JPS6365633B2 - - Google Patents

Info

Publication number
JPS6365633B2
JPS6365633B2 JP58019681A JP1968183A JPS6365633B2 JP S6365633 B2 JPS6365633 B2 JP S6365633B2 JP 58019681 A JP58019681 A JP 58019681A JP 1968183 A JP1968183 A JP 1968183A JP S6365633 B2 JPS6365633 B2 JP S6365633B2
Authority
JP
Japan
Prior art keywords
producing
carbon
network structure
item
dimensional network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58019681A
Other languages
Japanese (ja)
Other versions
JPS59146917A (en
Inventor
Takamasa Kawakubo
Mitsuru Yoshida
Yoshihisa Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP58019681A priority Critical patent/JPS59146917A/en
Publication of JPS59146917A publication Critical patent/JPS59146917A/en
Publication of JPS6365633B2 publication Critical patent/JPS6365633B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、三次元網目構造を有する樹脂フオー
ムに、有機液状物質と炭素質物質とからなる液状
組成物を浸透させた複合体を、不活性ガス雰囲気
中で焼成してなる三次元網目構造を有する炭素多
孔体の製造方法で、当該多孔体は、基となる樹脂
フオームの構造を忠実に再現したものであり、高
強度を有し、製造が極めて容易な炭素多孔体の製
造方法に関する。 本願明細書において、炭素という用語は、炭素
質及び黒鉛質を包含する。 従来炭素多孔体を製造する方法としては、フエ
ノール、ウレタン等の樹脂フオームを焼成して作
成する方法があるが、これらの方法では一般に樹
脂の炭化収率が低いために、焼成により出発物質
のフオームは極めて大きな容積収縮を起し、強度
の出ない欠点があつた。これらの欠点を改良した
方法としてウレタンフオーム等の樹脂フオームに
フラン等の樹脂を浸透させ、それを焼成すること
で炭素多孔体を製造する方法が提案されている
(特公昭53−7536等)しかしこれらの方法は、含
浸物が全て有機物質のみから成るものである為
に、発明者らの追試によれば、焼成後の炭素多孔
体の強度も脆弱で使用に耐えず、焼成収縮率も大
きく、焼成後の寸法精度が小さいという欠点を有
していた。 本発明の目的は、上記欠点を克服した、安価で
三次元網目構造よりなる連続気孔を有し、高強度
かつ簡易な製造方法により炭素多孔体を製造する
ことにある。 本願発明者らは、上記目的を達成せんが為に鋭
意研究した結果、三次元網目構造を有する樹脂フ
オームに、有機液状物質と炭素質物質とからなる
液状組成物を浸透させた複合体を硬化後不活性ガ
ス雰囲気中で焼成することにより三次元網目構造
を有する炭素多孔体を得ることに到達した。 本発明の炭素多孔体の製造方法について以下に
具体的に説明する。 本発明に用いる三次元網目構造を有する樹脂フ
オームとはウレタンフオーム、フエノールフオー
ム等の熱硬化性樹脂フオームであり、その外径は
0.1〜数cmの範囲で気孔率は5%〜最大98%の物
である。 まず、この樹脂フオームに有機液状物質と炭素
質物質とからなる液状組成物を浸透させる。この
液状組成物中の有機液状物質とは、不活性ガス雰
囲気中での焼成により5%以上の炭化収率を示す
有機物質であり、常温で液状を示さないものはそ
の物質の初期縮合物や溶剤を用いて液状体とす
る。この有機物質としては、ポリ塩化ビニル、ポ
リアクリロニトリル、ポリビニルアルコール、ポ
リ塩化ビニル−酢酸ビニル共重合体等の熱可塑性
樹脂、フエノール樹脂、フラン樹脂、エポキシ樹
脂、不飽和ポリエステル等の熱硬化性樹脂、リグ
ニン、セルロース等の天然高分子物質、ナフタレ
ンスルホン酸のホルマリン縮合物等の縮合多環芳
香族を分子の基本構造内に有する合成高分子物
質、石油アスフアルトコールタールピツチ、ナフ
サ分解ピツチ、合成樹脂等の炭化水素化合物の
400℃以下の乾留物等である。 また液状組成物中の炭素質物質とは、鱗状黒
鉛、土状黒鉛、カーボンブラツク微粉末である。
この液状組成物とは、上記有機液状物質一種もし
くは二種以上を95〜10重量部と上記炭素質物質の
一種もしくは二種以上を5〜90重量部とをヘンシ
エルミキサー等の混合機で混合することにより得
られる。 次に樹脂フオームの表面から浸透しないでいる
余剰液状組成物を除去する。なお液状組成物の炭
素質物質として粒度の大きいものを使用すること
で樹脂フオームに、炭素質物質が浸透しない場合
には、樹脂フオーム表面に付着している炭素質物
質を取り去らない様にする。次にこの複合体を硬
化させる。 この硬化操作とは、熱硬性樹脂を使用した液状
組成物を用いる場合は樹脂を硬化反応させること
であり、溶剤を使用した液状組成体は溶剤を除去
する操作を行うことである。 次に硬化操作の終わつた複合体を、炭素前駆体
化処理し、得られた炭素前駆体を窒素、アルゴン
等の不活性ガス雰囲気中で800℃以上、好ましく
は1000℃以上に加熱昇温し、炭素化する。焼成温
度の上限には制限がなく、必要に応じて3000℃程
度に至る迄加熱しても良い、昇温速度は500℃迄
は、3〜100℃/h好ましくは5〜50℃/hで焼
成するのが適当で、昇温速度が大きい程最終生成
物の強度も低下する欠点がある。従つて500℃迄
は100℃/h以上の昇温速度は避けた方が良い、
500℃以上については、加熱方法によるところが
多いが、昇温速度は特に制限はない。 以上の方法に従つて得られた炭素多孔体は、元
の樹脂フオームの形状を忠実に保ち、その収縮率
は、浸透させる液状組成体中の有機物質、無機物
質の種類及び配合組成により5%〜80%となる。
該炭素多孔体は、樹脂フオームと有機物質、炭素
質物質とからなる炭素多孔体の為、樹脂フオーム
に有機物質のみを浸透させ作成した炭素多孔体
や、樹脂フオームのみから作成した炭素多孔体に
比べ、応力拡散が可能となる。 この方法により得られる炭素多孔体は、各種フ
イルター、触媒坦体、軽量構造材、面状発熱体、
化学吸着剤、電波シールド材等の使用に適してい
る。 次に実施例により本発明を具体的に説明する。 実施例 1 フラン初期縮合物((株)日立化成製ヒタフラン
VF302)80重量部、平均粒度2.3μの黒鉛10重量
部、カーボンブラツク((株)電気化学製デンカブラ
ツク)10重量部をヘンシエルミキサーで混合し
た。縦4cm×横4cm×高さ4cm(気孔率60%)の
三次元網目構造を有するポリウレタンフオームを
用意し、上記液状組成物を10分間浸透させた。次
に孔を防いでいる、浸透していない余剰液状組成
物を取り除いた。この複合体を100℃乾燥機中で
3時間かけ硬化反応させた、次に180℃乾燥機中
で10時間かけ炭素前駆体処理を行つた。この前駆
体処理物をN2ガス中20℃/hで500℃まで焼成
し、500℃以上1000℃までは100℃/hで焼成し、
1000℃2時間保持した後、常温まで空冷し炭素多
孔体を得た。得られた炭素多孔体の諸特性を表1
に示す。 比較例 1 実施例1と同一フラン初期縮合物を、同一寸法
のポリウレタンフオームに10分間浸透させた。そ
の後同様操作により、硬化、前駆体処理、焼成を
行い、炭素多孔体を得た。 得られた炭素多孔体の諸特性を表1に示す。 実施例 2 塩素含有率67%、重合度740の塩素化塩化ビニ
ル樹脂粉末((株)日本カーバイト製ニカテンプT−
870)70重量部平均粒径3μの黒鉛15重量部、カー
ボンブラツク((株)電気化学製デンカブラツク)15
重量部をヘンシエルミキサーで混合し、さらに溶
剤としてテトラヒドロフランを加え液状組成体と
した。縦4cm×横4cm×高さ4cm(気孔率80%)
の三次元網目構造を有するポリウレタンフオーム
を用意し、上記組成物を10分間浸透させた。次に
孔を防いでいる、浸透していない、余剰液状組成
物を取り除いた。この複合体を100℃乾燥機中2
時間、120℃中2時間、140℃中2時間、160℃中
2時間、180℃中10時間かけ炭素前駆体処理を行
つた。この前駆体処理物をN2ガス中15℃/hで
500℃まで焼成し、500℃以上1000℃までは50℃/
hで焼成し、1000℃3時間保持した後、常温まで
空冷し炭素多孔体を得た。 得られた炭素多孔体の諸特性を表1に示す。 比較例 2 実施例2と同一塩素化塩化ビニル樹脂粉末をテ
トラヒドロフランで溶かし、同一寸法のポリウレ
タンフオームに10分間浸透させた。その後、同様
操作により、前駆体処理、焼成を行い炭素多孔体
を得た。得られた炭素多孔体の諸特性を表1に示
す。 実施例 3 塩素含有率65%、重合度650の塩素化塩化ビニ
ル樹脂粉末((株)日本カーバイド製ニカテンプT−
025)70重量部、平均粒径2.3μの黒鉛10重量部を
ヘンシエルミキサーで混合し、さらに溶剤として
テトラヒドロフランを加え液状体とした中にフラ
ン初期縮合物((株)日立化成製ヒタフランVF302)
20重量部を加え混合した。縦4cm×横4cm×高さ
4cm(気孔率40%)の三次元網目構造を有するポ
リウレタンフオームを用意し、上記組成物を10分
間浸透させた。次に孔を防いでいる浸透していな
い余剰液状組成物を取り除いた。この複合体を
100℃乾燥機中2時間、130℃中4時間、160℃中
4時間、180℃中10時間かけ炭素前駆体処理を行
つた。この前駆体処理物をN2ガス中15℃/hで
500℃まで焼成し、500℃以上1000℃までは100
℃/hで焼成し、1000℃3時間保持した後、常温
まで空冷し、炭素多孔体を得た。得られた炭素多
孔体の諸特性を表1に示す。 比較例 3 実施例3と同一塩素化塩化ビニル樹脂粉末70重
量部をテトラヒドロフランで溶かし、そこへフラ
ン初期縮合物20重量部を加え混合し、同一寸法の
ポリウレタンフオームを10分間浸透させた。その
後同様操作により前駆体処理、焼成を行い、炭素
多孔体を得た。得られた炭素多孔体の諸特性を表
1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention involves baking a composite in which a liquid composition consisting of an organic liquid substance and a carbonaceous substance is infiltrated into a resin foam having a three-dimensional network structure in an inert gas atmosphere. This is a method for producing a porous carbon material having a three-dimensional network structure, which faithfully reproduces the structure of the base resin foam, and has high strength and is extremely easy to manufacture. Concerning a method of manufacturing a body. As used herein, the term carbon includes carbonaceous and graphitic substances. Conventional methods for producing porous carbon materials include firing a resin foam such as phenol or urethane, but these methods generally have a low carbonization yield of the resin; had the disadvantage of causing extremely large volumetric shrinkage and lack of strength. As a method to improve these drawbacks, a method has been proposed in which a porous carbon material is produced by impregnating a resin foam such as urethane foam with a resin such as furan and firing it (Japanese Patent Publication No. 53-7536, etc.). In these methods, since the impregnated material is entirely composed of organic substances, the inventors' additional tests revealed that the strength of the carbon porous material after firing was too weak to withstand use, and the firing shrinkage rate was also large. However, the dimensional accuracy after firing was low. An object of the present invention is to overcome the above-mentioned drawbacks and to produce a carbon porous body that is inexpensive, has continuous pores having a three-dimensional network structure, has high strength, and uses a simple manufacturing method. As a result of intensive research to achieve the above object, the inventors of the present application have cured a composite material in which a liquid composition consisting of an organic liquid substance and a carbonaceous substance is infiltrated into a resin foam having a three-dimensional network structure. After firing in an inert gas atmosphere, we succeeded in obtaining a porous carbon material having a three-dimensional network structure. The method for producing a carbon porous body of the present invention will be specifically explained below. The resin foam having a three-dimensional network structure used in the present invention is a thermosetting resin foam such as urethane foam or phenol foam, and its outer diameter is
The porosity ranges from 5% to a maximum of 98% in the range of 0.1 to several cm. First, a liquid composition consisting of an organic liquid substance and a carbonaceous substance is permeated into this resin foam. The organic liquid substance in this liquid composition is an organic substance that shows a carbonization yield of 5% or more when fired in an inert gas atmosphere. Make it into a liquid using a solvent. Examples of this organic substance include thermoplastic resins such as polyvinyl chloride, polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride-vinyl acetate copolymers, thermosetting resins such as phenolic resins, furan resins, epoxy resins, and unsaturated polyesters; Natural polymer substances such as lignin and cellulose, synthetic polymer substances that have condensed polycyclic aromatics in the basic structure of the molecule such as formalin condensates of naphthalene sulfonic acid, petroleum asphalt coal tar pitch, naphtha decomposition pitch, synthetic resins, etc. of hydrocarbon compounds
Carbonized products etc. below 400℃. The carbonaceous substances in the liquid composition include scaly graphite, earthy graphite, and carbon black fine powder.
This liquid composition is made by mixing 95 to 10 parts by weight of one or more of the above organic liquid substances and 5 to 90 parts by weight of one or more of the above carbonaceous substances in a mixer such as a Henschel mixer. It can be obtained by Excess liquid composition that has not penetrated the surface of the resin foam is then removed. If the carbonaceous substance in the liquid composition does not penetrate into the resin foam by using a carbonaceous substance with a large particle size, the carbonaceous substance adhering to the surface of the resin foam should not be removed. This composite is then cured. This curing operation means, when using a liquid composition using a thermosetting resin, to cause the resin to undergo a curing reaction, and when using a liquid composition using a solvent, to perform an operation to remove the solvent. Next, the composite after the hardening operation is subjected to a carbon precursor treatment, and the obtained carbon precursor is heated to a temperature of 800°C or higher, preferably 1000°C or higher in an inert gas atmosphere such as nitrogen or argon. , carbonize. There is no upper limit to the firing temperature, and it may be heated up to about 3000°C if necessary.The heating rate is 3 to 100°C/h, preferably 5 to 50°C/h, up to 500°C. Suitable for this purpose is calcination, which has the disadvantage that the higher the temperature increase rate, the lower the strength of the final product. Therefore, it is better to avoid a temperature increase rate of more than 100°C/h up to 500°C.
For temperatures above 500°C, it depends on the heating method in many cases, but there is no particular restriction on the rate of temperature rise. The carbon porous material obtained according to the above method faithfully maintains the shape of the original resin foam, and its shrinkage rate is 5% depending on the type and composition of the organic and inorganic substances in the liquid composition to be infiltrated. ~80%.
The carbon porous material is composed of a resin foam, an organic substance, and a carbonaceous material, so it can be made by infiltrating only an organic substance into a resin foam, or a carbon porous material made only from a resin foam. In comparison, stress diffusion becomes possible. The carbon porous body obtained by this method can be used for various filters, catalyst carriers, lightweight structural materials, sheet heating elements,
Suitable for use as chemical adsorbent, radio wave shielding material, etc. Next, the present invention will be specifically explained with reference to Examples. Example 1 Furan initial condensate (Hitafuran manufactured by Hitachi Chemical Co., Ltd.)
80 parts by weight of VF302), 10 parts by weight of graphite having an average particle size of 2.3μ, and 10 parts by weight of carbon black (Denka Black, manufactured by Denki Kagaku Co., Ltd.) were mixed in a Henschel mixer. A polyurethane foam having a three-dimensional network structure measuring 4 cm long x 4 cm wide x 4 cm high (porosity 60%) was prepared, and the above liquid composition was permeated for 10 minutes. The excess liquid composition that had not penetrated and was blocking the pores was then removed. This composite was subjected to a curing reaction in a 100°C dryer for 3 hours, and then subjected to carbon precursor treatment in a 180°C dryer for 10 hours. This precursor treated product was fired at 20°C/h to 500°C in N2 gas, and from 500°C to 1000°C at 100°C/h,
After holding at 1000°C for 2 hours, the mixture was air-cooled to room temperature to obtain a carbon porous body. Table 1 shows the characteristics of the obtained porous carbon material.
Shown below. Comparative Example 1 The same furan precondensate as in Example 1 was infiltrated into a polyurethane foam of the same size for 10 minutes. Thereafter, curing, precursor treatment, and firing were performed in the same manner to obtain a carbon porous body. Table 1 shows various properties of the obtained porous carbon material. Example 2 Chlorinated vinyl chloride resin powder with a chlorine content of 67% and a degree of polymerization of 740 (Nicatemp T- manufactured by Nippon Carbide Co., Ltd.)
870) 70 parts by weight 15 parts by weight of graphite with an average particle size of 3μ, carbon black (Denka Black manufactured by Denki Kagaku Co., Ltd.) 15
Parts by weight were mixed using a Henschel mixer, and tetrahydrofuran was added as a solvent to obtain a liquid composition. Length 4cm x width 4cm x height 4cm (porosity 80%)
A polyurethane foam having a three-dimensional network structure was prepared and the above composition was permeated for 10 minutes. The unpenetrated excess liquid composition that was blocking the pores was then removed. This composite was placed in a dryer at 100°C.
The carbon precursor treatment was carried out for 2 hours at 120°C, 2 hours at 140°C, 2 hours at 160°C, and 10 hours at 180°C. This precursor treated product was heated at 15℃/h in N2 gas.
Firing up to 500℃, 50℃/500℃ to 1000℃
After firing at 1000° C. for 3 hours, the mixture was air-cooled to room temperature to obtain a carbon porous body. Table 1 shows various properties of the obtained porous carbon material. Comparative Example 2 The same chlorinated vinyl chloride resin powder as in Example 2 was dissolved in tetrahydrofuran and allowed to penetrate into a polyurethane foam of the same size for 10 minutes. Thereafter, the precursor was treated and fired in the same manner to obtain a carbon porous body. Table 1 shows various properties of the obtained porous carbon material. Example 3 Chlorinated vinyl chloride resin powder with a chlorine content of 65% and a degree of polymerization of 650 (Nicatemp T- manufactured by Nippon Carbide Co., Ltd.)
025) 70 parts by weight of graphite with an average particle size of 2.3μ were mixed in a Henschel mixer, and tetrahydrofuran was added as a solvent to make a liquid, which contained a furan initial condensate (Hitafuran VF302 manufactured by Hitachi Chemical Co., Ltd.).
20 parts by weight were added and mixed. A polyurethane foam having a three-dimensional network structure measuring 4 cm long x 4 cm wide x 4 cm high (porosity 40%) was prepared, and the above composition was permeated for 10 minutes. The unpenetrated excess liquid composition blocking the pores was then removed. This complex
Carbon precursor treatment was performed in a dryer at 100°C for 2 hours, at 130°C for 4 hours, at 160°C for 4 hours, and at 180°C for 10 hours. This precursor treated product was heated at 15℃/h in N2 gas.
Fired up to 500℃, 100℃ above 500℃ up to 1000℃
C./h, held at 1000.degree. C. for 3 hours, and then air cooled to room temperature to obtain a carbon porous body. Table 1 shows various properties of the obtained porous carbon material. Comparative Example 3 70 parts by weight of the same chlorinated vinyl chloride resin powder as in Example 3 was dissolved in tetrahydrofuran, 20 parts by weight of a furan initial condensate was added and mixed, and the mixture was allowed to penetrate into a polyurethane foam of the same size for 10 minutes. Thereafter, the precursor was treated and fired in the same manner to obtain a carbon porous body. Table 1 shows various properties of the obtained porous carbon material. 【table】

Claims (1)

【特許請求の範囲】 1 三次元網目構造を有する樹脂フオームに、有
機液状物質と炭素質物質とからなる液状組成物を
浸透させ、その複合体を硬化後、不活性ガス雰囲
気中で焼成することからなる三次元網目構造を有
する炭素多孔体の製造方法。 2 該三次元網目構造を有する樹脂フオームは、
フエノールフオーム、ポリウレタンフオーム等の
熱硬化性樹脂からなり、孔径が0.1〜数cmの範囲
で、気孔率が5%〜最大98%なある第1項に記載
の炭素多孔体の製造方法。 3 該有機液状物質は、不活性ガス雰囲気中での
焼成により5%以上の炭化収率を示す有機物質一
種もしくは二種以上からなり、常温で液状を呈さ
ないものはその有機物質の初期縮合物や、溶剤で
溶解したものからなる第1項に記載の炭素多孔体
の製造方法。 4 該炭素質物質は、鱗状黒鉛、土状黒鉛、カー
ボンブラツク微粉末の一種もしくは二種以上を混
合したものである第1項に記載の炭素多孔体の製
造方法。 5 該焼成は、800℃以上に加熱昇温して行われ
る第1項に記載の炭素多孔体の製造方法。
[Claims] 1. A resin foam having a three-dimensional network structure is infiltrated with a liquid composition consisting of an organic liquid substance and a carbonaceous substance, and the composite is cured and then fired in an inert gas atmosphere. A method for producing a porous carbon material having a three-dimensional network structure consisting of: 2 The resin foam having the three-dimensional network structure is
2. The method for producing a porous carbon material according to item 1, which is made of a thermosetting resin such as phenol foam or polyurethane foam, and has a pore diameter in the range of 0.1 to several cm and a porosity of 5% to 98% at most. 3. The organic liquid substance consists of one or more organic substances that exhibit a carbonization yield of 5% or more when fired in an inert gas atmosphere, and those that do not exhibit a liquid state at room temperature are initial condensates of the organic substances. 2. The method for producing a porous carbon material according to item 1, wherein the porous carbon material is obtained by dissolving it in a solvent. 4. The method for producing a carbon porous body according to item 1, wherein the carbonaceous material is one or a mixture of two or more of scaly graphite, earthy graphite, and carbon black fine powder. 5. The method for producing a carbon porous body according to item 1, wherein the firing is performed by heating to 800° C. or higher.
JP58019681A 1983-02-10 1983-02-10 Manufacture of porous carbonaceous material Granted JPS59146917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58019681A JPS59146917A (en) 1983-02-10 1983-02-10 Manufacture of porous carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58019681A JPS59146917A (en) 1983-02-10 1983-02-10 Manufacture of porous carbonaceous material

Publications (2)

Publication Number Publication Date
JPS59146917A JPS59146917A (en) 1984-08-23
JPS6365633B2 true JPS6365633B2 (en) 1988-12-16

Family

ID=12005973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58019681A Granted JPS59146917A (en) 1983-02-10 1983-02-10 Manufacture of porous carbonaceous material

Country Status (1)

Country Link
JP (1) JPS59146917A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283887A (en) * 1985-10-09 1987-04-17 Ibiden Co Ltd Carrier for immobilizing microorganism
CA1291110C (en) * 1985-11-18 1991-10-22 Christopher John Carruthers Edwards Porous carbon structures and methods for their preparation
JP2544730B2 (en) * 1986-12-26 1996-10-16 東芝セラミツクス株式会社 Method for producing carbonaceous porous heat insulating material
JP2014214039A (en) * 2013-04-24 2014-11-17 株式会社タンケンシールセーコウ Carbon porous body and method for producing the same

Also Published As

Publication number Publication date
JPS59146917A (en) 1984-08-23

Similar Documents

Publication Publication Date Title
Kyotani Control of pore structure in carbon
US4064207A (en) Fibrillar carbon fuel cell electrode substrates and method of manufacture
KR960000024B1 (en) Catalytic system for combusting exhaust gases and process for the fabrication of same
US3446593A (en) Process for the manufacture of macroporous vitreous carbon
US4022875A (en) Method for the preparation of vitreous carbon foams
EP2921468A1 (en) Process for the preparation of flexible meso and macroporous carbon foams
WO2014060508A1 (en) Process for the preparation of hierarchically meso and macroporous structured materials
JPH0737345B2 (en) Carbon fiber reinforced carbon composite
US4366191A (en) Method of increasing the strength of carbon and graphite members
CN108516547B (en) Preparation method of carbon black-coal pitch composite spherical activated carbon
JPS6365633B2 (en)
US3927157A (en) High temperature resistant products and methods for making the same
US5053278A (en) Carbonaceous granular heat insulator and process for preparing the same
EP0365327B1 (en) Method of preparation of porous carbon material and material produced by the method
JPS59232905A (en) Manufacture of carbon product
JP2571251B2 (en) Carbon fiber reinforced carbon composite material for friction material
US4882103A (en) Process for producing carbon product having coarse and dense structure
JPH06206780A (en) Production of active porous carbonaceous structure
JP3233922B2 (en) Method for producing honeycomb-shaped activated carbon
JPS6059171B2 (en) Method for manufacturing carbon products with dense and dense structure
JPH05105414A (en) Production of high strength molded activated carbon
JP2665957B2 (en) Carbon fiber / carbon composite
JPH0655068A (en) Production of carbon covered inorganic support
Kawamura et al. Glass-like carbon made from epoxy resin cured with 2, 4, 6-trinitrophenol.
US4728535A (en) Method of manufacturing thin carbon products