WO2020213628A1 - Composite carbon particles, method for manufacturing same and use thereof - Google Patents

Composite carbon particles, method for manufacturing same and use thereof Download PDF

Info

Publication number
WO2020213628A1
WO2020213628A1 PCT/JP2020/016524 JP2020016524W WO2020213628A1 WO 2020213628 A1 WO2020213628 A1 WO 2020213628A1 JP 2020016524 W JP2020016524 W JP 2020016524W WO 2020213628 A1 WO2020213628 A1 WO 2020213628A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
mass
particles
parts
less
Prior art date
Application number
PCT/JP2020/016524
Other languages
French (fr)
Japanese (ja)
Inventor
鎭碩 白
明央 利根川
敬 茂利
大輔 香野
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2020213628A1 publication Critical patent/WO2020213628A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to composite carbon particles, a method for producing the same, a negative electrode active material containing the composite carbon particles, a negative electrode containing the negative electrode active material, and a lithium ion secondary battery using the negative electrode.
  • a lithium ion secondary battery is used as a power source for portable electronic devices.
  • lithium-ion batteries had many problems such as insufficient battery capacity and short charge / discharge cycle life.
  • lithium-ion secondary batteries are used from light electric devices such as mobile phones, notebook computers and digital cameras to high electric devices such as electric tools and electric bicycles that require power.
  • the application is expanding.
  • lithium-ion secondary batteries are particularly expected to be used as power sources for automobiles, and research and development of electrode materials, cell structures, etc. are being actively promoted.
  • Lithium-ion secondary batteries used as power sources for automobiles are required to have excellent low-temperature charge / discharge rate characteristics, high-temperature storage characteristics, high-temperature cycle characteristics, low internal resistance, and high coulombic efficiency. Various methods have been taken for this.
  • a carbon material is used as the negative electrode active material of the lithium ion secondary battery. Further, it has been proposed to form a coating layer on the surface in order to repair surface defects of the carbon material or to impart properties different from those of the carbon material used as the core material.
  • Patent Document 1 describes composite carbon particles having an amorphous carbon layer formed on the surface using a petroleum-based pitch as a coating material.
  • Patent Document 2 describes composite carbon particles in which a pyrolytic carbon layer is formed on the surface by a CVD treatment.
  • Patent Document 3 describes composite carbon particles in which graphene is used as a coating material and graphene is adhered to the surface.
  • Patent Document 4 describes carbon composite silicon in which a graphene sheet is attached to a silicon surface.
  • Patent Document 5 describes a method for producing a graphene shell having a graphene film as a shell structure.
  • Non-Patent Document 1 describes multilayer graphene
  • Non-Patent Document 2 describes bilayer graphene.
  • Patent Document 6 discloses composite particles of graphite particles, amorphous carbon, and carbon fine particles.
  • Patent Document 7 discloses composite particles of graphite particles, pitch carbides, and carbon black.
  • Patent Documents 8 to 10 disclose differential thermal analysis of composite particles containing graphite particles and a coated carbon layer.
  • amorphous carbon amorphous carbon
  • the amorphous carbon layer has insufficient high-temperature characteristics, and it is difficult to control the thickness of the amorphous carbon layer uniformly. Therefore, the electron conductivity is also non-uniform, so that the internal resistance is high and the rate characteristics are also insufficient. Met.
  • amorphous carbon is used for binding the core material and graphene, and the high temperature characteristics are insufficient.
  • the technique for coating graphene described in Patent Document 4 is to attach a coating layer using an electrophoresis method, and it is not possible to form a graphene layer on the surface of carbon particles.
  • the graphene shell using the graphene film as the shell described in Patent Document 5 is a technique of using a catalyst metal inside, and the graphene layer cannot be coated on the surface of carbon particles.
  • the composite particles described in Patent Document 6 are covered with an amorphous carbon layer, and the composite particles described in Patent Document 7 are covered with pitch carbides, both of which have insufficient high temperature characteristics.
  • An object of the present invention is to provide composite carbon particles for a lithium ion secondary battery having excellent low temperature charge / discharge rate characteristics, high temperature storage characteristics, and high temperature cycle characteristics in a well-balanced manner, low internal resistance, and high Coulomb efficiency. is there.
  • the present invention has, for example, the following configuration.
  • Composite carbon particles including carbon particles (A) and a carbon coating layer (B) that coats the surface thereof, wherein the carbon coating layer (B) is a carbon coating layer (B1) and carbon fine particles (B1).
  • DTA differential thermal analysis
  • the 50% particle size (D50) in the volume-based cumulative particle size distribution by the laser diffraction method is 1.0 ⁇ m or more and 50.0 ⁇ m or less, and the tapping density of 400 times is 0.30 g / cm 3 or more and 1.50 g / cm 3
  • the composite carbon particle according to any one of the following [1] to [4].
  • the ratio of the composite carbon particles and the carbon particles R value measured by Raman spectroscopy of (A) (1350cm -1 vicinity of the peak intensity (ID) and 1580 cm -1 vicinity of the peak intensity (IG) (ID / IG)) ratio ((R value of composite carbon particles) / (R value of carbon particles (A))) is 1.50 or more and 20.0 or less. Any of the above [1] to [7].
  • [14] The method for producing the composite carbon particles according to any one of [1] to [13] above. 70.0 parts by mass or more and 99.89 parts by mass or less of carbon particles (A), 0.1 parts by mass or more and 20.0 parts by mass or less of a hydroxycarboxylic acid compound having at least one carboxy group and one or more hydroxy groups, and carbon
  • the ratio of the fine particles (B2) to 0.01 parts by mass or more and 10.0 parts by mass or less is 100 parts by mass.
  • a method for producing composite carbon particles which comprises a step of heat-treating the mixture contained in.).
  • [15] The method for producing the composite carbon particles according to any one of [1] to [13] above. 70.0 parts by mass or more and 99.89 parts by mass or less of carbon particles (A), 0.1 parts by mass or more and 20.0 parts by mass or less of a polycarboxylic acid compound having two or more carboxy groups without having a hydroxy group, And the ratio of carbon fine particles (B2) to 0.01 parts by mass or more and 10.0 parts by mass or less (however, the total of the carbon particles (A), the polycarboxylic acid compound, and the carbon fine particles (B2) is 100 parts by mass.
  • a method for producing composite carbon particles which comprises a step of heat-treating the mixture contained in (1).
  • the total ratio of the acid compound to 0.1 parts by mass or more and 20.0 parts by mass or less, and the carbon fine particles (B2) to 0.01 parts by mass or more and 10.0 parts by mass or less (however, with the carbon particles (A))
  • a method for producing composite carbon particles which comprises a step of heat-treating a mixture containing the hydroxycarboxylic acid compound, the polycarboxylic acid compound, and the carbon fine particles (B2) in an amount of 100 parts by mass.).
  • a carbon coating layer containing carbon fine particles is formed on the surface of carbon particles, which is excellent in low temperature charge / discharge rate characteristics, high temperature storage characteristics, and high temperature cycle characteristics, has low internal resistance, and has high Coulomb efficiency.
  • Composite carbon particles can be provided.
  • 6 is a scanning electron micrograph of the composite carbon particles produced in Example 5.
  • 6 is a scanning electron micrograph of the composite carbon particles produced in Example 7.
  • 6 is a scanning electron micrograph of the composite carbon particles produced in Comparative Example 5.
  • 6 is a scanning electron micrograph of the composite carbon particles produced in Comparative Example 9. It is the R value imaging result of the composite carbon particle produced in Example 5. It is the R value imaging result of the composite carbon particle produced in Comparative Example 5.
  • Composite carbon particles The composite carbon particles in one embodiment of the present invention include carbon particles (A) and a carbonic coating layer (B) that coats the surface thereof, and the carbonic coating layer (B) is carbonic. It contains a coating layer (B1) and carbon fine particles (B2).
  • the composite carbon particles have one peak at 200 ° C. or higher and lower than 620 ° C. and two or more peaks at 620 ° C. or higher and 1000 ° C. or lower in differential thermal analysis (DTA) in air.
  • DTA differential thermal analysis
  • the carbon particles (A) are not particularly limited, and known carbon particles such as soft carbon and hard carbon, amorphous carbon particles and graphite particles can be used, but graphite particles are preferably used. Since graphite particles have high crystallinity, they are excellent in discharge capacity, high temperature cycle characteristics, and high temperature storage characteristics.
  • the carbon particles (A) also include those whose surface is partially or wholly coated with amorphous carbon.
  • artificial graphite particles are preferable, and artificial graphite particles having a solid structure are more preferable.
  • the inside has a solid structure, in-particle peeling hardly occurs even if expansion and contraction are repeated due to charging and discharging, and high-temperature cycle characteristics and high-temperature storage characteristics are excellent.
  • the carbon particles (A) can contain metals, metal oxides or alloys.
  • Metals, metal oxides or alloys are not limited as long as they occlude and release lithium, but for example, silicon (Si) (hereinafter, also simply referred to as "silicon”), tin, zinc and their oxides and alloys, etc. Can be mentioned.
  • the carbon particles (A) preferably contain silicon.
  • silicon there is no limitation on the form containing silicon, but the inside of the pores in the composite or porous carbon particles obtained by the method of carbonizing the petroleum pitch by heat-treating the mixture of silicon and petroleum pitch in an inert atmosphere.
  • a composite in which silicon is filled is preferable.
  • Porous carbon particles can be produced by a known production method, and can be achieved, for example, by the same production method as activated carbon or by appropriately heat-treating the polymer.
  • the method of including silicon is not limited, but the porous carbon particles are exposed to the silane gas at a high temperature in the presence of a silicon-containing gas, preferably silane, for example by chemical vapor deposition (CVD). It is obtained by producing silicon in the pores of. Graphite may be contained in these composites.
  • the carbon coating layer (B) may have a structure in which carbon fine particles (B2) are adhered to the surface of the carbon coating layer (B1), or a part or all of the carbon fine particles (B2) may be a carbon coating layer.
  • the structure may be embedded in (B1). Further, in each case, a part or all of the surface of the carbon fine particles (B2) may be covered with the carbonaceous coating layer (B1).
  • the carbon fine particles (B2) are preferably amorphous carbon fine particles such as coal fine powder, vapor phase carbon powder, carbon black, Ketjen black, and acetylene black. Of these, carbon black is more preferable. By using carbon black, the input / output characteristics at low temperatures tend to be higher.
  • the differential thermal analysis (DTA) peak of carbon material shows the exothermic peak due to combustion at different temperatures due to the crystal structure of the carbon component. Therefore, the composite carbon particles of the present invention composed of the three components of the carbon particles (A) serving as the core material, the carbon coating layer (B1), and the carbon fine particles (B2) have three or more peaks. However, when the carbonaceous coating layer (B1) and the carbon fine particles (B2) have similar components, they may show the same peak. In this case, the effect of the composite particles composed of different components is small, and the effect of improving the battery characteristics is not sufficient.
  • the composite carbon particles in one embodiment of the present invention are subjected to differential thermal analysis in air, they have one peak at 200 ° C. or higher and lower than 620 ° C. and two or more peaks at 620 ° C. or higher and 1000 ° C. or lower.
  • a peak of 200 ° C. or higher and lower than 620 ° C. indicates that a thin carbonaceous coating layer (B1) having thermal stability is provided.
  • Having two or more peaks at 620 ° C. or higher and 1000 ° C. or lower indicates that the carbon particles (A) and the carbon fine particles (B2) are composed of different components.
  • the carbon particles (A), the carbon coating layer (B1), and the carbon fine particles (B2) have different crystal structures, and the effects of the composite particles are sufficiently exhibited to improve the battery characteristics in a well-balanced manner.
  • One peak of the composite carbon particles of 200 ° C. or higher and lower than 620 ° C. is more preferably 500 ° C. or higher, further preferably 585 ° C. or higher, and most preferably 600 ° C. or higher.
  • One peak of the composite carbon particles of 200 ° C. or higher and lower than 620 ° C. is more preferably 618 ° C. or lower, further preferably 615 ° C. or lower.
  • the two or more peaks of the composite carbon particles shown at 620 ° C. or higher and 1000 ° C. or lower are more preferably 650 ° C. or higher, further preferably 680 ° C. or higher, and most preferably 700 ° C. or higher.
  • the two or more peaks of the composite carbon particles shown at 620 ° C. or higher and 1000 ° C. or lower are more preferably 950 ° C. or lower, further preferably 900 ° C. or lower, and most preferably 880 ° C. or lower.
  • the average particle size of the primary particles of the carbon fine particles (B2) is preferably 10 nm or more, more preferably 15 nm or more, further preferably 20 nm or more, and particularly preferably 30 nm or more. When the average particle size of the primary particles is 10 nm or more, agglutination is suppressed and uniform dispersibility is excellent.
  • the average particle size of the primary particles is preferably 500 nm or less, more preferably 200 nm or less, further preferably 100 nm or less, particularly preferably 70 nm or less, and most preferably 60 nm or less. When the average particle size of the primary particles is 500 nm or less, the size is sufficiently small and the uniform dispersibility is excellent.
  • the average particle size of the primary particles of the carbon fine particles (B2) is measured by the method using the scanning electron microscope (SEM) described in the examples.
  • the maximum value of the secondary particle diameter of the carbon fine particles (B2) in the composite carbon particles is preferably 1000 nm or less, more preferably 500 nm or less, further preferably 300 nm or less, and particularly preferably 100 nm or less.
  • the maximum value of the secondary particle size is 1000 nm or less, the carbon fine particles (B2) are uniformly dispersed, and the low temperature rate characteristic in the lithium ion secondary battery is excellent.
  • the maximum value of the secondary particle diameter of the carbon fine particles (B2) is measured by the method using the scanning electron microscope (SEM) described in the examples.
  • the carbonaceous coating layer (B1) preferably contains a graphene layer.
  • Graphene is a two-dimensional sheet-like substance in which carbon atoms are continuous in a honeycomb shape, and has superior conductivity, chemical stability, and high mechanical strength than amorphous carbon.
  • the graphene is more preferably formed as a graphene layer on the surface of the carbon particles (A), and further preferably to cover almost the entire surface of the carbon particles (A). Further, it is more preferable that the surface of the carbon particles (A) is directly covered with a single-layer graphene layer or a multi-layer graphene layer. It is more preferable that the carbonaceous coating layer (B) is composed of only a graphene layer and carbon fine particles (B2).
  • the graphene layer consisting of one layer is called a single-layer graphene layer, and the graphene layer consisting of two or more layers is called a multilayer graphene layer.
  • the graphene layer also includes a functional group-modified graphene layer in which graphene has a functional group containing a component other than carbon, and may contain, for example, graphene oxide having an oxygen functional group added.
  • the carbon coating layer (B) may have a structure in which carbon fine particles (B2) are adhered to the surface of the carbon coating layer (B1), or a part of the carbon fine particles (B2) may be attached to the surface of the carbon coating layer (B1). ) May be embedded in the structure. Further, in each case, a part or all of the surface of the carbon fine particles (B2) may be covered with the carbonaceous coating layer (B1).
  • the thickness of the carbonaceous coating layer (B1) is preferably 0.1 nm or more. 0.1 nm corresponds to the thickness of a single layer of graphene. From the viewpoint of providing a certain level of conductivity, chemical stability, and mechanical strength, the thickness of the carbon coating layer (B1) is more preferably 1.0 nm or more, and even more preferably 2.0 nm or more. The thickness of the carbonaceous coating layer (B1) is preferably 30.0 nm or less. When the thickness of the carbon coating layer (B1) is 30.0 nm or less, the formation of the excess carbon coating layer (B1) is suppressed, and the high temperature storage characteristics and the high temperature cycle characteristics can be maintained well. From the same viewpoint, 20.0 nm or less is more preferable, 10.0 nm or less is further preferable, and 5.0 nm or less is most preferable.
  • the thickness of the carbon coating layer (B1) is measured by observation with a transmission electron microscope (TEM). From the viewpoint of measurement accuracy, the number of measurement points is 30 or more.
  • the arithmetic mean is taken as the thickness of the carbonaceous coating layer (B1). Specifically, it can be measured by the method described in Examples.
  • the R value measured by the Raman spectroscopic analysis of the composite carbon particles in one embodiment of the present invention is preferably 0.10 or more.
  • the R value is more preferably 0.15 or more, and most preferably 0.18 or more.
  • the R value measured by Raman spectroscopy of the composite carbon particles is preferably 1.50 or less. This is because when the R value is 1.50 or less, the crystallinity of the surface is not too low, so that good high-temperature storage and high-temperature cycle characteristics can be maintained.
  • the R value is more preferably 0.60 or less, and further preferably 0.50 or less.
  • the R value means the intensity ratio (ID / IG) of the peak intensity (ID) near 1350 cm -1 and the peak intensity (IG) near 1580 cm -1 observed by Raman spectroscopy.
  • the state of the surface of the composite carbon particles can be evaluated from the R value. The smaller the R value, the higher the crystallinity of the surface of the composite carbon particles.
  • the peak intensity represents the height of the peak.
  • the R value may be measured by using the microscopic Raman spectroscopic analysis described in the examples, or by using ordinary Raman spectroscopic analysis.
  • the coefficient of variation is preferably 0.50 or less.
  • the coefficient of variation of the R value is 0.50 or less, the variation in the coating state is small, so that the effect of reducing the resistance is large, and the high temperature cycle characteristics and the low temperature rate characteristics are improved. From the same viewpoint, the coefficient of variation is more preferably 0.45 or less, and further preferably 0.40 or less.
  • the coefficient of variation of the R value is obtained by measuring the R value at multiple points by microscopic Raman spectroscopy and dividing the standard deviation value by the average value of the R values.
  • the variation of the coating can be evaluated by obtaining the coefficient of variation. The larger the coefficient of variation, the larger the variation in the R value, indicating poor coating uniformity, and the smaller the coefficient of variation, the smaller the variation in the R value, indicating that the coating uniformity is high.
  • a microlaser Raman spectroscope with high spatial resolution is used to measure multiple R values for the same sample.
  • the score is 50 points or more, preferably 100 points or more.
  • the laser irradiation position is shifted after each measurement so that the location is different each time. If the spatial resolution is too low (that is, if the overlap of irradiation positions is too large), the variation between particles is difficult to be reflected in the R value, and the accuracy of the evaluation result may decrease.
  • the composite carbon particles In the composite carbon particles according to one embodiment of the present invention, the composite carbon particles and the 1580cm around -1 R value measured by Raman spectroscopy and (1350 cm -1 vicinity of the peak intensity (ID) of the carbon particles (A)
  • the ratio ((R value of composite carbon particles) / (R value of carbon particles (A))) to the peak intensity (IG) of (ID / IG) is 1.50 or more and 20.00 or less. Is preferable.
  • the ratio is 1.50 or more, the carbon coating layer (B) is formed on the surface of the carbon particles (A), the effect of lowering the resistance is large, and the low temperature rate characteristic is improved. From the same viewpoint, the ratio is more preferably 1.70 or more, and most preferably 1.80 or more.
  • (R value of composite carbon particles) / (R value of carbon particles (A)) is preferably 20.00 or less.
  • the ratio is more preferably 7.00 or less, and most preferably 5.00 or less.
  • Examples of the method of satisfying the above ratio include a method of using graphite particles as the carbon particles (A).
  • the average plane spacing d002 of the (002) planes measured by the X-ray diffraction method of the composite carbon particles in one embodiment of the present invention is preferably 0.3354 nm or more. This is the theoretical lower limit of graphite.
  • the d002 is preferably 0.3370 nm or less. When d002 is 0.3370 nm or less, the discharge capacity becomes large, and a battery satisfying the energy density required for a large battery can be obtained. From the same viewpoint, d002 is more preferably 0.3367 nm or less, and further preferably 0.3364 nm or less.
  • graphite particles are used as the carbon particles (A)
  • d002 is preferably in the above range.
  • the 50% particle diameter (D50) of the composite carbon particles in one embodiment of the present invention is preferably 1.0 ⁇ m or more.
  • D50 is more preferably 3.0 ⁇ m or more, and most preferably 5.0 ⁇ m or more.
  • D50 is preferably 50.0 ⁇ m or less. This is because when D50 is 50.0 ⁇ m or less, the electrical resistance of the electrode is reduced and the rate characteristics are improved. From the same viewpoint, 30.0 ⁇ m or less is more preferable, and 10.0 ⁇ m or less is most preferable.
  • the “50% particle size (D50)” means a particle size that is cumulatively 50% in the volume-based particle size distribution obtained by a laser particle size distribution measuring instrument.
  • the 400-fold tapping density of the composite carbon particles in one embodiment of the present invention is preferably 0.30 g / cm 3 or more.
  • the tapping density is 0.30 g / cm 3 or more, the electrode density reached at the time of pressing can be sufficiently increased, and a battery having a high energy density can be obtained.
  • the tapping density is more preferably 0.40 g / cm 3 or more, and most preferably 0.50 g / cm 3 or more.
  • the 400-fold tapping density is preferably 1.50 g / cm 3 or less.
  • the tapping density is 1.50 g / cm 3 or less, the electrolytic solution permeability of the obtained electrode can be sufficiently increased, and a battery having high input / output characteristics can be obtained.
  • the tapping density is more preferably 1.20 g / cm 3 or less, 0.80 g / cm 3 or less is most preferred.
  • the BET specific surface area of the composite carbon particles in one embodiment of the present invention is preferably 0.1 m 2 / g or more.
  • the BET specific surface area is more preferably equal to or greater than 1.0m 2 / g, 3.0m 2 / g or more is most preferred.
  • the BET specific surface area is preferably 40.0 m 2 / g or less.
  • it When it is 40.0 m 2 / g or less, agglutination is suppressed, so that it is easy to prepare a slurry, side reactions when used as a battery are suppressed, and coulomb efficiency, high-temperature storage stability and high-temperature cycle characteristics are excellent. From the same viewpoint, it is preferably 12.0 m 2 / g or less, and more preferably 9.0 m 2 / g or less.
  • (BET specific surface area of the composite carbon particles) / (BET specific surface area of the carbon particles (A)) is preferably 10.00 or less.
  • the ratio is 10.0 or less, the carbon fine particles (B2) are uniformly dispersed, and the high temperature storage characteristics and the high temperature cycle characteristics are excellent.
  • the ratio is more preferably 2.00 or less, and even more preferably 1.50 or less.
  • the ratio is preferably 0.30 or more.
  • the ratio is more preferably 0.50 or more, and most preferably 0.60 or more.
  • the BET specific surface area of the carbon particles (A) the value of the carbon particles used as the raw material is used.
  • the carbon particles (A) are 70.0 parts by mass or more and 99.89 parts by mass or less, and the carboxylic acid compound is 0.1.
  • the ratio of parts by mass to 20.0 parts by mass and carbon fine particles (B2) from 0.01 parts by mass to 10.0 parts by mass (however, the carbon particles (A), the carboxylic acid compound, and the carbon fine particles (however,) The step of heat-treating the mixture containing B2) and 100 parts by mass.) Is included.
  • the mixture can be obtained by a mixing step of mixing the carbon particles (A), the carboxylic acid compound and the carbon fine particles (B2) to obtain a mixture. Further, the heat treatment step (heat treatment step) can be performed, for example, as a step of heat-treating the obtained mixture at 500 ° C. or higher and 2000 ° C. or lower.
  • the mixing step carbon particles (A), a carboxylic acid compound, and carbon fine particles (B2) are mixed to obtain a mixture.
  • the carbon particles (A) and the carboxylic acid compound may be mixed first, and then the mixture and the carbon fine particles (B2) may be mixed, or the carbon particles (A) and the carbon fine particles (B2) may be mixed first.
  • the mixture may be mixed with the carboxylic acid compound, or the carboxylic acid compound and the carbon fine particles (B2) may be mixed first, and then the mixture and the carbon particles (A) may be mixed.
  • the carbon particles (A), the carboxylic acid compound and the carbon fine particles (B2) may be mixed at the same time.
  • Examples of the carboxylic acid compound used in one embodiment of the present invention include a polycarboxylic acid compound having no hydroxy group and having two or more carboxy groups in one molecule (also simply referred to as “polycarboxylic acid compound”), and one. Examples thereof include hydroxycarboxylic acid compounds having one or more carboxylic acid groups and one or more hydroxy groups in the molecule (also simply referred to as “hydroxycarboxylic acid compounds”).
  • polycarboxylic acid compounds examples include succinic acid (melting point 185 ° C.), glutaric acid (95 ° C.), maleic acid (131 ° C.), phthalic acid (210 ° C.), and terephthalic acid (300 ° C.). ), Oxaloacetic acid (161 ° C.), and malonic acid (135 ° C.).
  • the hydroxycarboxylic acid examples include malic acid (melting point 130 ° C.), citric acid (153 ° C.), tartaric acid (168 ° C. (L form), 151 ° C. (meso form), 206 ° C. (racemic form)).
  • a compound containing two or more carboxy groups and one or more hydroxyl groups in one molecule is more preferable, and malic acid, citric acid, and tartaric acid (L-form) are particularly preferable.
  • the carboxylic acid compound may be one kind or may contain two or more kinds. That is, two or more kinds of polycarboxylic acid compounds may be used, two or more kinds of hydroxycarboxylic acid compounds may be used, or a polycarboxylic acid compound and a hydroxycarboxylic acid compound may be used in combination.
  • the above carboxylic acid compound can also be combined with a compound containing one carboxy group in one molecule.
  • the carboxylic acid compound for example, it can be used in the following three aspects.
  • the first embodiment uses only a hydroxycarboxylic acid compound as a carboxylic acid compound
  • the second aspect uses only a polycarboxylic acid compound as a carboxylic acid compound
  • the third aspect is hydroxy as a carboxylic acid compound.
  • the melting point of the carboxylic acid compound is preferably 500 ° C. or lower. When the melting point is within this range, the carboxylic acid compound is less thermally decomposed and the coating effect is enhanced. From the same viewpoint, the melting point is more preferably 400 ° C. or lower, and even more preferably 300 ° C. or lower. The melting point of the carboxylic acid compound is preferably 100 ° C. or higher. When the melting point is in this range, the carboxylic acid compound is easy to handle and the yield after the mixing treatment is high. From the same viewpoint, the melting point is more preferably 120 ° C. or higher, and even more preferably 140 ° C. or higher.
  • the mixture obtained in the mixing step may contain materials other than the carbon particles (A), the carboxylic acid compound and the carbon fine particles (B2), but the mixture is only the carbon particles (A), the carboxylic acid compound and the carbon fine particles (B2). It is preferably composed of. It is preferable to use a carboxylic acid compound in a powder state.
  • the mixing method is preferably dry mixing, and a commercially available mixer or stirrer can be used. Specific examples include mixers such as ribbon mixers, V-type mixers, W-type mixers, one-blade mixers, and nower mixers.
  • the carboxylic acid compound used in the present invention has a lower viscosity than the pitch and polymer used for conventional coating, and the functional group of the carboxylic acid compound interacts with the functional group on the carbon fine particles. It becomes possible to disperse well. As a result, it is considered that the maximum value of the secondary particle diameter of the carbon fine particles becomes smaller than that in the conventional case.
  • the blending amount of the carbon particles (A), the carboxylic acid compound and the carbon fine particles (B2) in the mixture is 100 parts by mass when the total of the carbon particles (A), the carboxylic acid compound and the carbon fine particles (B2) is 100 parts by mass.
  • Carbon particles (A) are 70.0 parts by mass or more and 99.89 parts by mass or less
  • carboxylic acid compounds are 0.1 parts by mass or more and 20.0 parts by mass or less
  • carbon fine particles (B2) are 0.01 parts by mass or more and 10 parts. .0 parts by mass or less is preferable.
  • carbon particles (A) are 70.0 parts by mass or more and 99.89 parts by mass or less
  • hydroxycarboxylic acid compound is 0.1 parts by mass or more and 20.0 parts by mass or less
  • carbon fine particles ( B2) is 0.01 parts by mass or more and 10.0 parts by mass or less (however, the total of the carbon particles (A), the hydroxycarboxylic acid compound, and the carbon fine particles (B2) is 100 parts by mass).
  • carbon particles (A) are 70.0 parts by mass or more and 99.89 parts by mass or less
  • polycarboxylic acid compound is 0.1 parts by mass or more and 20.0 parts by mass or less
  • carbon is 70.0 parts by mass or more and 99.89 parts by mass or less
  • carbon fine particles (B2) is 0.01 parts by mass or more and 10.0 parts by mass or less
  • carbon particles (A) are 70.0 parts by mass or more and 99.89 parts by mass or less
  • polycarboxylic acid compound is 0.1 parts by mass or more and 20.0 parts by mass or less
  • carbon
  • the ratio of the fine particles (B2) to 0.01 parts by mass or more and 10.0 parts by mass or less (however, the total of the carbon particles (A), the polycarboxylic acid compound, and the carbon fine particles (B2) is 100 parts by mass. ),
  • the carbon particles (A) are 70.0 parts by mass or more and 99.89 parts by mass or less, and the hydroxycarboxylic acid compound and the polycarboxylic acid compound are 0.1 parts by mass in total.
  • carbon fine particles (B2) (however, the carbon particles (A), the hydroxycarboxylic acid compound, and the polycarboxylic acid compound
  • the total of the carbon fine particles (B2) and the carbon fine particles (B2) is 100 parts by mass), and a mixture (third aspect) is mentioned.
  • the reason why the blending amount of the carboxylic acid compound is 0.1 parts by mass or more is that the carbon particles (A) are sufficiently covered with the carboxylic acid compound.
  • the amount of the carboxylic acid compound is more preferably 1.0 part by mass or more, further preferably 2.0 parts by mass or more.
  • the reason why the blending amount of the carboxylic acid compound is 20.0 parts by mass or less is to suppress the formation of an excessive carbonaceous coating layer (B1), thereby maintaining good high-temperature storage stability and high-temperature cycle characteristics.
  • the amount of the carboxylic acid compound is more preferably 10.0 parts by mass or less, and further preferably 8.0 parts by mass or less.
  • the amount of carbon fine particles (B2) is more preferably 0.1 part by mass or more, and further preferably 1.0 part by mass or more.
  • the reason why the blending amount of the carbon fine particles (B2) is 10.0 parts by mass or less is that the size of the secondary particles is suppressed because the carbon fine particles (B2) do not become excessive, and the uniform carbon coating layer (B) has. This is because it is formed.
  • the amount of carbon fine particles (B2) is more preferably 8.0 parts by mass or less, and further preferably 6.0 parts by mass or less.
  • the ratio of the amount (mass) of the carbon fine particles (B2) to the amount of the carboxylic acid compound (amount of carbon fine particles / amount of the carboxylic acid compound) is preferably 0.05 or more. When the ratio is 0.05 or more, carbon fine particles (B2) are sufficiently contained on the surface of the carbon particles, and the low temperature rate characteristic is improved. From the same viewpoint, 0.10 or more is more preferable, and 0.20 or more is further preferable.
  • the ratio of the amount of carbon fine particles to the amount of the carboxylic acid compound is preferably 1.50 or less. When the ratio is 1.50 or less, the secondary particle diameter of the carbon fine particles (B2) becomes sufficiently small, and a uniform carbonic coating layer (B) is formed.
  • the step of heat-treating the mixture is not particularly limited as long as composite carbon particles can be obtained.
  • the heat treatment step can be performed by using a heat treatment apparatus such as a rotary kiln, a roller herscren, or an electric tubular furnace.
  • a heat treatment apparatus such as a rotary kiln, a roller herscren, or an electric tubular furnace.
  • the heat treatment temperature in the heat treatment step is preferably 500 ° C. or higher, more preferably 700 ° C. or higher, and further preferably 900 ° C. or higher in order to sufficiently promote carbonization of the carboxylic acid compound, suppress residual hydrogen and oxygen, and improve battery characteristics. Most preferably. Further, in order to suppress graphitization and maintain good charge / discharge rate characteristics, the heat treatment temperature is preferably 2000 ° C. or lower, more preferably 1500 ° C. or lower, and most preferably 1200 ° C. or lower.
  • the treatment time is not particularly limited as long as carbonization has progressed sufficiently, but is preferably 10 minutes or more, more preferably 30 minutes or more, and even more preferably 50 minutes or more.
  • the heat treatment step is preferably carried out in an inert gas atmosphere.
  • the inert gas for the Mactive gas atmosphere include argon gas and nitrogen gas.
  • the composite carbon particles after the heat treatment may be appropriately crushed and sieved.
  • the negative electrode active material consists of the composite carbon particles only, or contains the composite carbon particles and other components.
  • other components include other carbon materials and conductivity-imparting agents (conductive aids).
  • conductive aids When other carbon materials or conductivity-imparting agents are included
  • 0.01 to 200 parts by mass, preferably 0.01 to 100 parts by mass, of spherical natural graphite or artificial graphite is blended with respect to 100 parts by mass of the composite carbon particles. You can use things.
  • a mixture of other graphite materials it is possible to obtain a negative electrode active material having the excellent properties of the other graphite materials while maintaining the excellent properties of the composite carbon particles.
  • Such a negative electrode active material can be obtained by mixing composite carbon particles with other carbon materials or the like. At the time of mixing, the mixing material can be appropriately selected according to the required battery characteristics, and the mixing amount can be determined.
  • carbon fiber can be blended in the negative electrode active material.
  • the blending amount is preferably 0.01 to 20 parts by mass, and more preferably 0.5 to 5 parts by mass in 100 parts by mass of the negative electrode active material.
  • the carbon fibers include organic carbon fibers such as PAN-based carbon fibers, pitch-based carbon fibers, and rayon-based carbon fibers, and vapor-phase carbon fibers. Of these, vapor phase carbon fibers having high crystallinity and high thermal conductivity are particularly preferable. When the carbon fibers are adhered to the surface of the composite carbon particles, the vapor phase carbon fibers are particularly preferable.
  • a commercially available mixer or stirrer can be used as an apparatus for mixing the composite carbon particles with other materials.
  • mixers such as ribbon mixers, V-type mixers, W-type mixers, one-blade mixers, and nower mixers.
  • Mixing by a device in which shearing force and mechanical energy such as impact and compression are simultaneously applied is preferable.
  • a high-speed stirrer in which shearing force and impact are applied to the powder by a high-speed swirling flow
  • a dry mixer having a structure in which the distance between the mixing blade and the inner wall of the container is narrow and the powder is pressed against the inner wall of the container are preferable.
  • Electrode Paste The electrode paste in one embodiment of the present invention contains the negative electrode active material, a binder, and a solvent. The electrode paste is obtained by kneading the negative electrode active material and the binder.
  • equipment such as a ribbon mixer, a screw type kneader, a Spartan luzer, a ladyge mixer, a planetary mixer, and a universal mixer can be used.
  • the electrode paste can be formed into a sheet shape, a pellet shape, or the like.
  • binder used for the electrode paste examples include fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene, and rubber-based materials such as SBR (styrene-butadiene rubber).
  • the amount of the binder used is preferably 1 to 30 parts by mass and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the solvent used for kneading include those suitable for each binder, for example, toluene, N-methylpyrrolidone and the like in the case of a fluorine-based polymer; water and the like in the case of SBR; and dimethylformamide, isopropanol and the like.
  • a thickener such as carboxymethyl cellulose (CMC) in combination.
  • Negative electrode The negative electrode in one embodiment of the present invention is a negative electrode containing the negative electrode active material and a current collector.
  • the negative electrode usually includes a current collector and a negative electrode active material on the current collector.
  • the negative electrode can be obtained by applying the electrode paste on a current collector, drying it, and pressure-molding it.
  • the negative electrode can be suitably used as a negative electrode for a lithium ion secondary battery.
  • the layer containing the active material formed from the electrode paste is also generally referred to as an active material layer.
  • Examples of the current collector include foils such as aluminum, nickel, copper, and stainless steel, and meshes.
  • the coating thickness of the electrode paste is preferably 50 to 200 ⁇ m.
  • the method of applying the electrode paste is not particularly limited, and examples thereof include a method of applying with a doctor blade, a bar coater, or the like, and then molding with a roll press or the like.
  • the lithium ion secondary battery according to the embodiment of the present invention is a lithium ion secondary battery using the negative electrode.
  • a lithium ion secondary battery generally has a structure in which a positive electrode and a negative electrode are immersed in an electrolyte or an electrolyte.
  • the lithium ion secondary battery according to the embodiment of the present invention may use the negative electrode as the negative electrode, and other members are not particularly limited.
  • a lithium-containing transition metal oxide is usually used as the positive electrode active material for the positive electrode of the lithium ion secondary battery, and at least selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W is preferable.
  • An oxide mainly containing one kind of transition metal element and lithium in which a compound having a molar ratio of lithium to the transition metal element of 0.3 to 2.2 is used, more preferably V, Cr, Mn,.
  • An oxide mainly containing at least one transition metal element selected from Fe, Co and Ni and lithium, and a compound having a molar ratio of lithium to the transition metal of 0.3 to 2.2 is used.
  • Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B and the like may be contained in a range of less than 30 mol% with respect to the mainly existing transition metal.
  • a separator may be provided between the positive electrode and the negative electrode.
  • the separator include non-woven fabrics mainly composed of polyolefins such as polyethylene and polypropylene, cloths, micropore films, and those obtained by combining them.
  • organic electrolytes inorganic solid electrolytes, and polymer solid electrolytes can be used as the electrolytes and electrolytes constituting the lithium ion secondary battery in the preferred embodiment of the present invention, but organic electrolytes are used from the viewpoint of electrical conductivity. preferable.
  • Tapping density (tap density) Using Autotap manufactured by Quantachrome as a tap density measuring device, 50 g of a sample was placed in a 250 mL glass cylinder, and the density after tapping 400 times was measured. This is a measurement method based on ASTM B527 and JIS K5101-12-2, but the drop height of the auto tap is 5 mm.
  • BET Specific Surface Area Using NOVA2200e manufactured by Quantachrome as a BET specific surface area measuring device, 3 g of a sample is placed in a sample cell (9 mm ⁇ 135 mm), and dried under vacuum conditions at 300 ° C. for 1 hour.
  • XRD device Rigaku SmartLab (registered trademark)
  • X-ray type Cu-K ⁇ ray K ⁇ ray removal method: Ni filter X-ray output: 45 kV, 200 mA Measurement range: 24.0 to 30.0 deg. Scan speed: 2.0 deg. / Min.
  • the Gakushin method was applied to the obtained waveform to obtain the value of the average surface spacing d002. (See Iwashita et al., Carbon vol. 42 (2004), p. 701-714). [1-5] R value and coefficient of variation of R value JASCO Corporation NRS-5100 was used as a microlaser Raman spectroscope, and measurement was performed at an excitation wavelength of 532.36 nm.
  • the ratio of the peak intensity (ID) near 1350 cm -1 and the peak intensity (IG) near 1580 cm -1 in the Raman spectrum is defined as the R value (ID / IG).
  • Microlaser Raman spectroscopic imaging was performed on the composite carbon particles in the following regions.
  • Measurement point 22 x 28 points
  • Measurement step 0.32 ⁇ m
  • Measurement area 7.0 x 9.0 ⁇ m From the above measurements, 100 points were randomly extracted from the region corresponding to the composite carbon particles, and the value obtained by dividing the standard deviation of the obtained R value by the average value of the R value was used as the coefficient of variation.
  • the state of the carbonaceous coating layer (B1) was observed from the measurement of 30,000 times. One composite carbon particle was randomly selected, and the coating layer on the surface of the composite carbon particle was observed in five visual fields at the above magnification, and the thickness of the coating layer at two locations per visual field was measured. The thickness of the coating layer at each location was taken as an average value of the coating layer length of 10 nm. This measurement was performed on three randomly selected composite carbon particles, and a total of 30 points of data were obtained, and the average was taken as the thickness of the coating layer.
  • the layer structure of the graphene layer, the amorphous carbon layer and the like was determined by evaluating the FFT (Fast Fourier Transform) pattern.
  • FFT Fast Fourier Transform
  • the surface condition of the composite carbon particles was observed from the measurement under the above conditions.
  • One composite carbon particle is randomly selected, and the length of the major axis of the primary particles and secondary particles of carbon fine particles (B2) existing on the surface of the composite carbon particle is observed at the above magnification for 5 fields or more, and per field.
  • the length of the major axis of the primary particle and the secondary particle at 5 points was measured. This measurement was performed on four randomly selected composite carbon particles, and a total of 100 points of data were obtained.
  • the average particle size of the primary particles of the carbon fine particles (B2) was obtained from the average value of the major axis of 100 primary particles.
  • the maximum value of the secondary particle diameter of the carbon fine particles (B2) was obtained from the maximum value of the major axis of 100 secondary particles.
  • DTA Differential Thermal Analysis
  • EXSTAR6000 TG / DTA manufactured by SII Nanotechnology Co., Ltd. was used. A 10 mg sample was placed on a platinum pan, and the temperature was raised to 1000 ° C. at 5 ° C./min under a flow of 100 ml / min of air for measurement. As a standard substance, 10 mg of Al 2 O 3 was used.
  • This positive electrode slurry is applied onto an aluminum foil having a thickness of 20 ⁇ m with a roll coater so that the thickness is uniform, and after drying, a roll press is performed to punch out the coated portion so that the coated portion is 4.2 cm ⁇ 4.2 cm. A positive electrode was obtained.
  • the thickness of the active material layer after pressing is 65 ⁇ m.
  • Battery assembly (bipolar cell) A nickel tab was welded to the copper foil portion of the negative electrode 1 and an aluminum tab was welded to the aluminum foil portion of the positive electrode by an ultrasonic welding machine. The active material layer side of the negative electrode 1 and the active material layer side of the positive electrode are opposed to each other and laminated through a polypropylene film microporous film, packed with an aluminum laminate film, the electrolytic solution is injected, and then the opening is heat-melted. It was sealed by wearing to prepare a bipolar cell.
  • a constant current discharge was performed at 0.2 mA with an upper limit voltage of 1.5 V, and the initial discharge capacity (b) was measured.
  • Measurement of reference capacity A test was conducted in a constant temperature bath set at 25 ° C. using a bipolar cell. After charging the cell with a constant current of 0.2C (the current value for discharging a fully charged battery in 1 hour is 1C, the same applies hereinafter) with the upper limit voltage of 4V, the cutoff current value is 0.85mA and the constant voltage is 4V. I charged it.
  • the high temperature storage capacity (f) with respect to the reference capacity (c) of the bipolar cell was expressed as a percentage, that is, 100 ⁇ (f) / (c) was defined as the value of the high temperature holding characteristic.
  • the cell After measuring the storage capacity, the cell was charged at a constant current of 0.2 C with an upper limit voltage of 4 V, and then charged at a constant voltage of 4 V with a cutoff current value of 0.34 mA. Then, a constant current discharge was performed at a lower limit voltage of 2 V and 0.2 C, and the discharge capacity was measured.
  • This discharge capacity was defined as the high temperature recovery capacity (g).
  • the high temperature recovery capacity (g) with respect to the reference capacity (c) of the bipolar cell was expressed as a percentage, that is, 100 ⁇ (g) / (c) was taken as the value of the high temperature recovery characteristic.
  • Low temperature charge / discharge rate measurement A test was conducted using a bipolar cell.
  • the cell was constantly charged at 0.2 C with an upper limit voltage of 4 V in a constant temperature bath set at 25 ° C., and then charged at a constant voltage of 4 V with a cutoff current value of 0.34 mA.
  • the charged cell was discharged with a constant current at a lower limit voltage of 2V and 1C in a constant temperature bath set at ⁇ 20 ° C., and the discharge capacity was measured.
  • This discharge capacity was defined as the low temperature discharge capacity (h).
  • the value of the low temperature discharge capacity (h) with respect to the reference capacity (c) of the bipolar cell expressed as a percentage, that is, 100 ⁇ (h) / (c) was taken as the value of the low temperature discharge rate characteristic.
  • the low temperature charging capacity (i) with respect to the reference capacity (c) of the bipolar cell was defined as a percentage value, that is, 100 ⁇ (i) / (c) was defined as the value of the low temperature charge rate characteristic.
  • Raw material Carbon particles (A) [Graphite particles (SCMG®)] Showa Denko KK, 50% particle size (D50): 6.0 ⁇ m, BET specific surface area: 5.9 m 2 / g, Raman R value 0.10, solid structure.
  • SiG Silicon-containing graphite particles
  • SCMG registered trademark
  • D50 100 nm
  • 32 parts by mass of petroleum-based pitch (10 ⁇ m, residual coal ratio 70%) are mixed, fired at 1000 ° C. in a nitrogen atmosphere, and then pulverized. I got it.
  • This SiG had a D50 of 10.0 ⁇ m, a BET specific surface area of 3.0 m 2 / g, a Raman R value of 0.36, and a silicon content of 13 wt%.
  • Raw material of carbonaceous coating layer (B1): Carbonaceous coating material shown in Tables 1 and 2.
  • Carbon fine particles (B2): carbon black (manufactured by TIMCAL, SUPER C65), BET specific surface area: 62 m 2 / g, average particle size of primary particles: 50 nm (measured by the above SEM observation).
  • Examples 1-26, Comparative Examples 1-22, 26, 27 In each Example and each Comparative Example, the raw materials and ratios shown in Tables 1 and 2 were put into a multipurpose mixer (manufactured by Nippon Coke Industries Co., Ltd.), and dry mixing was performed at room temperature for 10 minutes.
  • Comparative Examples 23-25, 28 Nitrogen gas containing 0.05 g / L of benzene was introduced into the fluid reaction reactor at 1 L / min, and the mixture of carbon particles (A) and carbon fine particles (B2) was in a fluid state at 900 ° C. for the time shown in Table 2. Chemical Vapor Deposition (CVD) treatment was performed. The amount of benzene used in the CVD treatment was 1 to 5% by mass.
  • CVD Chemical Vapor Deposition
  • the composite carbon particles of the examples are composite carbon particles including the carbon particles (A) and the carbonic coating layer (B) that coats the surface thereof, and the carbonic coating layer (B) is the carbonic coating layer (B1). ) And carbon fine particles (B2), and has one peak at 200 ° C. or higher and lower than 620 ° C. and two or more peaks at 620 ° C. or higher and 1000 ° C. or lower in differential thermal analysis in air. It can be seen that the results of the battery evaluation of each example are superior to those of the comparative example.
  • Composite carbon particles using a compound that does not contain a predetermined carboxy group or hydroxy group as a carbonaceous coating material do not have a peak at 200 ° C or higher and lower than 620 ° C in differential thermal analysis in air, and have battery characteristics at high temperatures. Is inferior (Comparative Examples 11 to 14).
  • Composite carbon particles using both a carboxylic acid compound and pitch as the carbonaceous coating also do not have a peak at 200 ° C. or higher and lower than 620 ° C. in differential thermal analysis in air, and the battery characteristics at high temperatures are inferior. (Comparative Examples 15 to 22). Further, in this case, since the coefficient of variation of the R value is large, the coating is non-uniform and the coating effect is not sufficiently obtained.
  • the differential thermal analysis in air is performed. It does not have one peak at 200 ° C. or higher and lower than 620 ° C., and it is difficult to control the carbonaceous coating layer thinly and uniformly with respect to particles having large irregularities such as carbon particles, and the battery characteristics at high temperature. Is not sufficient (Comparative Examples 23 to 25, 28).

Abstract

The present invention provides composite carbon particles for a lithium ion secondary battery which shows well-balanced and excellent low-temperature charge and discharge rate characteristics, high-temperature storage characteristics and high-temperature cycle characteristics and has low internal resistance and high coulombic efficiency. The composite carbon particles according to the present invention each comprise a carbon particle (A) and a carbonaceous coating layer (B) that coats the surface thereof, wherein the carbonaceous coating layer (B) comprises a carbonaceous coating film layer (B1) and fine carbon particles (B2) and, in differential thermal analysis (DTA) in the atmosphere, has one peak in a temperature range of from 200°C inclusive to 620°C exclusive and two or more peaks in a temperature range of from 620°C inclusive to 1000°C inclusive.

Description

複合炭素粒子、その製造方法及びその用途Composite carbon particles, their manufacturing methods and their uses
 本発明は、複合炭素粒子、その製造方法、前記複合炭素粒子を含む負極活物質、その負極活物質を含む負極、及びその負極を用いたリチウムイオン二次電池に関する。 The present invention relates to composite carbon particles, a method for producing the same, a negative electrode active material containing the composite carbon particles, a negative electrode containing the negative electrode active material, and a lithium ion secondary battery using the negative electrode.
 携帯電子機器などの電源としてリチウムイオン二次電池が使用されている。リチウムイオン電池は、当初、電池容量の不足、充放電サイクル寿命が短いなど多くの課題があった。現在ではそのような課題が克服され、リチウムイオン二次電池の用途は携帯電話、ノートブック型パソコン、デジタルカメラなどの弱電機器から、電動工具、電動自転車などのパワーを必要とする強電機器にも適用が広がってきている。さらに、リチウムイオン二次電池は、自動車の動力源への利用が特に期待されており、電極材料、セル構造などの研究開発が盛んにすすめられている。 A lithium ion secondary battery is used as a power source for portable electronic devices. Initially, lithium-ion batteries had many problems such as insufficient battery capacity and short charge / discharge cycle life. Nowadays, such problems have been overcome, and lithium-ion secondary batteries are used from light electric devices such as mobile phones, notebook computers and digital cameras to high electric devices such as electric tools and electric bicycles that require power. The application is expanding. Furthermore, lithium-ion secondary batteries are particularly expected to be used as power sources for automobiles, and research and development of electrode materials, cell structures, etc. are being actively promoted.
 自動車の電源として用いられるリチウムイオン二次電池には、低温充放電レート特性、高温保存特性、高温サイクル特性に優れること、及び内部抵抗が低く、高いクーロン効率を有することが求められ、それぞれの課題に対し様々な手法が講じられている。 Lithium-ion secondary batteries used as power sources for automobiles are required to have excellent low-temperature charge / discharge rate characteristics, high-temperature storage characteristics, high-temperature cycle characteristics, low internal resistance, and high coulombic efficiency. Various methods have been taken for this.
 リチウムイオン二次電池の負極活物質としては炭素材料が使用される。また、炭素材料の表面欠陥を修復するため、あるいは芯材となる炭素材料とは異なる特性を付与するために表面に被覆層を形成することが提案されている。 A carbon material is used as the negative electrode active material of the lithium ion secondary battery. Further, it has been proposed to form a coating layer on the surface in order to repair surface defects of the carbon material or to impart properties different from those of the carbon material used as the core material.
 特許文献1には被覆材として石油系ピッチを用いて表面にアモルファス炭素層を形成した複合炭素粒子が記載されている。
 特許文献2はCVD処理により表面に熱分解炭素層を形成した複合炭素粒子が記載されている。
Patent Document 1 describes composite carbon particles having an amorphous carbon layer formed on the surface using a petroleum-based pitch as a coating material.
Patent Document 2 describes composite carbon particles in which a pyrolytic carbon layer is formed on the surface by a CVD treatment.
 特許文献3は被覆材としてグラフェンを用いて表面にグラフェン付着させた複合炭素粒子が記載されている。
 特許文献4はシリコン表面にグラフェンシートを付着させた炭素複合シリコンが記載されている。
Patent Document 3 describes composite carbon particles in which graphene is used as a coating material and graphene is adhered to the surface.
Patent Document 4 describes carbon composite silicon in which a graphene sheet is attached to a silicon surface.
 特許文献5はグラフェン膜をシェル構造としたグラフェンシェルの製造方法が記載されている。
 非特許文献1には多層グラフェンが記載され、非特許文献2には2層グラフェンが記載されている。
Patent Document 5 describes a method for producing a graphene shell having a graphene film as a shell structure.
Non-Patent Document 1 describes multilayer graphene, and Non-Patent Document 2 describes bilayer graphene.
 特許文献6には黒鉛粒子と非晶質炭素と炭素微粒子の複合粒子が開示されている。
 特許文献7には黒鉛粒子とピッチ炭化物とカーボンブラックの複合粒子が開示されている。
Patent Document 6 discloses composite particles of graphite particles, amorphous carbon, and carbon fine particles.
Patent Document 7 discloses composite particles of graphite particles, pitch carbides, and carbon black.
 特許文献8~10には黒鉛粒子と被覆炭素層を含む複合粒子の示差熱分析が開示されている。 Patent Documents 8 to 10 disclose differential thermal analysis of composite particles containing graphite particles and a coated carbon layer.
特許第4531174号公報Japanese Patent No. 4531174 特許第5898628号公報Japanese Patent No. 5898628 国際公開2017/168982号International Release 2017/168882 特開2013-60355号公報Japanese Unexamined Patent Publication No. 2013-60355 特許第5749418号公報Japanese Patent No. 5794418 特開2014-60148号公報Japanese Unexamined Patent Publication No. 2014-60148 国際公開2007/086603号International Publication No. 2007/086603 特開2014-107029号公報JP-A-2014-107029 特開2018-170247号公報JP-A-2018-170247 特開2016-100208号公報Japanese Unexamined Patent Publication No. 2016-100208
 ピッチを用いて被膜層を形成する従来の技術では、炭素粒子の表面にアモルファス炭素(非晶質炭素)層を形成した複合炭素粒子を作製することができる。しかし、アモルファス炭素層は高温特性が不十分であり、またアモルファス炭素層の厚みを均一に制御することが難しく、そのため電子伝導性も不均一となるため、内部抵抗が高く、レート特性も不十分であった。 With the conventional technique of forming a coating layer using pitch, it is possible to produce composite carbon particles in which an amorphous carbon (amorphous carbon) layer is formed on the surface of carbon particles. However, the amorphous carbon layer has insufficient high-temperature characteristics, and it is difficult to control the thickness of the amorphous carbon layer uniformly. Therefore, the electron conductivity is also non-uniform, so that the internal resistance is high and the rate characteristics are also insufficient. Met.
 CVD処理により炭素性被膜層を形成する場合、炭素粒子のような凹凸の大きい芯材に対して薄く均一な層を形成することは難しく、均一な層を形成するには被膜層を厚くするか、内部に緩衝層を形成する必要があり、その結果高温サイクル特性や高温保存特性や不十分であった。 When forming a carbonaceous coating layer by CVD treatment, it is difficult to form a thin and uniform layer on a core material having large irregularities such as carbon particles, and in order to form a uniform layer, the coating layer should be thickened. , It was necessary to form a buffer layer inside, resulting in inadequate high temperature cycle characteristics and high temperature storage characteristics.
 特許文献3に記載のグラフェンを被覆させる技術では、芯材とグラフェンの結着にアモルファス炭素が用いられ、高温特性が不十分である。
 特許文献4に記載のグラフェンを被覆させる技術は電気泳動法を用いて被覆層を付着させるものであり、炭素粒子表面にグラフェン層を形成することはできない。
In the graphene coating technique described in Patent Document 3, amorphous carbon is used for binding the core material and graphene, and the high temperature characteristics are insufficient.
The technique for coating graphene described in Patent Document 4 is to attach a coating layer using an electrophoresis method, and it is not possible to form a graphene layer on the surface of carbon particles.
 特許文献5に記載のグラフェン膜をシェルとしたグラフェンシェルは内部に触媒金属を用いる技術であり、炭素粒子表面にグラフェン層を被覆することはできない。
 特許文献6に記載の複合粒子は非晶質炭素層で覆われており、特許文献7に記載の複合粒子はピッチ炭化物で覆われており、いずれも高温特性が不十分である。
The graphene shell using the graphene film as the shell described in Patent Document 5 is a technique of using a catalyst metal inside, and the graphene layer cannot be coated on the surface of carbon particles.
The composite particles described in Patent Document 6 are covered with an amorphous carbon layer, and the composite particles described in Patent Document 7 are covered with pitch carbides, both of which have insufficient high temperature characteristics.
 本発明の課題は、低温充放電レート特性、高温保存特性、高温サイクル特性がバランス良く優れ、内部抵抗が低く、高クーロン効率を有するリチウムイオン二次電池のための複合炭素粒子を提供することにある。 An object of the present invention is to provide composite carbon particles for a lithium ion secondary battery having excellent low temperature charge / discharge rate characteristics, high temperature storage characteristics, and high temperature cycle characteristics in a well-balanced manner, low internal resistance, and high Coulomb efficiency. is there.
 本発明は例えば、以下の構成からなる。
 [1] 炭素粒子(A)及びその表面を被覆する炭素性被覆層(B)を含む複合炭素粒子であって、前記炭素性被覆層(B)は炭素性被膜層(B1)と炭素微粒子(B2)とを含み、空気中での示差熱分析(DTA)において200℃以上620℃未満に1つのピークと、620℃以上1000℃以下に2つ以上のピークを有する複合炭素粒子。
The present invention has, for example, the following configuration.
[1] Composite carbon particles including carbon particles (A) and a carbon coating layer (B) that coats the surface thereof, wherein the carbon coating layer (B) is a carbon coating layer (B1) and carbon fine particles (B1). A composite carbon particle containing B2) and having one peak at 200 ° C. or higher and lower than 620 ° C. and two or more peaks at 620 ° C. or higher and 1000 ° C. or lower in differential thermal analysis (DTA) in air.
 [2] 顕微ラマン分光分析法によって測定されるR値(1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)の比(ID/IG))の変動係数が0.50以下である前記[1]に記載の複合炭素粒子。 [2] The variation coefficient of the R value measured by Raman spectroscopy (ratio of 1350 cm -1 vicinity of the peak intensity (ID) and 1580 cm -1 vicinity of the peak intensity (IG) (ID / IG) ) is zero. The composite carbon particle according to the above [1], which is 50 or less.
 [3] ラマン分光分析法によって測定されるR値(1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)の比(ID/IG))が0.10以上1.50以下である前記[1]または前記[2]に記載の複合炭素粒子。 [3] (the ratio of the 1350 cm -1 vicinity of the peak intensity (ID) and 1580 cm -1 vicinity of the peak intensity (IG) (ID / IG) ) R value measured by Raman spectroscopy is 0.10 or more 1. The composite carbon particle according to the above [1] or the above [2], which is 50 or less.
 [4] X線回折法で測定される(002)面の平均面間隔d002が0.3354nm以上0.3370nm以下である前記[1]~[3]のいずれかに記載の複合炭素粒子。 [4] The composite carbon particles according to any one of [1] to [3] above, wherein the average surface spacing d002 of the (002) plane measured by the X-ray diffraction method is 0.3354 nm or more and 0.3370 nm or less.
 [5] レーザー回折法による体積基準累積粒度分布における50%粒子径(D50)が1.0μm以上50.0μm以下であり、400回タッピング密度が0.30g/cm3以上1.50g/cm3以下である前記[1]~[4]のいずれかに記載の複合炭素粒子。 [5] The 50% particle size (D50) in the volume-based cumulative particle size distribution by the laser diffraction method is 1.0 μm or more and 50.0 μm or less, and the tapping density of 400 times is 0.30 g / cm 3 or more and 1.50 g / cm 3 The composite carbon particle according to any one of the following [1] to [4].
 [6] BET比表面積が0.1m2/g以上40.0m2/g以下である前記[1]~[5]のいずれかに記載の複合炭素粒子。
 [7] (複合炭素粒子のBET比表面積)/(炭素粒子(A)のBET比表面積)が0.30以上10.00以下である前記[1]~[6]のいずれかに記載の複合炭素粒子。
[6] The composite carbon particles according to any one of [1] to [5] above, wherein the BET specific surface area is 0.1 m 2 / g or more and 40.0 m 2 / g or less.
[7] The composite according to any one of [1] to [6] above, wherein (the BET specific surface area of the composite carbon particles) / (the BET specific surface area of the carbon particles (A)) is 0.30 or more and 10.00 or less. Carbon particles.
 [8] 前記複合炭素粒子および前記炭素粒子(A)のラマン分光分析法によって測定されるR値(1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)との比(ID/IG))の比((複合炭素粒子のR値)/(炭素粒子(A)のR値))が1.50以上20.0以下である前記[1]~[7]のいずれかに記載の複合炭素粒子。 [8] The ratio of the composite carbon particles and the carbon particles R value measured by Raman spectroscopy of (A) (1350cm -1 vicinity of the peak intensity (ID) and 1580 cm -1 vicinity of the peak intensity (IG) (ID / IG)) ratio ((R value of composite carbon particles) / (R value of carbon particles (A))) is 1.50 or more and 20.0 or less. Any of the above [1] to [7]. The composite carbon particles described in Crab.
 [9] 前記炭素粒子(A)が、黒鉛粒子である前記[1]~[8]のいずれかに記載の複合炭素粒子。
 [10] 前記炭素粒子(A)が、シリコンを含有する[1]~[9]のいずれかに記載の複合炭素粒子。
[9] The composite carbon particle according to any one of the above [1] to [8], wherein the carbon particle (A) is a graphite particle.
[10] The composite carbon particle according to any one of [1] to [9], wherein the carbon particle (A) contains silicon.
 [11] 前記炭素微粒子(B2)の一次粒子の平均粒径が10nm以上500nm以下、二次粒子径の最大値が1000nm以下である前記[1]~[10]のいずれかに記載の複合炭素粒子。 [11] The composite carbon according to any one of [1] to [10], wherein the average particle size of the primary particles of the carbon fine particles (B2) is 10 nm or more and 500 nm or less, and the maximum value of the secondary particle diameter is 1000 nm or less. particle.
 [12] 前記炭素性被膜層(B1)の厚さが0.1nm以上30.0nm以下である前記[1]~[11]のいずれかに記載の複合炭素粒子。
 [13] 前記炭素性被膜層(B1)が、単層グラフェン層または多層グラフェン層を含む前記[1]~[12]のいずれかに記載の複合炭素粒子。
[12] The composite carbon particles according to any one of [1] to [11], wherein the carbonaceous coating layer (B1) has a thickness of 0.1 nm or more and 30.0 nm or less.
[13] The composite carbon particles according to any one of [1] to [12], wherein the carbonaceous coating layer (B1) contains a single-layer graphene layer or a multi-layer graphene layer.
 [14] 前記[1]~[13]のいずれかに記載の複合炭素粒子を製造する方法であって、
 炭素粒子(A)を70.0質量部以上99.89質量部以下、カルボキシ基及びヒドロキシ基をそれぞれ1つ以上有するヒドロキシカルボン酸化合物を0.1質量部以上20.0質量部以下、および炭素微粒子(B2)を0.01質量部以上10.0質量部以下の割合(ただし、前記炭素粒子(A)と前記ヒドロキシカルボン酸化合物と前記炭素微粒子(B2)との合計を100質量部とする。)で含む混合物を熱処理する工程を含む複合炭素粒子の製造方法。
[14] The method for producing the composite carbon particles according to any one of [1] to [13] above.
70.0 parts by mass or more and 99.89 parts by mass or less of carbon particles (A), 0.1 parts by mass or more and 20.0 parts by mass or less of a hydroxycarboxylic acid compound having at least one carboxy group and one or more hydroxy groups, and carbon The ratio of the fine particles (B2) to 0.01 parts by mass or more and 10.0 parts by mass or less (however, the total of the carbon particles (A), the hydroxycarboxylic acid compound, and the carbon fine particles (B2) is 100 parts by mass. A method for producing composite carbon particles, which comprises a step of heat-treating the mixture contained in.).
 [15] 前記[1]~[13]のいずれかに記載の複合炭素粒子を製造する方法であって、
 炭素粒子(A)を70.0質量部以上99.89質量部以下、ヒドロキシ基を有さずカルボキシ基を2つ以上有するポリカルボン酸化合物を0.1質量部以上20.0質量部以下、および炭素微粒子(B2)を0.01質量部以上10.0質量部以下の割合(ただし、前記炭素粒子(A)と前記ポリカルボン酸化合物と前記炭素微粒子(B2)との合計を100質量部とする。)で含む混合物を熱処理する工程を含む複合炭素粒子の製造方法。
[15] The method for producing the composite carbon particles according to any one of [1] to [13] above.
70.0 parts by mass or more and 99.89 parts by mass or less of carbon particles (A), 0.1 parts by mass or more and 20.0 parts by mass or less of a polycarboxylic acid compound having two or more carboxy groups without having a hydroxy group, And the ratio of carbon fine particles (B2) to 0.01 parts by mass or more and 10.0 parts by mass or less (however, the total of the carbon particles (A), the polycarboxylic acid compound, and the carbon fine particles (B2) is 100 parts by mass. A method for producing composite carbon particles, which comprises a step of heat-treating the mixture contained in (1).
 [16] 前記[1]~[13]のいずれかに記載の複合炭素粒子を製造する方法であって、
 炭素粒子(A)を70.0質量部以上99.89質量部以下、カルボキシ基及びヒドロキシ基をそれぞれ1つ以上有するヒドロキシカルボン酸化合物とヒドロキシ基を有さずカルボキシ基を2つ以上有するポリカルボン酸化合物とを合計で0.1質量部以上20.0質量部以下、および炭素微粒子(B2)が0.01質量部以上10.0質量部以下の割合(ただし、前記炭素粒子(A)と前記ヒドロキシカルボン酸化合物と前記ポリカルボン酸化合物と前記炭素微粒子(B2)との合計を100質量部とする。)で含む混合物を熱処理する工程を含む複合炭素粒子の製造方法。
[16] The method for producing the composite carbon particles according to any one of [1] to [13] above.
A hydroxycarboxylic acid compound having 70.0 parts by mass or more and 99.89 parts by mass or less of carbon particles (A), each having one or more carboxy groups and one or more hydroxy groups, and a polycarboxylic acid having no hydroxy groups and having two or more carboxy groups. The total ratio of the acid compound to 0.1 parts by mass or more and 20.0 parts by mass or less, and the carbon fine particles (B2) to 0.01 parts by mass or more and 10.0 parts by mass or less (however, with the carbon particles (A)) A method for producing composite carbon particles, which comprises a step of heat-treating a mixture containing the hydroxycarboxylic acid compound, the polycarboxylic acid compound, and the carbon fine particles (B2) in an amount of 100 parts by mass.).
 [17] 前記[1]~[13]のいずれかに記載の複合炭素粒子を含む負極活物質。
 [18] 前記17に記載の負極活物質と集電体とを含む負極。
 [19] 前記18に記載の負極を用いたリチウムイオン二次電池。
[17] The negative electrode active material containing the composite carbon particles according to any one of the above [1] to [13].
[18] A negative electrode containing the negative electrode active material according to 17 above and a current collector.
[19] A lithium ion secondary battery using the negative electrode according to 18.
 本発明によれば、炭素粒子の表面に炭素微粒子を含んだ炭素性被覆層が形成され、低温充放電レート特性、高温保存特性、高温サイクル特性に優れ、内部抵抗が低く、高クーロン効率を有する複合炭素粒子を提供することができる。 According to the present invention, a carbon coating layer containing carbon fine particles is formed on the surface of carbon particles, which is excellent in low temperature charge / discharge rate characteristics, high temperature storage characteristics, and high temperature cycle characteristics, has low internal resistance, and has high Coulomb efficiency. Composite carbon particles can be provided.
実施例5で製造された複合炭素粒子の走査型電子顕微鏡写真である。6 is a scanning electron micrograph of the composite carbon particles produced in Example 5. 実施例7で製造された複合炭素粒子の走査型電子顕微鏡写真である。6 is a scanning electron micrograph of the composite carbon particles produced in Example 7. 比較例5で製造された複合炭素粒子の走査型電子顕微鏡写真である。6 is a scanning electron micrograph of the composite carbon particles produced in Comparative Example 5. 比較例9で製造された複合炭素粒子の走査型電子顕微鏡写真である。6 is a scanning electron micrograph of the composite carbon particles produced in Comparative Example 9. 実施例5で製造された複合炭素粒子のR値イメージング結果である。It is the R value imaging result of the composite carbon particle produced in Example 5. 比較例5で製造された複合炭素粒子のR値イメージング結果である。It is the R value imaging result of the composite carbon particle produced in Comparative Example 5.
 以下、本発明の実施形態を詳細に説明する。
[1]複合炭素粒子
 本発明の一実施態様における複合炭素粒子は、炭素粒子(A)及びその表面を被覆する炭素性被覆層(B)を含み、前記炭素性被覆層(B)は炭素性被膜層(B1)と炭素微粒子(B2)とを含む。複合炭素粒子は、空気中での示差熱分析(DTA)において200℃以上620℃未満に1つのピークと、620℃以上1000℃以下に2つ以上のピークを有する。
Hereinafter, embodiments of the present invention will be described in detail.
[1] Composite carbon particles The composite carbon particles in one embodiment of the present invention include carbon particles (A) and a carbonic coating layer (B) that coats the surface thereof, and the carbonic coating layer (B) is carbonic. It contains a coating layer (B1) and carbon fine particles (B2). The composite carbon particles have one peak at 200 ° C. or higher and lower than 620 ° C. and two or more peaks at 620 ° C. or higher and 1000 ° C. or lower in differential thermal analysis (DTA) in air.
 炭素粒子(A)は特に限定されず、既知の炭素粒子であるソフトカーボン、ハードカーボン等のアモルファス炭素粒子や黒鉛粒子が利用できるが、黒鉛粒子を用いることが好ましい。黒鉛粒子は結晶性が高いことから、放電容量、高温サイクル特性、高温保存特性に優れる。炭素粒子(A)には、その表面の一部または全部がアモルファス炭素によりコーティングされているものも含む。 The carbon particles (A) are not particularly limited, and known carbon particles such as soft carbon and hard carbon, amorphous carbon particles and graphite particles can be used, but graphite particles are preferably used. Since graphite particles have high crystallinity, they are excellent in discharge capacity, high temperature cycle characteristics, and high temperature storage characteristics. The carbon particles (A) also include those whose surface is partially or wholly coated with amorphous carbon.
 黒鉛粒子の中でも人造黒鉛粒子が好ましく、中実構造の人造黒鉛粒子がさらに好ましい。内部が中実構造であると、充放電に伴う膨張収縮の繰り返しによっても粒子内剥離がほとんど起きず、高温サイクル特性、高温保存特性が優れる。 Among the graphite particles, artificial graphite particles are preferable, and artificial graphite particles having a solid structure are more preferable. When the inside has a solid structure, in-particle peeling hardly occurs even if expansion and contraction are repeated due to charging and discharging, and high-temperature cycle characteristics and high-temperature storage characteristics are excellent.
 炭素粒子(A)には金属、金属酸化物または合金を含むことができる。金属、金属酸化物または合金はリチウムを吸蔵・放出するものであれば限定されないが、例えばシリコン(Si)(以下、単に「シリコン」ともいう。)、すず、亜鉛やそれらの酸化物、合金などが挙げられる。 The carbon particles (A) can contain metals, metal oxides or alloys. Metals, metal oxides or alloys are not limited as long as they occlude and release lithium, but for example, silicon (Si) (hereinafter, also simply referred to as "silicon"), tin, zinc and their oxides and alloys, etc. Can be mentioned.
 また炭素粒子(A)はシリコンを含むことが好ましい。シリコンを含む形態に制限はないが、シリコンと石油ピッチの混合物を不活性雰囲気下で加熱処理を行い、石油ピッチを炭素化する方法で得られる複合体や多孔質の炭素粒子中の細孔内にシリコンを充填している複合体が好ましい。多孔質の炭素粒子は公知の製造方法で生成でき、例えば、活性炭と同様の製造方法や、ポリマーに対して適切な熱処理を行うことによって達成することができる。シリコンを含ませる方法は限定されないが、例えば化学気相成長(CVD)によって、シリコン含有ガス、好ましくはシランの存在下で、高温でシランガスに多孔質炭素粒子を曝露することによって、多孔質炭素粒子の細孔内にケイ素を生成させることによって得られる。これらの複合体には黒鉛が含まれていてもよい。 Further, the carbon particles (A) preferably contain silicon. There is no limitation on the form containing silicon, but the inside of the pores in the composite or porous carbon particles obtained by the method of carbonizing the petroleum pitch by heat-treating the mixture of silicon and petroleum pitch in an inert atmosphere. A composite in which silicon is filled is preferable. Porous carbon particles can be produced by a known production method, and can be achieved, for example, by the same production method as activated carbon or by appropriately heat-treating the polymer. The method of including silicon is not limited, but the porous carbon particles are exposed to the silane gas at a high temperature in the presence of a silicon-containing gas, preferably silane, for example by chemical vapor deposition (CVD). It is obtained by producing silicon in the pores of. Graphite may be contained in these composites.
 炭素性被覆層(B)は、炭素微粒子(B2)が炭素性被膜層(B1)の表面に添着した構造であっても良いし、炭素微粒子(B2)の一部または全部が炭素性被膜層(B1)に埋め込まれた構造であっても良い。また、それぞれの場合で炭素微粒子(B2)の表面の一部または全部が炭素性被膜層(B1)に覆われていても良い。 The carbon coating layer (B) may have a structure in which carbon fine particles (B2) are adhered to the surface of the carbon coating layer (B1), or a part or all of the carbon fine particles (B2) may be a carbon coating layer. The structure may be embedded in (B1). Further, in each case, a part or all of the surface of the carbon fine particles (B2) may be covered with the carbonaceous coating layer (B1).
 炭素微粒子(B2)は石炭微粉、気相法炭素粉、カーボンブラック、ケッチェンブラック、アセチレンブラック等のアモルファス炭素の微粒子が好ましい。この中でもカーボンブラックがより好ましい。カーボンブラックを用いることにより、低温下における入出力特性がより高くなる傾向にある。 The carbon fine particles (B2) are preferably amorphous carbon fine particles such as coal fine powder, vapor phase carbon powder, carbon black, Ketjen black, and acetylene black. Of these, carbon black is more preferable. By using carbon black, the input / output characteristics at low temperatures tend to be higher.
 炭素材料の示差熱分析(DTA)ピークは、炭素成分の結晶構造に由来して異なる温度にて燃焼することによる発熱ピークを示す。そのため、芯材となる炭素粒子(A)と炭素性被膜層(B1)と炭素微粒子(B2)の3成分からなる本発明の複合炭素粒子は3つ以上のピークを有する。ただし、炭素性被膜層(B1)と炭素微粒子(B2)とが類似の成分である場合は同一のピークを示す場合がある。この場合、異なる成分からなる複合粒子の効果が小さく、電池特性の改善効果が十分でない。 The differential thermal analysis (DTA) peak of carbon material shows the exothermic peak due to combustion at different temperatures due to the crystal structure of the carbon component. Therefore, the composite carbon particles of the present invention composed of the three components of the carbon particles (A) serving as the core material, the carbon coating layer (B1), and the carbon fine particles (B2) have three or more peaks. However, when the carbonaceous coating layer (B1) and the carbon fine particles (B2) have similar components, they may show the same peak. In this case, the effect of the composite particles composed of different components is small, and the effect of improving the battery characteristics is not sufficient.
 本発明の一実施態様における複合炭素粒子を空気中で示差熱分析を行った場合、200℃以上620℃未満に1つのピークと、620℃以上1000℃以下に2つ以上のピークを有する。200℃以上620℃未満のピークがあると熱安定性を備えた薄い炭素性被膜層(B1)を備えていることを示す。620℃以上1000℃以下に2つ以上のピークを有することで炭素粒子(A)と炭素微粒子(B2)とが異なる成分で構成されていることを示す。この場合、炭素粒子(A)と炭素性被膜層(B1)と炭素微粒子(B2)が異なる結晶構造を備えており、複合粒子の効果が十分に発揮されバランスよく電池特性を改善する。 When the composite carbon particles in one embodiment of the present invention are subjected to differential thermal analysis in air, they have one peak at 200 ° C. or higher and lower than 620 ° C. and two or more peaks at 620 ° C. or higher and 1000 ° C. or lower. A peak of 200 ° C. or higher and lower than 620 ° C. indicates that a thin carbonaceous coating layer (B1) having thermal stability is provided. Having two or more peaks at 620 ° C. or higher and 1000 ° C. or lower indicates that the carbon particles (A) and the carbon fine particles (B2) are composed of different components. In this case, the carbon particles (A), the carbon coating layer (B1), and the carbon fine particles (B2) have different crystal structures, and the effects of the composite particles are sufficiently exhibited to improve the battery characteristics in a well-balanced manner.
 複合炭素粒子の200℃以上620℃未満の1つのピークは、500℃以上がより好ましく、585℃以上がさらに好ましく、600℃以上が最も好ましい。
 複合炭素粒子の200℃以上620℃未満の1つのピークは、618℃以下がより好ましく、615℃以下がさらに好ましい。
One peak of the composite carbon particles of 200 ° C. or higher and lower than 620 ° C. is more preferably 500 ° C. or higher, further preferably 585 ° C. or higher, and most preferably 600 ° C. or higher.
One peak of the composite carbon particles of 200 ° C. or higher and lower than 620 ° C. is more preferably 618 ° C. or lower, further preferably 615 ° C. or lower.
 複合炭素粒子の620℃以上1000℃以下に示す2つ以上のピークは、650℃以上がより好ましく、680℃以上がさらに好ましく、700℃以上が最も好ましい。
 複合炭素粒子の620℃以上1000℃以下に示す2つ以上のピークは、950℃以下がより好ましく、900℃以下がさらに好ましく、880℃以下が最も好ましい。
The two or more peaks of the composite carbon particles shown at 620 ° C. or higher and 1000 ° C. or lower are more preferably 650 ° C. or higher, further preferably 680 ° C. or higher, and most preferably 700 ° C. or higher.
The two or more peaks of the composite carbon particles shown at 620 ° C. or higher and 1000 ° C. or lower are more preferably 950 ° C. or lower, further preferably 900 ° C. or lower, and most preferably 880 ° C. or lower.
 炭素微粒子(B2)の一次粒子の平均粒径は10nm以上が好ましく、15nm以上がより好ましく、20nm以上がさらに好ましく、30nm以上が特に好ましい。一次粒子の平均粒径が10nm以上であると凝集が抑えられ均一分散性に優れる。一次粒子の平均粒径は500nm以下が好ましく、200nm以下がより好ましく、100nm以下がさらに好ましく、70nm以下が特に好ましく、60nm以下が最も好ましい。一次粒子の平均粒径が500nm以下であると、サイズが十分に小さく均一分散性に優れる。 The average particle size of the primary particles of the carbon fine particles (B2) is preferably 10 nm or more, more preferably 15 nm or more, further preferably 20 nm or more, and particularly preferably 30 nm or more. When the average particle size of the primary particles is 10 nm or more, agglutination is suppressed and uniform dispersibility is excellent. The average particle size of the primary particles is preferably 500 nm or less, more preferably 200 nm or less, further preferably 100 nm or less, particularly preferably 70 nm or less, and most preferably 60 nm or less. When the average particle size of the primary particles is 500 nm or less, the size is sufficiently small and the uniform dispersibility is excellent.
 炭素微粒子(B2)の一次粒子の平均粒径は、実施例に記載する走査型電子顕微鏡(SEM)を用いる方法によって測定する。
 複合炭素粒子中の炭素微粒子(B2)の二次粒子径の最大値は1000nm以下が好ましく、500nm以下がより好ましく、300nm以下がさらに好ましく、100nm以下が特に好ましい。二次粒子径の最大値が1000nm以下であると炭素微粒子(B2)が均一に分散されており、リチウムイオン二次電池における低温レート特性に優れる。
The average particle size of the primary particles of the carbon fine particles (B2) is measured by the method using the scanning electron microscope (SEM) described in the examples.
The maximum value of the secondary particle diameter of the carbon fine particles (B2) in the composite carbon particles is preferably 1000 nm or less, more preferably 500 nm or less, further preferably 300 nm or less, and particularly preferably 100 nm or less. When the maximum value of the secondary particle size is 1000 nm or less, the carbon fine particles (B2) are uniformly dispersed, and the low temperature rate characteristic in the lithium ion secondary battery is excellent.
 炭素微粒子(B2)の二次粒子径の最大値は、実施例に記載する走査型電子顕微鏡(SEM)を用いる方法によって測定する。
 前記炭素性被膜層(B1)はグラフェン層を含むことが好ましい。グラフェンは炭素原子がハニカム状に連続している2次元のシート状物質であり、アモルファス炭素よりも優れた導電性、化学的安定性、及び高い機械的強度を有する。グラフェンによって炭素粒子(A)の表面が被覆されることにより、炭素粒子の体積変化を抑えて導電性を改善することができ、耐久性及び充放電特性の優れたリチウムイオン二次電池用負極材が得られる。グラフェンは、炭素粒子(A)の表面にグラフェン層として形成されていることがより好ましく、炭素粒子(A)のほぼ全面を被覆していることがさらに好ましい。また、炭素粒子(A)の表面を単層グラフェン層または多層のグラフェン層が直接覆っていることがさらに好ましい。前記炭素性被覆層(B)はグラフェン層と炭素微粒子(B2)のみからなることがさらに好ましい。なお、1層からなるグラフェン層を単層グラフェン層、2層以上からなるグラフェン層を多層グラフェン層と呼ぶ。また、グラフェン層にはグラフェンに炭素以外の成分を含む官能基がついた官能基修飾グラフェン層も含み、例えば酸素性官能基の付加した酸化グラフェンを含んでもよい。
The maximum value of the secondary particle diameter of the carbon fine particles (B2) is measured by the method using the scanning electron microscope (SEM) described in the examples.
The carbonaceous coating layer (B1) preferably contains a graphene layer. Graphene is a two-dimensional sheet-like substance in which carbon atoms are continuous in a honeycomb shape, and has superior conductivity, chemical stability, and high mechanical strength than amorphous carbon. By coating the surface of the carbon particles (A) with graphene, it is possible to suppress the volume change of the carbon particles and improve the conductivity, and the negative electrode material for the lithium ion secondary battery having excellent durability and charge / discharge characteristics. Is obtained. The graphene is more preferably formed as a graphene layer on the surface of the carbon particles (A), and further preferably to cover almost the entire surface of the carbon particles (A). Further, it is more preferable that the surface of the carbon particles (A) is directly covered with a single-layer graphene layer or a multi-layer graphene layer. It is more preferable that the carbonaceous coating layer (B) is composed of only a graphene layer and carbon fine particles (B2). The graphene layer consisting of one layer is called a single-layer graphene layer, and the graphene layer consisting of two or more layers is called a multilayer graphene layer. Further, the graphene layer also includes a functional group-modified graphene layer in which graphene has a functional group containing a component other than carbon, and may contain, for example, graphene oxide having an oxygen functional group added.
 炭素性被覆層(B)は、炭素微粒子(B2)が炭素性被膜層(B1)の表面に添着した構造であっても良いし、炭素微粒子(B2)の一部が炭素性被膜層(B1)に埋め込まれた構造であっても良い。また、それぞれの場合で炭素微粒子(B2)の表面の一部または全部が炭素性被膜層(B1)に覆われていても良い。 The carbon coating layer (B) may have a structure in which carbon fine particles (B2) are adhered to the surface of the carbon coating layer (B1), or a part of the carbon fine particles (B2) may be attached to the surface of the carbon coating layer (B1). ) May be embedded in the structure. Further, in each case, a part or all of the surface of the carbon fine particles (B2) may be covered with the carbonaceous coating layer (B1).
 前記炭素性被膜層(B1)の厚さは0.1nm以上が好ましい。0.1nmはグラフェンの単層の厚さに相当する。一定以上の導電性、化学的安定性、機械的強度を備える観点から炭素性被膜層(B1)の厚さは1.0nm以上がより好ましく、2.0nm以上がさらに好ましい。炭素性被膜層(B1)の厚さは30.0nm以下が好ましい。炭素性被膜層(B1)の厚さが30.0nm以下であると、過剰な炭素性被膜層(B1)の形成が抑制され高温保存特性や高温サイクル特性を良好に保つことができる。同様の観点から20.0nm以下がより好ましく、10.0nm以下がさらに好ましく、5.0nm以下が最も好ましい。 The thickness of the carbonaceous coating layer (B1) is preferably 0.1 nm or more. 0.1 nm corresponds to the thickness of a single layer of graphene. From the viewpoint of providing a certain level of conductivity, chemical stability, and mechanical strength, the thickness of the carbon coating layer (B1) is more preferably 1.0 nm or more, and even more preferably 2.0 nm or more. The thickness of the carbonaceous coating layer (B1) is preferably 30.0 nm or less. When the thickness of the carbon coating layer (B1) is 30.0 nm or less, the formation of the excess carbon coating layer (B1) is suppressed, and the high temperature storage characteristics and the high temperature cycle characteristics can be maintained well. From the same viewpoint, 20.0 nm or less is more preferable, 10.0 nm or less is further preferable, and 5.0 nm or less is most preferable.
 炭素性被膜層(B1)の厚さは、透過型電子顕微鏡(TEM)観察により測定する。測定精度の観点から測定箇所は30点以上とする。その算術平均を炭素性被膜層(B1)の厚さとする。具体的には、実施例に記載の方法により測定することができる。 The thickness of the carbon coating layer (B1) is measured by observation with a transmission electron microscope (TEM). From the viewpoint of measurement accuracy, the number of measurement points is 30 or more. The arithmetic mean is taken as the thickness of the carbonaceous coating layer (B1). Specifically, it can be measured by the method described in Examples.
 本発明の一実施態様における複合炭素粒子のラマン分光分析法によって測定されるR値は0.10以上が好ましい。R値が0.10以上であると、複合炭素粒子の表面における電気抵抗が下がり、低温充放電特性が良好なリチウムイオン二次電池が得られる。同様の観点から、R値は0.15以上がより好ましく、0.18以上が最も好ましい。複合炭素粒子のラマン分光分析法によって測定されるR値は1.50以下が好ましい。R値が1.50以下であると、表面の結晶化度が低すぎないことから、良好な高温保存、高温サイクル特性を維持できるためである。同様の観点から、R値は0.60以下がより好ましく、0.50以下がさらに好ましい。 The R value measured by the Raman spectroscopic analysis of the composite carbon particles in one embodiment of the present invention is preferably 0.10 or more. When the R value is 0.10 or more, the electrical resistance on the surface of the composite carbon particles is lowered, and a lithium ion secondary battery having good low-temperature charge / discharge characteristics can be obtained. From the same viewpoint, the R value is more preferably 0.15 or more, and most preferably 0.18 or more. The R value measured by Raman spectroscopy of the composite carbon particles is preferably 1.50 or less. This is because when the R value is 1.50 or less, the crystallinity of the surface is not too low, so that good high-temperature storage and high-temperature cycle characteristics can be maintained. From the same viewpoint, the R value is more preferably 0.60 or less, and further preferably 0.50 or less.
 R値とは、ラマン分光測定で観測される1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)の強度比(ID/IG)を意味する。R値により複合炭素粒子表面の状態を評価することができる。R値が小さい程、複合炭素粒子の表面の結晶化度が高いことを示す。なお、ピーク強度はピークの高さを表す。R値の測定は実施例に記載の顕微ラマン分光分析を用いてもよいし、通常のラマン分光分析を用いてもよい。 The R value means the intensity ratio (ID / IG) of the peak intensity (ID) near 1350 cm -1 and the peak intensity (IG) near 1580 cm -1 observed by Raman spectroscopy. The state of the surface of the composite carbon particles can be evaluated from the R value. The smaller the R value, the higher the crystallinity of the surface of the composite carbon particles. The peak intensity represents the height of the peak. The R value may be measured by using the microscopic Raman spectroscopic analysis described in the examples, or by using ordinary Raman spectroscopic analysis.
 本発明の一実施態様における複合炭素粒子の顕微ラマン分光分析法によって測定されるR値(1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)の比(ID/IG))の変動係数は0.50以下が好ましい。R値の変動係数が0.50以下であると、コーティング状態のばらつきが小さいため、低抵抗化の効果が大きく、高温サイクル特性、低温レート特性が向上する。同様の観点から、変動係数は0.45以下がより好ましく、0.40以下がさらに好ましい。 The ratio (ID / IG of a composite R value measured by Raman spectroscopy of carbon particles (1350 cm -1 vicinity of the peak intensity (ID) and 1580 cm -1 vicinity of the peak intensity in an embodiment of the present invention (IG) )) The coefficient of variation is preferably 0.50 or less. When the coefficient of variation of the R value is 0.50 or less, the variation in the coating state is small, so that the effect of reducing the resistance is large, and the high temperature cycle characteristics and the low temperature rate characteristics are improved. From the same viewpoint, the coefficient of variation is more preferably 0.45 or less, and further preferably 0.40 or less.
 R値の変動係数は、顕微ラマン分光分析法によりR値を複数点測定し、その標準偏差値をR値の平均値で割って求める。変動係数を求めることでコーティングのばらつきを評価することができる。変動係数が大きいほどR値のばらつきが大きく、コーティングの均一性が悪いことを示し、変動係数が小さければ、R値のばらつきが小さく、コーティングの均一性が高いことを示す。 The coefficient of variation of the R value is obtained by measuring the R value at multiple points by microscopic Raman spectroscopy and dividing the standard deviation value by the average value of the R values. The variation of the coating can be evaluated by obtaining the coefficient of variation. The larger the coefficient of variation, the larger the variation in the R value, indicating poor coating uniformity, and the smaller the coefficient of variation, the smaller the variation in the R value, indicating that the coating uniformity is high.
 顕微ラマン分光分析法では、高い空間分解能を有する顕微レーザーラマン分光器を用い、同一サンプルに対してR値を複数点測定する。測定精度の観点から50点以上とし、100点以上が好ましい。典型的には、毎回箇所が異なるよう、各回の測定終了後にレーザーの照射位置をずらして測定を行う。空間分解能が低すぎると(すなわち、照射位置の重なりが大きすぎると)、粒子間のばらつきがR値に反映され難く、評価結果の精度が低下する場合がある。 In the microscopic Raman spectroscopy, a microlaser Raman spectroscope with high spatial resolution is used to measure multiple R values for the same sample. From the viewpoint of measurement accuracy, the score is 50 points or more, preferably 100 points or more. Typically, the laser irradiation position is shifted after each measurement so that the location is different each time. If the spatial resolution is too low (that is, if the overlap of irradiation positions is too large), the variation between particles is difficult to be reflected in the R value, and the accuracy of the evaluation result may decrease.
 本発明の一実施態様における複合炭素粒子において、前記複合炭素粒子および前記炭素粒子(A)のラマン分光分析法によって測定されるR値(1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)との比(ID/IG))の比((複合炭素粒子のR値)/(炭素粒子(A)のR値))がが1.50以上20.00以下であることが好ましい。前記比が1.50以上であると、炭素粒子(A)の表面に炭素性被覆層(B)が形成され低抵抗化の効果が大きく、低温レート特性が向上する。同様の観点から、前記比は1.70以上であることがさらに好ましく、1.80以上が最も好ましい。一方、(複合炭素粒子のR値)/(炭素粒子(A)のR値)は20.00以下であることが好ましい。前記比が20.00以下であると、過剰な炭素性被覆層(B)の形成を抑制し、それにより高温保存性や高温サイクル特性を良好に保つことができる。同様の観点から前記比は7.00以下がさらに好ましく、5.00以下が最も好ましい。前記比を満たす方法としては例えば、炭素粒子(A)として黒鉛粒子を用いる方法が挙げられる。 In the composite carbon particles according to one embodiment of the present invention, the composite carbon particles and the 1580cm around -1 R value measured by Raman spectroscopy and (1350 cm -1 vicinity of the peak intensity (ID) of the carbon particles (A) The ratio ((R value of composite carbon particles) / (R value of carbon particles (A))) to the peak intensity (IG) of (ID / IG) is 1.50 or more and 20.00 or less. Is preferable. When the ratio is 1.50 or more, the carbon coating layer (B) is formed on the surface of the carbon particles (A), the effect of lowering the resistance is large, and the low temperature rate characteristic is improved. From the same viewpoint, the ratio is more preferably 1.70 or more, and most preferably 1.80 or more. On the other hand, (R value of composite carbon particles) / (R value of carbon particles (A)) is preferably 20.00 or less. When the ratio is 20.00 or less, the formation of an excess carbonic coating layer (B) is suppressed, whereby high temperature storage stability and high temperature cycle characteristics can be maintained well. From the same viewpoint, the ratio is more preferably 7.00 or less, and most preferably 5.00 or less. Examples of the method of satisfying the above ratio include a method of using graphite particles as the carbon particles (A).
 本発明の一実施態様における複合炭素粒子のX線回折法で測定される(002)面の平均面間隔d002は0.3354nm以上が好ましい。これは黒鉛の理論下限値である。d002は0.3370nm以下が好ましい。d002が0.3370nm以下であると、放電容量が大きくなり、大型電池に要求されるエネルギー密度を満足する電池が得られる。同様の観点から、d002は0.3367nm以下がより好ましく、0.3364nm以下がさらに好ましい。炭素粒子(A)として黒鉛粒子を用いる場合に、d002が前記範囲であることが好ましい。 The average plane spacing d002 of the (002) planes measured by the X-ray diffraction method of the composite carbon particles in one embodiment of the present invention is preferably 0.3354 nm or more. This is the theoretical lower limit of graphite. The d002 is preferably 0.3370 nm or less. When d002 is 0.3370 nm or less, the discharge capacity becomes large, and a battery satisfying the energy density required for a large battery can be obtained. From the same viewpoint, d002 is more preferably 0.3367 nm or less, and further preferably 0.3364 nm or less. When graphite particles are used as the carbon particles (A), d002 is preferably in the above range.
 本発明の一実施態様における複合炭素粒子の50%粒子径(D50)は、1.0μm以上が好ましい。D50が1.0μm以上であると粒子の凝集が抑制され電極塗工のためのスラリーを作製しやすくなる。同様の観点から、D50は3.0μm以上がより好ましく、5.0μm以上が最も好ましい。D50は50.0μm以下が好ましい。D50が50.0μm以下であると電極の電気抵抗が小さくなりレート特性が向上するためである。同様の観点から30.0μm以下がさらに好ましく、10.0μm以下が最も好ましい。 The 50% particle diameter (D50) of the composite carbon particles in one embodiment of the present invention is preferably 1.0 μm or more. When D50 is 1.0 μm or more, agglutination of particles is suppressed and it becomes easy to prepare a slurry for electrode coating. From the same viewpoint, D50 is more preferably 3.0 μm or more, and most preferably 5.0 μm or more. D50 is preferably 50.0 μm or less. This is because when D50 is 50.0 μm or less, the electrical resistance of the electrode is reduced and the rate characteristics are improved. From the same viewpoint, 30.0 μm or less is more preferable, and 10.0 μm or less is most preferable.
 本明細書において、「50%粒子径(D50)」とは、レーザー式粒度分布測定器によって求めた体積基準の粒径分布における累積50%となる粒子径を意味する。
 本発明の一実施態様における複合炭素粒子の400回タッピング密度は0.30g/cm3以上が好ましい。タッピング密度が0.30g/cm3以上であるとプレス時に到達する電極密度を充分高くすることが可能となり高エネルギー密度の電池が得られる。同様の観点から、タッピング密度は0.40g/cm3以上がより好ましく、0.50g/cm3以上が最も好ましい。400回タッピング密度は1.50g/cm3以下が好ましい。タッピング密度が1.50g/cm3以下の場合、得られた電極の電解液浸透性を充分高くすることが可能となり入出力特性の高い電池が得られる。同様の観点から、タッピング密度は1.20g/cm3以下がより好ましく、0.80g/cm3以下が最も好ましい。
In the present specification, the “50% particle size (D50)” means a particle size that is cumulatively 50% in the volume-based particle size distribution obtained by a laser particle size distribution measuring instrument.
The 400-fold tapping density of the composite carbon particles in one embodiment of the present invention is preferably 0.30 g / cm 3 or more. When the tapping density is 0.30 g / cm 3 or more, the electrode density reached at the time of pressing can be sufficiently increased, and a battery having a high energy density can be obtained. From the same viewpoint, the tapping density is more preferably 0.40 g / cm 3 or more, and most preferably 0.50 g / cm 3 or more. The 400-fold tapping density is preferably 1.50 g / cm 3 or less. When the tapping density is 1.50 g / cm 3 or less, the electrolytic solution permeability of the obtained electrode can be sufficiently increased, and a battery having high input / output characteristics can be obtained. From the same viewpoint, the tapping density is more preferably 1.20 g / cm 3 or less, 0.80 g / cm 3 or less is most preferred.
 本発明の一実施態様における複合炭素粒子のBET比表面積は0.1m2/g以上が好ましい。BET比表面積が0.1m2/g以上であると高速充放電が可能となる。同様の観点から、BET比表面積は1.0m2/g以上がより好ましく、3.0m2/g以上が最も好ましい。BET比表面積は40.0m2/g以下が好ましい。40.0m2/g以下であると凝集が抑制されるためスラリーを作製しやすく、また電池としたときの副反応を抑制し、クーロン効率、高温保存性や高温サイクル特性が優れる。同様の観点から、好ましくは12.0m2/g以下であり、より好ましくは9.0m2/g以下である。 The BET specific surface area of the composite carbon particles in one embodiment of the present invention is preferably 0.1 m 2 / g or more. When the BET specific surface area is 0.1 m 2 / g or more, high-speed charging / discharging is possible. From the same viewpoint, BET specific surface area is more preferably equal to or greater than 1.0m 2 / g, 3.0m 2 / g or more is most preferred. The BET specific surface area is preferably 40.0 m 2 / g or less. When it is 40.0 m 2 / g or less, agglutination is suppressed, so that it is easy to prepare a slurry, side reactions when used as a battery are suppressed, and coulomb efficiency, high-temperature storage stability and high-temperature cycle characteristics are excellent. From the same viewpoint, it is preferably 12.0 m 2 / g or less, and more preferably 9.0 m 2 / g or less.
 本発明の一実施態様における複合炭素粒子において、(複合炭素粒子のBET比表面積)/(炭素粒子(A)のBET比表面積)は10.00以下が好ましい。前記比が10.0以下であれば、炭素微粒子(B2)が均一に分散されており、高温保存特性、高温サイクル特性に優れる。同様の観点から、前記比は2.00以下がより好ましく、1.50以下がさらに好ましい。前記比は0.30以上が好ましい。前記比が0.30以上であれば、コーティング量が過剰にならず、高温サイクル特性や高温保存特性が良好に保たれる。同様の観点から、前記比は0.50以上であることがさらに好ましく、0.60以上であることが最も好ましい。なお、炭素粒子(A)のBET比表面積は原料として用いた炭素粒子の値を用いる。 In the composite carbon particles according to one embodiment of the present invention, (BET specific surface area of the composite carbon particles) / (BET specific surface area of the carbon particles (A)) is preferably 10.00 or less. When the ratio is 10.0 or less, the carbon fine particles (B2) are uniformly dispersed, and the high temperature storage characteristics and the high temperature cycle characteristics are excellent. From the same viewpoint, the ratio is more preferably 2.00 or less, and even more preferably 1.50 or less. The ratio is preferably 0.30 or more. When the ratio is 0.30 or more, the coating amount does not become excessive, and the high temperature cycle characteristics and the high temperature storage characteristics are kept good. From the same viewpoint, the ratio is more preferably 0.50 or more, and most preferably 0.60 or more. For the BET specific surface area of the carbon particles (A), the value of the carbon particles used as the raw material is used.
 本明細書に記載のd002、D50、400回タッピング密度及びBET比表面積は実施例に記載の方法により測定する。
[2]複合炭素粒子の製造方法
 本発明の一実施態様における複合炭素粒子の製造方法は、炭素粒子(A)を70.0質量部以上99.89質量部以下、カルボン酸化合物を0.1質量部以上20.0質量部以下、および炭素微粒子(B2)を0.01質量部以上10.0質量部以下の割合(ただし、前記炭素粒子(A)と前記カルボン酸化合物と前記炭素微粒子(B2)との合計を100質量部とする。)で含む混合物を熱処理する工程を含む。
The d002, D50, 400 times tapping density and BET specific surface area described herein are measured by the methods described in the Examples.
[2] Method for producing composite carbon particles In the method for producing composite carbon particles in one embodiment of the present invention, the carbon particles (A) are 70.0 parts by mass or more and 99.89 parts by mass or less, and the carboxylic acid compound is 0.1. The ratio of parts by mass to 20.0 parts by mass and carbon fine particles (B2) from 0.01 parts by mass to 10.0 parts by mass (however, the carbon particles (A), the carboxylic acid compound, and the carbon fine particles (however,) The step of heat-treating the mixture containing B2) and 100 parts by mass.) Is included.
 前記混合物は炭素粒子(A)とカルボン酸化合物と炭素微粒子(B2)とを混合して混合物を得る混合工程により得ることができる。
 また、前記熱処理する工程(熱処理工程)は例えば、得られた混合物を500℃以上2000℃以下で熱処理する工程として行うことができる。
[2-1]混合工程
 混合工程では炭素粒子(A)とカルボン酸化合物と炭素微粒子(B2)とを混合して混合物を得る。
The mixture can be obtained by a mixing step of mixing the carbon particles (A), the carboxylic acid compound and the carbon fine particles (B2) to obtain a mixture.
Further, the heat treatment step (heat treatment step) can be performed, for example, as a step of heat-treating the obtained mixture at 500 ° C. or higher and 2000 ° C. or lower.
[2-1] Mixing Step In the mixing step, carbon particles (A), a carboxylic acid compound, and carbon fine particles (B2) are mixed to obtain a mixture.
 混合工程は炭素粒子(A)とカルボン酸化合物を先に混合した後、その混合物と炭素微粒子(B2)とを混合してもよいし、炭素粒子(A)と炭素微粒子(B2)とを先に混合した後、その混合物とカルボン酸化合物を混合してもよいし、カルボン酸化合物と炭素微粒子(B2)とを先に混合した後、その混合物と炭素粒子(A)とを混合してもよいし、炭素粒子(A)とカルボン酸化合物と炭素微粒子(B2)とを同時に混合してもよい。 In the mixing step, the carbon particles (A) and the carboxylic acid compound may be mixed first, and then the mixture and the carbon fine particles (B2) may be mixed, or the carbon particles (A) and the carbon fine particles (B2) may be mixed first. The mixture may be mixed with the carboxylic acid compound, or the carboxylic acid compound and the carbon fine particles (B2) may be mixed first, and then the mixture and the carbon particles (A) may be mixed. Alternatively, the carbon particles (A), the carboxylic acid compound and the carbon fine particles (B2) may be mixed at the same time.
 本発明の一実施態様で用いるカルボン酸化合物としては、一分子中に、ヒドロキシ基を有さずカルボキシ基を2つ以上有するポリカルボン酸化合物(単に「ポリカルボン酸化合物」ともいう)、および一分子中に、カルボンキシ基及びヒドロキシ基をそれぞれ1つ以上有するヒドロキシカルボン酸化合物(単に「ヒドロキシカルボン酸化合物」ともいう)が挙げられる。 Examples of the carboxylic acid compound used in one embodiment of the present invention include a polycarboxylic acid compound having no hydroxy group and having two or more carboxy groups in one molecule (also simply referred to as “polycarboxylic acid compound”), and one. Examples thereof include hydroxycarboxylic acid compounds having one or more carboxylic acid groups and one or more hydroxy groups in the molecule (also simply referred to as “hydroxycarboxylic acid compounds”).
 このようなポリカルボン酸化合物としては、例えば、コハク酸(融点185℃)、グルタル酸(同95℃)、マレイン酸(同131℃)、フタル酸(同210℃)、テレフタル酸(同300℃)、オキサロ酢酸(同161℃)、マロン酸(同135℃)が挙げられる。ヒドロキシカルボン酸としては、例えば、リンゴ酸(融点130℃)、クエン酸(同153℃)、酒石酸(同168℃(L体)、同151℃(メソ体)、同206℃(ラセミ体))、没食子酸(同250℃)、サリチル酸(同159℃)が挙げられる。このようなカルボン酸化合物を用いることにより、後述する熱処理工程において、分子間で脱水して、より密なネットワーク構造が形成され、より広範囲かつ薄く、強固に炭素粒子を覆うことができる。 Examples of such polycarboxylic acid compounds include succinic acid (melting point 185 ° C.), glutaric acid (95 ° C.), maleic acid (131 ° C.), phthalic acid (210 ° C.), and terephthalic acid (300 ° C.). ), Oxaloacetic acid (161 ° C.), and malonic acid (135 ° C.). Examples of the hydroxycarboxylic acid include malic acid (melting point 130 ° C.), citric acid (153 ° C.), tartaric acid (168 ° C. (L form), 151 ° C. (meso form), 206 ° C. (racemic form)). , Gallic acid (250 ° C) and salicylic acid (159 ° C). By using such a carboxylic acid compound, in the heat treatment step described later, the molecules can be dehydrated to form a denser network structure, and the carbon particles can be covered more widely, thinner and more firmly.
 中でも、一分子中にカルボキシ基を2つ以上、ヒドロキシル基を1つ以上含む化合物がより好ましく、リンゴ酸、クエン酸、酒石酸(L体)が特に好ましい。
 カルボン酸化合物は1種でもよいし、2種以上含んでいても良い。すなわち、ポリカルボン酸化合物を2種以上用いてもよいし、ヒドロキシカルボン酸化合物を2種以上用いてもよいし、ポリカルボン酸化合物とヒドロキシカルボン酸化合物を組み合わせて用いてもよい。上記カルボン酸化合物と、一分子中にカルボキシ基を1つ含む化合物を組み合わせることもできる。
Among them, a compound containing two or more carboxy groups and one or more hydroxyl groups in one molecule is more preferable, and malic acid, citric acid, and tartaric acid (L-form) are particularly preferable.
The carboxylic acid compound may be one kind or may contain two or more kinds. That is, two or more kinds of polycarboxylic acid compounds may be used, two or more kinds of hydroxycarboxylic acid compounds may be used, or a polycarboxylic acid compound and a hydroxycarboxylic acid compound may be used in combination. The above carboxylic acid compound can also be combined with a compound containing one carboxy group in one molecule.
 すなわち、カルボン酸化合物としては、例えば以下の三つの態様で用いることができる。一つ目の態様はカルボン酸化合物としてヒドロキシカルボン酸化合物のみを用いる態様、二つ目の態様はカルボン酸化合物としてポリカルボン酸化合物のみを用いる態様、三つ目の態様は、カルボン酸化合物としてヒドロキシカルボン酸化合物とポリカルボン酸化合物とを用いる態様である。 That is, as the carboxylic acid compound, for example, it can be used in the following three aspects. The first embodiment uses only a hydroxycarboxylic acid compound as a carboxylic acid compound, the second aspect uses only a polycarboxylic acid compound as a carboxylic acid compound, and the third aspect is hydroxy as a carboxylic acid compound. This is an embodiment in which a carboxylic acid compound and a polycarboxylic acid compound are used.
 カルボン酸化合物の融点は500℃以下であることが好ましい。融点がこの範囲内であることにより、カルボン酸化合物の熱分解が少なく被覆効果が高くなる。同様の観点から融点は400℃以下がより好ましく、300℃以下がさらに好ましい。カルボン酸化合物の融点は100℃以上であることが好ましい。融点がこの範囲であることにより、カルボン酸化合物の取り扱いが容易であり混合処理後の収率も高い。同様の観点から融点は120℃以上がより好ましく、140℃以上がさらに好ましい。 The melting point of the carboxylic acid compound is preferably 500 ° C. or lower. When the melting point is within this range, the carboxylic acid compound is less thermally decomposed and the coating effect is enhanced. From the same viewpoint, the melting point is more preferably 400 ° C. or lower, and even more preferably 300 ° C. or lower. The melting point of the carboxylic acid compound is preferably 100 ° C. or higher. When the melting point is in this range, the carboxylic acid compound is easy to handle and the yield after the mixing treatment is high. From the same viewpoint, the melting point is more preferably 120 ° C. or higher, and even more preferably 140 ° C. or higher.
 混合工程で得られる混合物には炭素粒子(A)とカルボン酸化合物と炭素微粒子(B2)以外の材料を含んでもよいが、混合物は炭素粒子(A)、カルボン酸化合物及び炭素微粒子(B2)のみからなるものが好ましい。カルボン酸化合物は粉末状態のものを用いることが好ましい。混合方法は乾式混合が好ましく、市販の混合機、撹拌機を用いることができる。具体的な例としてはリボンミキサー、V型混合機、W型混合機、ワンブレードミキサー、ナウターミキサー等の混合機を挙げることができる。 The mixture obtained in the mixing step may contain materials other than the carbon particles (A), the carboxylic acid compound and the carbon fine particles (B2), but the mixture is only the carbon particles (A), the carboxylic acid compound and the carbon fine particles (B2). It is preferably composed of. It is preferable to use a carboxylic acid compound in a powder state. The mixing method is preferably dry mixing, and a commercially available mixer or stirrer can be used. Specific examples include mixers such as ribbon mixers, V-type mixers, W-type mixers, one-blade mixers, and nower mixers.
 本発明で用いられるカルボン酸化合物は従来のコーティングに使用されるピッチや高分子と比べて粘性が低く、またカルボン酸化合物の官能基が炭素微粒子上の官能基と相互作用するため、炭素微粒子をよく分散させることが可能になる。その結果、炭素微粒子の二次粒子径の最大値が従来の場合よりも小さくなるものと考えられる。 The carboxylic acid compound used in the present invention has a lower viscosity than the pitch and polymer used for conventional coating, and the functional group of the carboxylic acid compound interacts with the functional group on the carbon fine particles. It becomes possible to disperse well. As a result, it is considered that the maximum value of the secondary particle diameter of the carbon fine particles becomes smaller than that in the conventional case.
 前記混合物中の、炭素粒子(A)とカルボン酸化合物と炭素微粒子(B2)の配合量は、炭素粒子(A)とカルボン酸化合物と炭素微粒子(B2)との合計を100質量部としたとき、炭素粒子(A)は70.0質量部以上99.89質量部以下、カルボン酸化合物は0.1質量部以上20.0質量部以下、炭素微粒子(B2)は0.01質量部以上10.0質量部以下が好ましい。言い換えると、前記混合物としては例えば、炭素粒子(A)を70.0質量部以上99.89質量部以下、ヒドロキシカルボン酸化合物を0.1質量部以上20.0質量部以下、および炭素微粒子(B2)を0.01質量部以上10.0質量部以下の割合(ただし、前記炭素粒子(A)と前記ヒドロキシカルボン酸化合物と前記炭素微粒子(B2)との合計を100質量部とする。)で含む混合物(一つ目の態様)、炭素粒子(A)を70.0質量部以上99.89質量部以下、ポリカルボン酸化合物を0.1質量部以上20.0質量部以下、および炭素微粒子(B2)を0.01質量部以上10.0質量部以下の割合(ただし、前記炭素粒子(A)と前記ポリカルボン酸化合物と前記炭素微粒子(B2)との合計を100質量部とする。)で含む混合物(二つ目の態様)、炭素粒子(A)を70.0質量部以上99.89質量部以下、ヒドロキシカルボン酸化合物とポリカルボン酸化合物とを合計で0.1質量部以上20.0質量部以下、および炭素微粒子(B2)を0.01質量部以上10.0質量部以下の割合(ただし、前記炭素粒子(A)と前記ヒドロキシカルボン酸化合物と前記ポリカルボン酸化合物と前記炭素微粒子(B2)との合計を100質量部とする。)で含む混合物(三つ目の態様)が挙げられる。 The blending amount of the carbon particles (A), the carboxylic acid compound and the carbon fine particles (B2) in the mixture is 100 parts by mass when the total of the carbon particles (A), the carboxylic acid compound and the carbon fine particles (B2) is 100 parts by mass. , Carbon particles (A) are 70.0 parts by mass or more and 99.89 parts by mass or less, carboxylic acid compounds are 0.1 parts by mass or more and 20.0 parts by mass or less, and carbon fine particles (B2) are 0.01 parts by mass or more and 10 parts. .0 parts by mass or less is preferable. In other words, as the mixture, for example, carbon particles (A) are 70.0 parts by mass or more and 99.89 parts by mass or less, hydroxycarboxylic acid compound is 0.1 parts by mass or more and 20.0 parts by mass or less, and carbon fine particles ( B2) is 0.01 parts by mass or more and 10.0 parts by mass or less (however, the total of the carbon particles (A), the hydroxycarboxylic acid compound, and the carbon fine particles (B2) is 100 parts by mass). (1st aspect), carbon particles (A) are 70.0 parts by mass or more and 99.89 parts by mass or less, polycarboxylic acid compound is 0.1 parts by mass or more and 20.0 parts by mass or less, and carbon. The ratio of the fine particles (B2) to 0.01 parts by mass or more and 10.0 parts by mass or less (however, the total of the carbon particles (A), the polycarboxylic acid compound, and the carbon fine particles (B2) is 100 parts by mass. ), The carbon particles (A) are 70.0 parts by mass or more and 99.89 parts by mass or less, and the hydroxycarboxylic acid compound and the polycarboxylic acid compound are 0.1 parts by mass in total. 20.0 parts by mass or less, and 0.01 parts by mass or more and 10.0 parts by mass or less of carbon fine particles (B2) (however, the carbon particles (A), the hydroxycarboxylic acid compound, and the polycarboxylic acid compound The total of the carbon fine particles (B2) and the carbon fine particles (B2) is 100 parts by mass), and a mixture (third aspect) is mentioned.
 カルボン酸化合物の配合量を0.1質量部以上とする理由は、カルボン酸化合物で炭素粒子(A)を十分に被覆するためである。この観点から、カルボン酸化合物の量は、1.0質量部以上がより好ましく、2.0質量部以上がさらに好ましい。カルボン酸化合物の配合量を20.0質量部以下とする理由は、過剰な炭素性被膜層(B1)の形成を抑制し、それにより高温保存性や高温サイクル特性を良好に保つためである。この観点から、カルボン酸化合物の量は、10.0質量部以下がより好ましく、8.0質量部以下がさらに好ましい。 The reason why the blending amount of the carboxylic acid compound is 0.1 parts by mass or more is that the carbon particles (A) are sufficiently covered with the carboxylic acid compound. From this viewpoint, the amount of the carboxylic acid compound is more preferably 1.0 part by mass or more, further preferably 2.0 parts by mass or more. The reason why the blending amount of the carboxylic acid compound is 20.0 parts by mass or less is to suppress the formation of an excessive carbonaceous coating layer (B1), thereby maintaining good high-temperature storage stability and high-temperature cycle characteristics. From this viewpoint, the amount of the carboxylic acid compound is more preferably 10.0 parts by mass or less, and further preferably 8.0 parts by mass or less.
 炭素微粒子(B2)の配合量を0.01質量部以上とする理由は、表面に炭素微粒子(B2)が十分に含まれ低抵抗化の効果が大きく低温レート特性が向上するためである。この観点から、炭素微粒子(B2)の量は、0.1質量部以上がより好ましく、1.0質量部以上がさらに好ましい。炭素微粒子(B2)の配合量を10.0質量部以下とする理由は、炭素微粒子(B2)が過剰にならないため二次粒子の大きさが抑えられ、均一な炭素性被覆層(B)の形成されるためである。この観点から、炭素微粒子(B2)の量は、8.0質量部以下がより好ましく、6.0質量部以下がさらに好ましい。 The reason why the blending amount of the carbon fine particles (B2) is 0.01 part by mass or more is that the carbon fine particles (B2) are sufficiently contained on the surface, the effect of lowering the resistance is large, and the low temperature rate characteristics are improved. From this viewpoint, the amount of carbon fine particles (B2) is more preferably 0.1 part by mass or more, and further preferably 1.0 part by mass or more. The reason why the blending amount of the carbon fine particles (B2) is 10.0 parts by mass or less is that the size of the secondary particles is suppressed because the carbon fine particles (B2) do not become excessive, and the uniform carbon coating layer (B) has. This is because it is formed. From this viewpoint, the amount of carbon fine particles (B2) is more preferably 8.0 parts by mass or less, and further preferably 6.0 parts by mass or less.
 カルボン酸化合物の量に対する炭素微粒子(B2)の量(質量)の比率(炭素微粒子の量/カルボン酸化合物の量)は0.05以上が好ましい。前記比率が0.05以上であると、炭素微粒子(B2)が炭素粒子表面に十分に含まれ低温レート特性が向上する。同様の観点から0.10以上がより好ましく、0.20以上がさらに好ましい。カルボン酸化合物の量に対する炭素微粒子の量の比率は1.50以下が好ましい。前記比率が1.50以下であると炭素微粒子(B2)の二次粒子径が十分に小さくなり、均一な炭素性被覆層(B)が形成される。同様の観点から1.30以下がより好ましく、1.10以下がさらに好ましい。
[2-2]熱処理工程
 前記混合物を熱処理する工程は複合炭素粒子を得ることができればよく、特に限定はない。熱処理する工程(熱処理工程)は、ロータリーキルン、ローラーハースキルン、電気式管状炉等の熱処理装置を用いて行うことができる。熱処理工程により、炭素粒子(A)の表面が炭素性被覆層(B)によって被覆された複合炭素粒子が得られる。
The ratio of the amount (mass) of the carbon fine particles (B2) to the amount of the carboxylic acid compound (amount of carbon fine particles / amount of the carboxylic acid compound) is preferably 0.05 or more. When the ratio is 0.05 or more, carbon fine particles (B2) are sufficiently contained on the surface of the carbon particles, and the low temperature rate characteristic is improved. From the same viewpoint, 0.10 or more is more preferable, and 0.20 or more is further preferable. The ratio of the amount of carbon fine particles to the amount of the carboxylic acid compound is preferably 1.50 or less. When the ratio is 1.50 or less, the secondary particle diameter of the carbon fine particles (B2) becomes sufficiently small, and a uniform carbonic coating layer (B) is formed. From the same viewpoint, 1.30 or less is more preferable, and 1.10 or less is further preferable.
[2-2] Heat Treatment Step The step of heat-treating the mixture is not particularly limited as long as composite carbon particles can be obtained. The heat treatment step (heat treatment step) can be performed by using a heat treatment apparatus such as a rotary kiln, a roller herscren, or an electric tubular furnace. By the heat treatment step, composite carbon particles in which the surface of the carbon particles (A) is coated with the carbonic coating layer (B) are obtained.
 カルボン酸化合物の炭素化を十分に進行させ、水素や酸素の残留を抑制し、電池特性を向上させるため、熱処理工程における熱処理温度は500℃以上が好ましく、700℃以上がさらに好ましく、900℃以上あることが最も好ましい。また、黒鉛化を抑制し、充放電レート特性を良好に保つために、熱処理温度は2000℃以下が好ましく、1500℃以下がさらに好ましく、1200℃以下が最も好ましい。処理時間は炭素化が十分に進行していれば特に制限はないが、10分以上が好ましく、30分以上がより好ましく、50分以上がさらに好ましい。 The heat treatment temperature in the heat treatment step is preferably 500 ° C. or higher, more preferably 700 ° C. or higher, and further preferably 900 ° C. or higher in order to sufficiently promote carbonization of the carboxylic acid compound, suppress residual hydrogen and oxygen, and improve battery characteristics. Most preferably. Further, in order to suppress graphitization and maintain good charge / discharge rate characteristics, the heat treatment temperature is preferably 2000 ° C. or lower, more preferably 1500 ° C. or lower, and most preferably 1200 ° C. or lower. The treatment time is not particularly limited as long as carbonization has progressed sufficiently, but is preferably 10 minutes or more, more preferably 30 minutes or more, and even more preferably 50 minutes or more.
 熱処理工程は、不活性ガス雰囲気で行うことが好ましい。不活性ガス雰囲気のための不活性ガスとしては、アルゴンガス、窒素ガスなどが挙げられる。
 熱処理後の複合炭素粒子に対して、適宜、解砕、篩分け処理を行ってもよい。
[3]リチウムイオン二次電池の負極活物質
 本発明の一実施態様におけるリチウムイオン二次電池の負極活物質は上記複合炭素粒子を含んでなる。
The heat treatment step is preferably carried out in an inert gas atmosphere. Examples of the inert gas for the Mactive gas atmosphere include argon gas and nitrogen gas.
The composite carbon particles after the heat treatment may be appropriately crushed and sieved.
[3] Negative Electrode Active Material of Lithium Ion Secondary Battery The negative electrode active material of the lithium ion secondary battery according to the embodiment of the present invention contains the above composite carbon particles.
 負極活物質は前記複合炭素粒子のみからなるか、あるいは前記複合炭素粒子および他の成分を含む。他の成分としては、例えば他の炭素材料や導電付与剤(導電助剤)が挙げられる。他の炭素材料や導電付与剤を含む場合例えば、複合炭素粒子100質量部に対して、球状の天然黒鉛または人造黒鉛を0.01~200質量部、好ましくは0.01~100質量部配合したものを使用することができる。他の黒鉛材料を混合して用いることにより、複合炭素粒子の優れた特性を維持した状態で、他の黒鉛材料が有する優れた特性も兼ね備えた負極活物質とすることが可能である。 The negative electrode active material consists of the composite carbon particles only, or contains the composite carbon particles and other components. Examples of other components include other carbon materials and conductivity-imparting agents (conductive aids). When other carbon materials or conductivity-imparting agents are included For example, 0.01 to 200 parts by mass, preferably 0.01 to 100 parts by mass, of spherical natural graphite or artificial graphite is blended with respect to 100 parts by mass of the composite carbon particles. You can use things. By using a mixture of other graphite materials, it is possible to obtain a negative electrode active material having the excellent properties of the other graphite materials while maintaining the excellent properties of the composite carbon particles.
 このような負極活物質は複合炭素粒子と他の炭素材料等を混合することにより得ることができる。混合に際しては、要求される電池特性に応じて適宜、混合材料を選択し、混合量を決定することができる。 Such a negative electrode active material can be obtained by mixing composite carbon particles with other carbon materials or the like. At the time of mixing, the mixing material can be appropriately selected according to the required battery characteristics, and the mixing amount can be determined.
 また、負極活物質には炭素繊維を配合することもできる。配合量は、前記負極活物質100質量部中に、0.01~20質量部が好ましく、0.5~5質量部がより好ましい。
 炭素繊維としては、例えば、PAN系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などの有機系カーボンファイバー、気相法炭素繊維などが挙げられる。これらのうち、特に、結晶性が高く、熱伝導性の高い、気相法炭素繊維が好ましい。炭素繊維を複合炭素粒子の表面に接着させる場合には、特に気相法炭素繊維が好ましい。
Further, carbon fiber can be blended in the negative electrode active material. The blending amount is preferably 0.01 to 20 parts by mass, and more preferably 0.5 to 5 parts by mass in 100 parts by mass of the negative electrode active material.
Examples of the carbon fibers include organic carbon fibers such as PAN-based carbon fibers, pitch-based carbon fibers, and rayon-based carbon fibers, and vapor-phase carbon fibers. Of these, vapor phase carbon fibers having high crystallinity and high thermal conductivity are particularly preferable. When the carbon fibers are adhered to the surface of the composite carbon particles, the vapor phase carbon fibers are particularly preferable.
 複合炭素粒子と他の材料を混合するための装置としては、市販の混合機、攪拌機を用いることができる。具体的な例としてはリボンミキサー、V型混合機、W型混合機、ワンブレードミキサー、ナウターミキサー等の混合機を挙げることができる。剪断力と衝撃、圧縮などの機械的なエネルギーが同時に係る装置による混合が好ましい。例えば、高速旋回流により粉体に剪断力・衝撃が加わる高速攪拌機や、混合羽根と容器内壁間の間隔が狭く粉体が容器内壁に押し付けられるような構造を持つ乾式混合機などが好ましい。このような混合機としては、メカノフュージョン(登録商標、ホソカワミクロン(株)製)、ノビルタ(登録商標、ホソカワミクロン(株)製)、コンポジ(登録商標、日本コークス工業(株)製)、マルチパーパスミキサー(日本コークス工業(株)製)、ハイブリダイゼーションシステム(登録商標、(株)奈良機械製作所製)等を挙げることができる。
[4]電極用ペースト
 本発明の一実施態様における電極用ペーストは、上記負極活物質とバインダーと溶媒を含んでなる。電極用ペーストは、負極活物質とバインダーとを混練することによって得られる。混練には、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等の装置が使用できる。電極用ペーストは、シート状、ペレット状等の形状に成形することができる。
As an apparatus for mixing the composite carbon particles with other materials, a commercially available mixer or stirrer can be used. Specific examples include mixers such as ribbon mixers, V-type mixers, W-type mixers, one-blade mixers, and nower mixers. Mixing by a device in which shearing force and mechanical energy such as impact and compression are simultaneously applied is preferable. For example, a high-speed stirrer in which shearing force and impact are applied to the powder by a high-speed swirling flow, and a dry mixer having a structure in which the distance between the mixing blade and the inner wall of the container is narrow and the powder is pressed against the inner wall of the container are preferable. Examples of such a mixer include Mechanofusion (registered trademark, manufactured by Hosokawa Micron Co., Ltd.), Nobilta (registered trademark, manufactured by Hosokawa Micron Co., Ltd.), Composit (registered trademark, manufactured by Nippon Coke Industries Co., Ltd.), and Multipurpose Mixer. (Manufactured by Nippon Coke Industries Co., Ltd.), hybridization system (registered trademark, manufactured by Nara Machinery Co., Ltd.) and the like.
[4] Electrode Paste The electrode paste in one embodiment of the present invention contains the negative electrode active material, a binder, and a solvent. The electrode paste is obtained by kneading the negative electrode active material and the binder. For kneading, equipment such as a ribbon mixer, a screw type kneader, a Spartan luzer, a ladyge mixer, a planetary mixer, and a universal mixer can be used. The electrode paste can be formed into a sheet shape, a pellet shape, or the like.
 電極用ペーストに用いるバインダーとしては、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系ポリマー、SBR(スチレンブタジエンラバー)等のゴム系材料等が挙げられる。 Examples of the binder used for the electrode paste include fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene, and rubber-based materials such as SBR (styrene-butadiene rubber).
 バインダーの使用量は、負極活物質100質量部に対して1~30質量部であることが好ましく、1~10質量部であることがより好ましい。
 混練する際に用いる溶媒としては、各々のバインダーに適したもの、例えばフッ素系ポリマーの場合はトルエン、N-メチルピロリドン等;SBRの場合は水等;その他にジメチルホルムアミド、イソプロパノール等が挙げられる。溶媒として水を使用するバインダーの場合は、例えば、カルボキシメチルセルロース(CMC)等の増粘剤を併用することが好ましい。溶媒、及び増粘剤の量は、電極用ペーストが集電体に塗布しやすい粘度となるように調整される。
[5]負極
 本発明の一実施態様における負極は、前記負極活物質と集電体とを含む負極である。前記負極は通常は、集電体とその集電体上の負極活物質とを含む。前記負極は、上記電極用ペーストを集電体上に塗布し、乾燥し、加圧成形することによって得ることができる。前記負極は、リチウムイオン二次電池用負極として好適に用いることができる。なお、電極用ペーストから形成される活物質を含む層を一般に活物質層ともいう。
The amount of the binder used is preferably 1 to 30 parts by mass and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material.
Examples of the solvent used for kneading include those suitable for each binder, for example, toluene, N-methylpyrrolidone and the like in the case of a fluorine-based polymer; water and the like in the case of SBR; and dimethylformamide, isopropanol and the like. In the case of a binder that uses water as a solvent, it is preferable to use a thickener such as carboxymethyl cellulose (CMC) in combination. The amount of the solvent and the thickener is adjusted so that the electrode paste has a viscosity that can be easily applied to the current collector.
[5] Negative electrode The negative electrode in one embodiment of the present invention is a negative electrode containing the negative electrode active material and a current collector. The negative electrode usually includes a current collector and a negative electrode active material on the current collector. The negative electrode can be obtained by applying the electrode paste on a current collector, drying it, and pressure-molding it. The negative electrode can be suitably used as a negative electrode for a lithium ion secondary battery. The layer containing the active material formed from the electrode paste is also generally referred to as an active material layer.
 集電体としては、例えばアルミニウム、ニッケル、銅、ステンレス等の箔、メッシュなどが挙げられる。電極用ペーストの塗布厚は、50~200μmとすることが好ましい。電極用ペーストの塗布方法は特に制限されず、例えばドクターブレードやバーコーターなどで塗布後、ロールプレス等で成形する方法等が挙げられる。 Examples of the current collector include foils such as aluminum, nickel, copper, and stainless steel, and meshes. The coating thickness of the electrode paste is preferably 50 to 200 μm. The method of applying the electrode paste is not particularly limited, and examples thereof include a method of applying with a doctor blade, a bar coater, or the like, and then molding with a roll press or the like.
 加圧成形法としては、ロール加圧、プレス加圧等の成形法を挙げることができる。加圧成形するときの圧力は1×103~3×103kg/cm2とすることが好ましい。
[6]リチウムイオン二次電池
 本発明の一実施態様におけるリチウムイオン二次電池は、前記負極を用いたリチウムイオン二次電池である。リチウムイオン二次電池は一般に、正極と負極とが電解液または電解質の中に浸漬された構造を有する。本発明の一実施態様におけるリチウムイオン二次電池は、負極として前記負極を用いていればよく、それ以外の部材については、特に制限はない。
Examples of the pressure molding method include molding methods such as roll pressurization and press pressurization. The pressure for pressure molding is preferably 1 × 10 3 to 3 × 10 3 kg / cm 2 .
[6] Lithium Ion Secondary Battery The lithium ion secondary battery according to the embodiment of the present invention is a lithium ion secondary battery using the negative electrode. A lithium ion secondary battery generally has a structure in which a positive electrode and a negative electrode are immersed in an electrolyte or an electrolyte. The lithium ion secondary battery according to the embodiment of the present invention may use the negative electrode as the negative electrode, and other members are not particularly limited.
 リチウムイオン二次電池の正極には、正極活物質として、通常、リチウム含有遷移金属酸化物が用いられ、好ましくはTi、V、Cr、Mn、Fe、Co、Ni、Mo及びWから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムの遷移金属元素に対するモル比が0.3~2.2の化合物が用いられ、より好ましくはV、Cr、Mn、Fe、Co及びNiから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムの遷移金属に対するモル比が0.3~2.2の化合物が用いられる。なお、主として存在する遷移金属に対し30モル%未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。上記の正極活物質の中で、一般式LixMO2(MはCo、Ni、Fe、Mnの少なくとも1種、x=0.02~1.2)、またはLiy24(Zは少なくともMnを含み、Co、Ni、Fe、Mnをさらに含んでよい。y=0.02~2)で表わされるスピネル構造を有する材料の少なくとも1種を用いることが好ましい。 A lithium-containing transition metal oxide is usually used as the positive electrode active material for the positive electrode of the lithium ion secondary battery, and at least selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W is preferable. An oxide mainly containing one kind of transition metal element and lithium, in which a compound having a molar ratio of lithium to the transition metal element of 0.3 to 2.2 is used, more preferably V, Cr, Mn,. An oxide mainly containing at least one transition metal element selected from Fe, Co and Ni and lithium, and a compound having a molar ratio of lithium to the transition metal of 0.3 to 2.2 is used. In addition, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B and the like may be contained in a range of less than 30 mol% with respect to the mainly existing transition metal. Among the above positive electrode active materials, the general formula Li x MO 2 (M is at least one of Co, Ni, Fe, Mn, x = 0.02 to 1.2) or Li y Z 2 O 4 (Z). Contains at least Mn and may further contain Co, Ni, Fe, Mn. It is preferable to use at least one material having a spinel structure represented by y = 0.02 to 2).
 リチウムイオン二次電池では正極と負極との間にセパレーターを設けることがある。セパレーターとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはそれらを組み合わせたものなどを挙げることができる。 In lithium ion secondary batteries, a separator may be provided between the positive electrode and the negative electrode. Examples of the separator include non-woven fabrics mainly composed of polyolefins such as polyethylene and polypropylene, cloths, micropore films, and those obtained by combining them.
 本発明の好ましい実施態様におけるリチウムイオン二次電池を構成する電解液及び電解質としては公知の有機電解液、無機固体電解質、高分子固体電解質が使用できるが、電気伝導性の観点から有機電解液が好ましい。 Known organic electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used as the electrolytes and electrolytes constituting the lithium ion secondary battery in the preferred embodiment of the present invention, but organic electrolytes are used from the viewpoint of electrical conductivity. preferable.
 なお、上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。 Note that there are no restrictions on the selection of materials required for the battery configuration other than the above.
 以下、本発明に実施例を具体的に説明する。なお、これらは説明のための単なる例示であって、本発明を限定するものではない。
 実施例及び比較例の複合炭素粒子の評価方法、電池の作製方法、電池の特性の測定方法、及び各例で用いた原料は以下の通りである。
[1]複合炭素粒子の評価
[1-1]50%粒子径(D50)
 レーザー回折式粒度分布測定装置としてマルバーン製マスターサイザー2000(Mastersizer;登録商標)を用い、5mgのサンプルを容器に入れ、界面活性剤が0.04質量%含まれた水を10g加えて5分間超音波処理を行い体積基準累積粒度分布における50%粒子径(D50)を得た。
[1-2]タッピング密度(タップ密度)
 タップ密度測定装置としてカンタクローム(Quantachrome)社製Autotapを用い、250mLのガラスシリンダーに50gのサンプルを入れ、400回タップ後の密度を測定した。これはASTM B527及びJIS K5101-12-2に準拠した測定方法であるが、オートタップの落下高さは5mmとした。
[1-3]BET比表面積
 BET比表面積測定装置としてカンタクローム(Quantachrome)社製NOVA2200eを用い、サンプルセル(9mm×135mm)に3gのサンプルを入れ、300℃、真空条件下で1時間乾燥後、測定を行った。BET比表面積測定用のガスはN2を用いた。
[1-4]平均面間隔d002
 複合炭素粒子と標準シリコン(NIST製)が9対1の質量比になるように混ぜた混合物をガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下のような条件で測定を行った。
Hereinafter, examples will be specifically described in the present invention. It should be noted that these are merely examples for explanation and do not limit the present invention.
The methods for evaluating composite carbon particles of Examples and Comparative Examples, the method for producing a battery, the method for measuring the characteristics of a battery, and the raw materials used in each example are as follows.
[1] Evaluation of composite carbon particles [1-1] 50% particle size (D50)
Using a Malvern Mastersizer 2000 (registered trademark) as a laser diffraction type particle size distribution measuring device, put a 5 mg sample in a container, add 10 g of water containing 0.04 mass% of a surfactant, and add 10 g for more than 5 minutes. Sonication was performed to obtain a 50% particle size (D50) in the volume-based cumulative particle size distribution.
[1-2] Tapping density (tap density)
Using Autotap manufactured by Quantachrome as a tap density measuring device, 50 g of a sample was placed in a 250 mL glass cylinder, and the density after tapping 400 times was measured. This is a measurement method based on ASTM B527 and JIS K5101-12-2, but the drop height of the auto tap is 5 mm.
[1-3] BET Specific Surface Area Using NOVA2200e manufactured by Quantachrome as a BET specific surface area measuring device, 3 g of a sample is placed in a sample cell (9 mm × 135 mm), and dried under vacuum conditions at 300 ° C. for 1 hour. , The measurement was performed. N 2 was used as the gas for measuring the BET specific surface area.
[1-4] Average surface spacing d002
A mixture of composite carbon particles and standard silicon (manufactured by NIST) mixed so as to have a mass ratio of 9: 1 was filled in a glass sample plate (sample plate window 18 × 20 mm, depth 0.2 mm) as follows. The measurement was performed under various conditions.
 XRD装置:リガク製SmartLab(登録商標)
 X線種:Cu-Kα線
 Kβ線除去方法:Niフィルター
 X線出力:45kV、200mA
 測定範囲:24.0~30.0deg.
 スキャンスピード:2.0deg./min.
 得られた波形に対し、学振法を適用し平均面間隔d002の値を求めた。(Iwashita et al.,Carbon vol.42(2004),p.701-714参照)。
[1-5]R値とR値の変動係数
 顕微レーザーラマン分光装置として日本分光株式会社NRS-5100を用い、励起波長532.36nmで測定を行った。
XRD device: Rigaku SmartLab (registered trademark)
X-ray type: Cu-Kα ray Kβ ray removal method: Ni filter X-ray output: 45 kV, 200 mA
Measurement range: 24.0 to 30.0 deg.
Scan speed: 2.0 deg. / Min.
The Gakushin method was applied to the obtained waveform to obtain the value of the average surface spacing d002. (See Iwashita et al., Carbon vol. 42 (2004), p. 701-714).
[1-5] R value and coefficient of variation of R value JASCO Corporation NRS-5100 was used as a microlaser Raman spectroscope, and measurement was performed at an excitation wavelength of 532.36 nm.
 ラマンスペクトルにおける1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)の比をR値(ID/IG)とする。
 複合炭素粒子に対して以下の領域で顕微レーザーラマン分光イメージングを行った。
The ratio of the peak intensity (ID) near 1350 cm -1 and the peak intensity (IG) near 1580 cm -1 in the Raman spectrum is defined as the R value (ID / IG).
Microlaser Raman spectroscopic imaging was performed on the composite carbon particles in the following regions.
  測定ポイント:22×28箇所
  測定ステップ:0.32μm
  測定エリア:7.0×9.0μm
 上記測定のうち複合炭素粒子に相当する領域からランダムに100点を抽出し、得られたR値の標準偏差をR値の平均値で割った値を変動係数とした。
Measurement point: 22 x 28 points Measurement step: 0.32 μm
Measurement area: 7.0 x 9.0 μm
From the above measurements, 100 points were randomly extracted from the region corresponding to the composite carbon particles, and the value obtained by dividing the standard deviation of the obtained R value by the average value of the R value was used as the coefficient of variation.
 また、R値の平均値を複合炭素粒子のR値とした。
[1-6]透過型電子顕微鏡(TEM)観察による炭素性被膜層(B1)の状態と厚さ
 複合炭素粒子をエタノールに分散させ、マイクログリッドメッシュに回収し、以下のような条件で測定を行った。
Further, the average value of the R values was taken as the R value of the composite carbon particles.
[1-6] State and thickness of carbonaceous coating layer (B1) observed by transmission electron microscope (TEM) Composite carbon particles are dispersed in ethanol, collected on a microgrid mesh, and measured under the following conditions. went.
 透過型電子顕微鏡装置:日立製H-9500
 加速電圧:300kV
 観察倍率:30,000倍
 測定から炭素性被膜層(B1)の状態を観察した。ランダムに1つの複合炭素粒子を選択し、その複合炭素粒子表面の被膜層を上記倍率にて5視野観察し、1視野当り2箇所の被膜層の厚さを測定した。各箇所の被膜層の厚さは、被膜層長さ10nmの平均値とした。この測定を、ランダムに選択した3つの複合炭素粒子に対して行い、合計30点のデータを得て、その平均を被膜層の厚さとした。また、FFT(Fast Fourier Transform)パターンを評価することでグラフェン層、アモルファス炭素層等の層構造を決定した。
[1-7]走査型電子顕微鏡(SEM)観察
 走査型電子顕微鏡装置として日本電子株式会社製JSM-7600を用い、5,000~30,000倍にて測定を行った(WDは10mm前後、加速電圧1.0keV、2次電子像、GB-High)。
Transmission electron microscope device: Hitachi H-9500
Acceleration voltage: 300kV
Observation magnification: The state of the carbonaceous coating layer (B1) was observed from the measurement of 30,000 times. One composite carbon particle was randomly selected, and the coating layer on the surface of the composite carbon particle was observed in five visual fields at the above magnification, and the thickness of the coating layer at two locations per visual field was measured. The thickness of the coating layer at each location was taken as an average value of the coating layer length of 10 nm. This measurement was performed on three randomly selected composite carbon particles, and a total of 30 points of data were obtained, and the average was taken as the thickness of the coating layer. Moreover, the layer structure of the graphene layer, the amorphous carbon layer and the like was determined by evaluating the FFT (Fast Fourier Transform) pattern.
[1-7] Observation with scanning electron microscope (SEM) JSM-7600 manufactured by JEOL Ltd. was used as a scanning electron microscope device, and measurement was performed at a magnification of 5,000 to 30,000 (WD is about 10 mm, Acceleration voltage 1.0 keV, secondary electron image, GB-High).
 上記条件での測定から複合炭素粒子の表面状態を観察した。ランダムに1つの複合炭素粒子を選択し、その複合炭素粒子表面に存在する炭素微粒子(B2)の一次粒子及び二次粒子の長径の長さを上記倍率にて5視野以上観察し、1視野当り5箇所の一次粒子及び二次粒子の長径の長さを測定した。この測定を、ランダムに選択した4つの複合炭素粒子に対して行い、合計100点のデータを得た。炭素微粒子(B2)の一次粒子の平均粒径は、一次粒子100点の長径の平均値から得た。炭素微粒子(B2)の二次粒子径の最大値は、二次粒子100点の長径の最大値から得た。二次粒子が全くない場合は、二次粒子径の最大値は一次粒子径の最大値とした。
[1-8]示差熱分析(DTA)
 示差熱分析(DTA)にはエスアイアイ・ナノテクノロジー株式会社製のEXSTAR6000 TG/DTAを用いた。白金パンの上に試料を10mg載せ、空気100ml/分流通下、5℃/分にて1000℃まで昇温し測定した。標準物質はAl23を10mg使用した。
[2]電池の作製
[2-1]電極用ペースト作製
 後述する各実施例及び比較例で得られた複合炭素粒子を96.5g、導電助剤としてカーボンブラック(TIMCAL社製、C65)を0.5g、増粘剤としてカルボキシメチルセルロース(CMC)を1.5g及び水を80~120g適宜加えて粘度を調節し、水系バインダー(昭和電工株式会社製、ポリゾール(登録商標)LB150)微粒子の分散した分散液1.5gを加え撹拌・混合し、充分な流動性を有するスラリー状の分散液を作製し、電極用ペーストとした。
[2-2]負極1の作製
 電極用ペーストを高純度銅箔上でドクターブレードを用いて150μm厚に塗布し、70℃で12時間真空乾燥した。塗布部が4.2cm×4.2cmとなるように打ち抜き機を用いて打ち抜いた後、超鋼製プレス板で挟み、電極密度が1.3g/cm3となるようにプレスし、負極1を作製した。プレス後の活物質層の厚さは65μmである。
[2-3]負極2の作製
 上記の電極用ペーストが塗布された銅箔を16mmφの円形に打ち抜いた後、負極1と同様の方法で、電極密度が1.3g/cm3となるようにプレスし、負極2を作製した。プレス後の活物質層の厚さは65μmである。
[2-4]正極の作製
 LiFe2PO4(D50:7μm)を95g、導電助剤としてのカーボンブラック(TIMCAL社製、C65)を1.2g、気相法炭素繊維(昭和電工株式会社製、VGCF(登録商標)-H)を0.3g、バインダーとしてのポリフッ化ビニリデン(PVdF)を3.5g、N-メチル-ピロリドンを適宜加えながら撹拌・混合し、正極用スラリーを作製した。
The surface condition of the composite carbon particles was observed from the measurement under the above conditions. One composite carbon particle is randomly selected, and the length of the major axis of the primary particles and secondary particles of carbon fine particles (B2) existing on the surface of the composite carbon particle is observed at the above magnification for 5 fields or more, and per field. The length of the major axis of the primary particle and the secondary particle at 5 points was measured. This measurement was performed on four randomly selected composite carbon particles, and a total of 100 points of data were obtained. The average particle size of the primary particles of the carbon fine particles (B2) was obtained from the average value of the major axis of 100 primary particles. The maximum value of the secondary particle diameter of the carbon fine particles (B2) was obtained from the maximum value of the major axis of 100 secondary particles. When there were no secondary particles, the maximum value of the secondary particle size was the maximum value of the primary particle size.
[1-8] Differential Thermal Analysis (DTA)
For differential thermal analysis (DTA), EXSTAR6000 TG / DTA manufactured by SII Nanotechnology Co., Ltd. was used. A 10 mg sample was placed on a platinum pan, and the temperature was raised to 1000 ° C. at 5 ° C./min under a flow of 100 ml / min of air for measurement. As a standard substance, 10 mg of Al 2 O 3 was used.
[2] Fabrication of battery [2-1] Preparation of paste for electrodes 96.5 g of composite carbon particles obtained in each of Examples and Comparative Examples described later, and 0 carbon black (manufactured by TIMCAL, C65) as a conductive auxiliary agent. .5 g, 1.5 g of carboxymethyl cellulose (CMC) as a thickener and 80 to 120 g of water were appropriately added to adjust the viscosity, and fine particles of an aqueous binder (Polysol (registered trademark) LB150, manufactured by Showa Denko Co., Ltd.) were dispersed. 1.5 g of the dispersion was added, and the mixture was stirred and mixed to prepare a slurry-like dispersion having sufficient fluidity, which was used as an electrode paste.
[2-2] Preparation of Negative Electrode 1 The electrode paste was applied on a high-purity copper foil to a thickness of 150 μm using a doctor blade, and vacuum dried at 70 ° C. for 12 hours. After punching with a punching machine so that the coated portion has a size of 4.2 cm × 4.2 cm, it is sandwiched between ultra-steel press plates and pressed so that the electrode density is 1.3 g / cm 3, and the negative electrode 1 is pressed. Made. The thickness of the active material layer after pressing is 65 μm.
[2-3] Preparation of Negative Electrode 2 After punching the copper foil coated with the above electrode paste into a circle of 16 mmφ, the electrode density is 1.3 g / cm 3 in the same manner as for the negative electrode 1. Pressing was performed to prepare a negative electrode 2. The thickness of the active material layer after pressing is 65 μm.
[2-4] Preparation of positive electrode 95 g of LiFe 2 PO 4 (D50: 7 μm), 1.2 g of carbon black (manufactured by TIMCAL, C65) as a conductive auxiliary agent, vapor phase carbon fiber (manufactured by Showa Denko Co., Ltd.) , VGCF (registered trademark) -H) (0.3 g), polyvinylidene fluoride (PVdF) as a binder (3.5 g), and N-methyl-pyrrolidone were appropriately added and mixed to prepare a slurry for a positive electrode.
 この正極用スラリーを厚み20μmのアルミ箔上に厚さが均一になるようにロールコーターにより塗布し、乾燥後、ロールプレスを行い、塗布部が4.2cm×4.2cmとなるように打ち抜き、正極を得た。プレス後の活物質層の厚さは65μmである。
[2-5]電解液の作製
 EC(エチレンカーボネート)3質量部、DMC(ジメチルカーボネート)2質量部及びEMC(エチルメチルカーボネート)5質量部の混合液に、電解質としてLiPF6を1.2モル/リットル溶解し、添加剤としてVC(ビニレンカーボネート)1質量部を加えて、電解液とした。
[2-6]電池の組み立て
(二極セル)
 負極1の銅箔部にニッケルタブを、正極のアルミ箔部にアルミタブを超音波溶接機で溶接しとりつけた。ポリプロピレン製フィルム微多孔膜を介して、負極1の活物質層側と正極の活物質層側とを対向させ積層し、アルミラミネートフィルムによりパックし、電解液を注液後、開口部を熱融着により封止し、二極セルを作製した。
(対極リチウムセル(ハーフセル))
 ポリプロピレン製のねじ込み式フタつきのセル(内径約18mm)内において、負極2の活物質層側と16mmφに打ち抜いた金属リチウム箔との間にセパレーター(ポリプロピレン製マイクロポーラスフィルム(セルガード2400))で挟み込んで積層し、電解液を加えて加締め機で加締めることで、対極リチウムセルを作製した。
[3]電池の評価
[3-1]初回クーロン効率の測定
 対極リチウムセルを用いて25℃に設定した恒温槽内で試験を行った。レストポテンシャルから0.005Vまで0.02mAで定電流充電を行った。次に0.005Vで定電圧充電に切り替え、定電流充電と定電圧充電とを合わせて40時間になるように充電を行い、初回充電容量(a)を測定した。
This positive electrode slurry is applied onto an aluminum foil having a thickness of 20 μm with a roll coater so that the thickness is uniform, and after drying, a roll press is performed to punch out the coated portion so that the coated portion is 4.2 cm × 4.2 cm. A positive electrode was obtained. The thickness of the active material layer after pressing is 65 μm.
[2-5] Preparation of Electrolyte Solution 1.2 mol of LiPF 6 as an electrolyte in a mixed solution of 3 parts by mass of EC (ethylene carbonate), 2 parts by mass of DMC (dimethyl carbonate) and 5 parts by mass of EMC (ethyl methyl carbonate). / L was dissolved, and 1 part by mass of VC (vinylene carbonate) was added as an additive to prepare an electrolytic solution.
[2-6] Battery assembly (bipolar cell)
A nickel tab was welded to the copper foil portion of the negative electrode 1 and an aluminum tab was welded to the aluminum foil portion of the positive electrode by an ultrasonic welding machine. The active material layer side of the negative electrode 1 and the active material layer side of the positive electrode are opposed to each other and laminated through a polypropylene film microporous film, packed with an aluminum laminate film, the electrolytic solution is injected, and then the opening is heat-melted. It was sealed by wearing to prepare a bipolar cell.
(Counterpolar lithium cell (half cell))
In a cell with a screw-in lid made of polypropylene (inner diameter of about 18 mm), a separator (polypropylene microporous film (cell guard 2400)) is sandwiched between the active material layer side of the negative electrode 2 and the metallic lithium foil punched to 16 mmφ. A counter electrode lithium cell was produced by laminating, adding an electrolytic solution, and crimping with a crimping machine.
[3] Evaluation of battery [3-1] Measurement of initial Coulomb efficiency A test was conducted in a constant temperature bath set at 25 ° C. using a counter electrode lithium cell. Constant current charging was performed at 0.02 mA from the rest potential to 0.005 V. Next, the constant voltage charging was switched to 0.005 V, and the constant current charging and the constant voltage charging were charged for 40 hours in total, and the initial charge capacity (a) was measured.
 上限電圧1.5Vとして0.2mAで定電流放電を行い、初回放電容量(b)を測定した。
 初回放電容量(b)/初回充電容量(a)を百分率で表した値、すなわち100×(b)/(a)を初回クーロン効率とした。
[3-2]基準容量の測定
 二極セルを用いて、25℃に設定した恒温槽内で試験を行った。セルを上限電圧4Vとして0.2C(満充電状態の電池を1時間で放電する電流値を1Cとする、以下同様)で定電流充電したのち、カットオフ電流値0.85mA、4Vで定電圧充電した。その後、下限電圧2V、0.2Cで定電流放電を行った。上記操作を計4回繰り返し、4回目の放電容量を二極セルの基準容量(c)とした。
[3-3]高温サイクル特性の測定
 二極セルを用いて、55℃に設定した恒温槽中で試験を行った。充電はレストポテンシャルから上限電圧を4Vとして定電流値85mA(5C相当)で定電流充電を行ったのち、カットオフ電流値0.34mA、4Vで定電圧充電を行った。
A constant current discharge was performed at 0.2 mA with an upper limit voltage of 1.5 V, and the initial discharge capacity (b) was measured.
The value obtained by expressing the initial discharge capacity (b) / initial charge capacity (a) as a percentage, that is, 100 × (b) / (a) was defined as the initial coulomb efficiency.
[3-2] Measurement of reference capacity A test was conducted in a constant temperature bath set at 25 ° C. using a bipolar cell. After charging the cell with a constant current of 0.2C (the current value for discharging a fully charged battery in 1 hour is 1C, the same applies hereinafter) with the upper limit voltage of 4V, the cutoff current value is 0.85mA and the constant voltage is 4V. I charged it. Then, constant current discharge was performed at a lower limit voltage of 2 V and 0.2 C. The above operation was repeated a total of four times, and the fourth discharge capacity was set as the reference capacity (c) of the bipolar cell.
[3-3] Measurement of high temperature cycle characteristics The test was conducted in a constant temperature bath set at 55 ° C. using a bipolar cell. For charging, constant current charging was performed at a constant current value of 85 mA (equivalent to 5C) with an upper limit voltage of 4 V from the rest potential, and then constant voltage charging was performed at a cutoff current value of 0.34 mA and 4 V.
 その後、下限電圧2Vとして、85mAで定電流放電を行った。
 上記条件で、500サイクル充放電を繰り返し、高温サイクル放電容量(d)を測定した。上記条件で測定した高温サイクル放電容量(d)/二極セルの基準容量(c)を百分率で表した値、すなわち100×(d)/(c)を高温サイクル容量維持率とした。
[3-4]内部抵抗(DC-IR)の測定
 試験は25℃に設定した恒温槽内で行った。満充電状態から満充電容量の50%まで0.1Cで定電流放電をした。30分休止後、17mAを5秒放電したときの電圧降下量からオームの法則(R=ΔV/0.017)により二極セルの内部抵抗(DC-IR)(e)を求めた。
[3-5]高温保存・回復特性の測定試験
 二極セルを用いて、充電及び放電のいずれについても25℃に設定した恒温槽内で試験を行った。セルを上限電圧4Vとして0.2Cで定電流充電したのち、カットオフ電流値0.34mAとして4Vで定電圧充電した。充電したセルを60℃に設定した恒温槽で4週間静置後、下限電圧2Vで0.2Cで定電流放電し、放電容量を測定した。この放電容量を高温保存容量(f)とした。二極セルの基準容量(c)に対する高温保存容量(f)を百分率で表した値、すなわち100×(f)/(c)を高温保持特性の値とした。
Then, a constant current discharge was performed at 85 mA with a lower limit voltage of 2 V.
Under the above conditions, 500 cycles of charging and discharging were repeated, and the high temperature cycle discharging capacity (d) was measured. The high temperature cycle discharge capacity (d) measured under the above conditions / the reference capacity (c) of the bipolar cell was expressed as a percentage, that is, 100 × (d) / (c) was defined as the high temperature cycle capacity retention rate.
[3-4] Measurement of internal resistance (DC-IR) The test was conducted in a constant temperature bath set at 25 ° C. A constant current discharge was performed at 0.1 C from a fully charged state to 50% of the fully charged capacity. After a 30-minute rest, the internal resistance (DC-IR) (e) of the bipolar cell was determined by Ohm's law (R = ΔV / 0.017) from the amount of voltage drop when 17 mA was discharged for 5 seconds.
[3-5] Measurement test of high temperature storage / recovery characteristics Using a bipolar cell, a test was conducted in a constant temperature bath set at 25 ° C. for both charging and discharging. The cell was charged at a constant current of 0.2 C with an upper limit voltage of 4 V, and then charged at a constant voltage of 4 V with a cutoff current value of 0.34 mA. The charged cell was allowed to stand in a constant temperature bath set at 60 ° C. for 4 weeks, and then discharged at a constant current of 0.2 C at a lower limit voltage of 2 V to measure the discharge capacity. This discharge capacity was defined as the high temperature storage capacity (f). The high temperature storage capacity (f) with respect to the reference capacity (c) of the bipolar cell was expressed as a percentage, that is, 100 × (f) / (c) was defined as the value of the high temperature holding characteristic.
 保存容量の測定後、セルを上限電圧4Vとして0.2Cで定電流充電したのち、カットオフ電流値0.34mAとして4Vで定電圧充電を行った。その後、下限電圧2V、0.2Cで定電流放電を行い、放電容量を測定した。この放電容量を高温回復容量(g)とした。二極セルの基準容量(c)に対する高温回復容量(g)を百分率で表した値、すなわち100×(g)/(c)を高温回復特性の値とした。
[3-6]低温充放電レート測定
 二極セルを用いて試験を行った。25℃に設定した恒温槽内にてセルを上限電圧4Vとして0.2Cで定電流充電したのち、カットオフ電流値0.34mAとして4Vで定電圧充電した。充電したセルを-20℃に設定した恒温槽にて下限電圧2V、1Cで定電流放電し、放電容量を測定した。この放電容量を低温放電容量(h)とした。二極セルの基準容量(c)に対する低温放電容量(h)を百分率で表した値、すなわち100×(h)/(c)を低温放電レート特性の値とした。
After measuring the storage capacity, the cell was charged at a constant current of 0.2 C with an upper limit voltage of 4 V, and then charged at a constant voltage of 4 V with a cutoff current value of 0.34 mA. Then, a constant current discharge was performed at a lower limit voltage of 2 V and 0.2 C, and the discharge capacity was measured. This discharge capacity was defined as the high temperature recovery capacity (g). The high temperature recovery capacity (g) with respect to the reference capacity (c) of the bipolar cell was expressed as a percentage, that is, 100 × (g) / (c) was taken as the value of the high temperature recovery characteristic.
[3-6] Low temperature charge / discharge rate measurement A test was conducted using a bipolar cell. The cell was constantly charged at 0.2 C with an upper limit voltage of 4 V in a constant temperature bath set at 25 ° C., and then charged at a constant voltage of 4 V with a cutoff current value of 0.34 mA. The charged cell was discharged with a constant current at a lower limit voltage of 2V and 1C in a constant temperature bath set at −20 ° C., and the discharge capacity was measured. This discharge capacity was defined as the low temperature discharge capacity (h). The value of the low temperature discharge capacity (h) with respect to the reference capacity (c) of the bipolar cell expressed as a percentage, that is, 100 × (h) / (c) was taken as the value of the low temperature discharge rate characteristic.
 低温放電容量の測定後、恒温槽内温度を25℃に戻し、下限電圧2V、0.2Cで定電流放電を行った。そのセルを-20℃に設定した恒温槽にて上限電圧4Vとして1Cで定電流充電したのち、カットオフ電流値0.34mAとして4Vで定電圧充電し、充電容量を測定した。この充電容量を低温充電容量(i)とした。二極セルの基準容量(c)に対する低温充電容量(i)を百分率で表した値、すなわち100×(i)/(c)を低温充電レート特性の値とした。
[4]原料
 炭素粒子(A)
 [黒鉛粒子(SCMG(登録商標))]
昭和電工株式会社製人造黒鉛、50%粒子径(D50):6.0μm、BET比表面積:5.9m2/g、ラマンR値0.10、中実構造。
After measuring the low temperature discharge capacity, the temperature inside the constant temperature bath was returned to 25 ° C., and constant current discharge was performed at a lower limit voltage of 2 V and 0.2 C. The cell was charged at a constant current of 1C with an upper limit voltage of 4V in a constant temperature bath set at −20 ° C., and then charged with a constant voltage of 4V with a cutoff current value of 0.34mA, and the charging capacity was measured. This charging capacity was defined as the low temperature charging capacity (i). The low temperature charge capacity (i) with respect to the reference capacity (c) of the bipolar cell was defined as a percentage value, that is, 100 × (i) / (c) was defined as the value of the low temperature charge rate characteristic.
[4] Raw material Carbon particles (A)
[Graphite particles (SCMG®)]
Showa Denko KK, 50% particle size (D50): 6.0 μm, BET specific surface area: 5.9 m 2 / g, Raman R value 0.10, solid structure.
 [シリコン含有黒鉛粒子(SiG)]
 上記SCMG(登録商標)65質量部とシリコン微粒子(D50=100nm)13質量部と石油系ピッチ(10μm、残炭率70%)32質量部を混合し、窒素雰囲気下1000℃で焼成したのち粉砕して得た。このSiGはD50が10.0μm、BET比表面積が3.0m2/g、ラマンR値が0.36、ケイ素含有量は13wt%であった。
[Silicon-containing graphite particles (SiG)]
65 parts by mass of SCMG (registered trademark), 13 parts by mass of silicon fine particles (D50 = 100 nm), and 32 parts by mass of petroleum-based pitch (10 μm, residual coal ratio 70%) are mixed, fired at 1000 ° C. in a nitrogen atmosphere, and then pulverized. I got it. This SiG had a D50 of 10.0 μm, a BET specific surface area of 3.0 m 2 / g, a Raman R value of 0.36, and a silicon content of 13 wt%.
 炭素性被膜層(B1)の原料:表1及び表2に示す炭素質被覆材。
 炭素微粒子(B2):カーボンブラック(TIMCAL製、SUPER C65)、BET比表面積:62m2/g、一次粒子の平均粒径:50nm(前記のSEM観察による測定)。
実施例1-26,比較例1-22、26、27:
 各実施例及び各比較例において、表1及び表2に示す原料及び割合でマルチパーパスミキサー(日本コークス工業株式会社製)に投入し、常温で10分間乾式混合を行った。その混合物を窒素ガス雰囲気下で表1及び2に示す温度にて電気式管状炉にて1時間熱処理を行い、複合炭素粒子または炭素粒子を得た。なお、表1及び2において、熱処理工程の欄に「なし」とあるのは、該当する熱処理工程を行っていないことを意味する。
Raw material of carbonaceous coating layer (B1): Carbonaceous coating material shown in Tables 1 and 2.
Carbon fine particles (B2): carbon black (manufactured by TIMCAL, SUPER C65), BET specific surface area: 62 m 2 / g, average particle size of primary particles: 50 nm (measured by the above SEM observation).
Examples 1-26, Comparative Examples 1-22, 26, 27:
In each Example and each Comparative Example, the raw materials and ratios shown in Tables 1 and 2 were put into a multipurpose mixer (manufactured by Nippon Coke Industries Co., Ltd.), and dry mixing was performed at room temperature for 10 minutes. The mixture was heat-treated in an electric tubular furnace for 1 hour at the temperatures shown in Tables 1 and 2 under a nitrogen gas atmosphere to obtain composite carbon particles or carbon particles. In addition, in Tables 1 and 2, "none" in the column of the heat treatment step means that the corresponding heat treatment step is not performed.
 得られた複合炭素粒子に対し、各種物性を測定した。また、得られた複合炭素粒子を用いて電池を作製し評価した。その結果を表3~6に示す。
 実施例5、7、比較例5及び9で得られた複合炭素粒子のSEM写真を図1~4にそれぞれ示す。実施例5、比較例5で得られた複合炭素粒子のR値イメージング結果を図5及び6にそれぞれ示す。R値イメージングは濃淡がない方がR値のバラツキが少ない(変動係数が小さい)ことを表す。
比較例23-25、28:
 流動式反応炉にベンゼンを0.05g/L含む窒素ガスを1L/minで導入し、900℃で表2に示す時間で、炭素粒子(A)と炭素微粒子(B2)の混合物に流動状態で化学蒸着(Chemical Vapor Deposition:CVD)処理した。CVD処理に用いたベンゼンの使用量は1~5質量%であった。
Various physical properties of the obtained composite carbon particles were measured. In addition, a battery was prepared and evaluated using the obtained composite carbon particles. The results are shown in Tables 3-6.
SEM photographs of the composite carbon particles obtained in Examples 5 and 7 and Comparative Examples 5 and 9 are shown in FIGS. 1 to 4, respectively. The R value imaging results of the composite carbon particles obtained in Example 5 and Comparative Example 5 are shown in FIGS. 5 and 6, respectively. In R-value imaging, the absence of shading indicates that the variation in R-value is small (the coefficient of variation is small).
Comparative Examples 23-25, 28:
Nitrogen gas containing 0.05 g / L of benzene was introduced into the fluid reaction reactor at 1 L / min, and the mixture of carbon particles (A) and carbon fine particles (B2) was in a fluid state at 900 ° C. for the time shown in Table 2. Chemical Vapor Deposition (CVD) treatment was performed. The amount of benzene used in the CVD treatment was 1 to 5% by mass.
 得られた複合炭素粒子に対し、実施例と同様に各種物性を測定し電池の作製を行った。その結果を表4及び6に示す。 For the obtained composite carbon particles, various physical properties were measured in the same manner as in the examples, and a battery was manufactured. The results are shown in Tables 4 and 6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例の複合炭素粒子は、炭素粒子(A)及びその表面を被覆する炭素性被覆層(B)を含む複合炭素粒子であって、前記炭素性被覆層(B)は炭素性被膜層(B1)と炭素微粒子(B2)とを含み、空気中での示差熱分析において200℃以上620℃未満に1つのピークと、620℃以上1000℃以下に2つ以上のピークを有する複合炭素粒子であり、各実施例の電池評価の結果が比較例より優れていることがわかる。
Figure JPOXMLDOC01-appb-T000006
The composite carbon particles of the examples are composite carbon particles including the carbon particles (A) and the carbonic coating layer (B) that coats the surface thereof, and the carbonic coating layer (B) is the carbonic coating layer (B1). ) And carbon fine particles (B2), and has one peak at 200 ° C. or higher and lower than 620 ° C. and two or more peaks at 620 ° C. or higher and 1000 ° C. or lower in differential thermal analysis in air. It can be seen that the results of the battery evaluation of each example are superior to those of the comparative example.
 実施例と比較例1~2とを対比することより明らかなように、空気中での示差熱分析において200℃以上620℃未満に1つのピークと、620℃以上1000℃以下に2つ以上のピークを有する複合炭素粒子は、620℃以上1000℃以下に1つのピークのみを有する炭素粒子に比べて、高温特性及び低温特性がバランス良く向上する。 As is clear from the comparison between Examples and Comparative Examples 1 and 2, one peak at 200 ° C. or higher and lower than 620 ° C. and two or more peaks at 620 ° C. or higher and 1000 ° C. or lower in the differential thermal analysis in air. The composite carbon particles having a peak have well-balanced improvement in high temperature characteristics and low temperature characteristics as compared with carbon particles having only one peak at 620 ° C. or higher and 1000 ° C. or lower.
 実施例2、5及び8と比較例3との対比から明らかなように、空気中での示差熱分析において200℃以上620℃未満に1つのピークと、620℃以上1000℃以下に2つ以上のピークを有する複合炭素粒子は、620℃以上1000℃以下に2つのピークのみ有する複合炭素粒子に比べて、初回クーロン効率、高温特性及び低温特性のすべてにおいて優れている。 As is clear from the comparison between Examples 2, 5 and 8 and Comparative Example 3, one peak at 200 ° C. or higher and lower than 620 ° C. and two or more peaks at 620 ° C. or higher and 1000 ° C. or lower in the differential thermal analysis in air. The composite carbon particles having the peak of 620 ° C. or higher and 1000 ° C. or lower are superior in all of the initial Coulomb efficiency, high temperature characteristics and low temperature characteristics as compared with the composite carbon particles having only two peaks.
 実施例1、4及び7と比較例7とを対比からそれぞれ明らかなように、空気中での示差熱分析において200℃以上620℃未満に1つのピークと、620℃以上1000℃以下に2つ以上のピークを有する複合炭素粒子は、200℃以上620℃未満に1つのピークと、620℃以上1000℃以下に1つのピークを有する複合炭素粒子に比べて、低温特性において優れている。 As is clear from the comparison between Examples 1, 4 and 7 and Comparative Example 7, one peak at 200 ° C. or higher and lower than 620 ° C. and two peaks at 620 ° C. or higher and 1000 ° C. or lower in the differential thermal analysis in air. The composite carbon particles having the above peaks are superior in low temperature characteristics to the composite carbon particles having one peak at 200 ° C. or higher and lower than 620 ° C. and one peak at 620 ° C. or higher and 1000 ° C. or lower.
 実施例1~3と比較例4~6とをそれぞれ対比することにより明らかなように、空気中での示差熱分析において200℃以上620℃未満に1つのピークと、620℃以上1000℃以下に2つ以上のピークを有する複合炭素粒子は、620℃以上1000℃以下に3つのピークを有する複合炭素粒子に比べて、初回クーロン効率、高温特性において優れている。 As is clear by comparing Examples 1 to 3 and Comparative Examples 4 to 6, one peak at 200 ° C. or higher and lower than 620 ° C. and 620 ° C. or higher and 1000 ° C. or lower in the differential thermal analysis in air. Composite carbon particles having two or more peaks are superior to composite carbon particles having three peaks at 620 ° C. or higher and 1000 ° C. or lower in terms of initial Coulomb efficiency and high temperature characteristics.
 カルボン酸化合物を用いてもその量が少なすぎると200℃以上620℃未満に1つのピークを有さず、カルボン酸化合物を用いる効果が十分に発揮されない(比較例8、9及び10)。 Even if the carboxylic acid compound is used, if the amount is too small, it does not have one peak at 200 ° C. or higher and lower than 620 ° C., and the effect of using the carboxylic acid compound is not sufficiently exhibited (Comparative Examples 8, 9 and 10).
 炭素質被覆材として所定のカルボキシ基やヒドロキシ基を含まない化合物を用いた複合炭素粒子は、空気中での示差熱分析において200℃以上620℃未満にピークを有さず、高温での電池特性が劣っている(比較例11~14)。炭素質被覆材としてカルボン酸化合物とピッチの両方を用いた複合炭素粒子もまた、空気中での示差熱分析において200℃以上620℃未満にピークを有さず、高温での電池特性は劣っている(比較例15~22)。また、この場合、R値の変動係数が大きいことから、コーティングが不均一であり、被覆の効果が十分に得られていない
 CVD処理による被覆を行った場合には、空気中での示差熱分析において200℃以上620℃未満に1つのピークを有さず、また炭素粒子のような凹凸の大きい粒子に対して炭素性被膜層を薄く均一に制御することが困難であり、高温での電池特性が十分ではない(比較例23~25、28)。
Composite carbon particles using a compound that does not contain a predetermined carboxy group or hydroxy group as a carbonaceous coating material do not have a peak at 200 ° C or higher and lower than 620 ° C in differential thermal analysis in air, and have battery characteristics at high temperatures. Is inferior (Comparative Examples 11 to 14). Composite carbon particles using both a carboxylic acid compound and pitch as the carbonaceous coating also do not have a peak at 200 ° C. or higher and lower than 620 ° C. in differential thermal analysis in air, and the battery characteristics at high temperatures are inferior. (Comparative Examples 15 to 22). Further, in this case, since the coefficient of variation of the R value is large, the coating is non-uniform and the coating effect is not sufficiently obtained. When the coating is performed by the CVD treatment, the differential thermal analysis in air is performed. It does not have one peak at 200 ° C. or higher and lower than 620 ° C., and it is difficult to control the carbonaceous coating layer thinly and uniformly with respect to particles having large irregularities such as carbon particles, and the battery characteristics at high temperature. Is not sufficient (Comparative Examples 23 to 25, 28).
 炭素質被覆材としてソフトカーボンであるピッチとハードカーボンであるPVA(ポリビニルアルコール)樹脂を被覆層形成材料として同時に用いた場合、空気中での示差熱分析において625℃と650℃と886℃に異なる示差熱ピークが観察され、高温特性、低温特性が共に十分ではない(比較例26)。 When pitch, which is soft carbon, and PVA (polyvinyl alcohol) resin, which is hard carbon, are used simultaneously as the coating layer forming material as the carbonaceous coating material, the differential thermal analysis in air differs between 625 ° C, 650 ° C, and 886 ° C. A differential thermal peak is observed, and both high temperature characteristics and low temperature characteristics are not sufficient (Comparative Example 26).
 実施例25,26と比較例27を対比することにより明らかなように、炭素粒子(A)としてシリコン含有黒鉛炭素粒子(SiG)を用いた場合も、表面にグラフェン層と炭素微粒子(B2)とを含む炭素性被覆層(B)が形成された複合炭素粒子は、炭素粒子(A)表面にアモルファス層と炭素微粒子(B2)とを含む炭素性被覆層(B)が形成された複合炭素粒子に比べて、初回クーロン効率、高温特性において優れている。 As is clear from comparing Examples 25 and 26 with Comparative Example 27, even when silicon-containing graphite carbon particles (SiG) are used as the carbon particles (A), a graphene layer and carbon fine particles (B2) are formed on the surface. The composite carbon particles in which the carbonic coating layer (B) containing the above is formed are the composite carbon particles in which the carbonic coating layer (B) containing the amorphous layer and the carbon fine particles (B2) is formed on the surface of the carbon particles (A). Compared to, it is excellent in initial cooling efficiency and high temperature characteristics.

Claims (19)

  1.  炭素粒子(A)及びその表面を被覆する炭素性被覆層(B)を含む複合炭素粒子であって、前記炭素性被覆層(B)は炭素性被膜層(B1)と炭素微粒子(B2)とを含み、空気中での示差熱分析(DTA)において200℃以上620℃未満に1つのピークと、620℃以上1000℃以下に2つ以上のピークを有する複合炭素粒子。 It is a composite carbon particle containing a carbon particle (A) and a carbon coating layer (B) covering the surface thereof, and the carbon coating layer (B) is composed of a carbon coating layer (B1) and carbon fine particles (B2). A composite carbon particle containing, and having one peak at 200 ° C. or higher and lower than 620 ° C. and two or more peaks at 620 ° C. or higher and 1000 ° C. or lower in differential thermal analysis (DTA) in air.
  2.  顕微ラマン分光分析法によって測定されるR値(1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)の比(ID/IG))の変動係数が0.50以下である請求項1に記載の複合炭素粒子。 Coefficient of variation of R values measured by Raman spectroscopy (ratio (ID / IG) of 1350 cm -1 vicinity of the peak intensity (ID) and 1580 cm -1 vicinity of the peak intensity (IG)) is 0.50 or less The composite carbon particle according to claim 1.
  3.  ラマン分光分析法によって測定されるR値(1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)の比(ID/IG))が0.10以上1.50以下である請求項1または請求項2に記載の複合炭素粒子。 R value measured by Raman spectroscopy (ratio of 1350 cm -1 vicinity of the peak intensity (ID) and 1580 cm -1 vicinity of the peak intensity (IG) (ID / IG) ) is 0.10 to 1.50 The composite carbon particle according to claim 1 or 2.
  4.  X線回折法で測定される(002)面の平均面間隔d002が0.3354nm以上0.3370nm以下である請求項1~3のいずれか1項に記載の複合炭素粒子。 The composite carbon particles according to any one of claims 1 to 3, wherein the average surface spacing d002 of the (002) planes measured by the X-ray diffraction method is 0.3354 nm or more and 0.3370 nm or less.
  5.  レーザー回折法による体積基準累積粒度分布における50%粒子径(D50)が1.0μm以上50.0μm以下であり、400回タッピング密度が0.30g/cm3以上1.50g/cm3以下である請求項1~4のいずれか1項に記載の複合炭素粒子。 Is 50% particle size (D50) of the 1.0μm or 50.0μm or less in volume-based cumulative particle size distribution by laser diffraction method, it is 400 times the tapping density of 0.30 g / cm 3 or more 1.50 g / cm 3 or less The composite carbon particle according to any one of claims 1 to 4.
  6.  BET比表面積が0.1m2/g以上40.0m2/g以下である請求項1~5のいずれか1項に記載の複合炭素粒子。 The composite carbon particles according to any one of claims 1 to 5, wherein the BET specific surface area is 0.1 m 2 / g or more and 40.0 m 2 / g or less.
  7.  (複合炭素粒子のBET比表面積)/(炭素粒子(A)のBET比表面積)が0.30以上10.00以下である請求項1~6のいずれか1項に記載の複合炭素粒子。 The composite carbon particle according to any one of claims 1 to 6, wherein (BET specific surface area of the composite carbon particle) / (BET specific surface area of the carbon particle (A)) is 0.30 or more and 10.00 or less.
  8.  前記複合炭素粒子および前記炭素粒子(A)のラマン分光分析法によって測定されるR値(1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)との比(ID/IG))の比((複合炭素粒子のR値)/(炭素粒子(A)のR値))が1.50以上20.00以下である請求項1~7のいずれか1項に記載の複合炭素粒子。 Wherein the ratio of the composite carbon particles and the carbon particles R value measured by Raman spectroscopy of (A) (1350cm -1 vicinity of the peak intensity (ID) and 1580 cm -1 vicinity of the peak intensity (IG) (ID / IG))) ((R value of composite carbon particles) / (R value of carbon particles (A))) is 1.50 or more and 20.00 or less according to any one of claims 1 to 7. Composite carbon particles.
  9.  前記炭素粒子(A)が、黒鉛粒子である請求項1~8のいずれか1項に記載の複合炭素粒子。 The composite carbon particle according to any one of claims 1 to 8, wherein the carbon particle (A) is a graphite particle.
  10.  前記炭素粒子(A)が、シリコンを含有する請求項1~9のいずれか1項に記載の複合炭素粒子。 The composite carbon particle according to any one of claims 1 to 9, wherein the carbon particle (A) contains silicon.
  11.  前記炭素微粒子(B2)の一次粒子の平均粒径が10nm以上500nm以下、二次粒子径の最大値が1000nm以下である請求項1~10のいずれか1項に記載の複合炭素粒子。 The composite carbon particle according to any one of claims 1 to 10, wherein the average particle size of the primary particles of the carbon fine particles (B2) is 10 nm or more and 500 nm or less, and the maximum value of the secondary particle diameter is 1000 nm or less.
  12.  前記炭素性被膜層(B1)の厚さが0.1nm以上30.0nm以下である請求項1~11のいずれか1項に記載の複合炭素粒子。 The composite carbon particles according to any one of claims 1 to 11, wherein the carbonaceous coating layer (B1) has a thickness of 0.1 nm or more and 30.0 nm or less.
  13.  前記炭素性被膜層(B1)が、単層グラフェン層または多層グラフェン層を含む請求項1~12のいずれか1項に記載の複合炭素粒子。 The composite carbon particles according to any one of claims 1 to 12, wherein the carbonaceous coating layer (B1) includes a single-layer graphene layer or a multi-layer graphene layer.
  14.  請求項1~13のいずれか1項に記載の複合炭素粒子を製造する方法であって、
     炭素粒子(A)を70.0質量部以上99.89質量部以下、カルボキシ基及びヒドロキシ基をそれぞれ1つ以上有するヒドロキシカルボン酸化合物を0.1質量部以上20.0質量部以下、および炭素微粒子(B2)を0.01質量部以上10.0質量部以下の割合(ただし、前記炭素粒子(A)と前記ヒドロキシカルボン酸化合物と前記炭素微粒子(B2)との合計を100質量部とする。)で含む混合物を熱処理する工程を含む複合炭素粒子の製造方法。
    The method for producing composite carbon particles according to any one of claims 1 to 13.
    70.0 parts by mass or more and 99.89 parts by mass or less of carbon particles (A), 0.1 parts by mass or more and 20.0 parts by mass or less of a hydroxycarboxylic acid compound having at least one carboxy group and one or more hydroxy groups, and carbon The ratio of the fine particles (B2) to 0.01 parts by mass or more and 10.0 parts by mass or less (however, the total of the carbon particles (A), the hydroxycarboxylic acid compound, and the carbon fine particles (B2) is 100 parts by mass. A method for producing composite carbon particles, which comprises a step of heat-treating the mixture contained in.).
  15.  請求項1~13のいずれか1項に記載の複合炭素粒子を製造する方法であって、
     炭素粒子(A)を70.0質量部以上99.89質量部以下、ヒドロキシ基を有さずカルボキシ基を2つ以上有するポリカルボン酸化合物を0.1質量部以上20.0質量部以下、および炭素微粒子(B2)を0.01質量部以上10.0質量部以下の割合(ただし、前記炭素粒子(A)と前記ポリカルボン酸化合物と前記炭素微粒子(B2)との合計を100質量部とする。)で含む混合物を熱処理する工程を含む複合炭素粒子の製造方法。
    The method for producing composite carbon particles according to any one of claims 1 to 13.
    70.0 parts by mass or more and 99.89 parts by mass or less of carbon particles (A), 0.1 parts by mass or more and 20.0 parts by mass or less of a polycarboxylic acid compound having two or more carboxy groups without having a hydroxy group, And the ratio of carbon fine particles (B2) to 0.01 parts by mass or more and 10.0 parts by mass or less (however, the total of the carbon particles (A), the polycarboxylic acid compound, and the carbon fine particles (B2) is 100 parts by mass. A method for producing composite carbon particles, which comprises a step of heat-treating the mixture contained in (1).
  16.  請求項1~13のいずれか1項に記載の複合炭素粒子を製造する方法であって、
     炭素粒子(A)を70.0質量部以上99.89質量部以下、カルボキシ基及びヒドロキシ基をそれぞれ1つ以上有するヒドロキシカルボン酸化合物とヒドロキシ基を有さずカルボキシ基を2つ以上有するポリカルボン酸化合物とを合計で0.1質量部以上20.0質量部以下、および炭素微粒子(B2)を0.01質量部以上10.0質量部以下の割合(ただし、前記炭素粒子(A)と前記ヒドロキシカルボン酸化合物と前記ポリカルボン酸化合物と前記炭素微粒子(B2)との合計を100質量部とする。)で含む混合物を熱処理する工程を含む複合炭素粒子の製造方法。
    The method for producing composite carbon particles according to any one of claims 1 to 13.
    A hydroxycarboxylic acid compound having 70.0 parts by mass or more and 99.89 parts by mass or less of carbon particles (A), each having one or more carboxy groups and one or more hydroxy groups, and a polycarboxylic acid having no hydroxy groups and having two or more carboxy groups. The total proportion of the acid compound is 0.1 parts by mass or more and 20.0 parts by mass or less, and the carbon fine particles (B2) are 0.01 parts by mass or more and 10.0 parts by mass or less (however, with the carbon particles (A)). A method for producing composite carbon particles, which comprises a step of heat-treating a mixture containing the hydroxycarboxylic acid compound, the polycarboxylic acid compound, and the carbon fine particles (B2) in an amount of 100 parts by mass.).
  17.  請求項1~13のいずれか1項に記載の複合炭素粒子を含む負極活物質。 A negative electrode active material containing the composite carbon particles according to any one of claims 1 to 13.
  18.  請求項17に記載の負極活物質と集電体とを含む負極。 A negative electrode containing the negative electrode active material and a current collector according to claim 17.
  19.  請求項18に記載の負極を用いたリチウムイオン二次電池。 A lithium ion secondary battery using the negative electrode according to claim 18.
PCT/JP2020/016524 2019-04-18 2020-04-15 Composite carbon particles, method for manufacturing same and use thereof WO2020213628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-079187 2019-04-18
JP2019079187 2019-04-18

Publications (1)

Publication Number Publication Date
WO2020213628A1 true WO2020213628A1 (en) 2020-10-22

Family

ID=72837560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016524 WO2020213628A1 (en) 2019-04-18 2020-04-15 Composite carbon particles, method for manufacturing same and use thereof

Country Status (2)

Country Link
TW (1) TW202106618A (en)
WO (1) WO2020213628A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163422A1 (en) * 2021-01-26 2022-08-04 株式会社Gsユアサ Power storage element and negative electrode for power storage elements
WO2023119857A1 (en) * 2021-12-22 2023-06-29 パナソニックホールディングス株式会社 Negative electrode for solid-state battery and solid-state battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146144A1 (en) * 2012-03-30 2013-10-03 日本電気株式会社 Negative electrode material for secondary cell, and secondary cell
JP2014107029A (en) * 2012-11-22 2014-06-09 Toyota Motor Corp Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2014116155A (en) * 2012-12-07 2014-06-26 Hitachi Chemical Co Ltd Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery
JP2014123561A (en) * 2012-11-21 2014-07-03 Showa Denko Kk Process of manufacturing negative electrode material for lithium ion battery
JP2015519699A (en) * 2012-05-08 2015-07-09 ハイドロ−ケベック Lithium ion secondary battery and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146144A1 (en) * 2012-03-30 2013-10-03 日本電気株式会社 Negative electrode material for secondary cell, and secondary cell
JP2015519699A (en) * 2012-05-08 2015-07-09 ハイドロ−ケベック Lithium ion secondary battery and production method thereof
JP2014123561A (en) * 2012-11-21 2014-07-03 Showa Denko Kk Process of manufacturing negative electrode material for lithium ion battery
JP2014107029A (en) * 2012-11-22 2014-06-09 Toyota Motor Corp Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2014116155A (en) * 2012-12-07 2014-06-26 Hitachi Chemical Co Ltd Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163422A1 (en) * 2021-01-26 2022-08-04 株式会社Gsユアサ Power storage element and negative electrode for power storage elements
WO2023119857A1 (en) * 2021-12-22 2023-06-29 パナソニックホールディングス株式会社 Negative electrode for solid-state battery and solid-state battery

Also Published As

Publication number Publication date
TW202106618A (en) 2021-02-16

Similar Documents

Publication Publication Date Title
Lv et al. Nanostructured antimony/carbon composite fibers as anode material for lithium-ion battery
JP6593330B2 (en) Nanocarbon composite and method for producing the same
JP6201425B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018504762A (en) Method for producing negative electrode for lithium battery
Huang et al. Structure and electrochemical performance of nanostructured Sn–Co alloy/carbon nanotube composites as anodes for lithium ion batteries
WO2007066673A1 (en) Graphite material, carbon material for battery electrode and battery
Lin et al. Synthesis of carbon-coated Li4Ti5O12 nanosheets as anode materials for high-performance lithium-ion batteries
JP2021116191A (en) Composite carbon material and lithium-ion secondary battery
JP6543428B1 (en) Negative electrode active material for secondary battery and secondary battery
Hsieh et al. Electrochemical performance of lithium iron phosphate cathodes at various temperatures
JP7371735B2 (en) Method for producing negative electrode material for lithium ion secondary batteries, and negative electrode material for lithium ion secondary batteries
JP7456291B2 (en) Carbon-coated composite materials and their applications
JP2017142997A (en) Lithium nickelate-carbon composite positive electrode active material particle powder, and manufacturing method thereof, and nonaqueous electrolyte secondary battery
WO2019131862A1 (en) Negative electrode material for lithium-ion secondary cells
WO2020196610A1 (en) Composite particles and negative electrode material for lithium ion secondary batteries
JP6070222B2 (en) Non-aqueous secondary battery having positive electrode for non-aqueous secondary battery and positive electrode active material for non-aqueous secondary battery using the positive-electrode active material
Sun et al. Incorporating cyclized-polyacrylonitrile with Li4Ti5O12 nanosheet for high performance lithium ion battery anode material
WO2020213628A1 (en) Composite carbon particles, method for manufacturing same and use thereof
Kim et al. Electrochemical performance of Mn3O4 nanorods by N‐doped reduced graphene oxide using ultrasonic spray pyrolysis for lithium storage
JP4021652B2 (en) Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate
WO2020105598A1 (en) Composite carbon particles, method for producing same, and lithium ion secondary battery
JP6377881B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
Su et al. Nitrogen-doped porous carbon coated on graphene sheets as anode materials for Li-ion batteries
JP2017050204A (en) Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery
WO2020213627A1 (en) Composite carbon particle, method for manufacturing same, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP