JP2017142997A - Lithium nickelate-carbon composite positive electrode active material particle powder, and manufacturing method thereof, and nonaqueous electrolyte secondary battery - Google Patents

Lithium nickelate-carbon composite positive electrode active material particle powder, and manufacturing method thereof, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2017142997A
JP2017142997A JP2016023997A JP2016023997A JP2017142997A JP 2017142997 A JP2017142997 A JP 2017142997A JP 2016023997 A JP2016023997 A JP 2016023997A JP 2016023997 A JP2016023997 A JP 2016023997A JP 2017142997 A JP2017142997 A JP 2017142997A
Authority
JP
Japan
Prior art keywords
carbon
active material
lithium nickelate
carbon composite
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016023997A
Other languages
Japanese (ja)
Inventor
亙 小田
Wataru Oda
亙 小田
一誠 河合
Kazushige Kawai
一誠 河合
俊介 河瀬
Shunsuke Kawase
俊介 河瀬
知広 本田
Tomohiro Honda
知広 本田
片山 美和
Miwa Katayama
美和 片山
精二 岡崎
Seiji Okazaki
精二 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2016023997A priority Critical patent/JP2017142997A/en
Publication of JP2017142997A publication Critical patent/JP2017142997A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: lithium nickelate-carbon composite positive electrode active material particle powder having a high electron conductivity and a high mechanical strength; a method for manufacturing the lithium nickelate-carbon composite positive electrode active material particle powder; and a nonaqueous electrolyte secondary battery.SOLUTION: Lithium nickelate-carbon composite positive electrode active material particle powder comprises: a lithium nickelate expressed by the chemical formula, LiNiCoMO(where M represents at least one element of Mn, Al, B, Mg and Zn elements; -0.1≤a≤0.2, 0.05≤b≤0.5, and 0.01≤c≤0.4), which is a composite with carbon having at least a part consisting of carbon nanotube; the content of the carbon is 0.1-5.5 wt%. The average value P/Pof ratios of peak intensities Pof a G prime band to a peak intensity Pof a G band of the carbon is 0.1-0.8. The average value P/Pof ratios of peak intensities Pof the lithium nickelate to a peak intensity Pof the spectra is 0.4-10.SELECTED DRAWING: None

Description

本発明は、高エネルギー密度を有し、且つ、充放電繰り返し特性に優れたニッケル酸リチウム−炭素複合体正極活物質粒子粉末及びその製造方法、並びにそれを用いた非水電解質二次電池に関する。   The present invention relates to a lithium nickelate-carbon composite cathode active material particle powder having a high energy density and excellent charge / discharge repeatability, a method for producing the same, and a nonaqueous electrolyte secondary battery using the same.

近年、携帯電話やパソコン等の電子機器の小型・軽量化に拍車がかかり、これらの駆動用電源として高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、二次電池重量及び体積当たりの充放電容量が大きく、且つ、充放電の繰り返し特性が高い電池が注目されている。   In recent years, electronic devices such as mobile phones and personal computers have been spurred to be smaller and lighter, and the demand for secondary batteries having high energy density as power sources for driving these devices has increased. Under such circumstances, a battery having a large secondary battery weight and charge / discharge capacity per volume and a high charge / discharge repeatability has attracted attention.

従来、高エネルギー型のリチウムイオン二次電池に有用な正極活物質粒子粉末の一つとして、4V級の電圧をもつ層状(岩塩型)構造のニッケル酸リチウムLiNiOが知られている。該粒子粉末は、汎用の正極活物質のコバルト酸リチウムLiCoO粒子粉末に比べ、安価で出力特性に優れているため、主に電動工具主電源に利用されている。近年、その特徴を活かして、電気自動車の駆動電源としても利用されつつある。しかしながら、活物質粒子粉末からのLiイオン以外の溶出や合成時における原料粉末同士の反応の不完全性から、高電圧充電に伴う充放電繰り返し特性の低下や高温保存時のガス発生の問題を引き起こしている。そのため、更なる粉体特性改善が求められている。 Conventionally, lithium nickel oxide LiNiO 2 having a layered (rock salt type) structure having a voltage of 4 V has been known as one of positive electrode active material particle powders useful for high energy type lithium ion secondary batteries. Since the particle powder is inexpensive and excellent in output characteristics as compared with a general-purpose positive electrode active material lithium cobalt oxide LiCoO 2 particle powder, it is mainly used for a power tool main power source. In recent years, taking advantage of its characteristics, it is also being used as a drive power source for electric vehicles. However, elution of other than Li + ions from the active material particle powder and imperfect reaction between raw material powders during synthesis may cause problems such as deterioration of charge / discharge repetition characteristics associated with high voltage charging and gas generation during high temperature storage. Is causing. Therefore, further improvement of powder characteristics is required.

周知の通り、ニッケル酸リチウムはニッケルの一部を他の元素で置換することで、二次電池としての充放電繰り返し特性や熱安定性の改善が図られてきた。代表的な置換元素として、Mn,Coといった電極反応に寄与して得られる容量に関与する遷移金属元素やMg、Al、B、Znといった熱安定性や繰り返し特性を向上させる金属元素がある。   As is well known, lithium nickelate has been improved in charge / discharge repeatability and thermal stability as a secondary battery by substituting a part of nickel with another element. Typical substitutional elements include transition metal elements that contribute to the capacity obtained by contributing to electrode reactions such as Mn and Co, and metal elements that improve thermal stability and repetitive characteristics such as Mg, Al, B, and Zn.

一般に、ニッケル酸リチウム等の正極活物質粒子粉末はカーボンブラックを含む電子導電助剤と高分子系の結着剤と有機溶媒で混合して正極シートが作製されている。正極シート内におけるニッケル酸リチウムと導電剤との存在状態が正極の電気抵抗ひいては電池特性に大きく関わる。従って、正極の導電性改良のために、例えば特許文献1のように導電助剤で正極活物質粒子粉末の表面を被覆する発明や、特許文献2のように有機物の非酸化性雰囲気熱処理で正極活物質粒子の表面に膜状炭素を設けることによって導電性の改善を図った発明や、特許文献3のように電極活物質表面にメカノケミカル法によって炭素材と複合化する発明が示されている。   Generally, a positive electrode active material particle powder such as lithium nickelate is mixed with an electronic conductive assistant containing carbon black, a polymer binder, and an organic solvent to produce a positive electrode sheet. The presence state of the lithium nickelate and the conductive agent in the positive electrode sheet greatly affects the electric resistance of the positive electrode and thus the battery characteristics. Therefore, in order to improve the conductivity of the positive electrode, for example, an invention in which the surface of the positive electrode active material particle powder is coated with a conductive additive as in Patent Document 1 or a non-oxidizing atmosphere heat treatment of organic matter as in Patent Document 2 is performed. An invention that improves the conductivity by providing film-like carbon on the surface of the active material particles, and an invention that combines with the carbon material by the mechanochemical method on the electrode active material surface as shown in Patent Document 3 are shown. .

ところで、ニッケル酸リチウム正極活物質粒子粉末はサブミクロンの一次粒子が強固に凝集して数〜十数μmの二次粒子で構成されていることが多い。初回の充放電による該粒子の膨張・収縮に伴い、粒界に亀裂が入り、該粒界近傍にNi2+による岩塩構造のNiOが形成され、充放電繰り返し特性に悪影響を及ぼすことが報告されている(非特許参考文献)。 By the way, the lithium nickelate positive electrode active material particle powder is often composed of secondary particles of several to several tens of μm in which the submicron primary particles are firmly aggregated. It is reported that with the expansion and contraction of the particles due to the first charge and discharge, cracks are formed in the grain boundaries, and NiO having a rock salt structure due to Ni 2+ is formed in the vicinity of the grain boundaries, which adversely affects the charge and discharge characteristics. (Non-patent reference).

特開2015−84323号公報JP, 2015-84323, A 特開2013−69566号公報JP 2013-69566 A 特開2015−92462号公報Japanese Patent Laying-Open No. 2015-92462

S.Zheng,等 J.Electrochem.Soc.vol.158 (2011) A357−A362. S. Zheng, et al. Electrochem. Soc. vol. 158 (2011) A357-A362.

しかしながら、特許文献1に記載された技術は、導電性炭素材と正極活物質の塗料化及びシート化時の条件を最適化して、正極材料層表面の状態について言及しているに留まり、集電体からの厚み方向に関しては活物質と導電剤との接点が十分に複合化されているとは言い難い。また、特許文献2に記載された技術は、有機化合物の熱分解により活物質の表面を膜状の炭素で被覆するだけでは、粒子同士の接点が増えず、また、炭素膜の結晶性が低い為に導電性も十分に上がっているとは言えないため、改善の余地が十分にある。   However, the technique described in Patent Document 1 only refers to the state of the surface of the positive electrode material layer by optimizing the conditions during coating and sheeting of the conductive carbon material and the positive electrode active material, and collecting current Regarding the thickness direction from the body, it is difficult to say that the contacts between the active material and the conductive agent are sufficiently combined. In addition, the technique described in Patent Document 2 does not increase the number of contact points between particles only by coating the surface of the active material with film-like carbon by thermal decomposition of an organic compound, and the crystallinity of the carbon film is low. For this reason, it cannot be said that the conductivity is sufficiently improved, so there is sufficient room for improvement.

さらに、特許文献3に記載された技術では、カーボンナノチューブと複合化された正極活物質粒子粉末に関する技術とは言い難く、活物質の表面に付着した導電助剤の構造を十分に制御しているとは言い難い。従って、正極活物質粒子粉末全体における導電性を十分に確保するには、多量のカーボンブラックが必要と予想される。   Furthermore, in the technique described in Patent Document 3, it is difficult to say that the technique is related to the positive electrode active material particle powder combined with the carbon nanotube, and the structure of the conductive additive attached to the surface of the active material is sufficiently controlled. It's hard to say. Accordingly, it is expected that a large amount of carbon black is necessary to sufficiently secure the conductivity of the entire positive electrode active material particle powder.

本発明の目的は、上記課題に鑑み、高電子伝導性と高機械的強度を有する正極活物質として作用するニッケル酸リチウム−炭素複合体正極活物質粒子粉末を提供することにある。   In view of the above problems, an object of the present invention is to provide a lithium nickelate-carbon composite cathode active material particle powder that acts as a cathode active material having high electron conductivity and high mechanical strength.

即ち、本発明は、ニッケル酸リチウム−炭素複合体正極活物質粒子粉末であって、前記ニッケル酸リチウムは化学式Li1+aNi1−b−cCo(Mは元素Mn、Al、B、Mg、Znのうち少なくとも1種、−0.1≦a≦0.2、0.05≦b≦0.5、0.01≦c≦0.4)で表わされ、前記炭素の一部は少なくともカーボンナノチューブであり、前記炭素含有量が0.1〜5.5重量%であり、当該正極活物質粒子粉末を励起波長532nmのグリーンレーザーで測定したラマンスペクトルにおいて、炭素のGバンドのピーク強度Pに対するGプライムバンドのピーク強度Pとの比の平均値P/Pが0.1〜0.8であり、同スペクトルのピーク強度Pに対するニッケル酸リチウムのピーク強度Pとの比の平均値P/Pが0.4〜10であることを特徴とするニッケル酸リチウム−炭素複合体正極活物質粒子粉末である(本発明1)。 That is, the present invention relates to a lithium nickelate-carbon composite positive electrode active material powder, wherein the lithium nickelate has a chemical formula Li 1 + a Ni 1-bc Co b McO 2 (M is an element Mn, Al, At least one of B, Mg, and Zn, represented by −0.1 ≦ a ≦ 0.2, 0.05 ≦ b ≦ 0.5, 0.01 ≦ c ≦ 0.4), A part of at least carbon nanotubes, the carbon content is 0.1 to 5.5% by weight, and a carbon G band in a Raman spectrum measured with a green laser having an excitation wavelength of 532 nm. mean value P a / P G of the ratio of the peak intensity P a G-prime band to the peak intensity P G of is 0.1 to 0.8, the peak intensity of the lithium nickelate to the peak intensity P G of the spectrum Lithium nickelate, wherein the average value P M / P G of the ratio of the P M is 0.4 to 10 - is a carbon composite positive electrode active material particles (the present invention 1).

また、本発明は、本発明1に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末であって、8kNの荷重の圧縮成型体密度が2.7〜3.6g/ccであり、且つ体積抵抗率が0.1〜200Ω・cmであるニッケル酸リチウム−炭素複合体正極活物質粒子粉末である(本発明2)。   Further, the present invention is the lithium nickelate-carbon composite cathode active material particle powder according to the present invention 1, wherein the density of the compression molded body under a load of 8 kN is 2.7 to 3.6 g / cc, and It is a lithium nickelate-carbon composite cathode active material particle powder having a volume resistivity of 0.1 to 200 Ω · cm (Invention 2).

また、本発明は、本発明1又は2に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末であって、前記ピーク強度比の平均値P/Pと、4kN、6kN、8kNの荷重をかけた際の圧縮成型体密度に対する体積抵抗率をプロットした時の傾きXの絶対値|X|との間に、下記式(1)が成り立つことを特徴とする、ニッケル酸リチウム−炭素複合体正極活物質粒子粉末である(本発明3)。
|X|/(P/P)≦500 ・・・式(1)
Further, the present invention is lithium nickelate according to the present invention 1 or 2 - a carbon composite positive electrode active material particles, the average value P M / P G of the peak intensity ratio, 4 kN, 6 kN, the 8kN Lithium nickelate-carbon characterized in that the following formula (1) holds between the absolute value | X | of the slope X when plotting the volume resistivity against the density of the compression molded body when a load is applied. This is a composite positive electrode active material particle powder (Invention 3).
| X | / (P M / P G ) ≦ 500 (1)

また、本発明は、本発明1〜3のいずれか1項に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末であって、P/P=0.28での水蒸気吸着量が1mg/g以下であるニッケル酸リチウム−炭素複合体正極活物質粒子粉末である(本発明4)。 The present invention is the lithium nickelate-carbon composite positive electrode active material powder according to any one of the first to third aspects, wherein the water vapor adsorption amount at P / P 0 = 0.28 is 1 mg. Lithium nickelate-carbon composite positive electrode active material particles that are less than / g (Invention 4).

また、本発明は、本発明1〜4のいずれか1項に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末であって、BET比表面積が10m/g以下であるニッケル酸リチウム−炭素複合体正極活物質粒子粉末である(本発明5)。 Further, the present invention is the lithium nickelate-carbon composite positive electrode active material powder according to any one of the first to fourth aspects, wherein the BET specific surface area is 10 m 2 / g or less. It is a carbon composite cathode active material particle powder (Invention 5).

また、本発明は、本発明1〜5のいずれか1項に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末であって、前記カーボンナノチューブが節を有し、且つチューブ外径が5nm〜50nmであるニッケル酸リチウム−炭素複合体正極活物質粒子粉末である(本発明6)。   The present invention is the lithium nickelate-carbon composite cathode active material powder according to any one of the present inventions 1 to 5, wherein the carbon nanotube has a node, and the tube outer diameter is 5 nm. It is a lithium nickelate-carbon composite positive electrode active material particle powder of ˜50 nm (Invention 6).

また、本発明は、本発明1〜6のいずれか1項に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末の製造方法であって、不活性ガス雰囲気下でニッケル酸リチウムと炭素をメカノケミカル処理によってニッケル酸リチウム表面に被覆させることを特徴とするニッケル酸リチウム−炭素複合体正極活物質粒子粉末の製造方法である(本発明7)。   Moreover, this invention is a manufacturing method of lithium nickelate-carbon composite positive electrode active material particle powder of any one of this invention 1-6, Comprising: Lithium nickelate and carbon are added in inert gas atmosphere. This is a method for producing a lithium nickelate-carbon composite positive electrode active material particle powder characterized in that the lithium nickelate surface is coated by mechanochemical treatment (Invention 7).

また、本発明は、本発明1〜6のいずれか1項に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末を二次電池電極活物質として備える二次電池である(本発明8)。   Moreover, this invention is a secondary battery provided with the lithium nickelate-carbon composite positive electrode active material particle powder of any one of this invention 1-6 as a secondary battery electrode active material (this invention 8). .

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末によれば、少なくとも一部がカーボンナノチューブである炭素とニッケル酸リチウムが複合化されており、少量の炭素で該粒子粉末全体の電子伝導性を高めると共に機械的強度を高める。従って、得られる電極密度は高く、且つ電気抵抗が低い電極シートとなり、それを具備するリチウムイオン二次電池は高エネルギー密度を有し、且つ、充放電繰り返し特性に優れている。   According to the lithium nickelate-carbon composite positive electrode active material particle powder according to the present invention, at least a portion of carbon nanotube carbon and lithium nickelate are composited, and a small amount of carbon is used to form an electron in the entire particle powder. Increases conductivity and mechanical strength. Accordingly, the obtained electrode sheet has a high electrode density and a low electric resistance, and the lithium ion secondary battery having the electrode sheet has a high energy density and excellent charge / discharge repetition characteristics.

実施例1のニッケル酸リチウム−炭素複合体正極活物質粒子粉末の二次電子(SE)像、及びNi元素とC元素のEDXマッピングである。It is the secondary electron (SE) image of the lithium nickelate-carbon composite cathode active material particle powder of Example 1, and EDX mapping of Ni element and C element. 実施例1および比較例3のバックグラウンドを含むラマンスペクトルである。It is a Raman spectrum including the background of Example 1 and Comparative Example 3. 比較例2のニッケル酸リチウム−炭素複合体正極活物質粒子粉末の二次電子(SE)像、及びNi元素とC元素のEDXマッピングである。It is the secondary electron (SE) image of the lithium nickelate-carbon composite positive electrode active material powder of Comparative Example 2, and EDX mapping of Ni element and C element. 実施例1、2、3、比較例1、2、3、及びニッケル酸リチウムの0.5〜18kNの荷重を掛けた時の圧縮成型体密度に対する体積抵抗率をプロットしたものである。It plots the volume resistivity with respect to the compression molding body density when applying the load of 0.5-18 kN of Examples 1, 2, 3, Comparative Examples 1, 2, 3, and lithium nickelate.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

まず、本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末について述べる。   First, the lithium nickelate-carbon composite positive electrode active material powder according to the present invention will be described.

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末のニッケル酸リチウムは、化学式Li1+aNi1−b−cCo(Mは元素Mn、Al、B、Mg、Znのうち少なくとも1種、−0.1≦a≦0.2、0.05≦b≦0.5、0.01≦c≦0.4)で表わされる。原子レベルでの遷移金属や酸素の欠損を含んでも構わない。 Lithium nickelate according to the present invention - the lithium nickelate of carbon composite positive electrode active material particles is the chemical formula Li 1 + a Ni 1-b -c Co b M c O 2 (M is an element Mn, Al, B, Mg, Zn At least one of them, -0.1≤a≤0.2, 0.05≤b≤0.5, 0.01≤c≤0.4). It may contain defects in transition metals and oxygen at the atomic level.

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末の炭素は、一部が少なくともカーボンナノチューブである。カーボンナノチューブとはチューブ状の炭素繊維材料であり、チューブ径がナノサイズを有している。その最表層に欠陥が生じても内側のチューブによって導電性が確保され易いため、カーボンナノチューブは多層であるものがより好ましい。   Part of the carbon of the lithium nickelate-carbon composite cathode active material particles according to the present invention is at least carbon nanotubes. The carbon nanotube is a tube-like carbon fiber material, and the tube diameter is nano-sized. Even if a defect occurs in the outermost layer, the carbon nanotubes are more preferably multi-layered, because the conductivity is easily ensured by the inner tube.

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末は、カーボンナノチューブ以外の炭素を含んでいてもよい。該炭素は微粒子であることが好ましく、例えば黒鉛、グラフェン、ハードカーボン、ソフトカーボン、非晶質炭素、無定形炭素、ガラス状炭素、カーボンナノファイバーおよびフラーレンからなる群から選択することができる。   The lithium nickelate-carbon composite cathode active material particle powder according to the present invention may contain carbon other than carbon nanotubes. The carbon is preferably fine particles, and can be selected from the group consisting of graphite, graphene, hard carbon, soft carbon, amorphous carbon, amorphous carbon, glassy carbon, carbon nanofiber, and fullerene, for example.

本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末の炭素中におけるカーボンナノチューブの重量比率は5%以上であることが好ましい。上限は100重量%である。5重量%未満であれば、該正極活物質粒子粉末の電子伝導性と機械的強度を十分に保つことができない傾向にある。より好ましくは10〜95重量%、さらにより好ましくは20〜90重量%である。   In the present invention, the weight ratio of the carbon nanotubes in the carbon of the lithium nickelate-carbon composite cathode active material powder is preferably 5% or more. The upper limit is 100% by weight. If it is less than 5% by weight, the electronic conductivity and mechanical strength of the positive electrode active material particle powder tend not to be sufficiently maintained. More preferably, it is 10 to 95 weight%, More preferably, it is 20 to 90 weight%.

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末の複合化された状態は、ニッケル酸リチウム粒子表面の少なくとも一部がメカノケミカル的に付着した炭素と表現される。即ち、ニッケル酸リチウム粒子と炭素との複合化の度合いは、電極体を製造する際の塗料化工程で、各々が分離しない程度であればよい。該炭素が電子伝導性を確保する程度にニッケル酸リチウム粒子表面に付着していれば良く、炭素凝集体としてニッケル酸リチウム粒子が埋もれる又は突出していても良く、それらの一つ以上が混在する形状であっても良い。特に、該炭素によって少量で高い電子伝導性と機械的強度を確保するために、ニッケル酸リチウム粒子を網状に包み、且つ、該ニッケル酸リチウム−炭素複合体正極活物質粒子の外部に向かって延伸している形状のカーボンナノチューブが好ましい。1つのニッケル酸リチウム−炭素複合体正極活物質粒子中に複数のニッケル酸リチウム粒子及び複数の炭素粒子を含んでいてもよい。   The composite state of the lithium nickelate-carbon composite positive electrode active material particle powder according to the present invention is expressed as carbon having at least a part of the surface of the lithium nickelate particle adhered mechanochemically. In other words, the degree of compounding of the lithium nickelate particles and carbon may be such that they are not separated in the coating step when manufacturing the electrode body. It is sufficient that the carbon adheres to the surface of the lithium nickelate particles to the extent that the electron conductivity is ensured, and the lithium nickelate particles may be buried or protruded as a carbon aggregate, and one or more of them are mixed It may be. In particular, in order to ensure high electronic conductivity and mechanical strength with a small amount of the carbon, the lithium nickelate particles are encased in a network and stretched toward the outside of the lithium nickelate-carbon composite cathode active material particles. The shape of the carbon nanotube is preferable. One lithium nickelate-carbon composite cathode active material particle may contain a plurality of lithium nickelate particles and a plurality of carbon particles.

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末における炭素含有量は、0.1〜5.5重量%である。炭素含有量が5.5重量%を超えると、正極とした時の電極密度が低くなるために好ましくない。また、炭素含有量が0.1重量%未満であると炭素によって付与される電気伝導性などの効果が十分に得られず好ましくない。炭素含有量のより好ましい範囲は、0.2〜4.5重量%であり、特に好ましい含有量は、0.3〜3.5重量%である。   The carbon content in the lithium nickelate-carbon composite positive electrode active material powder according to the present invention is 0.1 to 5.5% by weight. If the carbon content exceeds 5.5% by weight, the electrode density when used as a positive electrode is lowered, which is not preferable. Further, if the carbon content is less than 0.1% by weight, the effects such as electrical conductivity imparted by carbon cannot be sufficiently obtained, which is not preferable. A more preferable range of the carbon content is 0.2 to 4.5% by weight, and a particularly preferable content is 0.3 to 3.5% by weight.

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末は、励起波長532nmのグリーンレーザーで測定したラマンスペクトルにおいて、炭素のGバンドのピーク強度Pに対するGプライムバンドのピーク強度Pとの比の平均値P/Pが0.1〜0.8である。ここで、炭素のGバンドは、sp混成軌道の炭素間の伸縮モードE2g2で表される1470〜1700cm−1の範囲に現れるピークである。Gプライムバンドは2Dバンドとも呼ばれ、2550〜2850cm−1の範囲に存在するピークである。該バンドは炭素網面間の相互作用や、乱層積層構造などの影響によって強度が変わる。例えば単原子層のグラフェンではGバンドよりもGプライムバンドの強度が高くなる。一方、層方向の結晶性が低い、即ち、結晶の周期性が乱れた非晶質炭素ではGプライムバンドは殆ど見られない。従って、Pが有限の値を持つことは間接的にカーボンナノチューブを含んでいることも意味する。P/Pが0.8より大きい場合、結晶性が高すぎる炭素網面は柔軟性に乏しく、ニッケル酸リチウムの表面に密着し難いので好ましくない。P/Pが0.1より小さい場合、カーボンナノチューブを含まず、粒子粉末の全体の導電性は乏しくなるので好ましくない。P/Pのより好ましい範囲は0.15〜0.7であり、さらに好ましい範囲は0.2〜0.65である。 Lithium nickel oxide according to the present invention - carbon composite positive electrode active material particles, in the Raman spectrum measured with green laser excitation wavelength 532 nm, and the peak intensity P A G-prime band to the peak intensity P G of the G band of carbon mean value P a / P G ratio of 0.1 to 0.8. Here, the G band of carbon is a peak appearing in the range of 1470 to 1700 cm −1 represented by the stretching mode E 2g2 between carbons of sp 2 hybrid orbitals. The G prime band is also called a 2D band, and is a peak existing in the range of 2550 to 2850 cm −1 . The intensity of the band varies depending on the interaction between the carbon network surfaces and the influence of the layered layer structure. For example, in the monolayer graphene, the intensity of the G prime band is higher than that of the G band. On the other hand, almost no G prime band is seen in amorphous carbon having low crystallinity in the layer direction, that is, in which the periodicity of the crystal is disturbed. Therefore, also it means that it is to contain an indirect carbon nanotube P A has a finite value. If P A / P G is larger than 0.8, the carbon net plane crystallinity is too high poor flexibility, since hardly adheres to the surface of the lithium nickelate is not preferable. If P A / P G is less than 0.1, free of carbon nanotubes, so is poor overall conductivity of the particles it is not preferable. A more preferable range of P A / P G is 0.15 to 0.7, furthermore preferably from 0.2 to 0.65.

参考資料:カーボンナノチューブ・グラフェンハンドブック』コロナ社 (2011)P171. Reference materials: Carbon nanotube graphene handbook ”Corona (2011) P171.

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末は、前記ラマンスペクトルにおいて、ピーク強度Pに対するニッケル酸リチウムのピーク強度Pとの比の平均値P/Pが0.4〜10である。ニッケル酸リチウムによるピークは300〜750cm−1の範囲に存在する。高波数側の遷移金属−酸素の結合伸縮モードA1gと低波数側の酸素−遷移金属−酸素の結合折れ曲がりモードEがあり、ピーク強度の高いA1gモードを採用した。ここで、該測定波長によるラマンスペクトルは試料表面から数百nmの深さの範囲に存在する結晶相に起因する。そのため、P/Pは該深さ範囲におけるニッケル酸リチウムと炭素との存在割合を反映した値と捉えることができる。該正極活物質粒子表面の電子伝導性の観点からP/Pが低い方が好ましく、一方、該正極活物質粒子表面の電極反応の観点からP/Pが高い方が好ましい。ラマンスペクトルでP、P、及びPの全てのピークが確認できる状態であり、ニッケル酸リチウムと炭素とが共存することを意味している。P/Pのより好ましい範囲は0.45〜9.5であり、さらに好ましくは0.5〜9.0である。 Lithium nickel oxide according to the present invention - carbon composite positive electrode active material particles, in the Raman spectrum, the average value P M / P G of the ratio of the peak intensity P M of lithium nickelate to the peak intensity P G is 0. 4-10. The peak due to lithium nickelate is in the range of 300 to 750 cm −1 . There are a transition metal-oxygen bond stretching mode A 1 g on the high wave number side and an oxygen-transition metal-oxygen bond bending mode E g on the low wave number side, and an A 1 g mode having a high peak intensity is employed. Here, the Raman spectrum at the measurement wavelength is attributed to a crystal phase existing within a depth range of several hundred nm from the sample surface. Therefore, P M / P G can be regarded as a value that reflects the existing ratio of nickel acid lithium and carbon in the deep range. It is preferably a lower P M / P G from the viewpoint of electron conductivity of the positive electrode active material particle surface, whereas, it is preferable higher P M / P G in view of electrode reaction of the positive electrode active material particle surfaces. P M in the Raman spectrum, a state in which all the peaks can be confirmed in the P G, and P A, which means that coexist and carbon lithium nickelate. A more preferable range of P M / P G is 0.45 to 9.5, more preferably from 0.5 to 9.0.

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末は、8kNの荷重の圧縮成型体密度が2.7〜3.6g/ccであり、且つ体積抵抗率が0.1〜200Ω・cmである。圧縮成型体密度が2.7g/cc未満である場合には電池とした時の体積エネルギー密度が低くなるために好ましくなく、3.6g/ccを超える場合、電極内部の空隙が少なくなり、電解液が浸透しにくくなり、電池全体としてのイオン伝導性が悪くなるので好ましくない。体積抵抗率が200Ω・cmを超えると該抵抗により電池の性能が極端に下がる。体積抵抗率が0.1Ω・cm未満になる場合、炭素含有量が規定値を超え、成型体密度低下の要因となる。より好ましくは、2.75〜3.55g/cc、且つ0.5〜150Ω・cmであり、さらに好ましくは、2.8〜3.5g/cc、且つ1〜100Ω・cmである。   The lithium nickelate-carbon composite positive electrode active material powder according to the present invention has a compression molded body density of 2.7 to 3.6 g / cc under a load of 8 kN and a volume resistivity of 0.1 to 200 Ω · cm. When the density of the compression molded body is less than 2.7 g / cc, the volume energy density of the battery is low, which is not preferable. When the density exceeds 3.6 g / cc, voids inside the electrode are reduced, and This is not preferable because the liquid becomes difficult to permeate and the ionic conductivity of the battery as a whole deteriorates. When the volume resistivity exceeds 200 Ω · cm, the performance of the battery is extremely lowered by the resistance. When the volume resistivity is less than 0.1 Ω · cm, the carbon content exceeds the specified value, which causes a decrease in the density of the molded body. More preferably, it is 2.75 to 3.55 g / cc and 0.5 to 150 Ω · cm, and further preferably 2.8 to 3.5 g / cc and 1 to 100 Ω · cm.

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末は、圧縮するほど体積抵抗率が下がる。例えば、0.5kNから18kNまでの各荷重をかけた際の圧縮成型体密度に対する体積抵抗率をプロットすると、負の傾きで下に凸な曲線が得られる。そのため、直線関係が得られる4〜8kNの荷重をかけた際の体積抵抗率と圧縮成型体密度の関係に注目した。この傾きXの絶対値|X|は、規定された炭素含有量だけでなく該複合化の程度にも強く依存する。成形体密度は高い方が望ましく、また、体積抵抗率は低い方が望ましいので、|X|の値は小さい方が望ましい。   The volume resistivity of the lithium nickelate-carbon composite positive electrode active material powder according to the present invention decreases as it is compressed. For example, when plotting the volume resistivity against the compression molded body density when each load from 0.5 kN to 18 kN is applied, a downwardly convex curve is obtained with a negative slope. Therefore, attention was paid to the relationship between the volume resistivity and the density of the compression-molded body when a load of 4 to 8 kN is obtained that provides a linear relationship. The absolute value | X | of the slope X strongly depends not only on the prescribed carbon content but also on the degree of the composite. A higher molded body density is desirable, and a lower volume resistivity is desirable, so a smaller value of | X | is desirable.

一般に導電剤として用いられる炭素材料は嵩高く、電極を製造する際には活物質の密度を上げる為に炭素材料の使用量を最小限に抑えることが必要となる。前述したように、|X|の値は小さい方が望ましく、ピーク強度比の平均値P/Pは最適値が存在する。これらパラメータを精査したところ、下記式(1)が成り立つ場合、ニッケル酸リチウム−炭素複合体正極活物質粒子粉末として好適であることを見出した。
|X|/(P/P)≦500 ・・・式(1)
|X|/(P/P)が500を超える値となる場合、ニッケル酸リチウム−炭素複合体正極活物質粒子粉末どうしの電気的な接点が電極内で効率よく形成され難いため、好ましくない。|X|/(P/P)のより好ましい範囲は475以下であり、さらに好ましい範囲は450以下である。|X|/(P/P)の下限は1程度である。
Generally, the carbon material used as a conductive agent is bulky, and it is necessary to minimize the amount of the carbon material used in order to increase the density of the active material when manufacturing the electrode. As described above, | X | values smaller is preferable, the average value P M / P G peak intensity ratio there is an optimal value. As a result of careful examination of these parameters, it was found that when the following formula (1) is established, the lithium nickelate-carbon composite cathode active material particle powder is suitable.
| X | / (P M / P G ) ≦ 500 (1)
When | X | / (P M / P G ) exceeds 500, an electrical contact between the lithium nickelate-carbon composite positive electrode active material particles is difficult to form efficiently in the electrode. Absent. A more preferable range of | X | / (P M / P G ) is 475 or less, and a more preferable range is 450 or less. The lower limit of | X | / (P M / P G ) is about 1.

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末は、飽和蒸気圧Pに対する相対圧の条件P/P=0.28での水蒸気吸着量が1mg/g以下である。水蒸気吸着量が1mg/gを超えると、ニッケル酸リチウム−炭素複合体の親水性が高くなり、正極を作製するために用いる有機溶媒との親和性が低くなる恐れがあるので好ましくない。より好ましい範囲は0.8mg/g以下であり、さらに好ましい範囲は0.6mg/g以下である。前記水蒸気吸着量の下限は0.001mg/g程度である。 The lithium nickelate-carbon composite positive electrode active material powder according to the present invention has a water vapor adsorption amount of 1 mg / g or less at a relative pressure condition P / P 0 = 0.28 with respect to the saturated vapor pressure P 0 . When the water vapor adsorption amount exceeds 1 mg / g, the hydrophilicity of the lithium nickelate-carbon composite is increased, and the affinity with the organic solvent used for producing the positive electrode may be decreased, which is not preferable. A more preferable range is 0.8 mg / g or less, and a further preferable range is 0.6 mg / g or less. The lower limit of the water vapor adsorption amount is about 0.001 mg / g.

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末のBET比表面積は10m/g以下である。BET比表面積が10m/gを超えると、正極を作製するために行うための該正極活物質粒子粉末のスラリー化が困難になる場合があるので、好ましくない。より好ましくは、9.5m/g以下であり、さらに好ましくは、9.0m/g以下である。BET比表面積が0.05m/g未満のニッケル酸リチウム−炭素複合体正極活物質粒子粉末を作製することは工業的に困難であるため、BET比表面積の下限は0.05m/g程度である。 The BET specific surface area of the lithium nickelate-carbon composite cathode active material powder according to the present invention is 10 m 2 / g or less. When the BET specific surface area exceeds 10 m 2 / g, it may be difficult to slurry the positive electrode active material particle powder for producing the positive electrode, which is not preferable. More preferably, it is 9.5 m < 2 > / g or less, More preferably, it is 9.0 m < 2 > / g or less. Since it is industrially difficult to produce a lithium nickelate-carbon composite cathode active material particle powder having a BET specific surface area of less than 0.05 m 2 / g, the lower limit of the BET specific surface area is about 0.05 m 2 / g. It is.

次に、本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末の製造方法について述べる。   Next, the manufacturing method of the lithium nickelate-carbon composite cathode active material particle powder in the present invention will be described.

本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末は、ニッケル酸リチウムと炭素を各々作製し、所定量の計量を経た後、不活性雰囲気下でメカノケミカル処理によって圧接することによって得られる。   The lithium nickelate-carbon composite positive electrode active material particle powder in the present invention is obtained by preparing lithium nickelate and carbon, respectively, passing through a predetermined amount, and then press-contacting by mechanochemical treatment under an inert atmosphere. .

本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末のニッケル酸リチウムは、特に限定されるものではなく、常法によって得られるものである。例えば、各種原料の混合、焼成、粉砕によって得られる。Li源としてLiCO又はLiOH・HO等があり、Ni、Co、M(Mは元素Mn、Al、B、Mg、Znのうち少なくとも1種)源としては、該元素を含む水酸化物又は含水酸化物等である。各原料を所定量計量し、混合後、600〜1100℃の範囲で酸化性雰囲気下での焼成により所望のニッケル酸リチウムが得られる。ニッケル酸リチウムがリチウムイオンをトポケミカル的に吸蔵放出できるのであれば、該粒子における原子単位の欠損や異種元素の置換があっても構わない。 The lithium nickelate of the lithium nickelate-carbon composite positive electrode active material particles in the present invention is not particularly limited and can be obtained by a conventional method. For example, it can be obtained by mixing, firing and pulverizing various raw materials. Examples of the Li source include Li 2 CO 3 or LiOH.H 2 O, and Ni, Co, and M (M is at least one of the elements Mn, Al, B, Mg, and Zn) include water containing the element. It is an oxide or a hydrous oxide. A predetermined amount of each raw material is weighed and mixed, and then desired lithium nickelate is obtained by firing in an oxidizing atmosphere in the range of 600 to 1100 ° C. As long as lithium nickelate can topochemically occlude and release lithium ions, there may be atomic unit defects or substitution of different elements in the particles.

本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末の原料に用いるニッケル酸リチウムは、形状が球状もしくは略球状であると、メカノケミカル処理によって表面に均一に炭素を圧接し易いので好ましい。   The lithium nickelate used for the raw material of the lithium nickelate-carbon composite positive electrode active material powder in the present invention is preferably spherical or substantially spherical because it is easy to press the carbon uniformly on the surface by mechanochemical treatment.

本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末の原料に用いるニッケル酸リチウムは、平均二次粒子径を特に限定しないが、1μm以上35μm以下が好ましい。より好ましくは2μm以上30μm以下であり、特に好ましい範囲は3μm以上25μm以下である。該二次粒子粒度分布がシャープな方が、メカノケミカル処理による炭素との複合化が均一に進行し易いので好ましい。   The lithium nickelate used for the raw material of the lithium nickelate-carbon composite cathode active material powder in the present invention is not particularly limited in average secondary particle diameter, but is preferably 1 μm or more and 35 μm or less. More preferably, it is 2 μm or more and 30 μm or less, and a particularly preferable range is 3 μm or more and 25 μm or less. It is preferable that the secondary particle size distribution is sharp because complexation with carbon by mechanochemical treatment easily proceeds uniformly.

本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末の原料に用いる炭素は、少なくとも一部がカーボンナノチューブである。該カーボンナノチューブは高い電子伝導性と高い機械的強度を兼ね備えているため、複合化された粒子も同性質を備える。また、該カーボンナノチューブはFe、Co、Ni等を含有する触媒用金属化合物粒子を用いた、炭化水素の熱分解反応により製造される。該反応後、必要であれば、触媒用金属化合物粒子を除去する純化や、表面を親水化する酸化を行ってもよい。チューブの最表層に欠陥が生じても内側のチューブによって導電性が確保され易いため、カーボンナノチューブは多層であるものがより好ましい。カーボンナノチューブは内部が空洞であるため、便宜上、内部が緻密であるナノファイバーと区別している。   At least a part of the carbon used as the raw material for the lithium nickelate-carbon composite cathode active material particles in the present invention is a carbon nanotube. Since the carbon nanotube has both high electronic conductivity and high mechanical strength, the composite particles have the same properties. The carbon nanotubes are produced by a hydrocarbon pyrolysis reaction using catalytic metal compound particles containing Fe, Co, Ni and the like. After the reaction, if necessary, purification for removing the metal compound particles for catalyst and oxidation for hydrophilizing the surface may be performed. Even if a defect occurs in the outermost layer of the tube, the carbon nanotubes are more preferably multi-walled because the conductivity is easily ensured by the inner tube. Since carbon nanotubes are hollow inside, they are distinguished from nanofibers having a dense inside for convenience.

本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末の原料に用いる該炭素中におけるカーボンナノチューブの重量比率は5%以上であることが好ましい。上限は100重量%である。5重量%未満であれば、該正極活物質粒子粉末の電子伝導性と機械的強度を十分に保つことができない傾向にある。カーボンナノチューブとカーボンナノチューブ以外の炭素を併せて用いる場合には、メカノケミカル処理の前に予め混合しておいてもよいし、メカノケミカル処理を行いながら別個に添加してもよい。   The weight ratio of carbon nanotubes in the carbon used as a raw material for the lithium nickelate-carbon composite cathode active material particles in the present invention is preferably 5% or more. The upper limit is 100% by weight. If it is less than 5% by weight, the electronic conductivity and mechanical strength of the positive electrode active material particle powder tend not to be sufficiently maintained. When carbon nanotubes and carbon other than carbon nanotubes are used together, they may be mixed in advance before the mechanochemical treatment, or may be added separately while performing the mechanochemical treatment.

本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末の原料に用いるカーボンナノチューブはチューブ外径が5〜50nmであるものが好ましい。前記の径は例えば分散液を乾燥させた試料を透過型電子顕微鏡や高分解能走査型電子顕微鏡で観察することによって確認できる。チューブ外径が50nmを超えると、単位重量当たりの繊維本数が少なくなり、十分な導電性を得ることができない。また、チューブ外径が5nm未満であると、カーボンナノチューブどうしが束(バンドル)を形成し易くなり、分散が困難になって、結果として特性が悪化する。(繊維長)/(繊維径)は特に限定はしないが、100000以下が好ましい。(繊維長)/(繊維径)が100000を超える場合、単繊維どうしが絡み合い易く、ニッケル酸リチウムとの複合化が進行し難いため、好ましくない。   The carbon nanotube used for the raw material of the lithium nickelate-carbon composite cathode active material powder in the present invention preferably has a tube outer diameter of 5 to 50 nm. The diameter can be confirmed, for example, by observing a sample obtained by drying the dispersion with a transmission electron microscope or a high-resolution scanning electron microscope. When the outer diameter of the tube exceeds 50 nm, the number of fibers per unit weight decreases and sufficient conductivity cannot be obtained. Further, when the tube outer diameter is less than 5 nm, the carbon nanotubes easily form bundles, and dispersion becomes difficult, resulting in deterioration of characteristics. (Fiber length) / (Fiber diameter) is not particularly limited, but is preferably 100,000 or less. When (fiber length) / (fiber diameter) exceeds 100,000, the single fibers are easily entangled with each other, and it is difficult to make a composite with lithium nickelate, which is not preferable.

本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末の原料に用いるカーボンナノチューブは、分散し易い易分散性のカーボンナノチューブを用いることが好ましい。カーボンナノチューブの易分散性は、例えば透過型電子顕微鏡で確認でき、バンドル状になっているカーボンナノチューブの割合が少なく、節やくびれ部分がカーボンナノチューブの繊維長方向に多く見られるものが好ましいものとして挙げられる。   The carbon nanotubes used as the raw material for the lithium nickelate-carbon composite cathode active material particles in the present invention are preferably easily dispersible carbon nanotubes that are easily dispersed. The easy dispersibility of the carbon nanotubes can be confirmed by, for example, a transmission electron microscope, and it is preferable that the ratio of the carbon nanotubes in a bundle shape is small and that the nodes and constricted portions are seen in the fiber length direction of the carbon nanotubes. Can be mentioned.

具体的には、0.1%分散液を試料台にのせて乾燥させ、透過型電子顕微鏡で2万倍にて撮影した画像を100nm四方の区画に区切り、該区画内のうちカーボンナノチューブが占める面積が10〜80%である区画を300区画選択した際に、カーボンナノチューブの繊維径に対して90%以下のチューブ外径となるくびれ部分を1区画中に少なくとも1箇所存在する区画が10%以上存在するカーボンナノチューブが挙げられる。さらに好ましくは30%以上であり、最も好ましいのは60%以上である。   Specifically, a 0.1% dispersion is placed on a sample stage and dried, and an image taken at 20,000 times with a transmission electron microscope is divided into 100 nm square sections, and carbon nanotubes occupy the sections. When 300 sections having an area of 10 to 80% are selected, 10% of sections have at least one constricted portion with a tube outer diameter of 90% or less with respect to the fiber diameter of the carbon nanotube in one section. The carbon nanotube which exists above is mentioned. More preferably, it is 30% or more, and most preferably 60% or more.

節もしくはくびれ部分はカーボンナノチューブの成長方向が変更されることによって作り出される結晶不連続部であり、小さな機械的エネルギーで容易に切断できる易破断部である。カーボンナノチューブを分散させるには単繊維化と短繊維化が必要であり、易破断部が少ないカーボンナノチューブを分散させるためには、連続したチューブ壁面を破壊して切断する必要がある。直線性の高いカーボンナノチューブの全体に機械的エネルギーを付与する乾式分散では、チューブの分断に至るまでの間にカーボンナノチューブ全体の結晶構造が必要以上に破壊され、カーボンナノチューブの特徴である電気伝導性などの特性が低下してしまう恐れがある。易破断部が多いカーボンナノチューブを用いた場合には易破断部が優先的に衝撃を吸収して切断されるために、分散完了までに必要な機械的エネルギーが小さく、切断部以外のグラファイト網面へのダメージは少ないので好ましい。節もしくはくびれを有するカーボンナノチューブは、例えばカーボンナノチューブの製造工程における反応温度、原料ガス濃度および流量など種々の条件によって、カーボンナノチューブの生成速度を遅くすることによって得られる。   A node or a constricted portion is a discontinuous portion of a crystal created by changing the growth direction of carbon nanotubes, and an easily breakable portion that can be easily cut with a small mechanical energy. In order to disperse carbon nanotubes, it is necessary to make single fibers and shorten fibers, and in order to disperse carbon nanotubes with few easily breakable portions, it is necessary to break and cut the continuous tube wall surface. In dry dispersion that imparts mechanical energy to the entire carbon nanotube with high linearity, the crystal structure of the entire carbon nanotube is destroyed more than necessary before the tube is divided, and electrical conductivity is a characteristic of the carbon nanotube. There is a risk that the characteristics such as will deteriorate. When carbon nanotubes with many easily breakable parts are used, the easily breakable parts are preferentially cut by absorbing the impact, so the mechanical energy required to complete the dispersion is small, and the graphite network surface other than the cut parts It is preferable because there is little damage. Carbon nanotubes having a node or a constriction can be obtained by slowing the production rate of carbon nanotubes depending on various conditions such as reaction temperature, raw material gas concentration and flow rate in the carbon nanotube production process.

本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末の原料に用いるカーボンナノチューブ以外の炭素は、特に限定しないが、黒鉛、グラフェン、ハードカーボン、ソフトカーボン、非晶質炭素、無定形炭素、ガラス状炭素、カーボンナノファイバーおよびフラーレンからなる群から選択することができる。   Carbon other than carbon nanotubes used as a raw material for the lithium nickelate-carbon composite cathode active material particles in the present invention is not particularly limited, but graphite, graphene, hard carbon, soft carbon, amorphous carbon, amorphous carbon, It can be selected from the group consisting of glassy carbon, carbon nanofibers and fullerenes.

本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末の原料に用いるカーボンナノチューブ以外の炭素の形状は、例えば球状や鱗片状、針状、多角形状、柱状、板状、繊維状もしくはこれらの混合物が好ましい。中でも微粒子の粒が連なった3次元的なストラクチャ構造体が好ましい。具体的にはアセチレンブラック(AB)やケッチェンブラックなどが挙げられる。前記炭素の大きさは、短軸径が500nm以下であるものが好ましい。該短軸径も長軸径もまた、分散液を乾燥させた試料を透過型電子顕微鏡で観察することによって確認できる。粒状の材料である場合、(長軸径)/(短軸径)で求められるアスペクト比を特に限定はしないが、2以下が好ましい。粒状の材料でアスペクト比が2を超える場合には、嵩高くなりやすいので好ましくない。   The shape of carbon other than carbon nanotubes used as the raw material for the lithium nickelate-carbon composite cathode active material particles in the present invention is, for example, spherical, scaly, needle-like, polygonal, columnar, plate-like, fiber-like, or these Mixtures are preferred. Among these, a three-dimensional structure structure in which fine particles are continuous is preferable. Specific examples include acetylene black (AB) and ketjen black. The carbon preferably has a minor axis diameter of 500 nm or less. Both the minor axis diameter and the major axis diameter can be confirmed by observing a sample obtained by drying the dispersion with a transmission electron microscope. In the case of a granular material, the aspect ratio determined by (major axis diameter) / (minor axis diameter) is not particularly limited, but is preferably 2 or less. A granular material with an aspect ratio exceeding 2 is not preferable because it tends to be bulky.

本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末の製造方法のメカノケミカル法での処理には、雰囲気調整が可能で、且つ剪断、圧縮、衝突などの応力を同時にかけることが可能な装置を用いることができるが、処理装置は、そのような構造及び原理を用いる装置に限定されるものではない。メカノケミカル法での処理に用いられる装置としては、例えば、回転式のボールミルなどのボール型混練機、エッジランナーなどのホイール型混練機、ハイブリダイゼーションシステム(奈良機械製作所製)、メカノフュージョン(ホソカワミクロン社製)、ノビルタ(ホソカワミクロン社製)、COMPOSI(日本コークス工業社製)などが挙げられる。   The treatment by the mechanochemical method of the method for producing the lithium nickelate-carbon composite cathode active material particle powder in the present invention can be adjusted to the atmosphere, and stress such as shearing, compression, and collision can be simultaneously applied. Although an apparatus can be used, the processing apparatus is not limited to an apparatus using such a structure and principle. Examples of the apparatus used for the mechanochemical process include a ball-type kneader such as a rotary ball mill, a wheel-type kneader such as an edge runner, a hybridization system (manufactured by Nara Machinery Co., Ltd.), and mechano-fusion (Hosokawa Micron). Nobilta (manufactured by Hosokawa Micron Corporation), COMPOSI (manufactured by Nippon Coke Industries Co., Ltd.), and the like.

メカノケミカル処理は、不活性雰囲気中で行うことが好ましい。不活性雰囲気ではない、特に酸化雰囲気や高湿雰囲気でニッケル酸リチウムを取り扱うと、層間のLiが表面に浸出してLiCOなどに変わり、リチウムイオン二次電池とした時の充放電容量が低下するので好ましくない。 The mechanochemical treatment is preferably performed in an inert atmosphere. When lithium nickelate is handled in an oxidizing atmosphere or a high-humidity atmosphere that is not an inert atmosphere, the inter-layer Li is leached to the surface and changed to Li 2 CO 3, etc., and the charge / discharge capacity of a lithium ion secondary battery Is unfavorable because it decreases.

メカノケミカル処理による正極活物質粒子粉末としての親水化を抑制し、また、炭素およびニッケル酸リチウムの結晶性低下を抑制する為に、混合粉体にかかる力を調製することが望ましい。具体的な方法としては、処理装置の回転数を下げたり、処理時間を短くしたりすればよい。   In order to suppress hydrophilization as the positive electrode active material particle powder by mechanochemical treatment, and to suppress deterioration of crystallinity of carbon and lithium nickelate, it is desirable to adjust the force applied to the mixed powder. As a specific method, the rotational speed of the processing apparatus may be reduced or the processing time may be shortened.

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末を製造する際、ニッケル酸リチウムと炭素とをあらかじめ不活性雰囲気下で全量混ぜておいたものに対してメカノケミカル処理をしてもよく、一部の混合物に対してメカノケミカル処理をした後、ニッケル酸リチウムおよび/または炭素を添加して繰り返しメカノケミカル処理をしてもよい。特に、炭素を分割して投入することによって、炭素がニッケル酸リチウム表面に均一に複合化されるので好ましい。ただし、炭素が0.8体積%以下でメカノケミカル処理をすると、摩擦熱や衝撃によってニッケル酸リチウムの結晶性劣化やチッピングが生じるので、好ましくない。また、炭素を乾粉の状態ではなく、分散液として添加しても構わない。分散媒としては、ニッケル酸リチウムに影響を与えないよう水分を含まない有機溶媒を用いることが好ましい。分散液として添加する場合、混合の場に対して噴霧することがさらに好ましい。前記分割投入や分散液噴霧の際も反応場を不活性雰囲気にしておくことが好ましい。   When the lithium nickelate-carbon composite cathode active material powder according to the present invention is produced, mechanochemical treatment is performed on a mixture of lithium nickelate and carbon in advance under an inert atmosphere. In some cases, mechanochemical treatment may be performed on a part of the mixture, and then lithium nickelate and / or carbon may be added and repeated mechanochemical treatment. In particular, it is preferable to divide and add carbon because carbon is uniformly compounded on the lithium nickelate surface. However, if the mechanochemical treatment is performed with 0.8% by volume or less of carbon, the crystallinity deterioration and chipping of lithium nickelate are caused by frictional heat and impact, which is not preferable. Moreover, you may add carbon not as a dry powder state but as a dispersion liquid. As the dispersion medium, it is preferable to use an organic solvent that does not contain water so as not to affect the lithium nickelate. When added as a dispersion, it is more preferable to spray the mixture. It is preferable to keep the reaction field in an inert atmosphere during the divided charging and the dispersion spraying.

上記処理の後、ニッケル酸リチウムと複合化されなかった炭素を分級によって取り除いても構わないが、粉体にあまり衝撃力を与えない方法で行うことが望ましく、また、分級しないことが望ましい。分級装置としては、精密空気分級機、例えば、ターボクラシファイヤー(日清エンジニアリング社製)、エルボージェット(日鉄鉱業社製)、クラッシール(セイシン企業社製)等が挙げられる。   After the above treatment, carbon that has not been complexed with lithium nickelate may be removed by classification, but it is desirable to carry out by a method that does not give much impact force to the powder, and it is desirable not to classify. Examples of the classifier include a precision air classifier such as a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.), an elbow jet (manufactured by Nittetsu Mining Co., Ltd.), a class seal (manufactured by Seishin Enterprise Co., Ltd.), and the like.

ニッケル酸リチウム−炭素複合体正極活物質粒子粉末の構造を大きく変化させない程度であれば、上記工程に熱処理を加えても構わない。熱処理は管状炉、ガス流通式箱型マッフル炉、ガス流通式回転炉、ローラーハースキルン等を用いて600℃以下、ArやCl、CO、COなどの不活性ガス、大気やOなどの酸化性ガス、CHやC、Cなどの炭化水素ガスから選択される1種以上を用いて行えばよく、場合によってはLiOHやLiCOなどのリチウム化合物を混合してもよい。この熱処理によって、ニッケル酸リチウム粒子−炭素複合体正極活物質粒子の親水性、結晶性、組成を調整することができる。 Heat treatment may be added to the above step as long as the structure of the lithium nickelate-carbon composite cathode active material particle powder is not significantly changed. Heat treatment is performed using a tubular furnace, a gas flow-type box muffle furnace, a gas flow-type rotary furnace, a roller hearth kiln, etc. at 600 ° C. or lower, an inert gas such as Ar, Cl, CO 2 , CO, the atmosphere, O 2, etc. One or more selected from an oxidizing gas, a hydrocarbon gas such as CH 4 , C 2 H 4 , or C 2 H 2 may be used. In some cases, a lithium compound such as LiOH or Li 2 CO 3 is mixed. May be. By this heat treatment, the hydrophilicity, crystallinity, and composition of the lithium nickelate particle-carbon composite cathode active material particles can be adjusted.

2種類以上のニッケル酸リチウム−炭素複合体正極活物質粒子粉末を混合してもよいし、ニッケル酸リチウム粒子−炭素複合体正極活物質粒子とニッケル酸リチウム単体とを混合しても構わない。処理履歴の異なる粉体を混合することによって、例えば電極密度や充放電容量などを調整することができる。   Two or more types of lithium nickelate-carbon composite cathode active material particles may be mixed, or lithium nickelate particle-carbon composite cathode active material particles and lithium nickelate alone may be mixed. By mixing powders having different processing histories, for example, the electrode density and charge / discharge capacity can be adjusted.

次に、本発明におけるニッケル酸リチウム−炭素複合体正極活物質粒子粉末を用いた非水電解質二次電池について述べる。   Next, a non-aqueous electrolyte secondary battery using the lithium nickelate-carbon composite cathode active material powder according to the present invention will be described.

本発明における二次電池は、正極、負極、非水電解液及びセパレータから構成される。   The secondary battery in the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator.

本発明に係る正極活物質粒子粉末を含有する正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、カーボンナノファイバー、黒鉛等の炭素材料が適応できる。しかしながら、本発明に係る正極活物質粒子粉末は炭素と複合化された粒子粉末であるため、必ずしも該導電材を混合する必要はない。結着剤としてはポリアミドイミド、ポリイミド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、アクリル系樹脂等が好ましい。溶媒として、例えば、N−メチル−ピロリドン(NMP)を用いることが好ましい。   When manufacturing the positive electrode containing the positive electrode active material particle powder according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, carbon materials such as acetylene black, carbon black, carbon nanofiber, and graphite can be applied. However, since the positive electrode active material particle powder according to the present invention is a particle powder combined with carbon, it is not always necessary to mix the conductive material. As the binder, polyamideimide, polyimide, polytetrafluoroethylene, polyvinylidene fluoride, acrylic resin, and the like are preferable. For example, N-methyl-pyrrolidone (NMP) is preferably used as the solvent.

負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、黒鉛等を用いることができ、正極と同様のドクターブレード法や金属圧延により負極シートは作製される。   As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite or the like can be used, and the negative electrode sheet is produced by the same doctor blade method or metal rolling as the positive electrode.

また、溶媒としては、非水電解液用として使用しうるものであれば特に制限はない。一般にエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等の非プロトン性高誘電率溶媒や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、ジプロピルカーボネート、ジエチルエーテル、テトラヒドロフラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,3−ジオキソラン、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、アニソール、メチルアセテート等の酢酸エステル類あるいはプロピオン酸エステル類等の非プロトン性低粘度溶媒が挙げられる。これらの非プロトン性高誘電率溶媒や非プロトン性低粘度溶媒を適当な混合比で併用することが望ましい。さらには、イミダゾリウム、アンモニウム、及びピリジニウム型のカチオンを用いたイオン性液体を使用することができる。対アニオンは特に限定されるものではないが、BF4-、PF6-、(CFSO-等が挙げられる。イオン性液体は前述の非水電解液溶媒と混合して使用することができる。 Further, the solvent is not particularly limited as long as it can be used for a non-aqueous electrolyte. Generally, aprotic high dielectric constant solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, dipropyl carbonate, diethyl ether, tetrahydrofuran, 1,2, -Aprotic low viscosity such as acetate ester or propionate ester such as dimethoxyethane, 1,2-diethoxyethane, 1,3-dioxolane, sulfolane, methylsulfolane, acetonitrile, propionitrile, anisole, methyl acetate A solvent is mentioned. These aprotic high-dielectric constant solvents and aprotic low-viscosity solvents are desirably used in combination at an appropriate mixing ratio. Furthermore, ionic liquids using imidazolium, ammonium, and pyridinium type cations can be used. The counter anion is not particularly limited, and examples thereof include BF 4− , PF 6− , (CF 3 SO 2 ) 2 N − and the like. The ionic liquid can be used by mixing with the aforementioned non-aqueous electrolyte solvent.

さらに、電解質塩としては、例えばリチウム塩であるLiPF、(CFSONLi、LiBF、LiClO、LiAsF、CFSOLi、CSOLi、CFCOLi、(CFCONLi、CSOLi、C17SOLi、(CSONLi、(CSO)(CFSO)NLi、(FSO)(CFSO)NLi、((CFCHOSONLi、(CFSOCLi、(3,5―(CFBLi、LiCF、LiAlCl、CBOLiなどが挙げられ、これらのうちのいずれか1種又は2種以上が混合して用いられる。 Further, examples of the electrolyte salt include LiPF 6 , (CF 3 SO 2 ) 2 NLi, LiBF 4 , LiClO 4 , LiAsF 6 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, and CF 3 CO, which are lithium salts. 2 Li, (CF 3 CO 2 ) 2 NLi, C 6 F 5 SO 3 Li, C 8 F 17 SO 3 Li, (C 2 F 5 SO 2 ) 2 NLi, (C 4 F 9 SO 2 ) (CF 3 SO 2 ) NLi, (FSO 2 C 6 F 4 ) (CF 3 SO 2 ) NLi, ((CF 3 ) 2 CHOSO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, (3,5- (CF 3 ) 2 C 6 F 3 ) 4 BLi, LiCF 3 , LiAlCl 4 , C 4 BO 8 Li and the like, and any one or two or more of these may be used in combination.

<作用>
本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末は、炭素で適度に複合化されており、且つ該炭素の一部は少なくともカーボンナノチューブである。そのため、高い電子伝導性、適度な電極反応場、高い成型体密度、及び高い機械的強度を備えた正極活物質粒子粉末であり、該粒子粉末で構成される二次電池は高エネルギー密度を有し、且つ、充放電繰り返し特性に優れると推定される。
<Action>
The lithium nickelate-carbon composite cathode active material powder according to the present invention is appropriately composited with carbon, and a part of the carbon is at least a carbon nanotube. Therefore, it is a positive electrode active material particle powder having a high electron conductivity, an appropriate electrode reaction field, a high compact density, and a high mechanical strength, and a secondary battery composed of the particle powder has a high energy density. In addition, it is presumed that the charge / discharge repetition characteristics are excellent.

以下、本発明の具体的な実施の例を以下に示すが、本発明は以下の実施例に何ら限定されるものではない。   Hereinafter, although the example of the concrete implementation of this invention is shown below, this invention is not limited to a following example at all.

本発明のニッケル酸リチウム−炭素複合体正極活物質粒子粉末の粉体評価は以下のように行った。   The powder evaluation of the lithium nickelate-carbon composite cathode active material particle powder of the present invention was performed as follows.

(a)ラマンスペクトルの測定
顕微ラマン分光装置innoRam(B&W Tek製)にて励起波長532nmのグリーンレーザーを用い、倍率100倍、積算回数10回で任意の粒子10個に対して測定を行い、強度比の平均値を算出した。
(A) Measurement of Raman spectrum Using a green laser with an excitation wavelength of 532 nm using a micro-Raman spectrometer innoRam (manufactured by B & W Tek), measurement is performed on 10 arbitrary particles at a magnification of 100 times and 10 times of integration. The average ratio was calculated.

(b)粉体抵抗率の測定
粒子粉末の圧縮成型体密度は2.00gの試料を直径20mmφの治具で、0.5、1、2、4、6、8、10、12、14、16、18kNの荷重をかけて圧粉し、各圧力に対して成型体厚さを測定し、得られた成型体の体積と重量の比で算出した。同時に、体積抵抗率は、抵抗率計測器ロレスタGP(三菱化学アナリテック(株)製)で4端子法、10Vで計測した。
(B) Measurement of powder resistivity The density of the compacted compact of the particle powder was 0.5, 1, 2, 4, 6, 8, 10, 12, 14, using a 2.00 g sample with a 20 mm diameter jig. The powder was compacted by applying a load of 16, 18 kN, the thickness of the molded body was measured for each pressure, and the volume / weight ratio of the obtained molded body was calculated. At the same time, the volume resistivity was measured with a resistivity meter Loresta GP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) using the 4-terminal method and 10V.

(c)水蒸気吸着量の測定
試料を120℃で真空乾燥させた後、BELSORP−aqua3(マイクロトラック・ベル(株))を用いて水蒸気吸着等温線を測定し、P/P=0.28での値を水蒸気吸着量とした。
(C) Measurement of water vapor adsorption amount After the sample was vacuum dried at 120 ° C., the water vapor adsorption isotherm was measured using BELSORP-aqua3 (Microtrack Bell Co., Ltd.), and P / P 0 = 0.28. The value at was taken as the amount of water vapor adsorption.

(d)BET比表面積の測定
全自動比表面積計Macsorb model−1201((株)マウンテック製)を用いてBET比表面積を測定した。
(D) Measurement of BET specific surface area The BET specific surface area was measured using a fully automatic specific surface area meter Macsorb model-1201 (manufactured by Mountec Co., Ltd.).

(e)形状観察およびEDXマッピングによる粒子粉末の複合化の評価
粒子が積層しないように分散固定したシートを高分解能走査型電子顕微鏡(S−4800 日立ハイテク社製)によってシートの真上から撮影した。そのまま付属するEDX(エダックスジャパン社製)でNi元素およびC元素のマッピングを行った。炭素の見た目の均一性と複合化度の判断として、約10粒子が観察される箇所の10視野で、C元素の偏析が確認されない場合○、1視野観察される場合△、2視野以上観察される場合×と判断した。
(E) Evaluation of composite of particle powder by shape observation and EDX mapping A sheet dispersed and fixed so that particles are not stacked was photographed from directly above the sheet with a high-resolution scanning electron microscope (S-4800 manufactured by Hitachi High-Tech). . Ni element and C element were mapped with EDX (manufactured by Edax Japan) as it was. As a judgment of the appearance uniformity and the degree of compounding of carbon, when segregation of C element is not confirmed in 10 visual fields where about 10 particles are observed, ○ when 1 visual field is observed Δ, 2 visual fields or more are observed It was determined to be ×.

(f)炭素含有量の測定
試料中の炭素含有量は、炭素・硫黄分析装置EMIA−2200型(株式会社堀場製作所製)を用いて測定した。
(F) Measurement of carbon content The carbon content in the sample was measured using a carbon / sulfur analyzer EMIA-2200 (manufactured by Horiba, Ltd.).

(g)二次粒子径の測定
試料の二次粒子径はレーザー回折散乱式粒度分布測定装置LMS−2000e((株)セイシン企業製)を用いた。
(G) Measurement of secondary particle diameter The secondary particle diameter of the sample was a laser diffraction / scattering particle size distribution analyzer LMS-2000e (manufactured by Seishin Enterprise Co., Ltd.).

(h)電池評価試験
正極の作製:
試料96質量部と、呉羽化学製KFポリマーW#1300 4質量部とをNMP溶媒に加え、プラネタリーミキサーおよび薄膜旋回型高速ミキサーにて混練し、固形分濃度を約68.5重量%に調整した後、高純度アルミニウム箔上に140μmのドクターブレードを用いて塗布した。塗布後の電極シートを80℃で乾燥させた後、ロールプレスを用いて、電極シートに対し線圧0.06kN/mmでプレスし、40mm×50mmの大きさに打ち抜いた後、さらにこれを120℃、12時間真空乾燥させた。
フルセル用ラミネートセルの作製:
以下の操作は露点−50℃以下の乾燥雰囲気下で実施した。
リチウムイオン電池用アルミラミネート箔内において、前記各正極と、人造黒鉛を銅箔に塗布した負極とをセパレータで挟み込み積層した。この積層体に、電解液(EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)を1:2の体積比で混合したものを溶媒とし、これに電解質としてLiPFを1mol/Lの濃度で溶解したもの)を加えて試験用セルとした。
充放電試験:
充電は0.2Cで定電流充電(CC充電)を行い、4.3Vで充電完了とした。放電は0.2Cで定電流放電(CC放電)を行い、3.0Vでカットオフした。
サイクル試験:
25℃の恒温槽内で、1Cで4.1VまでのCC充電と、1Cで3.0VまでのCC放電とを1サイクルとして、35サイクル繰り返した。
(H) Battery evaluation test Preparation of positive electrode:
96 parts by weight of the sample and 4 parts by weight of Kurewa Chemical KF polymer W # 1300 are added to the NMP solvent and kneaded with a planetary mixer and a thin-film swirl type high speed mixer to adjust the solid content concentration to about 68.5% by weight. Then, it was coated on a high-purity aluminum foil using a 140 μm doctor blade. After drying the electrode sheet after coating at 80 ° C., the electrode sheet was pressed with a linear pressure of 0.06 kN / mm using a roll press, punched out to a size of 40 mm × 50 mm, and further 120 The mixture was vacuum-dried at 12 ° C. for 12 hours.
Production of laminate cell for full cell:
The following operations were performed in a dry atmosphere with a dew point of −50 ° C. or lower.
In the aluminum laminate foil for lithium ion batteries, each positive electrode and a negative electrode obtained by applying artificial graphite to a copper foil were sandwiched and laminated. In this laminate, an electrolyte (EC (ethylene carbonate) and EMC (ethyl methyl carbonate) mixed at a volume ratio of 1: 2) was used as a solvent, and LiPF 6 was dissolved as an electrolyte at a concentration of 1 mol / L. To obtain a test cell.
Charge / discharge test:
Charging was performed by constant current charging (CC charging) at 0.2 C, and charging was completed at 4.3 V. The discharge was a constant current discharge (CC discharge) at 0.2 C and cut off at 3.0 V.
Cycle test:
In a thermostatic bath at 25 ° C., CC charging up to 4.1 V at 1 C and CC discharging up to 3.0 V at 1 C were repeated 35 cycles.

下記の実施例及び比較例において、メカノケミカル処理の原料に用いた炭素は、ABのデンカブラックHS−100に後述の炭素(II)を5重量%混合した炭素(I)、非バンドルタイプで節が多めの多層カーボンナノチューブの炭素(II)、非バンドルタイプで節が少なめの多層カーボンナノチューブの炭素(III)、バンドルタイプのカーボンナノチューブの炭素(IV)である。同処理の原料のニッケル酸リチウムは、平均二次粒子径10μm、BET0.2m/gのLi1.03Ni0.8Co0.15Al0.05(A)、平均二次粒子径5μm、BET0.4m/gのLi1.05Ni0.333Co0.333Mn0.333(M)を使用した。 In the following examples and comparative examples, carbon used as a raw material for mechanochemical treatment is carbon (I) obtained by mixing 5% by weight of carbon (II) described later with AB Denka Black HS-100, which is a non-bundle type. Is the carbon (II) of the multi-walled carbon nanotube having a larger number, carbon (III) of the multi-walled carbon nanotube having less nodes and less nodes, and carbon (IV) of the bundle-type carbon nanotube. The raw material lithium nickelate used in the treatment was Li 1.03 Ni 0.8 Co 0.15 Al 0.05 O 2 (A) having an average secondary particle diameter of 10 μm and a BET of 0.2 m 2 / g, and average secondary particles. Li 1.05 Ni 0.333 Co 0.333 Mn 0.333 O 2 (M) having a diameter of 5 μm and a BET of 0.4 m 2 / g was used.

比較のために、ニッケル酸リチウム(A)のみに対して、窒素ガス雰囲気下、1、5、30分のメカノケミカル処理を行い、ニッケル酸リチウム(A−1)、(A−2)、(A−3)を作製し、BET比表面積および荷重6kNにおける体積抵抗率と密度を測定した。結果を表1に示す。   For comparison, only lithium nickelate (A) was subjected to mechanochemical treatment in a nitrogen gas atmosphere for 1, 5, and 30 minutes to obtain lithium nickelate (A-1), (A-2), ( A-3) was prepared, and the volume resistivity and density at a BET specific surface area and a load of 6 kN were measured. The results are shown in Table 1.

メカノケミカル処理時間を延ばすに従って、BET比表面積は変わらないものの、6kNにおける成型体密度が下がり、体積抵抗率は大幅に上昇した。また、ニッケル酸リチウム(A)のP/P=0.28における水蒸気吸着量は0.45mg/gであり、1分間処理したニッケル酸リチウム(A−1)のP/P=0.28における水蒸気吸着量は0.50mg/gであった。メカノケミカル処理に伴い、僅かに水蒸気が吸着しやすい表面構造へと変化した。得られた試料表面を走査型電子顕微鏡(SEM)で観察したところ、該処理後に試料表面の平滑性が向上していたので、試料表面がアモルファス化し、電気化学的にも不活性であると推定した。 As the mechanochemical treatment time was extended, the BET specific surface area did not change, but the molded body density at 6 kN decreased and the volume resistivity increased significantly. Further, the water vapor adsorption amount of lithium nickelate (A) at P / P 0 = 0.28 was 0.45 mg / g, and P / P 0 of lithium nickelate (A-1) treated for 1 minute = 0. The water vapor adsorption amount at 28 was 0.50 mg / g. With the mechanochemical treatment, the surface structure slightly changed to easily adsorb water vapor. When the obtained sample surface was observed with a scanning electron microscope (SEM), it was estimated that the sample surface became amorphous and electrochemically inactive because the smoothness of the sample surface was improved after the treatment. did.

<実施例1>
ニッケル酸リチウム(M)と炭素(II)2重量%との混合物に対して、窒素ガス雰囲気下、1分間のメカノケミカル処理で複合化し、炭素含有量1.98重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末1を得た。SEMおよびEDXで観察したところ、図1に示すように全ての粒子にニッケル酸リチウム由来のNi元素および炭素由来のC元素が確認された。数視野の観察で炭素偏析がなかったので、見た目の均一性と粒子複合化度は○と判断した。また、高倍率のSEM観察で、形状からカーボンナノチューブの存在は確認できた。図2に示す任意の1粒子のラマンスペクトルにおいて、前記振動モードに対応するピークが確認された。任意の10粒子全てにおいてニッケル酸リチウムと炭素に由来する両方のピークが確認された。前記10粒子に対するラマンスペクトルにおける強度比平均値P/Pは0.56、P/Pは0.97であった。
<Example 1>
A mixture of lithium nickelate (M) and carbon (II) 2% by weight is compounded by a mechanochemical treatment for 1 minute in a nitrogen gas atmosphere, and lithium nickelate-carbon having a carbon content of 1.98% by weight. A composite positive electrode active material particle powder 1 was obtained. When observed by SEM and EDX, as shown in FIG. 1, Ni element derived from lithium nickelate and C element derived from carbon were confirmed in all particles. Since there was no carbon segregation in observation of several fields of view, it was judged that the appearance uniformity and the degree of particle complexation were ○. In addition, the presence of carbon nanotubes was confirmed from the shape by high-magnification SEM observation. In the Raman spectrum of one arbitrary particle shown in FIG. 2, a peak corresponding to the vibration mode was confirmed. Both peaks derived from lithium nickelate and carbon were observed in all 10 particles. Intensity ratio average value P A / P G in the Raman spectrum for the 10 particles 0.56, P M / P G was 0.97.

<実施例2>
ニッケル酸リチウム(M)と炭素(IV)2重量%との混合物に対して、窒素ガス雰囲気下、1分間のメカノケミカル処理で複合化し、炭素含有量2.00重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末2を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のピークすべてが確認できた。前記10視野のラマンスペクトルにおける平均値P/Pは0.28、P/Pは4.01であった。
<Example 2>
A mixture of lithium nickelate (M) and carbon (IV) 2% by weight is compounded by mechanochemical treatment for 1 minute in a nitrogen gas atmosphere, and lithium nickelate-carbon having a carbon content of 2.00% by weight A composite positive electrode active material particle powder 2 was obtained. In the Raman spectrum, all peaks derived from carbon and lithium nickelate were confirmed in all 10 fields of view. Mean value P A / P G in the Raman spectrum of the 10 field are 0.28, P M / P G was 4.01.

<実施例3>
メカノケミカル処理時間を5分間に変更した以外は実施例2と同様に行い、炭素含有量1.99重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末3を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべてのピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.22、P/Pは0.66であった。
<Example 3>
Except that the mechanochemical treatment time was changed to 5 minutes, the same procedure as in Example 2 was performed to obtain a lithium nickelate-carbon composite cathode active material particle powder 3 having a carbon content of 1.99% by weight. In the Raman spectrum, all peaks derived from carbon and lithium nickelate were confirmed in all 10 visual fields, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.22, the P M / P G was 0.66.

<実施例4>
ニッケル酸リチウム(A)と炭素(I)2重量%との混合物に対して、窒素ガス雰囲気下、1分間のメカノケミカル処理で複合化し、炭素含有量2.03重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末4を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべてのピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.19、P/Pは0.50であった。
<Example 4>
A mixture of lithium nickelate (A) and carbon (I) 2% by weight is compounded by a mechanochemical treatment for 1 minute in a nitrogen gas atmosphere, and lithium nickelate-carbon having a carbon content of 2.03% by weight. A composite positive electrode active material particle powder 4 was obtained. In the Raman spectrum, all peaks derived from carbon and lithium nickelate were confirmed in all 10 visual fields, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.19, the P M / P G was 0.50.

<実施例5>
ニッケル酸リチウム(A)と炭素(II)5重量%との混合物に対して、窒素ガス雰囲気下、1分間のメカノケミカル処理で複合化し、炭素含有量4.48重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末5を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のピークのすべてが確認できた。前記10視野のラマンスペクトルにおける平均値P/Pは0.58、P/Pは4.09であった。
<Example 5>
A mixture of lithium nickelate (A) and carbon (II) 5% by weight is compounded by mechanochemical treatment for 1 minute in a nitrogen gas atmosphere, and lithium nickelate-carbon having a carbon content of 4.48% by weight. A composite positive electrode active material particle powder 5 was obtained. In the Raman spectrum, all the peaks derived from carbon and lithium nickelate were confirmed in all 10 fields of view. Mean value P A / P G in the Raman spectrum of the 10 field is 0.58, the P M / P G was 4.09.

<実施例6>
メカノケミカル処理時間を5分間に変更した以外は実施例5と同様に行い、炭素含有量4.75重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末6を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のピークのすべてが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.40、P/Pは0.73であった。
<Example 6>
Except for changing the mechanochemical treatment time to 5 minutes, the same procedure as in Example 5 was performed to obtain lithium nickelate-carbon composite positive electrode active material powder 6 having a carbon content of 4.75% by weight. In the Raman spectrum, all the peaks derived from carbon and lithium nickelate were confirmed in all 10 fields of view, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.40, the P M / P G was 0.73.

<実施例7>
ニッケル酸リチウム(A)と炭素(II)2重量%との混合物に対して、窒素ガス雰囲気下、1分間のメカノケミカル処理で複合化し、炭素含有量2.02重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末7を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のピークのすべてが確認できた。前記10視野のラマンスペクトルにおける平均値P/Pは0.58、P/Pは1.14であった。
<Example 7>
A mixture of lithium nickelate (A) and carbon (II) 2% by weight is compounded by mechanochemical treatment for 1 minute in a nitrogen gas atmosphere, and lithium nickelate-carbon having a carbon content of 2.02% by weight A composite positive electrode active material particle powder 7 was obtained. In the Raman spectrum, all the peaks derived from carbon and lithium nickelate were confirmed in all 10 fields of view. Mean value P A / P G in the Raman spectrum of the 10 field is 0.58, the P M / P G was 1.14.

<実施例8>
メカノケミカル処理時間を3分間に変更した以外は実施例7と同様に行い、炭素含有量1.90重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末8を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべてのピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.54、P/Pは1.01であった。
<Example 8>
Except that the mechanochemical treatment time was changed to 3 minutes, the same procedure as in Example 7 was performed to obtain a lithium nickelate-carbon composite cathode active material particle powder 8 having a carbon content of 1.90% by weight. In the Raman spectrum, all peaks derived from carbon and lithium nickelate were confirmed in all 10 visual fields, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.54, the P M / P G was 1.01.

<実施例9>
メカノケミカル処理時間を5分間に変更した以外は実施例7と同様に行い、炭素含有量1.98重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末9を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべてのピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.49、P/Pは0.40であった。
<Example 9>
Except for changing the mechanochemical treatment time to 5 minutes, the same procedure as in Example 7 was performed to obtain a lithium nickelate-carbon composite positive electrode active material particle powder 9 having a carbon content of 1.98 wt%. In the Raman spectrum, all peaks derived from carbon and lithium nickelate were confirmed in all 10 visual fields, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.49, the P M / P G was 0.40.

<実施例10>
窒素ガス雰囲気下で、ニッケル酸リチウム(A)に炭素微粒子(II)2重量%分を3回に分割投入しながら、3分間のメカノケミカル処理で複合化し、炭素含有量2.02重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末10を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべてのピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.41、P/Pは0.61であった。
<Example 10>
Under a nitrogen gas atmosphere, while adding 2% by weight of carbon fine particles (II) to lithium nickelate (A) in three portions, it was compounded by mechanochemical treatment for 3 minutes, and the carbon content was 2.02% by weight. A lithium nickelate-carbon composite cathode active material particle powder 10 was obtained. In the Raman spectrum, all peaks derived from carbon and lithium nickelate were confirmed in all 10 visual fields, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.41, the P M / P G was 0.61.

<実施例11>
窒素ガス雰囲気下で、ニッケル酸リチウム(A)に対して29分間のメカノケミカル処理をした後、炭素(II)2重量%を添加してさらに1分間のメカノケミカル処理で複合化し、炭素含有量2.22重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末11を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のピークのすべてが確認できた。前記10視野のラマンスペクトルにおける平均値P/Pは0.57、P/Pは1.01であった。
<Example 11>
After a mechanochemical treatment for 29 minutes with respect to lithium nickelate (A) in a nitrogen gas atmosphere, 2% by weight of carbon (II) was added and further compounded by a mechanochemical treatment for 1 minute to obtain a carbon content. A 2.22 wt% lithium nickelate-carbon composite positive electrode active material powder 11 was obtained. In the Raman spectrum, all the peaks derived from carbon and lithium nickelate were confirmed in all 10 fields of view. Mean value P A / P G in the Raman spectrum of the 10 field is 0.57, the P M / P G was 1.01.

<実施例12>
ニッケル酸リチウム(A)と炭素(II)1重量%との混合物に対して、窒素ガス雰囲気下、2分間のメカノケミカル処理で複合化し、炭素含有量1.01重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末12を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべてのピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.51、P/Pは0.67であった。
<Example 12>
A mixture of lithium nickelate (A) and carbon (II) 1% by weight is compounded by mechanochemical treatment for 2 minutes in a nitrogen gas atmosphere, and lithium nickelate-carbon having a carbon content of 1.01% by weight. A composite positive electrode active material particle powder 12 was obtained. In the Raman spectrum, all peaks derived from carbon and lithium nickelate were confirmed in all 10 visual fields, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.51, the P M / P G was 0.67.

<実施例13>
ニッケル酸リチウム(A)と炭素微粒子(II)0.3重量%との混合物に対して、窒素ガス雰囲気下、1分間のメカノケミカル処理で複合化し、炭素含有量0.34重量%ニッケル酸リチウム−炭素複合体正極活物質粒子粉末13を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のピークのすべてが確認できた。前記10視野のラマンスペクトルにおける平均値P/Pは0.63、P/Pは8.61であった。
<Example 13>
A mixture of lithium nickelate (A) and carbon fine particle (II) 0.3% by weight is compounded by a mechanochemical treatment for 1 minute in a nitrogen gas atmosphere, and a carbon content of 0.34% by weight lithium nickelate -Carbon composite positive electrode active material particle powder 13 was obtained. In the Raman spectrum, all the peaks derived from carbon and lithium nickelate were confirmed in all 10 fields of view. Mean value P A / P G in the Raman spectrum of the 10 field is 0.63, the P M / P G was 8.61.

<実施例14>
メカノケミカル処理時間を5分間に変更した以外は実施低13と同様にして、炭素含有量0.35重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末14を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべてのピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.37、P/Pは2.27であった。
<Example 14>
Except for changing the mechanochemical treatment time to 5 minutes, a lithium nickelate-carbon composite positive electrode active material particle powder 14 having a carbon content of 0.35 wt% was obtained in the same manner as in Working Example 13. In the Raman spectrum, all peaks derived from carbon and lithium nickelate were confirmed in all 10 visual fields, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.37, the P M / P G was 2.27.

<実施例15>
処理時間を30分間に変更した以外は実施例13と同様に行い、炭素含有量が0.28重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末15を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべてのピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.18、P/Pは1.35であった。
<Example 15>
Except for changing the treatment time to 30 minutes, the same procedure as in Example 13 was performed to obtain a lithium nickelate-carbon composite positive electrode active material particle powder 15 having a carbon content of 0.28 wt%. In the Raman spectrum, all peaks derived from carbon and lithium nickelate were confirmed in all 10 visual fields, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.18, the P M / P G was 1.35.

<実施例16>
窒素ガス雰囲気下で、ニッケル酸リチウム(A)に炭素微粒子(III)2重量%分を3回に分割投入しながら、3分間のメカノケミカル処理で複合化し、炭素含有量が1.98重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末16を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のピークすべてが確認できた。前記10視野のラマンスペクトルにおける平均値P/Pは0.35、P/Pは0.57であった。
<Example 16>
In a nitrogen gas atmosphere, 2 wt% of carbon fine particles (III) were dividedly added to lithium nickelate (A) in three portions and combined by mechanochemical treatment for 3 minutes, resulting in a carbon content of 1.98 wt%. Of lithium nickelate-carbon composite cathode active material particles 16 were obtained. In the Raman spectrum, all peaks derived from carbon and lithium nickelate were confirmed in all 10 fields of view. Mean value P A / P G in the Raman spectrum of the 10 field is 0.35, the P M / P G was 0.57.

上記実施例において作製したニッケル酸リチウム−炭素複合体正極活物質粒子粉末について製造条件と測定した粉体特性の結果を表2−1に示す。見た目の均一性と粒子複合化度はSEM−EDXのマッピングによるものである。   Table 2-1 shows the manufacturing conditions and the results of the measured powder properties for the lithium nickelate-carbon composite cathode active material particles produced in the above examples. Appearance uniformity and degree of particle complexation are due to SEM-EDX mapping.

<比較例1>
窒素ガス雰囲気下で、ニッケル酸リチウム(A)と炭素(I)2重量%とをメノウ乳鉢で混合することによって複合化し、炭素含有量1.99重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末21を得た。SEMおよびEDXで確認した結果、数視野でAB凝集体としてのC元素の偏析が見られ、また、ラマンスペクトルにおいても、炭素のピークのみが確認され、ニッケル酸リチウム由来のピークが見られない視野があった。前記10視野のラマンスペクトルにおける平均値P/Pは0.22、P/Pは16.79であった。
<Comparative Example 1>
In a nitrogen gas atmosphere, lithium nickelate (A) and carbon (I) 2% by weight are combined by mixing in an agate mortar, and a lithium nickelate-carbon composite cathode active material having a carbon content of 1.99% by weight Material particle powder 21 was obtained. As a result of confirmation by SEM and EDX, segregation of C element as an AB aggregate was observed in several fields, and only a carbon peak was confirmed in a Raman spectrum, and a peak derived from lithium nickelate was not observed. was there. Mean value P A / P G in the Raman spectrum of the 10 field is 0.22, the P M / P G was 16.79.

<比較例2>
窒素ガス雰囲気下で、ニッケル酸リチウム(M)と炭素微粒子(II)2重量%とをメノウ乳鉢で混合することによって複合化し、炭素含有量が1.98重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末22を得た。SEMおよびEDXで確認した結果、数視野でカーボンナノチューブ凝集体としてC元素の偏析が見られ(図3参照)、また、ラマンスペクトルにおいても、炭素のピークのみが確認され、ニッケル酸リチウム由来のピークが見られない視野があった。前記10視野のラマンスペクトルにおける平均値P/Pは0.58、P/Pは7.55であった。
<Comparative example 2>
In a nitrogen gas atmosphere, lithium nickelate (M) and carbon fine particles (II) 2% by weight are combined by mixing in an agate mortar, and a lithium nickelate-carbon composite having a carbon content of 1.98% by weight Positive electrode active material particle powder 22 was obtained. As a result of confirmation by SEM and EDX, segregation of C element was observed as a carbon nanotube aggregate in several fields of view (see FIG. 3), and in the Raman spectrum, only the carbon peak was confirmed, and the peak derived from lithium nickelate There was a field of vision that could not be seen. Mean value P A / P G in the Raman spectrum of the 10 field is 0.58, the P M / P G was 7.55.

<比較例3>
メカノケミカル処理時間を30分間に変更した以外は実施例1と同様に行い、炭素含有量が2.01重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末23を得た。ラマンスペクトルの10視野全てに炭素とニッケル酸リチウム由来のすべてのピークが確認され、炭素の偏析がないことを確認した。図3に任意の視野のラマンスペクトルを示すように炭素のGバンドとニッケル酸リチウム由来の前記10視野のラマンスペクトルにおける平均値P/Pは0.13、P/Pは0.12であった。
<Comparative Example 3>
Except for changing the mechanochemical treatment time to 30 minutes, the same procedure as in Example 1 was performed to obtain a lithium nickelate-carbon composite cathode active material particle powder 23 having a carbon content of 2.01 wt%. All peaks derived from carbon and lithium nickelate were confirmed in all 10 fields of the Raman spectrum, and it was confirmed that there was no segregation of carbon. Mean value P A / P G 0.13 in the Raman spectrum of the 10 fields from lithium G band and nickelate carbon to indicate the Raman spectrum of the arbitrary field of view in FIG. 3, P M / P G 0. It was 12.

<比較例4>
ニッケル酸リチウム(A)と炭素(I)5重量%との混合物に対して、窒素ガス雰囲気下、1分間のメカノケミカル処理で複合化し、炭素含有量が4.98重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末24を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべてのピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.23、P/Pは0.27であった。
<Comparative Example 4>
A mixture of lithium nickelate (A) and carbon (I) 5% by weight is compounded by mechanochemical treatment for 1 minute in a nitrogen gas atmosphere, and lithium nickelate having a carbon content of 4.98% by weight Carbon composite positive electrode active material particle powder 24 was obtained. In the Raman spectrum, all peaks derived from carbon and lithium nickelate were confirmed in all 10 visual fields, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.23, the P M / P G was 0.27.

<比較例5>
メカノケミカル処理時間を5分間に変更した以外は比較例4と同様に行い、炭素含有量が4.60重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末25を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべての両方のピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.17、P/Pは0.26であった。
<Comparative Example 5>
Except for changing the mechanochemical treatment time to 5 minutes, the same procedure as in Comparative Example 4 was carried out to obtain a lithium nickelate-carbon composite positive electrode active material particle powder 25 having a carbon content of 4.60% by weight. In the Raman spectrum, all the peaks derived from both carbon and lithium nickelate were confirmed in all 10 fields of view, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.17, the P M / P G was 0.26.

<比較例6>
処理時間を30分間に変更した以外は比較例4と同様に行い、炭素含有量が4.76重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末26を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべての両方のピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.09、P/Pは0.17であった。
<Comparative Example 6>
A lithium nickelate-carbon composite positive electrode active material powder 26 having a carbon content of 4.76% by weight was obtained except that the treatment time was changed to 30 minutes. In the Raman spectrum, all the peaks derived from both carbon and lithium nickelate were confirmed in all 10 fields of view, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.09, the P M / P G 0.17.

<比較例7>
窒素ガス雰囲気下で、ニッケル酸リチウム(A)と炭素微粒子(I)2重量%とをメノウ乳鉢で混合することによって複合化し、炭素含有量が2.01重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末27を得た。SEMおよびEDXで確認した結果、数視野においてAB凝集体としてCの偏析が見られ、また、ラマンスペクトルにおいても、炭素のピークのみが確認され、ニッケル酸リチウム由来のピークが見られない視野があった。
<Comparative Example 7>
In a nitrogen gas atmosphere, lithium nickelate (A) and carbon fine particles (I) 2% by weight are combined by mixing in an agate mortar, and the lithium nickelate-carbon composite having a carbon content of 2.01% by weight A positive electrode active material particle powder 27 was obtained. As a result of confirmation by SEM and EDX, segregation of C was observed as AB aggregates in several visual fields, and in the Raman spectrum, only a carbon peak was confirmed, and there was a visual field in which no peak derived from lithium nickelate was observed. It was.

<比較例8>
処理時間を5分間に変更した以外は実施例4と同様に行い、炭素含有量が1.96重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末28を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とNCAとの両方のピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.12、P/Pは0.21であった。
<Comparative Example 8>
Except for changing the treatment time to 5 minutes, the same procedure as in Example 4 was performed to obtain a lithium nickelate-carbon composite cathode active material particle powder 28 having a carbon content of 1.96 wt%. In the Raman spectrum, the peaks of both carbon and NCA were confirmed in all 10 fields of view, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.12, the P M / P G was 0.21.

<比較例9>
処理時間を30分間に変更した以外は実施例4と同様に行い、炭素含有量が2.01重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末29を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべての両方のピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.08、P/Pは0.12であった。
<Comparative Example 9>
Except for changing the treatment time to 30 minutes, the same procedure as in Example 4 was performed to obtain a lithium nickelate-carbon composite positive electrode active material powder 29 having a carbon content of 2.01 wt%. In the Raman spectrum, all the peaks derived from both carbon and lithium nickelate were confirmed in all 10 fields of view, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.08, the P M / P G was 0.12.

<比較例10>
処理時間を30分間に変更した以外は実施例5と同様に行い、炭素含有量が4.97重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末30を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべてのピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.22、P/Pは0.05であった。
<Comparative Example 10>
Except for changing the treatment time to 30 minutes, the same procedure as in Example 5 was performed to obtain a lithium nickelate-carbon composite positive electrode active material particle powder 30 having a carbon content of 4.97% by weight. In the Raman spectrum, all peaks derived from carbon and lithium nickelate were confirmed in all 10 visual fields, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.22, the P M / P G was 0.05.

<比較例11>
窒素ガス雰囲気下で、ニッケル酸リチウム(A)と炭素微粒子(II)2重量%とをメノウ乳鉢で混合することによって複合化し、炭素含有量が1.99重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末31を得た。SEMおよびEDXで確認した結果、カーボンナノチューブ凝集体としてC元素の偏析が見られ、また、ラマンスペクトルにおいても、炭素のピークのみが確認され、ニッケル酸リチウム由来のピークが見られない視野があった。
<Comparative Example 11>
In a nitrogen gas atmosphere, lithium nickelate (A) and carbon fine particles (II) 2% by weight are combined by mixing in an agate mortar, and a lithium nickelate-carbon composite having a carbon content of 1.99% by weight A positive electrode active material particle powder 31 was obtained. As a result of confirmation by SEM and EDX, segregation of the C element was observed as the carbon nanotube aggregate, and in the Raman spectrum, only the carbon peak was confirmed, and there was a field of view in which the peak derived from lithium nickelate was not observed. .

<比較例12>
処理時間を30分間に変更した以外は実施例7と同様に行い、炭素含有量が1.95重量%のニッケル酸リチウム−炭素複合体正極活物質粒子粉末32を得た。ラマンスペクトルでは任意の10視野全てにおいて炭素とニッケル酸リチウム由来のすべての両方のピークが確認され、炭素の偏析がないことを確認した。前記10視野のラマンスペクトルにおける平均値P/Pは0.14、P/Pは0.18であった。
<Comparative Example 12>
Except for changing the treatment time to 30 minutes, the same procedure as in Example 7 was performed to obtain a lithium nickelate-carbon composite positive electrode active material particle powder 32 having a carbon content of 1.95% by weight. In the Raman spectrum, all the peaks derived from both carbon and lithium nickelate were confirmed in all 10 fields of view, and it was confirmed that there was no segregation of carbon. Mean value P A / P G in the Raman spectrum of the 10 field is 0.14, the P M / P G was 0.18.

上記比較例において作製したニッケル酸リチウム−炭素複合体正極活物質粒子粉末について製造条件と測定した粉体特性の結果を表2−2に示す。見た目の均一性と粒子複合化度はSEM−EDXのマッピングによるものである。   Table 2-2 shows the manufacturing conditions and the results of the measured powder properties for the lithium nickelate-carbon composite cathode active material particles produced in the above comparative example. Appearance uniformity and degree of particle complexation are due to SEM-EDX mapping.

水蒸気吸着量については、同じ条件で処理したものを比較すると処理時間が長くなるほど水蒸気吸着量が増加し、炭素添加量が異なるものを比較すると炭素量が増えるほど水蒸気吸着量が増加する傾向にあった。炭素量が増えると吸着サイトが増えるので水蒸気吸着量が増加したと推察される。   As for the amount of water vapor adsorption, comparing the treatments under the same conditions, the water vapor adsorption amount increases as the treatment time increases, and when the amount of carbon addition is different, the water vapor adsorption amount tends to increase as the carbon amount increases. It was. As the amount of carbon increases, the number of adsorption sites increases, and it is assumed that the amount of water vapor adsorption increased.

図4に体積抵抗率の粉体成型体密度依存のデータをプロットした。実施例は3.0g/cc付近の体積抵抗率が低く、比較例及びニッケル酸リチウム(M)の体積抵抗率は高かった。比較例3は高い成型体密度と実施例3に近い体積抵抗率を示したが、P/Pの比が低く、良好な初期電池特性が得られないと推察される。 FIG. 4 plots data on the volume resistivity dependence of the powder compact density. In the examples, the volume resistivity around 3.0 g / cc was low, and the volume resistivity of the comparative example and lithium nickelate (M) was high. Comparative Example 3 showed a high compact density and volume resistivity close to the third embodiment, a low ratio of P M / P G, good initial cell characteristics are presumed not obtained.

表3−1及び表3−2に、各々、実施例及び比較例の体積抵抗率、成型体密度、及び|X|/(P/P)の値を示す。実施例は低い体積抵抗率、高い成型体密度、及び低い|X|/(P/P)の値の傾向にあった。一方、比較例は高い体積抵抗率、低い成型体密度、及び高い|X|/(P/P)の値の傾向にあった。 Tables 3-1 and 3-2 show the values of volume resistivity, molded body density, and | X | / (P M / P G ) of Examples and Comparative Examples, respectively. The examples tended to have low volume resistivity, high molded body density, and low | X | / (P M / P G ) values. On the other hand, the comparative example tended to have a high volume resistivity, a low molding density, and a high value of | X | / (P M / P G ).

未処理のニッケル酸リチウム(A)とニッケル酸リチウム−炭素複合体正極活物質粒子粉末10(実施例10)、ニッケル酸リチウム−炭素複合体正極活物質粒子粉末12(実施例12)、の3点について、電極シートを作製し、その評価を行った。未処理のニッケル酸リチウム(A)にABを3重量%添加して作製した電極(a)、ニッケル酸リチウム−炭素複合体正極活物質粒子粉末10にABを1重量%添加して作製した電極(b)、ニッケル酸リチウム−炭素複合体正極活物質粒子粉末12にABを2重量%添加して作製した電極(c)を各電極の厚みを47μm程度に揃えて、電極合剤密度と電極シートの電気抵抗率を測定した。結果を表4に示す。電極(a)と電極(c)の合剤密度が同等となり、添加したABが嵩高い為、ニッケル酸リチウム−炭素複合体正極活物質粒子粉末のみで測定した圧縮密度ほど差が出なかった。しかし、電極の電気抵抗率については、カーボンナノチューブを約2重量%複合化した電極(b)が最も低かった。   3 of untreated lithium nickelate (A), lithium nickelate-carbon composite cathode active material particle powder 10 (Example 10), lithium nickelate-carbon composite cathode active material particle powder 12 (Example 12) About the point, the electrode sheet was produced and the evaluation was performed. Electrode (a) prepared by adding 3% by weight of AB to untreated lithium nickelate (A), electrode prepared by adding 1% by weight of AB to lithium nickelate-carbon composite cathode active material particle powder 10 (B) An electrode (c) prepared by adding 2% by weight of AB to the lithium nickelate-carbon composite positive electrode active material particle powder 12 was adjusted to have a thickness of each electrode of about 47 μm. The electrical resistivity of the sheet was measured. The results are shown in Table 4. Since the mixture density of the electrode (a) and the electrode (c) became equal and the added AB was bulky, the difference was not as great as the compression density measured only with the lithium nickelate-carbon composite cathode active material powder. However, regarding the electrical resistivity of the electrode, the electrode (b) in which about 2% by weight of carbon nanotubes were combined was the lowest.

電極合剤密度を2.85g/cc程度に合わせた電極(a)、電極(b)、電極(c)を用いたフルセルでの初期充放電試験および30サイクル充放電試験の結果も又、表4に示す。電極(c)が最も良く、続いて電極(b)、電極(a)の順になり、炭素を複合化した効果がサイクル特性の改善に現れていることが確認できた。   The results of the initial charge / discharge test and the 30-cycle charge / discharge test in the full cell using the electrode (a), the electrode (b), and the electrode (c) with the electrode mixture density adjusted to about 2.85 g / cc are also shown in the table. 4 shows. It was confirmed that the electrode (c) was the best, followed by the electrode (b) and the electrode (a) in this order, and the effect of combining carbon appeared in the improvement of the cycle characteristics.

本発明に係るニッケル酸リチウム−炭素複合体正極活物質粒子粉末は、高電子伝導性、高成型体密度、適度な電極反応場、高機械的強度を有する。そのため、得られる非水電解質二次電池は高エネルギー密度を有し、且つ、充放電繰り返し特性に優れている。   The lithium nickelate-carbon composite positive electrode active material particle powder according to the present invention has high electron conductivity, high molded body density, appropriate electrode reaction field, and high mechanical strength. Therefore, the obtained nonaqueous electrolyte secondary battery has a high energy density and is excellent in charge / discharge repetition characteristics.

Claims (8)

ニッケル酸リチウム−炭素複合体正極活物質粒子粉末であって、前記ニッケル酸リチウムは化学式Li1+aNi1−b−cCo(Mは元素Mn、Al、B、Mg、Znのうち少なくとも1種、−0.1≦a≦0.2、0.05≦b≦0.5、0.01≦c≦0.4)で表わされ、前記炭素の一部は少なくともカーボンナノチューブであり、前記炭素含有量が0.1〜5.5重量%であり、当該正極活物質粒子粉末を励起波長532nmのグリーンレーザーで測定したラマンスペクトルにおいて、炭素のGバンドのピーク強度Pに対するGプライムバンドのピーク強度Pとの比の平均値P/Pが0.1〜0.8であり、同スペクトルのピーク強度Pに対するニッケル酸リチウムのピーク強度Pとの比の平均値P/Pが0.4〜10であることを特徴とするニッケル酸リチウム−炭素複合体正極活物質粒子粉末。 Lithium nickelate - a carbon composite positive electrode active material particles, wherein the lithium nickelate formula Li 1 + a Ni 1-b -c Co b M c O 2 (M is an element Mn, Al, B, Mg, and Zn At least one of them, -0.1 ≦ a ≦ 0.2, 0.05 ≦ b ≦ 0.5, 0.01 ≦ c ≦ 0.4), and a part of the carbon is at least a carbon nanotube , and the said carbon content is from 0.1 to 5.5 wt%, in the Raman spectrum measured by using the positive electrode active material particles in the green laser excitation wavelength 532 nm, to the peak intensity P G of the G band of carbon mean value P a / P G of the ratio of the peak intensity P a G-prime band is 0.1 to 0.8, the ratio of the peak intensity P M of lithium nickelate to the peak intensity P G of the spectrum flat Lithium nickelate value P M / P G is characterized in that 0.4 to 10 - carbon composite positive electrode active material particles. 請求項1に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末であって、8kNの荷重の圧縮成型体密度が2.7〜3.6g/ccであり、且つ体積抵抗率が0.1〜200Ω・cmであるニッケル酸リチウム−炭素複合体正極活物質粒子粉末。   The lithium nickelate-carbon composite cathode active material powder according to claim 1, wherein the density of the compression molded body under a load of 8 kN is 2.7 to 3.6 g / cc, and the volume resistivity is 0.00. A lithium nickelate-carbon composite positive electrode active material particle powder having a particle size of 1 to 200 Ω · cm. 請求項1又は2に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末であって、前記ピーク強度比の平均値P/Pと、4kN、6kN、8kNの荷重をかけた際の圧縮成型体密度に対する体積抵抗率をプロットした時の傾きXの絶対値|X|との間に、下記式(1)が成り立つことを特徴とする、ニッケル酸リチウム−炭素複合体正極活物質粒子粉末。
|X|/(P/P)≦500 ・・・式(1)
Lithium nickelate according to claim 1 or 2 - a carbon composite positive electrode active material particles, the average value P M / P G of the peak intensity ratio, 4 kN, 6 kN, at the time of applying a load of 8kN Lithium nickelate-carbon composite positive electrode active material particles, wherein the following formula (1) holds between the absolute value | X | of the slope X when plotting the volume resistivity against the compression molded body density Powder.
| X | / (P M / P G ) ≦ 500 (1)
請求項1〜3のいずれか1項に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末であって、P/P=0.28での水蒸気吸着量が1mg/g以下であるニッケル酸リチウム−炭素複合体正極活物質粒子粉末。 The nickel nickelate-carbon composite cathode active material powder according to any one of claims 1 to 3, wherein the water vapor adsorption amount at P / P 0 = 0.28 is 1 mg / g or less. Lithium acid-carbon composite cathode active material particle powder. 請求項1〜4のいずれか1項に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末であって、BET比表面積が10m/g以下であるニッケル酸リチウム−炭素複合体正極活物質粒子粉末。 5. The lithium nickelate-carbon composite cathode active material powder according to claim 1, wherein the lithium nickelate-carbon composite cathode active material has a BET specific surface area of 10 m 2 / g or less. Particle powder. 請求項1〜5のいずれか1項に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末であって、前記カーボンナノチューブが節を有し、且つチューブ外径が5nm〜50nmであるニッケル酸リチウム−炭素複合体正極活物質粒子粉末。   The nickel nickelate-carbon composite cathode active material powder according to any one of claims 1 to 5, wherein the carbon nanotube has a node and the outer diameter of the tube is 5 nm to 50 nm. Lithium-carbon composite cathode active material particle powder. 請求項1〜6のいずれか1項に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末の製造方法であって、不活性ガス雰囲気下でニッケル酸リチウムと炭素をメカノケミカル処理によってニッケル酸リチウム表面に被覆させることを特徴とするニッケル酸リチウム−炭素複合体正極活物質粒子粉末の製造方法。   It is a manufacturing method of lithium nickelate-carbon composite positive electrode active material particle powder of any one of Claims 1-6, Comprising: Nickel acid by mechanochemical treatment of lithium nickelate and carbon in inert gas atmosphere A method for producing a lithium nickelate-carbon composite cathode active material particle powder, wherein the lithium surface is coated. 請求項1〜6のいずれか1項に記載のニッケル酸リチウム−炭素複合体正極活物質粒子粉末を非水電解質用二次電池の正極活物質の少なくとも一部として備える二次電池。   A secondary battery comprising the lithium nickelate-carbon composite cathode active material particle powder according to any one of claims 1 to 6 as at least a part of a cathode active material of a secondary battery for nonaqueous electrolyte.
JP2016023997A 2016-02-10 2016-02-10 Lithium nickelate-carbon composite positive electrode active material particle powder, and manufacturing method thereof, and nonaqueous electrolyte secondary battery Pending JP2017142997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016023997A JP2017142997A (en) 2016-02-10 2016-02-10 Lithium nickelate-carbon composite positive electrode active material particle powder, and manufacturing method thereof, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016023997A JP2017142997A (en) 2016-02-10 2016-02-10 Lithium nickelate-carbon composite positive electrode active material particle powder, and manufacturing method thereof, and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2017142997A true JP2017142997A (en) 2017-08-17

Family

ID=59627554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016023997A Pending JP2017142997A (en) 2016-02-10 2016-02-10 Lithium nickelate-carbon composite positive electrode active material particle powder, and manufacturing method thereof, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2017142997A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013713A (en) * 2018-07-19 2020-01-23 本田技研工業株式会社 Cathode active material and cathode active material thereof
JP2020053314A (en) * 2018-09-27 2020-04-02 株式会社豊田自動織機 Method of manufacturing composite particles
JPWO2019168035A1 (en) * 2018-02-27 2020-08-20 積水化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
JP2021093292A (en) * 2019-12-10 2021-06-17 株式会社豊田中央研究所 Electrode, manufacturing method of electrode, power storage device and manufacturing method of power storage device
JP2021158083A (en) * 2020-03-30 2021-10-07 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN113594447A (en) * 2018-02-13 2021-11-02 宁德时代新能源科技股份有限公司 Ternary positive electrode material, positive electrode plate, preparation method and application
JP7457228B1 (en) 2023-06-30 2024-03-28 artience株式会社 Method for manufacturing composite for secondary battery electrode

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594447A (en) * 2018-02-13 2021-11-02 宁德时代新能源科技股份有限公司 Ternary positive electrode material, positive electrode plate, preparation method and application
CN113594447B (en) * 2018-02-13 2023-11-10 宁德时代新能源科技股份有限公司 Ternary positive electrode material, positive electrode plate, preparation method and application
JPWO2019168035A1 (en) * 2018-02-27 2020-08-20 積水化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
JP2020013713A (en) * 2018-07-19 2020-01-23 本田技研工業株式会社 Cathode active material and cathode active material thereof
JP2020053314A (en) * 2018-09-27 2020-04-02 株式会社豊田自動織機 Method of manufacturing composite particles
JP7135673B2 (en) 2018-09-27 2022-09-13 株式会社豊田自動織機 Composite particle manufacturing method
JP2021093292A (en) * 2019-12-10 2021-06-17 株式会社豊田中央研究所 Electrode, manufacturing method of electrode, power storage device and manufacturing method of power storage device
JP7176504B2 (en) 2019-12-10 2022-11-22 株式会社豊田中央研究所 ELECTRODE, ELECTRODE MANUFACTURING METHOD, ELECTRICITY STORAGE DEVICE, AND ELECTRICITY STORAGE DEVICE MANUFACTURING METHOD
JP2021158083A (en) * 2020-03-30 2021-10-07 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US11444282B2 (en) 2020-03-30 2022-09-13 Sumitomo Metal Mining Co., Ltd. Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7457228B1 (en) 2023-06-30 2024-03-28 artience株式会社 Method for manufacturing composite for secondary battery electrode

Similar Documents

Publication Publication Date Title
US11631838B2 (en) Graphene-enhanced anode particulates for lithium ion batteries
EP3309879B1 (en) Positive electrode mixture and secondary battery including same
Yang et al. Electrochemical performance of V-doped spinel Li4Ti5O12/C composite anode in Li-half and Li4Ti5O12/LiFePO4-full cell
US9564630B2 (en) Anode active material-coated graphene sheets for lithium batteries and process for producing same
US10020494B2 (en) Anode containing active material-coated graphene sheets and lithium-ion batteries containing same
JP6888631B2 (en) Graphene dispersion, electrode paste manufacturing method and electrode manufacturing method
US9413007B2 (en) Graphene powder, production method thereof, and electrochemical device comprising same
JP2017142997A (en) Lithium nickelate-carbon composite positive electrode active material particle powder, and manufacturing method thereof, and nonaqueous electrolyte secondary battery
EP2795701B1 (en) Electrode-forming composition
JP6136788B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
US9812712B2 (en) Highly dispersible graphene composition, preparation method thereof, and electrode for lithium ion secondary battery containing highly dispersible graphene composition
KR20180056395A (en) Porous silicone composite cluster strucutre, carbon composite including the same, preparing method thereof, electrode, lithium battery, and device including the same
Cao et al. Facile synthesis of CoSnO3/Graphene nanohybrid with superior lithium storage capability
Huang et al. Structure and electrochemical performance of nanostructured Sn–Co alloy/carbon nanotube composites as anodes for lithium ion batteries
US10629955B2 (en) Selenium preloaded cathode for alkali metal-selenium secondary battery and production process
WO2017082338A1 (en) Iron oxide-carbon composite particle powder and method for producing same
EP3933985A1 (en) Electrode and secondary battery comprising same
Ahmad et al. Carbon in lithium-ion and post-lithium-ion batteries: Recent features
Ding et al. Nanoscale MnO and natural graphite hybrid materials as high-performance anode for lithium ion batteries
WO2020213628A1 (en) Composite carbon particles, method for manufacturing same and use thereof
JP6276573B2 (en) Anode material for secondary battery and secondary battery using the same
Youjie et al. Lithium titanate anode for high-performance lithium-ion batteries using octadecylamine and folic acid-functionalized graphene oxide for fabrication of ultrathin lithium titanate nanoflakes and modification of binder
WO2020213627A1 (en) Composite carbon particle, method for manufacturing same, and use thereof
KR102568677B1 (en) Positive active material for potassium ion secondary battery, preparation method therof, and potassium ion secondary battery comprising the same
WO2021193662A1 (en) Composite active material for lithium secondary battery, electrode composition for lithium secondary battery, lithium secondary battery electrode, and method for manufacturing composite active material for lithium secondary battery