon Carbide) 7
0 parts by weight 15 parts by weight of graphite with an average particle diameter of 3 μm and 15 parts by weight of carbon blank (Denka Blank from Denki Kagakuten) were mixed in a Hen/L mixer, and tetrahydrofuran was added as a solvent to form a vertical, horizontal, and height liquid composition. . 4 cm x 4 cm x 4.
A polyurethane foam having a three-dimensional network structure (porosity: 80 cm) was prepared, and the above composition was permeated therein for 10 minutes.
次に孔を防いでいる、浸透していない、余剰液状組成物
を取シ除いた。この複合体f:100℃乾燥機中2時間
(’ i 20℃中2時間、140℃中2時間、160
℃中2時間、180℃中10時間かけ炭素前駆体処理を
行った。この前駆体処理物をN2ガス中15℃Aで50
0℃まで焼成し、500℃以上1000℃までは50℃
外で焼成し、1000℃3時間保持した後、常温まで空
冷し炭素多孔体を得た。The unpenetrated excess liquid composition that was blocking the pores was then removed. This complex f: 2 hours in a dryer at 100 °C ('i 2 hours at 20 °C, 2 hours at 140 °C, 160 °C
Carbon precursor treatment was carried out for 2 hours at 180°C and for 10 hours at 180°C. This precursor treated product was heated at 15°C in N2 gas for 50 minutes.
Firing to 0℃, 50℃ to 1000℃ from 500℃
After firing outside and holding at 1000° C. for 3 hours, the material was air-cooled to room temperature to obtain a carbon porous body.
得られた炭素多孔体の緒特性を表1に示す。Table 1 shows the properties of the obtained porous carbon material.
比較例2
実施例2と同一塩素化塩化ビニル樹脂粉末をテトラヒド
ロフランで溶かし、同一寸法のポリウレタンフォームに
10分間浸透させた。その後、同様操作によシ、前駆体
処理、焼成を行い炭素多孔体を得た。得られた炭素多孔
体の緒特性を表1に示す。Comparative Example 2 The same chlorinated vinyl chloride resin powder as in Example 2 was dissolved in tetrahydrofuran and infiltrated into a polyurethane foam of the same size for 10 minutes. Thereafter, similar operations were performed to obtain a carbon porous body, which was treated with a precursor and fired. Table 1 shows the properties of the obtained porous carbon material.
実施例3
塩素含有率65φ、重合度650の塩素化塩化ビニル樹
脂粉末(■日本カーバイト製二カテンプT−025)7
0重量部、平均粒径23μの黒鉛10重景部をヘン/エ
ルミキサーで晶合し、さらに溶剤としてテトラヒドロフ
ランを加え液状体とした中にフラン初期縮合物(e勾日
V化成製ヒタフランするポリウレタンフォームを用意し
、上記組成物を10分間浸透させた。次に孔を防いでい
る浸透していない余剰液状組成物を取り除いた。この複
合体を100℃乾燥機中2時間、130℃中4時間、1
60℃中4時間、180℃中10時間かけ炭素前駆体処
理を行った。この前、躯体処理物をN2ガス中15°C
/hで500℃まで焼成し、500℃以上1000℃ま
では100℃乃で焼成し、1000℃3時間保持した後
、常温まで空冷し、炭素多孔体を得た。得られた炭素多
孔体の緒特性を表1に示す。Example 3 Chlorinated vinyl chloride resin powder with chlorine content of 65φ and degree of polymerization of 650 (■ Nikatemp T-025 manufactured by Nippon Carbide) 7
0 parts by weight, 10 parts by weight of graphite with an average particle size of 23 μm were crystallized in a Hen/El mixer, and then tetrahydrofuran was added as a solvent to make a liquid, in which a furan initial condensate (e. A foam was prepared and infiltrated with the above composition for 10 minutes.Then the uninfiltrated excess liquid composition preventing pores was removed.The composite was dried in a dryer at 100°C for 2 hours and at 130°C for 4 hours. time, 1
Carbon precursor treatment was performed at 60°C for 4 hours and at 180°C for 10 hours. Before this, the processed material was heated to 15°C in N2 gas.
/h up to 500°C, fired at 100°C from 500°C to 1000°C, held at 1000°C for 3 hours, and air cooled to room temperature to obtain a carbon porous body. Table 1 shows the properties of the obtained porous carbon material.
比較例3
実施例3と同一塩素化塩化ビニル樹脂粉末70重量部を
テトラヒドロフランで溶かし、そこへフラン初期給金物
20重量部を加え混合し、同一寸法のポリウレタンフォ
ームを10分間浸透させた。Comparative Example 3 70 parts by weight of the same chlorinated vinyl chloride resin powder as in Example 3 was dissolved in tetrahydrofuran, 20 parts by weight of the initial charge of furan was added and mixed, and a polyurethane foam of the same size was infiltrated for 10 minutes.
その後同様操作によシ前駆体処理、焼成を行い、炭素多
孔体を得た。得られた炭素多孔体の諸物注を表1に示す
。Thereafter, the precursor was treated and fired in the same manner to obtain a carbon porous body. Table 1 shows the details of the obtained porous carbon material.
Claims (5)
状物質と無機物質とからなる液状組成物を浸透させ、そ
の複合体を硬化後、不活性ガス雰囲気中で焼成すること
からなる三次元網目構造を有する炭素多孔体の製造方法
。(1) A three-dimensional network formed by impregnating a resin foam with a three-dimensional network structure with a liquid composition consisting of an organic liquid substance and an inorganic substance, curing the composite, and then firing it in an inert gas atmosphere. A method for producing a carbon porous body having a structure.
、ノールフオームポリウレタンフォーム等の熱硬化性樹
脂からなシ、孔径が0.1〜数σの範囲で、気孔率が5
係〜最大98%である第1項の炭素多孔体の製造方法。(2) The resin foam having the three-dimensional network structure is made of a thermosetting resin such as foam, nord foam polyurethane foam, and has a pore size in the range of 0.1 to several σ and a porosity of 5.
1. The method for producing a porous carbon material according to item 1, wherein
によ95%以上の炭化収率を示す有機物質、一種もしく
は二種以上からなシ、常温で液状を呈さないものはその
有機物質の初期縮合物や、溶剤で溶解したものからなる
第1項の炭素多孔体の製造方法。(3) The organic liquid substance is one or more organic substances that exhibit a carbonization yield of 95% or more when fired in an inert gas atmosphere. 1. The method for producing a porous carbon material according to item 1, which is made of an initial condensate of a substance or a substance dissolved in a solvent.
ランク微粉末の一種もしくは二種以上を混合したもので
ある第1項の炭素多孔体の製造方法。(4) The method for producing a carbon porous body according to item 1, wherein the inorganic substance is one or a mixture of two or more of scaly graphite, earthy graphite, and chikara-den blank fine powder.
れる第1項炭素多孔体の製造方法。(5) The method for producing a porous carbon material described in item 1, wherein the firing is carried out by heating to a temperature of 800° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58019681A JPS59146917A (en) | 1983-02-10 | 1983-02-10 | Manufacture of porous carbonaceous material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58019681A JPS59146917A (en) | 1983-02-10 | 1983-02-10 | Manufacture of porous carbonaceous material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59146917A true JPS59146917A (en) | 1984-08-23 |
JPS6365633B2 JPS6365633B2 (en) | 1988-12-16 |
Family
ID=12005973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58019681A Granted JPS59146917A (en) | 1983-02-10 | 1983-02-10 | Manufacture of porous carbonaceous material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59146917A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6283887A (en) * | 1985-10-09 | 1987-04-17 | Ibiden Co Ltd | Carrier for immobilizing microorganism |
JPS62143884A (en) * | 1985-11-18 | 1987-06-27 | ユニリ−バ− ナ−ムロ−ゼ ベンノ−トシヤ−プ | Porous carbonaceous structure |
JPS63166775A (en) * | 1986-12-26 | 1988-07-09 | 東芝セラミツクス株式会社 | Carbonaceous porous heat insulating material and manufacture |
JP2014214039A (en) * | 2013-04-24 | 2014-11-17 | 株式会社タンケンシールセーコウ | Carbon porous body and method for producing the same |
-
1983
- 1983-02-10 JP JP58019681A patent/JPS59146917A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6283887A (en) * | 1985-10-09 | 1987-04-17 | Ibiden Co Ltd | Carrier for immobilizing microorganism |
JPH0525473B2 (en) * | 1985-10-09 | 1993-04-13 | Ibiden Co Ltd | |
JPS62143884A (en) * | 1985-11-18 | 1987-06-27 | ユニリ−バ− ナ−ムロ−ゼ ベンノ−トシヤ−プ | Porous carbonaceous structure |
JPS63166775A (en) * | 1986-12-26 | 1988-07-09 | 東芝セラミツクス株式会社 | Carbonaceous porous heat insulating material and manufacture |
JP2014214039A (en) * | 2013-04-24 | 2014-11-17 | 株式会社タンケンシールセーコウ | Carbon porous body and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPS6365633B2 (en) | 1988-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kyotani | Control of pore structure in carbon | |
KR960000024B1 (en) | Catalytic system for combusting exhaust gases and process for the fabrication of same | |
US3922412A (en) | Thin-walled carbonaceous honeycomb structures | |
US5077130A (en) | Carbon fiber-reinforced carbon composite material | |
EP2921468A1 (en) | Process for the preparation of flexible meso and macroporous carbon foams | |
WO2014060508A1 (en) | Process for the preparation of hierarchically meso and macroporous structured materials | |
KR910014328A (en) | Method for producing porous solid of refractory carbide system using metal or nonmetal and organic compound | |
EP0335736B1 (en) | Process for producing carbon/carbon composites | |
GB1361741A (en) | Process for producing a porous carbon electrode | |
JP2002500608A (en) | Method for producing porous carbon article and article produced thereby | |
US4366191A (en) | Method of increasing the strength of carbon and graphite members | |
JP2001510729A (en) | Silicon carbide foam with large specific surface area and improved mechanical properties | |
JP2735151B2 (en) | Method for producing fiber-reinforced silicon carbide composite ceramics molded body | |
JPS59146917A (en) | Manufacture of porous carbonaceous material | |
US3132979A (en) | Process of making an impermeable composite carbon tube | |
JPH069270A (en) | Preparation of carbon/carbon composite material part using mesophase powder | |
JPS59232905A (en) | Manufacture of carbon product | |
JP2571251B2 (en) | Carbon fiber reinforced carbon composite material for friction material | |
JPH06206780A (en) | Production of active porous carbonaceous structure | |
KR100423095B1 (en) | Method for preparing activated carbon-supported fibers using the inorganic fiber materials | |
JP3233922B2 (en) | Method for producing honeycomb-shaped activated carbon | |
JPS6059171B2 (en) | Method for manufacturing carbon products with dense and dense structure | |
JPS62275009A (en) | Impermeable carbon material and its production | |
JPH05105414A (en) | Production of high strength molded activated carbon | |
JPH0551257A (en) | Production of carbon fiber reinforced carbon material |