CN110797513B - Graphite-hard carbon coated material and preparation method thereof - Google Patents
Graphite-hard carbon coated material and preparation method thereof Download PDFInfo
- Publication number
- CN110797513B CN110797513B CN201810874480.2A CN201810874480A CN110797513B CN 110797513 B CN110797513 B CN 110797513B CN 201810874480 A CN201810874480 A CN 201810874480A CN 110797513 B CN110797513 B CN 110797513B
- Authority
- CN
- China
- Prior art keywords
- graphite
- heating
- phenolic resin
- hard carbon
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910021385 hard carbon Inorganic materials 0.000 title claims abstract description 37
- 239000000463 material Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000005011 phenolic resin Substances 0.000 claims abstract description 47
- 229920001568 phenolic resin Polymers 0.000 claims abstract description 45
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims abstract description 42
- 238000000576 coating method Methods 0.000 claims abstract description 27
- 239000011248 coating agent Substances 0.000 claims abstract description 25
- 239000007773 negative electrode material Substances 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 78
- 239000010439 graphite Substances 0.000 claims description 74
- 229910002804 graphite Inorganic materials 0.000 claims description 74
- 238000010438 heat treatment Methods 0.000 claims description 52
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 15
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 13
- 229910052796 boron Inorganic materials 0.000 claims description 13
- 238000000197 pyrolysis Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- 238000001723 curing Methods 0.000 claims description 6
- 238000011065 in-situ storage Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 3
- 238000003760 magnetic stirring Methods 0.000 claims description 3
- 238000013019 agitation Methods 0.000 claims 1
- 238000009210 therapy by ultrasound Methods 0.000 claims 1
- 239000007770 graphite material Substances 0.000 abstract description 2
- 239000002296 pyrolytic carbon Substances 0.000 description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical group [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 11
- 229910001416 lithium ion Inorganic materials 0.000 description 11
- 239000002131 composite material Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229920002903 fire-safe polymer Polymers 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- -1 lithium hexafluorophosphate Chemical compound 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
The invention discloses a graphite-hard carbon coating material and a preparation method thereof. According to the invention, phenolic resin is pyrolyzed to prepare hard carbon, and the obtained hard carbon is coated on the surface of a graphite material to prepare the negative electrode material with high specific capacity.
Description
Technical Field
The invention belongs to the field of carbon composite materials, and particularly relates to a carbon negative electrode material and a preparation method thereof.
Background
Along with the progress of science and technology, the demand of human beings for energy is increased. On one hand, the storage capacity of traditional energy sources such as petroleum, natural gas, coal and the like is sharply reduced; on the other hand, the climate problems such as greenhouse effect caused by the consumption of these energy sources cannot be ignored, and the normal production and life of human beings are threatened all the time. The electric energy is a secondary energy, and the water power resource and the geothermal resource which are convenient in the nature provide infinite possibility for power generation. It is also indispensable to look for a new energy memory simultaneously, and the emergence of battery has brought huge change for people's life once more, and it is small, the storage of being convenient for, convenient to carry, once, secondary battery's selection can be at will. For the public to accept, the traditional gasoline-burning motor vehicle is gradually changed to an electric power or hybrid power automobile, and the role played by the battery is very important.
In the field of batteries, the most popular is a lithium ion battery which has the advantages of light volume, high specific energy and wide application range, and electronic products such as notebook computers, mobile phones and the like are almost clear-colored lithium ion batteries. At present, the carbon material is the most pyrogenic negative electrode material in the field of lithium ion batteries, and the graphite occupies the largest market share. The positive electrode material of the lithium ion battery using graphite as the negative electrode is lithium cobaltate, and the electrolyte is a lithium salt solution which contains 1mol/L lithium hexafluorophosphate and has EC: DEC: EMC: 1:1:1 (V/V). The success point of the battery is that the cycle life is long, the voltage platform is stable, the manufacturing cost is low, and the battery is deeply favored by people, but the graphite/cobalt acid lithium battery in the market cannot meet the requirement of high-rate discharge, so that the research on an electrode material capable of solving the problem is responsible for the meaning of the scientists.
Graphite is the negative electrode carbon material which is applied to the lithium ion battery at first, lithium ions can be inserted between carbon layers, and one lithium ion can be inserted into every six carbon atoms, so that the specific capacity of the graphite negative electrode is 372mAh/g, and the graphite has the advantages of low price and the like; but also has the disadvantages of poor cycle performance, low first efficiency and the like. For graphitized materials, PC is not a good solvent, because the solvent will intercalate with lithium ions between graphite layers, causing exfoliation of graphite sheet layers, and thus degradation of the cycle performance of the lithium ion battery. To improve this, EC is generally selected as a solvent, and in addition to this, this problem is solved by modifying the graphite electrode material. The following three methods are provided: covering the organic matter on the surface of the graphite, and coating the organic matter on the surface of the graphite after pyrolysis at the high temperature of 1000 ℃; uniformly dispersing graphite in a tetrahydrofuran solution containing asphalt, and pyrolyzing at 1000 ℃ in a rare gas atmosphere; graphite and polymer are mixed together and simply thermally decomposed at 800-1000 ℃. After the composite electrode material is coated, the specific capacity, the cycle performance and the like of the composite electrode material are greatly improved. Hard carbon is an amorphous carbon, simply a turbostratic stack, which greatly increases the number of lithium intercalation active sites and capacity over graphite. Common hard carbon is derived from organic matters or polymers by high-temperature pyrolysis, so that residual oxygen-containing groups cannot be avoided, and gas is generated in the pyrolysis process to form micropores, so that the irreversible capacity of the carbon is reduced for the first time. But the cycling stability and the rate capability are good, and the wide attention is paid.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provide a graphite-hard carbon coated material and a preparation method thereof.
The technical purpose of the invention is realized by the following technical scheme:
a graphite-hard carbon coating material and a preparation method thereof, wherein hard carbon is coated on a graphite outer layer in situ, and the preparation method comprises the following steps: dissolving phenolic resin in a solvent, adding graphite, heating and curing after uniform mixing to obtain a mixture, and pyrolyzing the mixture to realize in-situ coating of the graphite and the hard carbon.
The phenolic resin is a phenolic resin oligomer, and is preferably soluble and dispersible in a solvent.
Furthermore, the solvent is tetrahydrofuran, dimethylformamide or dimethylacetamide.
And the mass ratio of the phenolic resin to the graphite is 10: (1-10), preferably 10: (1-5).
And, dissolving the phenolic resin in the solvent is alternately carried out by stirring and ultrasound until the phenolic resin is completely dissolved.
Further, after the addition of graphite, magnetic stirring was performed for 6 to 10 hours to mix uniformly.
Furthermore, the pyrolysis parameters were: heating from 20-25 ℃ to 150-250 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 1-3 hours, heating to 400-500 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 1-3 hours, heating to 700-800 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 3-6 hours, and cooling to room temperature of 20-25 ℃ along with a furnace.
Furthermore, the pyrolysis parameters were: heating from 20-25 ℃ to 150-200 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 1-2 hours, heating to 400-450 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 1-2 hours, heating to 750-800 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 5-6 hours, and cooling to room temperature of 20-25 ℃ along with a furnace.
The graphite-hard carbon coating material and the preparation method thereof provided by the invention use the method of coating graphite with hard carbon, and adopt graphite and oligomeric phenolic resin for mixing, and then carry out curing and pyrolysis, so as to realize in-situ coating of graphite and hard carbon, improve the poor graphite cycle performance, and integrate the advantages of graphite and hard carbon. According to the invention, the phenolic resin is pyrolyzed to prepare the hard carbon, the obtained hard carbon is coated on the surface of the graphite material, and the high-specific-capacity anode material (namely the application of the anode material) is prepared, so that the preparation process is simple, and the raw materials are cheap and easy to obtain.
Drawings
FIG. 1 is an SEM photograph of graphite (a) and graphite-phenolic resin pyrolytic carbon (i.e., graphite-hard carbon coated material) (b, c, d) in the present invention.
FIG. 2 is an XRD pattern of graphite and graphite-phenolic pyrolytic carbon (i.e., graphite-hard carbon-coated material) in accordance with the present invention.
Fig. 3 is a partial enlarged XRD pattern (i.e., the partially enlarged region in fig. 2) of graphite and graphite-phenolic resin pyrolytic carbon (i.e., graphite-hard carbon-coated material) in accordance with the present invention.
Fig. 4 is a graph of the first charge and discharge curves of graphite/phenolic resin pyrolytic carbon composites of different graphite contents.
Fig. 5 is a graph of the rate of graphite and different coating amounts of graphite/phenolic resin pyrolytic carbon composite.
Detailed Description
The following is a further description of the invention and is not intended to limit its application. The phenolic resin used was boron-containing phenolic resin (oligomer, liquid, analytical grade) of Shaanxi Taihang fire retardant Polymer Co., Ltd, the graphite was 1420 graphite (battery grade) of Chuangya power battery materials Co., Ltd, and tetrahydrofuran was purchased from Tianjin Fuyu Fine chemical Co., Ltd (analytical grade).
Weighing 30 g of phenolic resin, equally dividing into three parts without curing, respectively dissolving in tetrahydrofuran, stirring and ultrasonically alternately until the phenolic resin is completely dissolved (namely, oligomeric phenolic resin is uniformly dispersed in solvent tetrahydrofuran to form uniform solution), respectively adding 1g, 5 g and 10g of graphite into the tetrahydrofuran solution of the three parts of phenolic resin, magnetically stirring for ten hours to uniformly mix, carrying out thermocuring in a homogeneous reactor (namely, heating to the curing temperature of the phenolic resin according to the property of purchased phenolic resin, such as 60-80 ℃ to ensure that the solvent is evaporated in the tetrahydrofuran solution of the phenolic resin uniformly dispersed with the graphite, the phenolic resin is cured and forms a coated core-shell structure with the uniformly dispersed graphite), obtaining a graphite-phenolic resin mixture, then putting the obtained mixture into a tubular furnace for pyrolysis to obtain the graphite-hard carbon coated material, the temperature raising method of the furnace is as follows: heating from 25 ℃ to 150 ℃ at a heating rate of 5 ℃/min, preserving heat for 1 hour, heating to 400 ℃ at a heating rate of 5 ℃/min, preserving heat for 1 hour, heating to 800 ℃ at a heating rate of 5 ℃/min, preserving heat for 4 hours, and naturally cooling to room temperature of 20-25 ℃ along with the furnace.
The scanning electron microscope of Hitachi S-4700 model Japan, D/max-gamma B rotating anode X-ray diffractometer of Nippon science electric company (rotating anode range 5-90 DEG, scanning speed 7 DEG min)-1Emission voltage is 45kV, current is 50m A, and the number taking interval is as follows: 0.02 °), a Newware battery test system () and a shanghai chenhua CHI604D electrochemical analyzer (cyclic voltammetry test) were used to characterize the raw material graphite, as well as the graphite-hard carbon-coated material.
As shown in the attached figure 1, a is raw material graphite, and b, c and d are added in the amount of 1g, 5 g and 10g respectively. After the phenolic resin coating, the surface appearance of 1420 graphite is not changed obviously, and the basic appearance of graphite is maintained. It can also be seen that the graphite surface produces a structure of a layer of pyrolytic carbon. It is stated that a "core-shell" structure is produced during the coating process, but when the amount of coating is small, a complete "shell" structure cannot be formed. The pyrolytic carbon layer prevents graphite from directly contacting with electrolyte, prevents structural damage such as layer falling caused by high-current discharge graphite, prevents the cycle life from being influenced by solvated lithium ions, and also improves the high-current charge and discharge capacity of the graphite.
As can be seen from FIGS. 2-3, both materials have characteristic peaks typical of graphite, indicating that the fundamental structure of graphite is not altered by the coating with phenolic resin. In contrast, the (002) peak position of the coated sample was slightly shifted in a small angle direction with respect to the pure graphite sample, and the d002 was increased. The magnified images show that the half-peak width of the coated sample is larger, and that the 100 peak at 42.5 degrees and the 101 peak at 44.5 degrees are both smaller, which indicates that the graphitization degree is reduced, and provides evidence for coating the graphite surface with the phenolic resin pyrolytic carbon.
As shown in fig. 4, curve 4 is graphite, curves 1-3 correspond to the first charging and discharging curves of graphite modified by different coating processes and uncoated graphite, with the addition of graphite being 1g, 5 g and 10g respectively. As can be seen from the figure, all the materials have very similar charge and discharge curves, and have very long and flat charge and discharge platforms nearby. The SEI film forming platform of the graphite nearby in the first discharge after coating gradually disappears, and the curve gradually approaches to the typical charge-discharge curve of hard carbon. The efficiency gradually decreases as the amount of coating increases. With the increase of the coating amount, the platform is continuously reduced and almost disappears at last, the charging and discharging curve is gradually changed to the characteristic curve of the phenolic resin pyrolytic carbon, the platform near 0.2V is gradually shortened, and the first charging and discharging characteristic of the graphite after the coating treatment is greatly changed. The pyrolysis process of the phenolic resin pyrolytic carbon can generate a plurality of micropores, so that the surface area is increased, and the area of the SEI film is increased.
As shown in fig. 5, G represents graphite, and 1 × to 3 × respectively correspond to the multiplying power curves of 1G, 5G and 10G of graphite added, graphite and graphite/phenolic resin pyrolytic carbon composite materials with different coating amounts. As can be seen from the figure, the capacity of the coated material is not greatly improved at 37.2mA/g, 74.4m A/g and 186m A/g, but when the material is discharged at a high rate (372 m A/g or more), the capacity of the coated phenolic resin is obviously improved and is increased from 250mAh/g to 310 mAh/g, because the outer layer of the coated graphite has a layer of pyrolytic carbon, the direct contact between the graphite and the electrolyte is prevented, and the rate of lithium ion insertion and extraction from the graphite is also improved. While an excessive coating amount among the different coating amounts causes phenol resin to be scattered in the material, resulting in a decrease in material efficiency, the coating material performance of graphite (graphite addition amount of 1g, phenol resin 10g) is optimal in view of the relationship between efficiency and rate performance.
The method for changing the temperature rise of the tube furnace comprises the following steps: heating from 25 ℃ to 200 ℃ at a heating rate of 5 ℃/min, preserving heat for 1 hour, heating to 600 ℃ at a heating rate of 5 ℃/min, preserving heat for 1 hour, heating to 800 ℃ at a heating rate of 5 ℃/min, preserving heat for 4 hours, and naturally cooling to room temperature of 20-25 ℃ along with the furnace to prepare the graphite-hard carbon coated material. The preparation of the graphite-hard carbon coated material can be realized by adjusting the process parameters according to the content of the invention, and the performance basically consistent with that of the embodiment is achieved.
The invention has been described in an illustrative manner, and it is to be understood that any simple variations, modifications or other equivalent changes which can be made by one skilled in the art without departing from the spirit of the invention fall within the scope of the invention.
Claims (10)
1. A graphite-hard carbon coating type material is characterized in that hard carbon is coated on a graphite outer layer in situ, and the method comprises the following steps: dissolving boron-containing phenolic resin in a solvent, adding graphite, heating and curing after uniform mixing to obtain a mixture, and pyrolyzing the mixture to realize in-situ coating of graphite and hard carbon, wherein the mass ratio of the boron-containing phenolic resin to the graphite is 10: (1-10), the pyrolysis parameters are: heating from 20-25 ℃ to 150-250 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 1-3 hours, heating to 400-500 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 1-3 hours, heating to 700-800 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 3-6 hours, and cooling to room temperature of 20-25 ℃ along with a furnace.
2. The graphite-hard carbon coated material of claim 1, wherein the mass ratio of the boron-containing phenolic resin to the graphite is 10: (1-5).
3. The graphite-hard carbon coated material according to claim 1, wherein the boron-containing phenolic resin is a phenolic resin oligomer which can be dissolved and dispersed in a solvent such as tetrahydrofuran, dimethylformamide or dimethylacetamide.
4. The graphite-hard carbon coated material of claim 1, wherein the dissolving of the boron-containing phenolic resin in the solvent is performed alternately by ultrasonic agitation until the boron-containing phenolic resin is completely dissolved; after the addition of graphite, magnetic stirring was carried out for 6 to 10 hours to mix well.
5. The graphite-hard carbon coated material of claim 1, wherein the pyrolysis parameters are: heating from 20-25 ℃ to 150-200 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 1-2 hours, heating to 400-450 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 1-2 hours, heating to 750-800 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 5-6 hours, and cooling to room temperature of 20-25 ℃ along with a furnace.
6. The preparation method of the graphite-hard carbon coated material is characterized by comprising the following steps of: dissolving boron-containing phenolic resin in a solvent, adding graphite, heating and curing after uniform mixing to obtain a mixture, and pyrolyzing the mixture to realize in-situ coating of graphite and hard carbon, wherein the mass ratio of the boron-containing phenolic resin to the graphite is 10: (1-10), the pyrolysis parameters are: heating from 20-25 ℃ to 150-250 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 1-3 hours, heating to 400-500 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 1-3 hours, heating to 700-800 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 3-6 hours, and cooling to room temperature of 20-25 ℃ along with a furnace.
7. The method of claim 6, wherein the boron-containing phenolic resin is an oligomer of phenolic resin, and the solvent is tetrahydrofuran, dimethylformamide or dimethylacetamide.
8. The method for preparing the graphite-hard carbon coating material as claimed in claim 6, wherein the dissolving of the boron-containing phenolic resin in the solvent is alternately carried out by stirring and ultrasonic treatment until the boron-containing phenolic resin is completely dissolved; after the addition of graphite, magnetic stirring was carried out for 6 to 10 hours to mix well.
9. The method for preparing the graphite-hard carbon coating material as claimed in claim 6, wherein the mass ratio of the boron-containing phenolic resin to the graphite is 10: (1-10); the pyrolysis parameters are as follows: heating from 20-25 ℃ to 150-200 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 1-2 hours, heating to 400-450 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 1-2 hours, heating to 750-800 ℃ at a heating rate of 1-5 ℃/min, preserving heat for 5-6 hours, and cooling to room temperature of 20-25 ℃ along with a furnace.
10. Use of a graphite-hard carbon-coated material according to any one of claims 1 to 5 as a negative electrode material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810874480.2A CN110797513B (en) | 2018-08-03 | 2018-08-03 | Graphite-hard carbon coated material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810874480.2A CN110797513B (en) | 2018-08-03 | 2018-08-03 | Graphite-hard carbon coated material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110797513A CN110797513A (en) | 2020-02-14 |
CN110797513B true CN110797513B (en) | 2022-04-05 |
Family
ID=69425202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810874480.2A Expired - Fee Related CN110797513B (en) | 2018-08-03 | 2018-08-03 | Graphite-hard carbon coated material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110797513B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112713277B (en) * | 2020-12-30 | 2022-12-23 | 宁波杉杉新材料科技有限公司 | Hard carbon material, preparation method and application thereof, and lithium ion battery |
CN112768657A (en) * | 2021-01-14 | 2021-05-07 | 江西理工大学 | High-performance carbon negative electrode PTCDA hard carbon coated graphite material and preparation method thereof |
CN112993248A (en) * | 2021-02-22 | 2021-06-18 | 青海凯金新能源材料有限公司 | Artificial graphite-hard carbon negative electrode material, preparation method and application thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1397598A (en) * | 2002-08-14 | 2003-02-19 | 清华大学 | Process for preparing carbon coated graphite microparticles |
JP2003100293A (en) * | 2001-09-25 | 2003-04-04 | Showa Denko Kk | Carbon material and manufacturing method and usage thereof |
CN1549362A (en) * | 2003-05-16 | 2004-11-24 | 比亚迪股份有限公司 | Method for producing modified graphite |
CN1738081A (en) * | 2005-06-22 | 2006-02-22 | 浙江大学 | Composite negative pole material of Li-ion battery and its preparing process |
CN102082272A (en) * | 2010-12-29 | 2011-06-01 | 长沙海容新材料有限公司 | Hard carbon coated lithium ion battery anode material and preparation method thereof |
CN102306796A (en) * | 2011-09-09 | 2012-01-04 | 湖州创亚动力电池材料有限公司 | Capacity type cathode material of lithium ion power battery, and preparation method thereof |
CN102522561A (en) * | 2011-12-21 | 2012-06-27 | 清华大学 | Lithium ion battery cathode material and preparation method thereof |
CN103151497A (en) * | 2013-03-16 | 2013-06-12 | 无锡东恒新能源材料有限公司 | Preparation method of negative material for low-temperature lithium ion battery |
CN105047929A (en) * | 2015-06-08 | 2015-11-11 | 内蒙古瑞盛石墨新材料有限公司 | Lithium ion battery anode material with porous structure and preparation method of lithium ion battery anode material |
CN105244499A (en) * | 2015-08-31 | 2016-01-13 | 无锡市嘉邦电力管道厂 | Coated and modified anode material of lithium ion battery and preparation method of coated and modified anode material |
CN106602018A (en) * | 2016-12-21 | 2017-04-26 | 上海杉杉科技有限公司 | Anode material for lithium ion batteries, preparation method and battery containing anode material |
CN107528058A (en) * | 2017-08-31 | 2017-12-29 | 北方奥钛纳米技术有限公司 | The preparation method of composite modified graphite cathode material and composite modified graphite cathode material and application |
-
2018
- 2018-08-03 CN CN201810874480.2A patent/CN110797513B/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003100293A (en) * | 2001-09-25 | 2003-04-04 | Showa Denko Kk | Carbon material and manufacturing method and usage thereof |
CN1397598A (en) * | 2002-08-14 | 2003-02-19 | 清华大学 | Process for preparing carbon coated graphite microparticles |
CN1549362A (en) * | 2003-05-16 | 2004-11-24 | 比亚迪股份有限公司 | Method for producing modified graphite |
CN1738081A (en) * | 2005-06-22 | 2006-02-22 | 浙江大学 | Composite negative pole material of Li-ion battery and its preparing process |
CN102082272A (en) * | 2010-12-29 | 2011-06-01 | 长沙海容新材料有限公司 | Hard carbon coated lithium ion battery anode material and preparation method thereof |
CN102306796A (en) * | 2011-09-09 | 2012-01-04 | 湖州创亚动力电池材料有限公司 | Capacity type cathode material of lithium ion power battery, and preparation method thereof |
CN102522561A (en) * | 2011-12-21 | 2012-06-27 | 清华大学 | Lithium ion battery cathode material and preparation method thereof |
CN103151497A (en) * | 2013-03-16 | 2013-06-12 | 无锡东恒新能源材料有限公司 | Preparation method of negative material for low-temperature lithium ion battery |
CN105047929A (en) * | 2015-06-08 | 2015-11-11 | 内蒙古瑞盛石墨新材料有限公司 | Lithium ion battery anode material with porous structure and preparation method of lithium ion battery anode material |
CN105244499A (en) * | 2015-08-31 | 2016-01-13 | 无锡市嘉邦电力管道厂 | Coated and modified anode material of lithium ion battery and preparation method of coated and modified anode material |
CN106602018A (en) * | 2016-12-21 | 2017-04-26 | 上海杉杉科技有限公司 | Anode material for lithium ion batteries, preparation method and battery containing anode material |
CN107528058A (en) * | 2017-08-31 | 2017-12-29 | 北方奥钛纳米技术有限公司 | The preparation method of composite modified graphite cathode material and composite modified graphite cathode material and application |
Also Published As
Publication number | Publication date |
---|---|
CN110797513A (en) | 2020-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106935860B (en) | A kind of carbon intercalation V2O3Nano material, preparation method and application | |
CN105810914B (en) | A kind of sodium-ion battery sulfur doping porous carbon materials and preparation method thereof | |
CN103078090B (en) | Lithium ion power battery composite cathode material and its preparation method | |
CN104332616B (en) | Graphene coated graphite composite lithium ion battery negative material and its preparation method | |
CN103700820B (en) | A kind of lithium ion selenium battery with long service life | |
CN107482182B (en) | Carbon-coated ion-doped manganese phosphate lithium electrode material and preparation method thereof | |
CN104659366A (en) | Preparation method of anode material for power lithium ion battery | |
CN102117911B (en) | Graphite cathode material for lithium ion battery and preparation method thereof | |
CN102347476B (en) | Lithium iron phosphate/carbon composite anode material prepared by catalytic graphitization method, and preparation method thereof | |
CN104882607A (en) | Anima bone base type graphene lithium ion battery negative electrode material and preparation method thereof | |
CN110797513B (en) | Graphite-hard carbon coated material and preparation method thereof | |
Shi et al. | High-safety lithium-ion sulfur battery with sulfurized polyacrylonitrile cathode, prelithiated SiOx/C anode and carbonate-based electrolyte | |
CN104953100A (en) | Preparation method of carbon/graphite/tin composite anode material | |
CN104852040B (en) | A kind of preparation method of the nickel lithium manganate cathode material of high multiplying power lithium ion battery | |
CN112467111A (en) | Conductive carbon substrate loaded graphene aerogel composite electrode and preparation method thereof | |
CN114094070B (en) | Titanium niobate coated hard carbon composite material and preparation method thereof | |
CN107658461B (en) | Method for preparing ferric fluoride/carbon composite material by taking organic iron compound as raw material | |
CN104882590A (en) | Preparation method of carbon/ graphite/ silicon composited anode material | |
CN115084465B (en) | Pre-lithiated binary topological structure phosphorus/carbon composite material and preparation method and application thereof | |
CN105161725B (en) | A kind of preparation method of cathode material for lithium-ion power battery | |
CN103378355B (en) | Alkali metal secondary battery and the preparation method of negative electrode active material, negative material, negative pole and negative electrode active material | |
CN104466182A (en) | Nitrogen-doped nanocarbon coated/oxidized modified graphite composite material and preparation method thereof | |
CN108682856B (en) | Typha carbon-loaded vanadium sodium phosphate nano composite material and preparation method and application thereof | |
CN107946559B (en) | Sb for solvothermal preparation of sodium ion battery cathode2Se3Method for preparing/C composite material | |
CN103545492A (en) | Preparation method of multiple composite anode material of lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220405 |
|
CF01 | Termination of patent right due to non-payment of annual fee |