JP5511999B2 - 半導体装置とその製造方法 - Google Patents

半導体装置とその製造方法 Download PDF

Info

Publication number
JP5511999B2
JP5511999B2 JP2013016405A JP2013016405A JP5511999B2 JP 5511999 B2 JP5511999 B2 JP 5511999B2 JP 2013016405 A JP2013016405 A JP 2013016405A JP 2013016405 A JP2013016405 A JP 2013016405A JP 5511999 B2 JP5511999 B2 JP 5511999B2
Authority
JP
Japan
Prior art keywords
optical grating
pure metal
layer
dielectric
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013016405A
Other languages
English (en)
Other versions
JP2013157605A (ja
Inventor
旭珂 張簡
科維 陳
英郎 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of JP2013157605A publication Critical patent/JP2013157605A/ja
Application granted granted Critical
Publication of JP5511999B2 publication Critical patent/JP5511999B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、半導体装置とその製造方法に関するものであって、特に、裏面照射CIS装置およびその製造方法に関するものである。
携帯装置上の静止カメラとビデオカメラを含むデジタルカメラの使用は、イメージセンサーに対する需要を作り出した。携帯式および電池式装置、たとえば、タブレット型コンピューター、スマートフォン、ラップトップとビデオベースのプレーヤー上のカメラの使用も増加中である。
早期のデジタルカメラは、そもそも、イメージセンサーとして、電荷結合素子(“CCD”)に頼っていた。近年、CMOSイメージセンサー (“CIS”) が次第に普及するようになった。CCIS技術は、アナログ装置とは異なるデジタル装置を提供し、CISは、CMOSトランジスタまたはダイオード技術を用いるので、追加のデジタル処理回路と論理回路は、撮像集積回路に組み込みやすい。集光効果(量子効率または“QE”)は、CCD装置より大きくてもよい。
CIS装置は感光性フォトダイオードに基づき、ダイオードまたはトランジスタの一部、“フォトトランジスタ”として形成される。フォトダイオードが光線に露出される時、光線に比例して、電子流を生成し、与えられた期間で受信される光量を示す電圧信号を形成する。この信号は、その後、デジタル信号に変換され、装置上の電気回路が信号を出力する。画素素子 (“画素”)のアレイが半導体装置上に形成される。追加回路がアレイの外側に形成されて、たとえば、フィルタリング、イメージ処理等のデジタル信号処理を提供し、システムにインターフェース回路を提供する。
最初、前面照射 (“FSI”) アレイは、CIS装置と用いられていた。しかし、FSI CIS中のフォトセンサー上で衝突する光線は、衝突した光線を吸収または散乱させる金属層と誘電体を通過しなければならず、よって、量子効率が減少する。低光線条件を使用する装置は、高QEを必要とし、よって、裏面照射(“BSI”) CIS装置が発展している。半導体基板の背面から、入射光を受信することにより、光線経路は短くなり、金属層と誘電体を干渉することがない。ウェハ薄層化の使用とエピタキシャル半導体層の使用により、基板がさらに薄くされるかまたはほぼ除去され、その後、フォトセンサーは装置の背面表面に接近し、QEを大幅に増加させる。BSI CIS装置が現在の製品中にますます広まっている。
本発明は、光学格子の反射性を増加することにより、信号対ノイズ比が改善され、吸収が減少し、画素干渉が減少し、もって、集光効果を向上させた半導体装置とその製造方法を提供することを目的とする。
上述の目的を達成するため、本発明の半導体装置は、画素アレイ領域を有すると共に複数の光検出器を有し、かつ、光検出器の一つが画素アレイ領域中の各画素に対応する半導体基板と、半導体基板の背面に光学格子を形成し、画素アレイ中の各画素を包囲し、光学格子が、純度が少なくとも99%の純金属の基材上の純金属コーティング、および屈折率が2.0より大きい純金属コーティング上の高誘電材料を含む光学格子材料とを具備する。
また、本発明の半導体装置の製造方法は、半導体基板の背面の画素アレイ領域上に材料層を形成する工程と、フォトリソグラフィー工程を用いて材料層をパターン化して、画素アレイ領域上方に位置し、且つ、画素アレイ領域の各セクション中の画素センサーを包囲する光学格子を形成する工程と、純度が少なくとも99%の純金属を光学格子に蒸着して純金属コーティングを形成する工程と、2.0より大きい屈折率の誘電体層を純金属コーティングに形成する工程と、純金属コーティングおよび誘電体層をパターン化して、反射コーティングを、光学格子の各部分の頂部と側壁上に形成する工程と、光学格子上に屈折率が2.0より小さいパッシベーション層を形成する工程とを含む。
本発明により、光学格子の反射性を増加することにより、信号対ノイズ比が改善され、吸収が減少し、画素干渉が減少し、もって、集光効果を向上させた半導体装置とその製造方法を提供することができるものである。
本発明の実施例のBSI CISを形成する第一中間処理過程の装置の説明図。 図1に示す中間処理過程の装置の後続工程における構造を示す説明図。 図2に示す中間処理過程の装置の後続工程における構造を示す説明図。 図3に示す中間処理過程の装置の後続工程における構造を示す説明図。 図4に示す中間処理過程の装置の後続工程における構造を示す説明図。 図5に示す中間処理過程の装置の後続工程における構造を示す説明図。 一態様の図6に示す中間処理過程の装置の後続工程における構造を示す説明図。 図7の部分構造を説明する説明図。 本発明の好ましい態様における図7の部分構造を説明する説明図。 図7の構造を説明する平面図。 本発明の好ましい態様の工程を説明するフローチャート。
具体例は、例示だけを目的としており、特許請求されている本発明の範囲の限定を意図するものではない。本発明の態様は、光学格子をBSI CIS装置上に形成する方法と装置を含む。光学格子の反射性を増加することにより、信号対ノイズ比が改善され、吸収が減少し、画素干渉が減少し、よって、装置の集光効果QE(以下、QEと記す。)が増加する。
一態様において、光学格子は、センサーアレイ上の金属または誘電体から形成される。純金属のコーティングは、格子ライン上に形成される。誘電体の第二コーティング、たとえば、高誘電率材料が形成される。誘電体の最終コーティングは、光学格子上のパッシベーション層として形成される。よって、従来の金属を光学格子とするのと比較すると、形成される光学格子は、高反射性と低減衰係数を有し、光線を吸収しない。この態様の光学格子材料の使用は、画素領域間の光学クロストークを防止し、信号対ノイズパフォーマンスを増加することができる。
これらの態様は、BSI CIS装置の高反射光学格子を形成する特定の関係にあるが、これらの態様は、その他の用途の金属上の反射コーティングを提供するのにも用いられる。たとえば、この態様による方法と構造は、前面照射CISセンサー、CCDアレイ、または高反射性金属が必要なその他のアプリケーションに用いることができる。本態様による方法と装置は、この例のプロセスに制限されず、且つ、説明用の範例は、本発明を限定するものではない。
イメージセンサーを被覆する光学格子は、画素対画素の光学クロストークを防止し、信号対ノイズ比を改善することにより、追加性能を提供することができる。光学システムにおいて、それらの高い反射性能のために、アルミニウム (Al)および銀(Ag)等の金属は従来の選択肢である。たとえば、波長が550ナノメートルの可視光の下、Agは最高反射率(〜98%)を示し、Alはよい性能(〜92%)を示す。このほか、Alは、紫外領域で、よい反射率を示す(〜93%)だけでなく、赤外領域でよい性能を有する。得られたAlは、幅広く、光学薄膜アプリケーションに用いられる。しかし、Alは、低耐化学性(chemical resistance)で (たとえば、後続の化学プロセスにより損傷される) 、且つ、容易に酸化して、AlOx膜を形成する。別の材料により被覆される時、Alの接着性は時に、要求を達成できない。同様に、Agは空気中で容易に酸化して、AgOx膜(即ち、変色)を形成する。
さらに、これらの金属は、特定の波長の光を反射することができるが、特定の波長の光が吸収されるかもしれない(材料選択と厚さに基づく)。特定の波長に対する光吸収率は、30〜100%である。CIS装置において、この特徴は、実質上、画素アレイの光の質/量を減少させることができる (QEを低下させる)。
本発明の態様は、BSI CMOS画像センサー装置の光学格子システム上の“ミラー(mirror)” コーティング概念を提供する。金属と高誘電率材料を含むコーティングが提供されて、光学格子の反射性を少なくとも95%またはそれより大きく増加する。これは、大幅に、基板中の光検出器に供給されるQE、光質と光量を大幅に増加することができる。格子は、画素対画素の光学クロストークを減少させ、信号対ノイズ性能を向上させる。
図1は、本発明の実施例のBSI CISを形成する第一中間処理過程の装置100の説明図である。すなわち、図1には、背面が上を向いた半導体基板11が示されている。これは、説明のための任意配向である。装置は回転することもできる。注意すべきことは、基板11はシリコン基板または別の半導体材料である。ガリウムヒ素、ゲルマニウム、炭化ケイ素、ヒ化インジウムまたはリン化インジウムまたは合金半導体、たとえば、シリコンゲルマニウムカーバイド、ガリウムインジウムフォスファイド、インジウムガリウムヒ化物等が用いられる。基板は、通常、半導体材料のウェハである。ウェハレベルプロセス(“WLP”) も、本具体例中に用いることができ、且つ、全具体例にとって必要ではないけれども、追加の実施例を提供することができる。その他の具体例中、基板11は、絶縁層上のエピタキシャル層、たとえば、“SOI”層である。半導体材料のウェハは、接合またはスタックされ、半導体基板は、これらの層のひとつである。基板11は、通常、研削方法、たとえば、化学機会研磨 (“CMP”)、機械ウェハ研削または半導体エッチングにより薄層化される。ある例において、薄層化の後、基板11は、厚さが2.0ミクロン以上になるまで薄くなる。
図1において、画素アレイ領域31、金属遮蔽領域33および周辺領域35が示される。基板11のアレイ領域31にセンサー13を有する。この例において、3個の画素センサー13が示される。これらは、たとえば、フォトダイオードまたはフォトトランジスタのソース/ドレイン領域である。注意すべきことは、この説明図中、簡潔にするために、3個のセンサー13だけが示されていることである。しかし、実用的装置中、数百、数千またはそれ以上の画素センサーのアレイが提供され、通常、列と行で配列される。センサー13は、基板11の“前側”に延伸する拡散またはドープ領域として示される。基板はエピタキシャル層を含み、センサー13はエピタキシャル層中に形成される。基板11は、ドープされるpまたはn型ウェルを含み、センサー13は、ウェル中に逆にドープされた拡散領域から形成される。センサー13はフォトダイオードで、フォトダイオードはP−N接合を含み、センサー13は“ピン(pinned)”フォトダイオードを含む。各種別の素子は、トランジスタ、たとえば、転換トランジスタ(transfer transistor)を含む各センサー13に含まれ、サンプル期間で、フォトダイオードに集合する光子に対応する電圧を出力する。
金属遮蔽領域33は、金属層により遮蔽されると共に、センサー13の“BLC(black level correlation)”を提供する。この領域は、いかなる光子も受信せず、よって、 感知操作に比較値を提供し、回路に、感知レベルから “ブラックノイズ(black noise)” を取り除き、画素の性能を向上させることができる。基板11中の周辺領域35は、画素アレイ領域31の外の領域で、接続、および、アレイ領域外の追加ロジック回路機能に用いられる。図1において、隔離領域15は、たとえば、基板11中に形成されるシャロートレンチアイソレーション (“STI”)領域である。このほか、ロコス (“LOCOS”) 隔離を含む。層間誘電体層17、たとえば、酸化層が基板上に設けられる。第一金属層に、金属間誘電体19および金属1領域25を有する。これにより、アレイを、たとえば、外部パッドまたははんだコネクタに結合する導体を提供する。ビア23は、金属1パッド25を別の層(図示しない)に結合する。基板11は、複数の層間誘電体および金属間誘電体層および金属層を含み、マッピング(mapping)を提供し、センサー13、および、装置上の回路、外部コネクタに接続する。装置100の照射は、背面または図1の頂部表面からなので、センサーは、図1の底部表面に位置し、基板11前面のセンサー13上で、各種の層を用いるのは問題ない。
図2は、装置100の後続工程を示す説明図である。図2中、抗反射コーティング (“ARC”) 41などのコーティングが、基板11の裏面(図2の上表面)に設けられ、このコーティングは、たとえば、有機材料である。誘電コーティング43、たとえば、酸化物がARC層41上方を被覆する。
図3は、装置100の後続工程を示す説明図である。図3中、光学格子45を形成する材料層が基板11上に設置される。層45は、たとえば、電気化学めっき (“ECP”)により形成される導体、たとえば、Alまたは銅 (Cu)から選択される。シード層は、たとえば、基板上にスパッタされ、残りの層は、ECPにより形成される。金属材料に加え、別の材料、たとえば、吸光値 k>0の誘電材料が用いられる。一例において、アルミニウム (Al)が用いられる。
図4は、装置100の後続工程を示す説明図である。図4中、フォトレジスト (“PR”) 層47が格子層45上方に形成される。PR47が用いられて、光学格子層45の基材をパターン化して、グリッドパターンを形成し、隣接する画素領域から各画素領域を分離する。
図5は、装置100の後続工程を説明する説明図である。図5において、フォトリソグラフィーパターン化後のフォトレジスト層47を示し、フォトリソグラフィーパターン化は、光学パターンマスクを用いて、層47を光線またはエキシマーレーザーエネルギーに露出する工程、硬化工程およびフォトレジスト47を露光して、パターンを形成する工程を含む。
図6は、装置100の光学格子材料層45のエッチング工程を説明する説明図である。図6において、層45がパターン化され、セクション451、453、455および金属遮蔽セクション48を有する光学格子を形成する。残りの材料が除去される。従来の金属エッチプロセスが用いられ、その後、残りのフォトレジストは、たとえば、PRストリップまたは灰化工程(ashing step)により除去される。光学格子451、453、455の各部分がその他に接続され、画素領域を包囲する。
図7は、一態様における、装置100が反射コーティングを製作する後続工程を説明する説明図である。図7中、光学格子セクション451、453、455のそれぞれは、第一金属コーティング51、高誘電率材料コーティング53、および、パッシベーション誘電体層55が基板全体に提供されて、この装置の光学最適化と保護作用を提供する。
図8は、図7の光学格子453の部分構造を説明する断面と拡大図である。純金属コーティング51、たとえば、AlまたはCuが、光学格子セクション453の頂部と側壁上に提供される。この純金属コーティングは、純度が99%より大きく、一例中では、99.9%より多い純アルミニウムである。AlまたはCu金属厚さは、たとえば、20ナノメートルから100ナノメートルである。この層は、たとえば、プラズマ気相蒸着(“PVD”)により形成される。 コーティングが形成された後、高誘電材料53は、たとえば、2より大きい屈折率 nの純金属51上に形成される。この高誘電率材料は、2より大きい屈折率のあらゆる高誘電材料、たとえば、これに限定されないが、タンタルベースの酸化物TaOx、TiOxを含むチタンベースの酸化物、酸化アルミニウム、たとえば、Al203および同類の別の誘電材料である。高誘電率材料は、二酸化ケイ素または3.8より大きい誘電率 k を有する。一態様中、高誘電率材料の誘電率 k はさらに高く、9.0より大きい。高誘電率材料は、10ナノメートル〜100ナノメートルの厚さで、CVDまたはPVDプロセスにより蒸着される。純金属51と誘電体層53を形成する処理工程は、これらの層を別々または一緒にパターン化して、図8に示されるような構造を形成する。最後に、パッシベーション層55が、光学格子部分、たとえば、453上に提供される。パッシベーション層は、たとえば、低屈折率、n<の酸化物、たとえば、シリコンリッチSiO2 である。層45の光学格子部分451、453および455上のコーティングと異なり、この層は屈折または反射してはいけない。
純金属、高屈折率誘電体およびパッシベーション層のコーティングが用いられる時、光学格子材料45の反射性が大幅に増加する。たとえば、純アルミニウムコーティングを有するアルミニウム金属格子の場合、反射率は、95%より大きく、且つ、98%より大きい可能性がある。よって、この態様では、ミラーコーティングの使用は反射性を増加し、BSI CIS装置のQEを増加させる。
図9は、本発明の好ましい態様の操作を説明する説明図である。図中に、画素領域を包囲する光学格子材料45の二箇所が示される。これらは、たとえば、図7の453と455である。それぞれ、光学格子部分の側壁と頂部上に、純金属コーティングと高屈折誘電酸化物コーティングを有して、反射性を増加する。図示される態様中、光学格子部分453、455に衝突する赤色の波長光子L1、緑色の波長光子L2、青色の波長光子L3は、基板に反射進入して、吸収されず、効率を向上させる。光学格子材料45が、画素センサーセクション中に配置されて、光線を最近のセンサー13中に反射させ、隣接する画素領域に進入しないことにより、信号対ノイズ比を改善し、画素対画素の光学クロストークを減少させる。
図10は、基板11上の光学格子45の平面図である。格子により定義される各部分は、画素領域102を包囲する。何千または何百万の画素が実用的装置に提供される。光学格子45、金属コーティング51、高誘電率材料53およびパッシベーション層55は全て、ウェハレベル工程で形成され、イメージ装置は、パッシベーション層完成後、単一化される。または、上述のように、ウェハ薄層化工程で、裏面照射の基板を薄層化した後、個別の装置として処理される。
上述の態様中、ミラーコーティングを有する光学格子は、前側照射装置、CCD撮像装置およびその他の撮像装置に応用され、これらの態様と請求範囲も、開示される内容外にも応用することができる。
図11は、本発明の態様のフローチャートである。図11中、工程61で、画素領域を定義する材料の光学格子が、基板の背面上に提供される。
工程63で、純金属コーティングを光学格子材料上に蒸着する。工程 65で、屈折率が2より大きい高誘電率材料コーティングが、純金属コーティング上に蒸着される。工程67で、コーティングがパターン化されて、各光学格子部分の頂部と側壁上に、高反射コーティングを有する光学格子を残す。
工程69で、シリコンリッチ誘電材料のパッシベーション層が、光学格子材料と反射コーティング上に形成される。
上述の例の構造に加え、上述の基板はその他の装置も含み、その他の装置は、基板の別の部分に形成されるアクティブトランジスタ、ダイオード、キャパシタ、インダクタ、レジスタ、双極およびMOSFET装置、メモリセル、アナログ装置、フィルター、トランシーバ等を含む。また、ここで記述される本態様の基板のエッチング工程後、層間絶縁膜、導体、上層中に形成された追加装置およびパッケージング材料が基板上に設置されて、完全なマイクロ電子部品、たとえば、集積回路、太陽電池、プロセッサ等を形成する。
本発明の態様は、高反射光学格子材料を提供する。これらの態様は、現有の半導体プロセスと互換性がある。本態様の方法は、現有の金属蒸着、パターン化、エッチングおよび除去プロセスを用いることができ、設備や使用する化学物質に変化を加える必要がない。
一例としての半導体装置の製造方法は、半導体基板の背面上の画素アレイ領域に、材料層を形成する工程と、フォトリソグラフィープロセスを用いて、材料層をパターン化して、光学格子を形成し、光学格子は画素アレイ領域上に位置して、画素アレイ領域の各セクション中の画素センサーを包囲する工程と、純度が少なくとも99%の金属を含む純金属コーティングを光学格子上に蒸着する工程と、2.0より大きい屈折率の誘電体層を、純金属コーティングに蒸着する工程と、純金属コーティングと誘電体層をパターン化して、反射コーティングを、光学格子の各部分の頂部と側壁上に形成する工程と、屈折率が2.0より小さいパッシベーション層を、光学格子上に蒸着する工程と、を含む。
さらに別の具体例において、上述の方法は、さらに、銅とアルミニウムのどちらかの純金属を含む。さらに別の具体例において、材料層の形成工程は、導体の蒸着工程を含む。更なる具体例において、導体は、アルミニウムと銅のひとつである。さらに別の例において、本方法は、誘電率が3.8より大きい誘電体を蒸着することにより、2.0より大きい屈折率の誘電体層を、純金属コーティング上に蒸着する工程を含む。さらに別の具体例において、本製造方法は、タンタル酸化物、酸化チタンおよび酸化アルミニウムから選択される一つを蒸着することにより、2より大きい屈折率の誘電体層を、純金属コーティング上に蒸着する工程を含む。さらに別の例において、 上述の製造方法は、半導体基板の画素アレイ領域の背面上に材料層を形成する工程を含み、さらに、導体材料層を形成する工程を含む。
さらにまた別の態様において、本製造方法は、シリコンリッチ誘電体を蒸着することにより、屈折率が2.0より小さいパッシベーション層を、光学格子上に蒸着する工程を含む。さらに別の例において、パッシベーション層を光学格子上に蒸着し、屈折率が2.0より小さいパッシベーション層は、さらに、シリコンリッチ酸化ケイ素を蒸着する工程を含む。さらに別の態様において、形成された光学格子の反射性は95%より大きい。さらに別の態様において、純金属コーティングを光学格子上に蒸着し、純度が少なくとも99%の金属である純金属コーティングは、純度が少なくとも99%のAlまたはCuを蒸着する工程を含む。
別の態様において、半導体装置は、基板中に設置された複数の光検出器を含む画素アレイ領域を有し、光検出器のひとつが、画素アレイ領域中の各画素に対応する半導体基板と、光学格子を半導体基板の背面上に形成し、画素アレイ中の各画素を包囲し、光学格子が、さらに、少なくとも99%の純金属である基材上の純金属コーティングを含む光学格子材料、および、屈折率が2.0より大きい純金属コーティング上の高誘電材料を含む。さらに別の具体例において、純金属コーティングは、銅とアルミニウムのどちらかである。更なる具体例において、本装置において高誘電材料は、さらに、3.8より大きい誘電率 kの誘電材料を含む。さらに別の例において、半導体装置は、さらに、光学格子上のパッシベーション層を含み、パッシベーション層は、屈折率が2.0より小さい誘電層を含む。
さらに別の具体例において、裏面照射CIS装置は、画素アレイ領域を有し、半導体基板の前側表面上に形成された複数の光検出器を含み、各光検出器が、画素アレイ領域中に画素を形成する半導体基板と、半導体基板の裏側表面上に設置され、パターン化されて、画素アレイ領域中の各画素を包囲し、半導体基板に延伸し、光学格子が側壁と頂部を有する光学格子材料、および、光学格子上に形成され、純度が少なくとも99%の金属の純金属コーティングおよび2.0より大きい屈折率を有する純金属コーティング上の高誘電率材料コーティングを含む高反射コーティング、を含む。
さらに別の態様において、裏面照射CIS装置は、光学格子と基板の背面を被覆し、屈折率が2.0より小さい誘電材料を含むパッシベーション層を含む。更なる具体例において、裏面照射CIS装置は、純度が少なくとも99%で、さらに、銅とアルミニウムのどちらかを含む金属コーティングを含む。CIS装置のさらに別の態様において、純金属コーティング上の高誘電率材料コーティングは、さらに、タンタル酸化物、酸化チタンまたは酸化アルミニウムを含む。さらに別の例において、CIS装置中、光学格子材料は、銅とアルミニウムから選択される導体を含む。
本発明では好ましい実施例を前述の通り開示したが、本発明は決して上記の実施例に限定するものではなく、当該技術を熟知する者なら誰でも、本発明の精神と領域を脱しない範囲内で各種の変動を加えることができる。本発明の保護範囲は、特許請求の範囲に明記した内容を基準とする。
11 基板
13 センサー
15 隔離領域
17 層間誘電体層
19 金属間誘電体
23 ビア
25 金属1パッド
31 画素アレイ領域
33 金属遮蔽領域
35 周辺領域
41 抗反射コーティング (“ARC”)
43 誘電コーティング
45 光学格子材料層
451、453、455 光学格子セクション
47 フォトレジスト層
48、58 金属遮蔽セクション
51 純金属コーティング
53 高誘電材料層
55 パッシベーション誘電体層
61、63、65、67、69 工程
100 裝置
102 画素領域
L1 赤色の光波長光子
L2 緑色の光波長光子
L3 青色の波長光子

Claims (10)

  1. 半導体基板の背面の画素アレイ領域上に材料層を形成する工程と、
    フォトリソグラフィー工程を用いて前記材料層をパターン化して、前記画素アレイ領域上方に位置し、且つ、前記画素アレイ領域の各セクション中の画素センサーを包囲する光学格子を形成する工程と、
    純度が少なくとも99%の純金属を前記光学格子に蒸着して純金属コーティングを形成する工程と、
    2.0より大きい屈折率の誘電体層を前記純金属コーティングに形成する工程と、
    前記純金属コーティングおよび前記誘電体層をパターン化して、反射コーティングを、前記光学格子の各部分の頂部と側壁上に形成する工程と、
    前記光学格子上に前記屈折率が2.0より小さいパッシベーション層を形成する工程と、を含むことを特徴とする半導体装置の製造方法。
  2. 純金属は、銅とアルミニウムからなる群から選択される一つであることを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 材料層を形成する工程は導体を蒸着する工程を含み、 前記導体はアルミニウムと銅から構成される前記群から選択される一つであることを特徴とする請求項1に記載の半導体装置の製造方法。
  4. 2.0より大きい屈折率の誘電体層を、前記純金属コーティングに形成する工程は、3.8より大きい誘電率を有する誘電体を蒸着する工程を含むことを特徴とする請求項1に記載の半導体装置の製造方法。
  5. 半導体基板の前記画素アレイ領域の背面上に前記材料層を形成する工程は、導体材料層の形成工程を含むことを特徴とする請求項1に記載の半導体装置の製造方法。
  6. 屈折率が2.0より小さいパッシベーション層を前記光学格子に形成する工程は、シリコンリッチ誘電体の蒸着工程を含むことを特徴とする請求項1に記載の半導体装置の製造方法。
  7. 画素アレイ領域を有すると共に複数の光検出器を有し、かつ、該光検出器の一つが前記画素アレイ領域中の各画素に対応する半導体基板と、
    前記半導体基板の背面に光学格子を形成し、前記画素アレイ中の前記各画素を包囲し、前記光学格子が、純度が少なくとも99%の純金属の基材上の純金属コーティング、および、屈折率が2.0より大きい純金属コーティング上の高誘電材料を含む光学格子材料とを具備することを特徴とする半導体装置。
  8. 純金属コーティングは、銅とアルミニウムから構成される群から選択される一つであることを特徴とする請求項7に記載の半導体装置,
  9. 高誘電材料は、3.8より大きい誘電率 k の誘電材料を含むことを特徴とする請求項7に記載の半導体装置。
  10. 前記光学格子上のパッシベーション層を含み、前記パッシベーション層は、屈折率が2.0より小さい誘電層を含むことを特徴とする請求項7に記載の半導体装置。
JP2013016405A 2012-01-31 2013-01-31 半導体装置とその製造方法 Active JP5511999B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/363,280 2012-01-31
US13/363,280 US8890273B2 (en) 2012-01-31 2012-01-31 Methods and apparatus for an improved reflectivity optical grid for image sensors

Publications (2)

Publication Number Publication Date
JP2013157605A JP2013157605A (ja) 2013-08-15
JP5511999B2 true JP5511999B2 (ja) 2014-06-04

Family

ID=48837556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016405A Active JP5511999B2 (ja) 2012-01-31 2013-01-31 半導体装置とその製造方法

Country Status (5)

Country Link
US (1) US8890273B2 (ja)
JP (1) JP5511999B2 (ja)
KR (1) KR101489038B1 (ja)
CN (1) CN103227178B (ja)
TW (1) TWI476910B (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9219092B2 (en) * 2012-02-14 2015-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Grids in backside illumination image sensor chips and methods for forming the same
US10177185B2 (en) * 2015-05-07 2019-01-08 Taiwan Semiconductor Manufacturing Co., Ltd. High dielectric constant dielectric layer forming method, image sensor device, and manufacturing method thereof
US9673239B1 (en) * 2016-01-15 2017-06-06 Taiwan Semiconductor Manufacturing Company, Ltd. Image sensor device and method
WO2017171825A1 (en) * 2016-04-01 2017-10-05 Intel Corporation Semiconductor device having metal interconnects with different thicknesses
US10192917B2 (en) * 2016-06-30 2019-01-29 Stmicroelectronics (Crolles 2) Sas Backside illuminated photosensor element with light pipe and light mirror structures
CN106783901B (zh) * 2016-12-05 2019-01-18 武汉新芯集成电路制造有限公司 背照式传感器的制造方法及版图结构
US10224357B1 (en) 2017-09-07 2019-03-05 Visera Technologies Company Limited Image sensor packages
CN107731860A (zh) * 2017-11-17 2018-02-23 德淮半导体有限公司 一种背照式cmos图像传感器及其形成方法
CN108198830A (zh) * 2018-01-30 2018-06-22 德淮半导体有限公司 图像传感器及形成图像传感器的方法
CN108281447A (zh) * 2018-01-30 2018-07-13 德淮半导体有限公司 半导体装置及其制作方法
CN108198833A (zh) * 2018-01-30 2018-06-22 德淮半导体有限公司 图像传感器及形成图像传感器的方法
CN108364968B (zh) * 2018-03-01 2020-07-14 德淮半导体有限公司 图像传感器及其制造方法
CN108428711A (zh) * 2018-04-25 2018-08-21 德淮半导体有限公司 图像传感器及其形成方法
KR102651605B1 (ko) 2019-01-11 2024-03-27 삼성전자주식회사 이미지 센서
KR20210112034A (ko) * 2020-03-04 2021-09-14 에스케이하이닉스 주식회사 이미지 센서
CN115132771B (zh) * 2022-09-01 2022-12-02 合肥晶合集成电路股份有限公司 图像传感器及其制作方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2871831B2 (ja) * 1989-09-26 1999-03-17 日本電気株式会社 固体撮像装置
JP2671885B2 (ja) * 1995-12-14 1997-11-05 ソニー株式会社 固体撮像装置
JP3467434B2 (ja) 1999-07-28 2003-11-17 Necエレクトロニクス株式会社 固体撮像素子およびその製造方法
JP4244549B2 (ja) * 2001-11-13 2009-03-25 トヨタ自動車株式会社 光電変換素子及びその製造方法
KR101102261B1 (ko) * 2004-09-15 2012-01-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP2006140413A (ja) 2004-11-15 2006-06-01 Matsushita Electric Ind Co Ltd 固体撮像素子
JP2007281240A (ja) * 2006-04-07 2007-10-25 Fujifilm Corp 撮像素子及びその製造方法
US8314446B2 (en) * 2007-10-11 2012-11-20 Wavefront Holdings, Llc Photo-detector array, semiconductor image intensifier and methods of making and using the same
US9041841B2 (en) 2008-10-10 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Image sensor having enhanced backside illumination quantum efficiency
KR20100079399A (ko) * 2008-12-31 2010-07-08 주식회사 동부하이텍 이미지 센서 및 그 제조 방법
JP4798232B2 (ja) * 2009-02-10 2011-10-19 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
JP5436963B2 (ja) * 2009-07-21 2014-03-05 新光電気工業株式会社 配線基板及び半導体装置
JP5468133B2 (ja) * 2010-05-14 2014-04-09 パナソニック株式会社 固体撮像装置

Also Published As

Publication number Publication date
TWI476910B (zh) 2015-03-11
KR20130088705A (ko) 2013-08-08
KR101489038B1 (ko) 2015-02-02
CN103227178A (zh) 2013-07-31
US20130193538A1 (en) 2013-08-01
TW201332089A (zh) 2013-08-01
CN103227178B (zh) 2015-12-09
JP2013157605A (ja) 2013-08-15
US8890273B2 (en) 2014-11-18

Similar Documents

Publication Publication Date Title
JP5511999B2 (ja) 半導体装置とその製造方法
US9006018B2 (en) Method of manufacturing a solid-state imaging device
US9245915B2 (en) Monolithic multispectral visible and infrared imager
US10269845B2 (en) Mechanisms for forming image sensor device
US9978784B2 (en) Grids in backside illumination image sensor chips and methods for forming the same
TWI756301B (zh) 光感測元件及其形成方法
KR101431309B1 (ko) 본딩 패드 및 실드 구조를 갖는 반도체 디바이스 및 이의 제조 방법
US10868063B2 (en) Surface treatment for BSI image sensors
US11532658B2 (en) Image sensor grid and method of fabrication of same
KR100877293B1 (ko) 이미지 센서 및 그 제조방법
US9247116B2 (en) Image sensor device with light guiding structure
JP2014003333A (ja) 固体撮像装置、固体撮像装置を用いた撮像システム及び固体撮像装置の製造方法
JP2012099743A (ja) 固体撮像装置及びその製造方法
KR100894390B1 (ko) 이미지 센서 및 그 제조방법
KR20220071876A (ko) 이미지 센서

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140325

R150 Certificate of patent or registration of utility model

Ref document number: 5511999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250