JPH1116570A - Lithium secondary battery and electronic equipment using it - Google Patents

Lithium secondary battery and electronic equipment using it

Info

Publication number
JPH1116570A
JPH1116570A JP9165576A JP16557697A JPH1116570A JP H1116570 A JPH1116570 A JP H1116570A JP 9165576 A JP9165576 A JP 9165576A JP 16557697 A JP16557697 A JP 16557697A JP H1116570 A JPH1116570 A JP H1116570A
Authority
JP
Japan
Prior art keywords
carbon material
secondary battery
lithium secondary
negative electrode
crystalline carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9165576A
Other languages
Japanese (ja)
Inventor
Hideto Momose
秀人 百生
Seiji Takeuchi
瀞士 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9165576A priority Critical patent/JPH1116570A/en
Publication of JPH1116570A publication Critical patent/JPH1116570A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material in which the reduction of discharge capacity accompanying the increase of charge and discharge cycle frequency is minimized by forming a coating layer mainly composed of an amorphous carbon material on the surface of a granular or fibrous crystalline carbon material contained in a negative electrode in mesh so as partially expose the substrate. SOLUTION: The covering ratio of an amorphous carbon covering the surface of a crystalline carbon material in mesh is 20-70 % by area ratio, and the thickness of the amorphous carbon is 1-10 nm. The granular or fibrous crystalline carbon material contained in a negative electrode preferably has an organic compound of aromatic cyclic structure contained in the amorphous carbon covering the surface in mesh. To form the film, the particle or fiber of the crystalline carbon material is dispersed into an aqueous solution in which an organic compound having an aromatic ring in the structure such as phthalic acid is dissolved. The aromatic ring having a geometrically flat structure is adsorbed onto the flat crystal surface having a developed graphite structure with the cyclic surface being substantially parallel to the flat surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムの拡散速
度が大きく、かつ長期の充放電サイクルに耐え得るリチ
ウム二次電池負極材料を用いた長寿命のリチウム二次電
池およびそれを用いた電子機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a long-life lithium secondary battery using a lithium secondary battery negative electrode material which has a high lithium diffusion rate and can withstand a long charge / discharge cycle, and an electronic apparatus using the same. About.

【0002】[0002]

【従来の技術】リチウム二次電池はリチウムを可逆的に
吸蔵・放出し得る物質を正負極の各極に用いてなる。市
販されている代表的なリチウム二次電池ではα−NaC
rO2の層状構造を有したLixCoyO2 を正極材料
に、リチウムイオンを結晶層間にインターカレート可能
な黒鉛あるいはリチウムを空隙に吸蔵可能な非晶質炭素
を負極材料に用いられている。
2. Description of the Related Art A lithium secondary battery uses a material capable of reversibly occluding and releasing lithium for each of positive and negative electrodes. A typical commercially available lithium secondary battery is α-NaC
LixCoyO 2 having a layered structure of rO 2 is used as a positive electrode material, and graphite capable of intercalating lithium ions between crystal layers or amorphous carbon capable of occluding lithium in voids is used as a negative electrode material.

【0003】これらの電極材料には可逆的により多くの
リチウムを吸蔵・放出できることが要求される。また、
高出力の放電を実現するためにはリチウムの拡散が速い
ことが必要であり、この点では負極材料として非晶質炭
素材に比べ、結晶質炭素材である黒鉛が有利である。し
かしながら結晶質炭素材ではリチウム吸蔵・放出の際、
結晶層間距離が変化し、これによる体積変化が長期の充
放電サイクルにおける材料の劣化・破壊の一要因とな
る。
[0003] These electrode materials are required to be able to reversibly occlude and release more lithium. Also,
In order to realize high-power discharge, it is necessary for lithium to diffuse quickly. In this respect, graphite, which is a crystalline carbon material, is more advantageous than an amorphous carbon material as a negative electrode material. However, in the case of crystalline carbon material, when inserting and extracting lithium,
The distance between the crystal layers changes, and the change in volume due to the change causes the deterioration and destruction of the material in a long-term charge / discharge cycle.

【0004】一方、非晶質炭素材ではリチウム吸蔵・放
出による体積変化は結晶質炭素材に比べて小さく、長期
の充放電サイクルにおける劣化が小さいという利点があ
る。結晶質の炭素材料である黒鉛には天然黒鉛と有機物
を原料とした人造黒鉛がある。人造黒鉛は有機物を50
0〜1500℃で炭素化した後、2000℃以上の高温
で黒鉛化し、結晶構造が発達させたものである。走査型
電子顕微鏡による人造黒鉛の高解像度の表面観察におい
て、黒鉛化により発達した層状に積み重なった黒鉛結晶
の平坦な面が観察される。
On the other hand, an amorphous carbon material has the advantage that the change in volume due to insertion and extraction of lithium is smaller than that of a crystalline carbon material, and the deterioration in a long-term charge / discharge cycle is small. Graphite, which is a crystalline carbon material, includes natural graphite and artificial graphite made from organic substances. Artificial graphite contains 50 organic substances
After carbonization at 0 to 1500 ° C., it is graphitized at a high temperature of 2000 ° C. or higher, and the crystal structure is developed. In observation of a high-resolution surface of artificial graphite by a scanning electron microscope, a flat surface of graphite crystals stacked in layers developed by graphitization is observed.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、高出
力の充放電に対応できるリチウムの拡散速度が大きく、
かつ充放電サイクル回数の増加にともなう放電容量低下
率の少ない負極用材料を提供することであり、またこれ
を用いたサイクル寿命の長いリチウム二次電池を提供す
ることである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a lithium battery having a high lithium diffusion rate capable of coping with high-output charging and discharging.
Another object of the present invention is to provide a negative electrode material having a small discharge capacity reduction rate with an increase in the number of charge / discharge cycles, and to provide a lithium secondary battery having a long cycle life using the same.

【0006】[0006]

【課題を解決するための手段】上記課題は負極材料とし
て、その下地にリチウム拡散速度の大きい結晶質炭素材
を用い、かつその結晶質炭素材の表面に非晶質炭素材料
を主成分とする被覆層を、下地の非晶質炭素材の一部分
を露出する形態で、網状に形成することにより解決され
る。
The object of the present invention is to use, as a negative electrode material, a crystalline carbon material having a high lithium diffusion rate as a base, and an amorphous carbon material as a main component on the surface of the crystalline carbon material. The problem can be solved by forming the coating layer in a net-like form in which a part of the underlying amorphous carbon material is exposed.

【0007】[0007]

【発明の実施の形態】ベースに用いる結晶質炭素材料と
して粒径が10〜数10μmの天然黒鉛,人造黒鉛,メ
ソフェーズピッチを高温焼成して形成した粒状あるいは
繊維状の炭素材などが良い。これらの結晶性炭素材料に
被膜を形成する方法として、フタル酸等の芳香族環を構
造中に有する有機化合物を溶解した水溶液に、前述の結
晶質炭素材の粒子もしくは繊維を分散する。
BEST MODE FOR CARRYING OUT THE INVENTION As the crystalline carbon material used for the base, natural graphite, artificial graphite having a particle size of 10 to several tens of μm, granular or fibrous carbon material formed by firing mesophase pitch at a high temperature, and the like are preferable. As a method of forming a film on these crystalline carbon materials, the particles or fibers of the above-mentioned crystalline carbon materials are dispersed in an aqueous solution in which an organic compound having an aromatic ring such as phthalic acid in the structure is dissolved.

【0008】幾何学的に平坦な構造を有する芳香族環は
黒鉛構造の発達した平坦な結晶面上に、環状面を平坦面
にほぼ平行にして吸着する。なお、吸着させる有機化合
物は幾何学的に平坦な構造を有する化合物であれば、フ
タル酸に限定されない。
An aromatic ring having a geometrically flat structure is adsorbed on a flat crystal surface having a developed graphite structure, with the ring surface being substantially parallel to the flat surface. The organic compound to be adsorbed is not limited to phthalic acid as long as it has a geometrically flat structure.

【0009】また、有機化合物の分散および結晶質炭素
材への吸着方法は水溶液中でなく、非水溶媒中で行って
も構わない。結晶質炭素材表面への吸着量は有機化合物
の種類・濃度・温度により制御可能である。有機化合物
を表面に吸着させた結晶質炭素材をろ過し、さらに真空
加熱乾燥することにより表面に非晶質炭素被膜が形成さ
れた結晶質炭素材が得られる。
The method of dispersing the organic compound and adsorbing it on the crystalline carbon material may be performed in a non-aqueous solvent instead of in an aqueous solution. The amount of adsorption on the surface of the crystalline carbon material can be controlled by the type, concentration and temperature of the organic compound. The crystalline carbon material having the organic compound adsorbed on the surface is filtered, and further dried by heating under vacuum to obtain a crystalline carbon material having an amorphous carbon film formed on the surface.

【0010】有機化合物の吸着量を制御することによ
り、被膜は結晶質炭素材表面を完全には覆わず、部分的
に下地が露出するように被覆することができる。高感度
の走査型電子顕微鏡で観察すると、マスクメロンの表面
の筋のように、網目状に被膜が下地結晶質炭素材表面を
覆っていることが観察された。
[0010] By controlling the amount of organic compound adsorbed, the film can be coated so as not to completely cover the surface of the crystalline carbon material but to partially expose the underlayer. Observation with a high-sensitivity scanning electron microscope revealed that the coating film covered the underlying crystalline carbon material surface in a network-like manner, like streaks on the surface of the muskmelon.

【0011】こうして作製した炭素材を負極材料として
用いて、単極試験すると被膜形成処理をする前に比べ、
高出力放電の特性は損なうことなく、サイクル劣化率が
1/10以下と大幅に改善が見られる。被膜形成前の結
晶質炭素材のサイクル試験時の充放電効率は被膜形成し
た炭素材と同じくほぼ100%であり、不活性化反応に
よる劣化というより、活物質量がサイクルを追うごとに
減少していくための劣化に見える。このことから充電時
に体積膨張した被膜形成前の結晶質炭素材は放電時に体
積収縮する際に、活物質、特にエッジ部が脱落や破壊さ
れ集電が取れなくなり、容量低下してゆくが、非晶質炭
素の網で覆うことにより、その網状の被膜が活物質の脱
落や破壊を抑制したものと推察される。
Using the carbon material thus produced as a negative electrode material, a monopolar test is performed, as compared with before the film forming treatment.
The characteristics of the high-power discharge are not impaired, and the cycle deterioration rate is greatly improved to 1/10 or less. The charge / discharge efficiency of the crystalline carbon material before the film formation during the cycle test is almost 100% as in the case of the film-formed carbon material, and the amount of active material decreases with each cycle rather than deterioration due to the inactivation reaction. It looks like deterioration to go. From this, when the volume of the crystalline carbon material that has expanded during charging and before the film is formed contracts during discharging, the active material, particularly the edges, fall off or break down, making it impossible to collect current and reducing the capacity. It is presumed that by covering with a net of crystalline carbon, the net-like coating suppressed falling off and destruction of the active material.

【0012】また、全面ではなく部分的に下地が露出し
ていることにより、その露出面がリチウムイオンの結晶
質炭素材の出入り口として機能し、高出力放電特性が損
なわれなかったと推察される。被覆率が70%以上にな
ると、高出力放電特性が悪化する。
Also, it is presumed that the exposed surface functions as an entrance and exit for the crystalline carbon material of lithium ions because the underlayer is partially exposed instead of the entire surface, and high output discharge characteristics are not impaired. When the coverage is 70% or more, the high-output discharge characteristics deteriorate.

【0013】この原因は非晶質炭素がリチウムイオンの
出入りする結晶質炭素のエッジ部を結晶質炭素材の内部
のリチウム拡散能力に比較して結晶質炭素材へ出入りで
きるリチウムイオン量が追い付かない程に塞いだため、
高出力放電特性が損なわれたためと考えられる。
The cause is that the amount of lithium ions that can enter and exit the crystalline carbon material cannot be caught by comparing the edge portion of the crystalline carbon where the amorphous carbon enters and exits the lithium ions with the lithium diffusion ability inside the crystalline carbon material. Because it was closed
It is considered that the high output discharge characteristics were impaired.

【0014】また、被覆率が20%以下になるとサイク
ル劣化率の改善が見られなくなり、これは被覆量が少な
いため活物質の脱落や破壊を十分に抑制することができ
なかったためと推察される。以上から非晶質炭素材被膜
の被覆率は20〜70%が望ましい。
On the other hand, if the coverage is 20% or less, the cycle deterioration rate cannot be improved. This is presumed to be due to the small amount of coating, which prevented the active material from falling or breaking down sufficiently. . From the above, the coverage of the amorphous carbon material film is desirably 20 to 70%.

【0015】以下、本発明を実施例を示し、具体的に説
明する。
Hereinafter, the present invention will be described in detail with reference to examples.

【0016】(実施例) 負極材料の作製:ホットスターラー上のビーカーの蒸留
水中に平均粒径15μmの人造黒鉛の粉末を入れ、フタ
ル酸を添加し、30分間攪はんした後、ビーカー内の混
合物を吸引ろ過する。ろ紙上に残った黒鉛紛体を真空乾
燥炉で80℃で2時間真空乾燥して表面に非晶質炭素被
膜を有する結晶質炭素材料を得た。フタル酸添加量を変
え、被覆率の異なる試料1〜4を得た。
(Example) Preparation of negative electrode material: An artificial graphite powder having an average particle size of 15 µm was put into distilled water of a beaker on a hot stirrer, phthalic acid was added, and the mixture was stirred for 30 minutes. The mixture is suction filtered. The graphite powder remaining on the filter paper was vacuum dried in a vacuum drying furnace at 80 ° C. for 2 hours to obtain a crystalline carbon material having an amorphous carbon coating on the surface. By changing the amount of phthalic acid added, samples 1 to 4 having different coverages were obtained.

【0017】作製した負極材料は高分解能の走査型電子
顕微鏡にて観察して、表面に網状の被膜が形成している
事を確認できた。この網状の被膜の間から露出した下地
の部分の面積は平均で100平方ナノメートルであっ
た。さらに電子エネルギー損失分光装置付きの透過型電
子顕微鏡による観察・測定により、結晶質炭素材上に非
晶質炭素の被膜が形成されていることが確認された。こ
の被膜の厚さは図1に示したごとく20〜70%被覆の
範囲においておよそ1〜10ナノメートルであった。
Observation of the produced negative electrode material with a high-resolution scanning electron microscope confirmed that a net-like film was formed on the surface. The area of the underlying portion exposed from between the net-like films was 100 square nanometers on average. Further, observation and measurement with a transmission electron microscope equipped with an electron energy loss spectrometer confirmed that a film of amorphous carbon was formed on the crystalline carbon material. The thickness of this coating was approximately 1-10 nanometers in the range of 20-70% coverage as shown in FIG.

【0018】単極試験:上記で作製した試料1〜4のそ
れぞれにバインダとしてポリフッ化ビニリデンをn−メ
チルピロリドン溶液の形で加え混練したスラリーを、銅
箔上にコーティングナイフで塗布後、乾燥・プレスし試
験極とした。
Unipolar test: A slurry obtained by adding and kneading polyvinylidene fluoride as a binder in the form of an n-methylpyrrolidone solution to each of the above-prepared samples 1 to 4 was applied to a copper foil with a coating knife, and then dried. It pressed and was set as the test pole.

【0019】この試験極と対極となるリチウム金属箔と
の間に、セパレータとなるポリエチレン多孔質膜を挟
み、両電極およびセパレータにエチレンカーボネートと
ジメチルカーボネートの混合溶媒に、1モル当量の6フ
ッ化リン酸リチウムを溶解させた電解液を浸み込ませた
2極式の充放電セルを用いて、充放電試験を実施した。
また、未処理の人造黒鉛を用いて上と同様にして試験極
を作製し、同様に充放電試験を行い、比較例とした。充
放電試験においては活物質1g当たり80mAの定電流
で充放電し、充電は10mV、放電は1Vで停止させ
た。表1に各実施例および比較例の被覆率、50サイク
ル後の容量劣化率、1/8C放電容量に対する1C放電
時の容量低下率をまとめた。
A polyethylene porous membrane serving as a separator is sandwiched between the test electrode and a lithium metal foil serving as a counter electrode. One mole equivalent of hexafluoride in a mixed solvent of ethylene carbonate and dimethyl carbonate is provided between the electrodes and the separator. A charge / discharge test was performed using a bipolar charge / discharge cell impregnated with an electrolytic solution in which lithium phosphate was dissolved.
In addition, a test electrode was prepared in the same manner as above using untreated artificial graphite, and a charge / discharge test was performed in the same manner as a comparative example. In the charge / discharge test, charge / discharge was performed at a constant current of 80 mA / g of active material, charging was stopped at 10 mV, and discharging was stopped at 1 V. Table 1 summarizes the coverage, the capacity deterioration rate after 50 cycles, and the capacity reduction rate at the time of 1C discharge with respect to the 1 / 8C discharge capacity in Table 1 and Comparative Example.

【0020】[0020]

【表1】 [Table 1]

【0021】表から明らかなように網状の被覆率を有す
る実施例1〜4は比較例に対し、良好な特性を示した。
また図2には、これら試験極のサイクル毎の放電容量を
初期容量1.0 からの低下率として示した。
As is clear from the table, Examples 1 to 4 having a net coverage showed better characteristics than Comparative Examples.
FIG. 2 shows the discharge capacity of each cycle of the test electrode as a rate of decrease from the initial capacity of 1.0.

【0022】リチウム二次電池の充放電:コバルト酸リ
チウムLiCoO2 に、バインダとしてポリフッ化ビニ
リデンのn−メチルピロリドン溶液を加え混練したスラ
リーを、アルミ箔上にコーティングナイフで塗布後、乾
燥・プレスし正極とした。この正極と上記の単極試験で
作製した試験極(負極)とをセパレータとなるポリエチ
レン多孔質膜で挟み込み、試験電池を作製した。充電は
4.1V、放電は3.0Vで停止した。
Charge / discharge of lithium secondary battery: A slurry obtained by adding a solution of polyvinylidene fluoride in n-methylpyrrolidone as a binder to lithium cobaltate LiCoO 2 and kneading the mixture is applied to an aluminum foil with a coating knife, followed by drying and pressing. The positive electrode was used. The positive electrode and the test electrode (negative electrode) prepared in the above-described monopolar test were sandwiched between polyethylene porous membranes serving as separators to prepare test batteries. The charging was stopped at 4.1 V and the discharging was stopped at 3.0 V.

【0023】[0023]

【発明の効果】以上説明したように、リチウム拡散速度
が高く、高出力のリチウム二次電池用負極材としては有
利であるが、充放電時に体積変化し、サイクル劣化が大
きい結晶性炭素材表面に非晶質炭素材の被膜を網状に覆
い、下地が部分的に露出するように被膜を形成する事に
より、高いリチウム拡散速度の利点を損なうことなく、
サイクル劣化に対する耐性を高める事が可能になる。
As described above, although the lithium diffusion rate is high, it is advantageous as a negative electrode material for a high-output lithium secondary battery, but the volume of the crystalline carbon material changes greatly during charge and discharge, and the cycle deterioration is large. By covering the coating of the amorphous carbon material in a net shape and forming the coating so that the base is partially exposed, without impairing the advantage of high lithium diffusion rate,
It is possible to increase the resistance to cycle deterioration.

【0024】この結晶性炭素材表面に非晶質炭素材の被
膜を網状に覆い、下地が部分的に露出するように被膜を
形成した材料を負極材料として使用することにより、リ
チウム二次電池を長寿命化することができる。
A lithium secondary battery is obtained by covering the surface of the crystalline carbon material with a coating of an amorphous carbon material in a net-like manner, and using a material having a coating formed so that a base is partially exposed as a negative electrode material. The service life can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】非晶質炭素の被覆率と被膜厚さの関係を示すグ
ラフ。
FIG. 1 is a graph showing the relationship between the coverage of amorphous carbon and the film thickness.

【図2】実施例および比較例のリチウム二次電池の充放
電におけるサイクル数に対する放電容量の変化を示すグ
ラフ。
FIG. 2 is a graph showing a change in discharge capacity with respect to the number of cycles in charging and discharging of the lithium secondary batteries of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1…非晶質炭素の被膜厚さ、2…実施例1,2及び3負
極のサイクル特性、3…比較例のサイクル特性。
1 ... film thickness of amorphous carbon, 2 ... cycle characteristics of Examples 1, 2 and 3, 3 ... cycle characteristics of comparative example.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電気化学的にリチウムを吸蔵・放出可能な
結晶質の炭素材料を含む負極と金属酸化物を含む正極を
用いるリチウム二次電池において、その負極に含まれる
粒状あるいは繊維状の結晶質の炭素材料の表面に、非晶
質炭素材料を主成分とする被覆層が下地を部分的に露出
する様に、網目状に形成されていることを特徴とするリ
チウム二次電池。
In a lithium secondary battery using a negative electrode containing a crystalline carbon material capable of electrochemically storing and releasing lithium and a positive electrode containing a metal oxide, granular or fibrous crystals contained in the negative electrode A lithium secondary battery characterized in that a coating layer mainly composed of an amorphous carbon material is formed in a mesh shape on a surface of a high quality carbon material such that a base layer is partially exposed.
【請求項2】請求項1に記載のリチウム二次電池におい
て、その負極に含まれる炭素材料として、結晶質の炭素
材表面に網目状に被覆した非晶質炭素の被覆率が面積比
で20%〜70%である材料を用いることを特徴とする
リチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the carbon material contained in the negative electrode has an amorphous carbon having a crystalline carbon material surface coated in a mesh pattern with an area ratio of 20%. % To 70% of a lithium secondary battery.
【請求項3】請求項1に記載のリチウム二次電池におい
て、その負極に含まれる炭素材料が、結晶質の炭素材表
面に網目状に被覆された非晶質炭素の厚みが1〜10ナ
ノメートルであることを特徴とするリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the carbon material contained in the negative electrode has a thickness of 1 to 10 nanometers of amorphous carbon in which the surface of the crystalline carbon material is coated in a mesh pattern. Meters, a lithium secondary battery.
【請求項4】請求項1に記載のリチウム二次電池におい
て、その負極に含まれる炭素材料が、結晶質の炭素材表
面に網目状に被覆された非晶質炭素中に芳香族の環状構
造を有する有機化合物が含まれていることを特徴とする
リチウム二次電池。
4. The lithium secondary battery according to claim 1, wherein the carbon material contained in the negative electrode has an aromatic cyclic structure in amorphous carbon in which the surface of the crystalline carbon material is covered in a mesh pattern. A lithium secondary battery comprising an organic compound having the formula:
【請求項5】請求項1〜6のいずれかに記載のリチウム
二次電池をノート型パソコン,ワープロ,携帯電話,コ
ードレスフォン子機,携帯ファックス,携帯プリンタ
ー,ヘッドフォンステレオ,ビデオムービー,液晶テレ
ビ,ハンディークリーナー,ポータブルCD,電気シェ
ーバー,電子翻訳機,自動車電話,トランシーバー,電
動工具,メモリーカード等のポータブル機器駆動用電源
として用いる事を特徴とする電子機器。
5. A rechargeable lithium battery according to claim 1, wherein said rechargeable battery is a notebook computer, word processor, mobile phone, cordless phone handset, portable facsimile, portable printer, headphone stereo, video movie, liquid crystal television, Electronic equipment characterized by being used as a power source for driving portable equipment such as handy cleaners, portable CDs, electric shavers, electronic translators, car phones, transceivers, power tools, and memory cards.
JP9165576A 1997-06-23 1997-06-23 Lithium secondary battery and electronic equipment using it Pending JPH1116570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9165576A JPH1116570A (en) 1997-06-23 1997-06-23 Lithium secondary battery and electronic equipment using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9165576A JPH1116570A (en) 1997-06-23 1997-06-23 Lithium secondary battery and electronic equipment using it

Publications (1)

Publication Number Publication Date
JPH1116570A true JPH1116570A (en) 1999-01-22

Family

ID=15814989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9165576A Pending JPH1116570A (en) 1997-06-23 1997-06-23 Lithium secondary battery and electronic equipment using it

Country Status (1)

Country Link
JP (1) JPH1116570A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038931A1 (en) * 2001-10-29 2003-05-08 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
WO2003049912A1 (en) * 2001-12-12 2003-06-19 Arkray, Inc. Method and implement for opening hole in soft material
KR100453920B1 (en) * 2001-09-14 2004-10-20 주식회사 엘지화학 Methods for the preparation of rounded-morphology graphite by coating with amorphous carbons
KR100511232B1 (en) * 2001-09-03 2005-08-31 닛본 덴끼 가부시끼가이샤 Anode for a secondary battery
JP2010129169A (en) * 2008-11-25 2010-06-10 National Institute Of Advanced Industrial Science & Technology Carbon nanotube material for negative electrode and lithium ion secondary battery using this as negative electrode
JP2019160730A (en) * 2018-03-16 2019-09-19 トヨタ自動車株式会社 Lithium metal secondary battery
WO2021095719A1 (en) * 2019-11-11 2021-05-20 昭和電工株式会社 Composite material, manufacturing method therefor, negative electrode material for lithium ion secondary battery, and the like
CN114728797B (en) * 2019-11-11 2024-04-23 株式会社力森诺科 Composite material, method for producing same, and negative electrode material for lithium ion secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100511232B1 (en) * 2001-09-03 2005-08-31 닛본 덴끼 가부시끼가이샤 Anode for a secondary battery
KR100453920B1 (en) * 2001-09-14 2004-10-20 주식회사 엘지화학 Methods for the preparation of rounded-morphology graphite by coating with amorphous carbons
WO2003038931A1 (en) * 2001-10-29 2003-05-08 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
US7150940B2 (en) 2001-10-29 2006-12-19 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
WO2003049912A1 (en) * 2001-12-12 2003-06-19 Arkray, Inc. Method and implement for opening hole in soft material
JP2010129169A (en) * 2008-11-25 2010-06-10 National Institute Of Advanced Industrial Science & Technology Carbon nanotube material for negative electrode and lithium ion secondary battery using this as negative electrode
JP2019160730A (en) * 2018-03-16 2019-09-19 トヨタ自動車株式会社 Lithium metal secondary battery
WO2021095719A1 (en) * 2019-11-11 2021-05-20 昭和電工株式会社 Composite material, manufacturing method therefor, negative electrode material for lithium ion secondary battery, and the like
CN114728797A (en) * 2019-11-11 2022-07-08 昭和电工株式会社 Composite material, method for producing same, and negative electrode material for lithium ion secondary battery and the like
CN114728797B (en) * 2019-11-11 2024-04-23 株式会社力森诺科 Composite material, method for producing same, and negative electrode material for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
AU2019411630B2 (en) Anode material, electrochemical device and electronic device using the same
JP4137350B2 (en) Negative electrode material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode material for lithium secondary battery
KR101479320B1 (en) Negative electrode active material for rechargeable lithium battery, and method for preparing the same
US20140322611A1 (en) Anode active material having high capacity for lithium secondary battery, preparation thereof and lithium secondary battery comprising the same
US20110223487A1 (en) Electrochemical cell with sintered cathode and both solid and liquid electrolyte
KR100412526B1 (en) Electrode for lithium secondary battery and lithium secondary battery
CN1170243A (en) Lithium secondary battery
JPH103946A (en) Nonaqueous electrolyte secondary battery
JP2003100284A (en) Lithium secondary battery
JP4167025B2 (en) Lithium secondary battery
CN111146433B (en) Negative electrode, electrochemical device and electronic device including the same
CN101615674A (en) Negative electrode active material and secondary cell
JP5071171B2 (en) Lithium secondary battery
JPH09213309A (en) Manufacture of positive electrode for lithium secondary cell and lithium secondary cell
JPH1116570A (en) Lithium secondary battery and electronic equipment using it
JP4145762B2 (en) Nonaqueous electrolyte secondary battery
JPH1167273A (en) Lithium secondary battery
WO2021172443A1 (en) Secondary-battery negative electrode, method for manufacturing same, and secondary battery
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery
JP3722462B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
JP4682395B2 (en) Non-aqueous battery
JP2000323173A (en) Nonaqueous secondary battery
JP2005166447A (en) Conductive material for electrode, positive electrode and nonaqueous electrolyte secondary battery
JPH08203560A (en) Nonaqueous electrolyte secondary battery
JP2005281098A (en) Method for manufacturing carbon material, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery