JP5476089B2 - Method for producing compression molded product of resin composition highly filled with inorganic filler - Google Patents

Method for producing compression molded product of resin composition highly filled with inorganic filler Download PDF

Info

Publication number
JP5476089B2
JP5476089B2 JP2009244556A JP2009244556A JP5476089B2 JP 5476089 B2 JP5476089 B2 JP 5476089B2 JP 2009244556 A JP2009244556 A JP 2009244556A JP 2009244556 A JP2009244556 A JP 2009244556A JP 5476089 B2 JP5476089 B2 JP 5476089B2
Authority
JP
Japan
Prior art keywords
resin composition
inorganic filler
molded product
compression molded
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009244556A
Other languages
Japanese (ja)
Other versions
JP2011088383A (en
Inventor
寛子 巌倉
実 佐藤
敏之 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2009244556A priority Critical patent/JP5476089B2/en
Publication of JP2011088383A publication Critical patent/JP2011088383A/en
Application granted granted Critical
Publication of JP5476089B2 publication Critical patent/JP5476089B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、無機充填剤を高充填した樹脂組成物の圧縮成型品の製造方法に関する。   The present invention relates to a method for producing a compression molded product of a resin composition highly filled with an inorganic filler.

電子機器小型軽量化、高性能化に伴い、半導体の高密度実装化が求められている。しかしながら、LSIやCPUの高密度実装化に伴い、動作時における素子からの発熱を外部へ逃しにくくなり、素子が不具合を生じるという問題があり、放熱対策が不可欠なものになっている。また、近年需要が拡大しているLEDに関しても、特徴である長寿命を実現するためには、チップの温度を一定水準以下に下げる必要があり、放熱設計や高熱伝導性材料の利用等の放熱対策が求められている。   As electronic devices become smaller and lighter and have higher performance, higher-density mounting of semiconductors is required. However, along with the high-density mounting of LSIs and CPUs, there is a problem that heat generated from the elements during operation becomes difficult to escape to the outside, causing problems of the elements, and heat dissipation measures are indispensable. In addition, in order to realize the long life that is a feature of LEDs that have been increasing in demand in recent years, it is necessary to lower the temperature of the chip below a certain level, and heat dissipation such as heat dissipation design and use of high thermal conductivity materials Countermeasures are required.

従来、放熱が必要な部分には、金属やセラミックス等の熱伝導率が高い材料が用いられてきたが、設計の自由度が高く軽量化が可能なことから、樹脂系材料の需要が高まってきている。一般的に樹脂の熱伝導率は金属やセラミックスと比較すると低いため、金属やセラミックス等の熱伝導率の高い充填材を樹脂に配合することで、熱伝導率を向上させており、例えば、以下の特許文献1では、エポキシ樹脂にアルミニウム粉を充填した高熱伝導性接着剤が、また、以下の特許文献2ではエポキシ樹脂に銅粉を充填した封止用材料が提案されている。しかしながら、上記2つの特許文献では、高熱伝導性充填材であるアルミニウム粉又は銅粉の充填量が低いことから、熱伝導率の大幅な向上は見られていない。
また、充填材の量を向上させると硬化前の樹脂組成物が高粘度化または粉状になり、取り扱い性が悪化するという問題がある。
Conventionally, materials with high thermal conductivity, such as metals and ceramics, have been used for parts that require heat dissipation, but the demand for resin-based materials has increased due to the high degree of design freedom and weight reduction. ing. In general, the thermal conductivity of resins is low compared to metals and ceramics, so by adding a high thermal conductivity filler such as metals and ceramics to the resin, the thermal conductivity is improved. Patent Document 1 proposes a highly heat conductive adhesive in which an epoxy resin is filled with aluminum powder, and Patent Document 2 below proposes a sealing material in which an epoxy resin is filled with copper powder. However, in the above two patent documents, since the filling amount of aluminum powder or copper powder which is a high thermal conductive filler is low, no significant improvement in thermal conductivity has been observed.
Further, when the amount of the filler is improved, there is a problem that the resin composition before curing becomes highly viscous or powdery and the handleability deteriorates.

特開平1−96242号公報JP-A-1-96242 特許第3451732号公報Japanese Patent No. 3451732

本発明が解決しようとする課題は、無機充填剤が高充填されることにより、高い熱伝導率を有する圧縮成型品を提供することである。   The problem to be solved by the present invention is to provide a compression molded product having high thermal conductivity by being highly filled with an inorganic filler.

本発明者らは、鋭意検討し実験を重ねた結果、樹脂(a)、及び無機充填剤(b)を少なくとも含有する樹脂組成物(c)を圧縮成型する工程を含む樹脂成型品(d)の製造方法において、該樹脂組成物(c)中の該無機充填剤(b)の体積充填率(A)と該圧縮成型品(d)中の該無機充填剤(b)の体積充填率(B)とが、B/A≧1.05を満足することにより、予想外に高い熱伝導率を有する圧縮成型品の製造が可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies and repeated experiments, the present inventors have found that a resin molded product (d) including a step of compression molding a resin composition (c) containing at least a resin (a) and an inorganic filler (b). In the production method, the volume filling rate (A) of the inorganic filler (b) in the resin composition (c) and the volume filling rate of the inorganic filler (b) in the compression molded product (d) ( And B) satisfying B / A ≧ 1.05, it has been found that it is possible to produce a compression-molded product having an unexpectedly high thermal conductivity, and the present invention has been completed.

すなわち、本発明は以下の通りである。
[1]樹脂(a)、及び無機充填剤(b)を少なくとも含有する樹脂組成物(c)を圧縮成型する工程を含む圧縮成型品(d)の製造方法において、該樹脂組成物(c)中の該無機充填剤(b)の体積充填率(A)と該圧縮成型品(d)中の該無機充填剤(b)の体積充填率(B)とが、B/A≧1.05を満たし、圧縮成型時に押し出された樹脂組成物(e)の重量(D)と前記圧縮成型品(d)の重量(E)とが、D/E≧0.10を満たし、かつ、該樹脂組成物(e)中の無機充填剤(b)の体積充填率(C)と、前記樹脂組成物(c)中の無機充填剤(b)の体積充填率(A)とが、0≦C<Aを満たすことを特徴とする前記圧縮成型品の製造方法。
That is, the present invention is as follows.
[1] In a method for producing a compression molded article (d) including a step of compression molding a resin composition (c) containing at least a resin (a) and an inorganic filler (b), the resin composition (c) The volume filling rate (A) of the inorganic filler (b) in the inside and the volume filling rate (B) of the inorganic filler (b) in the compression molded product (d) are B / A ≧ 1.05 It meets the weight of the resin composition extruded at the time of compression molding by weight of (e) (D) and the compression molding (d) and (E), but satisfy the D / E ≧ 0.10, and, The volume filling rate (C) of the inorganic filler (b) in the resin composition (e) and the volume filling rate (A) of the inorganic filler (b) in the resin composition (c) are 0. <= C <A is satisfied , The manufacturing method of the said compression molding product characterized by the above-mentioned.

]前記無機充填剤(b)が、金属である、前記[1]に記載の方法。 [2] wherein the inorganic filler (b) is a metal, Method person according to [1].

]前記圧縮成型品(d)が、電子材料用樹脂圧縮成型品である、前記[1]又は[2]に記載の方法。 [3] The compression molding (d) are process better according to an electronic material resin compression molding, the [1] or [2].

本発明によれば、高い熱伝導率を有する圧縮成型品の製造が可能である。   According to the present invention, it is possible to produce a compression molded product having a high thermal conductivity.

以下、本発明を詳細に説明する。
尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で実施することができる。
本発明により製造された圧縮成型品(d)は、樹脂(a)、及び無機充填剤(b)を少なくとも含有する樹脂組成物(c)を圧縮成型する工程を含む樹脂成型品の製造方法である。
Hereinafter, the present invention will be described in detail.
In addition, this invention is not limited to the following embodiment, It can implement within the range of the summary.
The compression molded product (d) produced by the present invention is a method for producing a resin molded product comprising a step of compression molding a resin composition (c) containing at least a resin (a) and an inorganic filler (b). is there.

以下、各成分および製造条件について例示する。
樹脂(a)としては、熱可塑性樹脂、熱硬化性樹脂等が挙げられる。熱可塑性樹脂としては、ポリアミド、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリアセタール、ポリカーボネート、アセタールコポリマー、ポリイミド、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリブチレンテレフタレート、ポリアリレート、ポリアミドイミド、ポリエステル、ポリエーテルサルファイド、ポリアリレート、ポリエーテルエーテルケトン、ポリエーテルイミド、液晶ポリマー等が挙げられる。これらの樹脂は、二種類以上の共重合体として用いてもよい。これらの樹脂は、反応性末端を置換し、変性してから用いてもよい。これらの樹脂は、単独又は二種類以上を組み合わせて使用する。熱硬化性樹脂としては、エポキシ樹脂、シリコーン樹脂、イソシアネート樹脂、BTレジン等が挙げられる。これらの樹脂は、反応性末端を置換し、変性してから用いてもよい。これらの樹脂は、単独又は二種類以上を組み合わせて使用する。
Hereinafter, each component and production conditions will be exemplified.
Examples of the resin (a) include thermoplastic resins and thermosetting resins. As thermoplastic resins, polyamide, polyethylene terephthalate, polytetrafluoroethylene, polyacetal, polycarbonate, acetal copolymer, polyimide, polyphenylene ether, polyphenylene sulfide, polybutylene terephthalate, polyarylate, polyamideimide, polyester, polyether sulfide, polyarylate, Examples include polyether ether ketone, polyether imide, and liquid crystal polymer. These resins may be used as two or more kinds of copolymers. These resins may be used after substitution at the reactive end and modification. These resins are used alone or in combination of two or more. Examples of the thermosetting resin include an epoxy resin, a silicone resin, an isocyanate resin, and a BT resin. These resins may be used after substitution at the reactive end and modification. These resins are used alone or in combination of two or more.

無機充填剤(b)としては、水酸化アルミニウム、水酸化マグネシウム、Eガラス粉末、アルミナ、酸化マグネシウム、二酸化チタン、チタン酸カリウム、ケイ酸カルシウム、炭酸カルシウム、クレイ、タルク、窒化ホウ素、窒化アルミニウム、シリカ、炭化ケイ素、金、銀、銅、ニッケル、アルミニウム、鉄等があげられ、これらは単独又は二種以上混合して使用することができる。無機充填剤(b)は、シランカップリング剤等で表面処理することもできる。無機充填剤(b)は合金であってもよい。無機充填剤(b)が金属である場合、無機充填剤(b)の表面を樹脂やセラミックスで被覆したものを用いてもよい。被覆の厚さは、特に限定はしないが、熱伝導率の観点から0.1〜20μm程度が好ましい。また、圧縮成型品(d)中の無機充填剤(b)の充填量は、熱伝導率の観点から、65体積%以上が好ましく、一方、成形性の観点から95体積%以下が好ましく、より好ましくは70〜90体積%である。   As the inorganic filler (b), aluminum hydroxide, magnesium hydroxide, E glass powder, alumina, magnesium oxide, titanium dioxide, potassium titanate, calcium silicate, calcium carbonate, clay, talc, boron nitride, aluminum nitride, Examples thereof include silica, silicon carbide, gold, silver, copper, nickel, aluminum, iron and the like, and these can be used alone or in combination. The inorganic filler (b) can be surface-treated with a silane coupling agent or the like. The inorganic filler (b) may be an alloy. When the inorganic filler (b) is a metal, the inorganic filler (b) whose surface is coated with a resin or ceramics may be used. The thickness of the coating is not particularly limited, but is preferably about 0.1 to 20 μm from the viewpoint of thermal conductivity. In addition, the filling amount of the inorganic filler (b) in the compression molded product (d) is preferably 65% by volume or more from the viewpoint of thermal conductivity, and on the other hand, 95% by volume or less is preferable from the viewpoint of moldability. Preferably it is 70-90 volume%.

本発明における樹脂組成物(c)には、分散剤を添加してもよい。分散剤として、無機充填剤(b)と樹脂(a)の親和性を向上させる効果があるものであればいずれも使用可能である。
このような分散剤としては、例えば、ポリエチレンアルキルエーテル類、ポリエチレンアルキルエステル類、アセチレンアルコール類、アセチレングリコール類の非イオン性分散剤、アルキルアミン塩、アルキル及びベンジル第四級アンモニウム塩、塩化セチルトリメチルアンモニウム、ポリオキシエチレン−アルキルアミン塩、ポリエチレンアルキル第四級アンモニウム塩、ポリエチレンポリアミン誘導体、アルキルピリジニウム塩、アルキルイミダゾリウム塩等のカチオン性分散剤、脂肪族カルボン酸塩、アルカンスルホン酸塩、直鎖アルキルベンゼンスルホン酸塩、枝分かれしたアルキベンゼンスルホン酸塩、脂肪酸アルキルエステルの硫酸エステル塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、モノアルキルリン酸エステルの塩、ジアルキルリン酸エステルの塩、ポリオキシエチレンアルキルエーテルリン酸エステル塩、不飽和ポリカルボン酸−ポリシロキサンコポリマー、部分的に鹸化されたスチレン−無水マレイン酸コポリマー、部分的に鹸化されたオレフィン−無水マレイン酸コポリマー、リン酸基を有する飽和ポリエステル系コポリマー等のアニオン性分散剤、トリメチルモノエトキシシラン、ジメチルエトキシシラン、メチルトリメトキシシラン、テトラエトキシシラン、ビニルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン等のシランカップリング剤、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ジアセチルアセトンジノルマルブチルチタネート等のチタネートカップリング剤、アルミニウムイソプロピレート、エチルアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等のアルミニウムカップリング剤が挙げられる。分散剤の量は、金属粉100質量部に対して、0.01〜10質量部が好ましい。無機充填剤の分散性の観点から0.01質量部以上が好ましく、一方、圧縮成型品の物性の観点から10質量部以下が好ましく、より好ましくは0.5〜1.5質量部である。
A dispersant may be added to the resin composition (c) in the present invention. Any dispersant can be used as long as it has an effect of improving the affinity between the inorganic filler (b) and the resin (a).
Such dispersants include, for example, polyethylene alkyl ethers, polyethylene alkyl esters, acetylene alcohols, nonionic dispersants of acetylene glycols, alkylamine salts, alkyl and benzyl quaternary ammonium salts, cetyltrimethyl chloride. Cationic dispersants such as ammonium, polyoxyethylene-alkylamine salts, polyethylene alkyl quaternary ammonium salts, polyethylene polyamine derivatives, alkyl pyridinium salts, alkyl imidazolium salts, aliphatic carboxylates, alkane sulfonates, linear Alkylbenzene sulfonate, branched alkylbenzene sulfonate, fatty acid alkyl ester sulfate, alkyl sulfate, polyoxyethylene alkyl ether sulfate Monoalkyl phosphate salts, dialkyl phosphate salts, polyoxyethylene alkyl ether phosphate salts, unsaturated polycarboxylic acid-polysiloxane copolymers, partially saponified styrene-maleic anhydride copolymers, partially Anionic dispersants such as saponified olefin-maleic anhydride copolymer, saturated polyester copolymer having phosphoric acid group, trimethylmonoethoxysilane, dimethylethoxysilane, methyltrimethoxysilane, tetraethoxysilane, vinyltriethoxysilane, Silane coupling agents such as γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, tetraisopropyl titanate, tetranormal butyl titanate, diacetylacetone dinormal butyl tita Titanate coupling agent over preparative such as aluminum isopropylate, ethyl acetate aluminum di-isopropylate, aluminum coupling agents such as aluminum tris (ethylacetoacetate) and the like. As for the quantity of a dispersing agent, 0.01-10 mass parts is preferable with respect to 100 mass parts of metal powder. From the viewpoint of dispersibility of the inorganic filler, 0.01 part by mass or more is preferable, while from the viewpoint of physical properties of the compression molded product, 10 part by mass or less is preferable, and more preferably 0.5 to 1.5 part by mass.

本発明における樹脂組成物(c)中の無機充填剤(b)の体積充填率(A)と圧縮成型品(d)中の無機充填剤(b)の体積充填率(B)とは、B/A≧1.05を満足することが必須である。B/A≧1.05の場合、樹脂組成物(c)中の無機充填剤(b)の体積充填率(A)を低下させることが可能であり、樹脂組成物(c)が低粘度化して取り扱い性がよい。また、B/A≧1.1であることが好ましく、B/A≧1.2であることがより好ましい。   The volume filling factor (A) of the inorganic filler (b) in the resin composition (c) in the present invention and the volume filling factor (B) of the inorganic filler (b) in the compression molded product (d) are B It is essential to satisfy /A≧1.05. In the case of B / A ≧ 1.05, the volume filling rate (A) of the inorganic filler (b) in the resin composition (c) can be lowered, and the resin composition (c) is reduced in viscosity. And easy to handle. Further, B / A ≧ 1.1 is preferable, and B / A ≧ 1.2 is more preferable.

また、本発明における圧縮成型方法としては、加工時間の短縮や低粘度化のため、20℃以上の温度で圧縮成型することが好ましく、樹脂の熱分解、熱劣化を抑制するため、250℃以下にすることが好ましい。また、圧縮成形時間は10秒以上24時間以下が好ましく、より好ましくは1分以上3時間未満である。圧縮成形する際の圧力は10〜150kgf/cmが好ましい。厚さが均一になりやすいという観点から圧力が10kgf/cm以上が好ましく、一方、クラックが生じにくいという観点から150gf・cm以下が好ましく、より好ましくは20〜50kgf/cmである。 Further, as the compression molding method in the present invention, it is preferable to perform compression molding at a temperature of 20 ° C. or higher for shortening the processing time and lowering the viscosity. It is preferable to make it. The compression molding time is preferably 10 seconds to 24 hours, more preferably 1 minute to less than 3 hours. The pressure at the time of compression molding is preferably 10 to 150 kgf / cm 2 . Preferably 10 kgf / cm 2 or higher pressure from the viewpoint of thickness tends to become uniform, whereas, preferably 150 gf · cm 2 or less from the viewpoint of the crack is less likely to occur, and more preferably from 20~50kgf / cm 2.

尚、樹脂組成物(c)の一部は、圧縮成型時に、圧縮成型機から押し出される。押し出されたものを樹脂組成物(e)とすると、本発明においては、圧縮成型時に押し出された樹脂組成物(e)の重量(D)と圧縮成型品(d)の重量(E)とが、D/E≧0.10であることが好ましい。さらに、本発明においては、樹脂組成物(e)が押し出された樹脂組成物(e)中の無機充填剤(b)の体積充填率(C)と、樹脂組成物(c)中の無機充填剤(b)の体積充填率(A)とが、0≦C<Aを満たすことが好ましい。0≦C<Aであることにより、圧縮成型品(d)中の無機充填剤(b)の体積充填率(B)を、樹脂組成物(c)中の無機充填剤(b)の体積充填率(A)より大きくすることができる。   A part of the resin composition (c) is extruded from a compression molding machine at the time of compression molding. When the extruded product is a resin composition (e), in the present invention, the weight (D) of the resin composition (e) extruded during compression molding and the weight (E) of the compression molded product (d) are as follows. D / E ≧ 0.10 is preferable. Furthermore, in the present invention, the volume filling rate (C) of the inorganic filler (b) in the resin composition (e) from which the resin composition (e) is extruded, and the inorganic filling in the resin composition (c) The volume filling rate (A) of the agent (b) preferably satisfies 0 ≦ C <A. By satisfying 0 ≦ C <A, the volume filling rate (B) of the inorganic filler (b) in the compression molded product (d) is changed to the volume filling of the inorganic filler (b) in the resin composition (c). It can be larger than the rate (A).

なお、本発明の樹脂組成物(c)には、本発明の効果を著しく損なわない程度の範囲内において他の添加剤、即ち帯電防止剤、着色剤、補強剤、安定剤等を添加することができる。
以下、実施例及び比較例によって本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
The resin composition (c) of the present invention is added with other additives, that is, an antistatic agent, a colorant, a reinforcing agent, a stabilizer, and the like within a range that does not significantly impair the effects of the present invention. Can do.
Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these.

[実施例1]
ビスフェノールA型液状エポキシ樹脂(jER828EL、ジャパンエポキシレジン株式会社製)1g、メチルシクロヘキセン−1,2−ジカルボン酸無水物(東京化成工業株式会社製)790mg、2−エチル−4−メチルイミダゾール(和光純薬工業株式会社製)20mg、BYK−W940(ビックケミージャパン株式会社製)40mgを混合し、銅粉(型番1110、三井金属鉱業株式会社製)25.62g(65vol.%)を加え乳鉢で混練し、ペースト状樹脂組成物を得た。ステンレス板(日本パネルテスト株式会社製、TFS、120mm×150mm×0.2mmt)の上の縦10cm、横10cm、厚さ1mmのブタジエンゴムシートの中心に直径2cmの円状の穴を開け、穴にペースト状樹脂組成物1.5gを入れた。ステンレス板(日本パネルテスト株式会社製、TFS、120mm×150mm×0.2mmt)をサンプル上に重ねて、25kgの圧力をかけながら120℃、1時間加熱加圧することで圧縮成型品を作製した。得られた圧縮成型品の特性評価結果を以下の表1に示す。
[Example 1]
Bisphenol A type liquid epoxy resin (jER828EL, manufactured by Japan Epoxy Resin Co., Ltd.) 1 g , methylcyclohexene-1,2-dicarboxylic acid anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) 790 mg, 2-ethyl-4-methylimidazole (Wako Pure) Yaku Kogyo Co., Ltd.) 20 mg and BYK-W940 (Bic Chemie Japan Co., Ltd.) 40 mg are mixed, and copper powder (Model No. 1110, Mitsui Metal Mining Co., Ltd.) 25.62 g (65 vol.%) Is added and kneaded in a mortar. Thus, a paste-like resin composition was obtained. A circular hole with a diameter of 2 cm is formed in the center of a butadiene rubber sheet 10 cm long, 10 cm wide and 1 mm thick on a stainless steel plate (Nihon Panel Test Co., Ltd., TFS, 120 mm x 150 mm x 0.2 mmt). The paste-like resin composition 1.5g was put into this. A stainless steel plate (manufactured by Nippon Panel Test Co., Ltd., TFS, 120 mm × 150 mm × 0.2 mmt) was stacked on the sample, and a compression molded product was produced by heating and pressing at 120 ° C. for 1 hour while applying a pressure of 25 kg. Table 1 below shows the results of the characteristic evaluation of the compression molded product obtained.

参考例2]
ビスフェノールA型液状エポキシ樹脂(jER828EL、ジャパンエポキシレジン株式会社製)1g、メチルシクロヘキセン−1,2−ジカルボン酸無水物(東京化成工業株式会社製)790mg、2−エチル−4−メチルイミダゾール(和光純薬工業株式会社製)20mg、BYK−W940(ビックケミージャパン株式会社製)40mgを混合し、銅粉(型番1110、三井金属鉱業株式会社製)25.62g(65vol.%)を加え乳鉢で混練し、ペースト状樹脂組成物を得た。ステンレス板(日本パネルテスト株式会社製、TFS、120mm×150mm×0.2mmt)の上の縦10cm、横10cm、厚さ1mmのブタジエンゴムシートの中心に直径2cmの円状の穴を開け、穴にペースト状樹脂組成物1.5gを入れた。ステンレス製のへらで、表面を滑らかに整えた後、ステンレス板(日本パネルテスト株式会社製、TFS、120mm×150mm×0.2mmt)をサンプル上に重ねて、圧力をかけずにホットプレートにより100℃、30分間加熱した後、25kgの圧力をかけながら120℃、1時間加熱加圧することで圧縮成型品を作製した。得られた圧縮成型品の特性評価結果を以下の表1に示す。
[ Reference Example 2]
1 g of bisphenol A type liquid epoxy resin (jER828EL, manufactured by Japan Epoxy Resin Co., Ltd.), 790 mg of methylcyclohexene-1,2-dicarboxylic acid anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.), 2-ethyl-4-methylimidazole (Wako Pure) Yaku Kogyo Co., Ltd.) 20 mg and BYK-W940 (Bic Chemie Japan Co., Ltd.) 40 mg are mixed, and copper powder (Model No. 1110, Mitsui Metal Mining Co., Ltd.) 25.62 g (65 vol.%) Is added and kneaded in a mortar. Thus, a paste-like resin composition was obtained. A circular hole with a diameter of 2 cm is formed in the center of a butadiene rubber sheet 10 cm long, 10 cm wide and 1 mm thick on a stainless steel plate (Nihon Panel Test Co., Ltd., TFS, 120 mm x 150 mm x 0.2 mmt). The paste-like resin composition 1.5g was put into this. After smoothing the surface with a stainless steel spatula, a stainless steel plate (manufactured by Nippon Panel Test Co., Ltd., TFS, 120 mm × 150 mm × 0.2 mmt) is overlaid on the sample, and 100 by hot plate without applying pressure. After heating at 30 ° C. for 30 minutes, a compression molded product was produced by heating and pressing at 120 ° C. for 1 hour while applying a pressure of 25 kg. Table 1 below shows the results of the characteristic evaluation of the compression molded product obtained.

[比較例1]
ビスフェノールA型液状エポキシ樹脂(jER828EL、ジャパンエポキシレジン株式会社製)1g、メチルシクロヘキセン−1,2−ジカルボン酸無水物(東京化成工業株式会社製)790mg、2−エチル−4−メチルイミダゾール(和光純薬工業株式会社製)20mg、BYK−W940(ビックケミージャパン株式会社製)40mgを混合し、銅粉(型番1110、三井金属鉱業株式会社製)25.62g(65vol.%)を加え乳鉢で混練し、ペースト状樹脂組成物を得た。ステンレス板(日本パネルテスト株式会社製、TFS、120mm×150mm×0.2mmt)の上の縦10cm、横10cm、厚さ1mmのブタジエンゴムシートの中心に直径2cmの円状の穴を開け、穴にペースト状樹脂組成物1.5gを入れた。ステンレス製のへらで、表面を滑らかに整えた後、ステンレス板(日本パネルテスト株式会社製、TFS、120mm×150mm×0.2mmt)をサンプル上に重ねて、圧力をかけずにホットプレートにより100℃、30分間加熱した後、圧力をかけずに120℃、1時間加熱することで無圧縮成型品を作製した。得られた圧縮成型品の特性評価結果を以下の表1に示す。
[Comparative Example 1]
1 g of bisphenol A type liquid epoxy resin (jER828EL, manufactured by Japan Epoxy Resin Co., Ltd.), 790 mg of methylcyclohexene-1,2-dicarboxylic acid anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.), 2-ethyl-4-methylimidazole (Wako Pure) Yaku Kogyo Co., Ltd.) 20 mg and BYK-W940 (Bic Chemie Japan Co., Ltd.) 40 mg are mixed, and copper powder (Model No. 1110, Mitsui Metal Mining Co., Ltd.) 25.62 g (65 vol.%) Is added and kneaded in a mortar. Thus, a paste-like resin composition was obtained. A circular hole with a diameter of 2 cm is formed in the center of a butadiene rubber sheet 10 cm long, 10 cm wide and 1 mm thick on a stainless steel plate (Nihon Panel Test Co., Ltd., TFS, 120 mm x 150 mm x 0.2 mmt). The paste-like resin composition 1.5g was put into this. After smoothing the surface with a stainless steel spatula, a stainless steel plate (manufactured by Nippon Panel Test Co., Ltd., TFS, 120 mm × 150 mm × 0.2 mmt) is overlaid on the sample, and 100 by hot plate without applying pressure. After heating at 0 ° C. for 30 minutes, an uncompressed molded product was produced by heating at 120 ° C. for 1 hour without applying pressure. Table 1 below shows the results of the characteristic evaluation of the compression molded product obtained.

(硬化物の評価)
実施例及び比較例における体積充填率(A)は、樹脂組成物作製時の調合量から密度を算出し、下記式1により算出した。
実施例及び比較例の体積充填率(B)は、成型体の中心部を直径1cmの円状に切り出し、体積と質量から密度を算出し、下記式2により算出した。
実施例及び比較例の重量(D)は、成型体の中心部をブタジエンゴムシートと同じ直径2cmの円状に切り出し、直径2cmの円状サンプル以外のサンプルの質量を量ることにより決定した。
実施例及び比較例の重量(E)は、成型体の中心部をブタジエンゴムシートと同じ直径2cmの円状に切り出し、直径2cmの円状サンプルの質量を量ることにより決定した。
A=100×(x/z)/(x/z+X/Z) (式1)
A:銅粉の充填率[体積%]
x:樹脂組成物(c)中の銅粉の質量[g]
X:樹脂組成物(c)中の樹脂の質量[g]
z:銅の密度=8.9g/cm
Z:樹脂の密度=1.2g/cm
Y=(B/100)×z+(1−B/100)×Z (式2)
B:銅粉の充填率[体積%]
Y:成形体の密度[g/cm
z:銅の密度=8.9g/cm
Z:樹脂の密度=1.2g/cm
樹脂の密度は、ビスフェノールA型液状エポキシ樹脂(jER828EL、ジャパンエポキシレジン株式会社製)100質量部、メチルシクロヘキセン−1,2−ジカルボン酸無水物(東京化成工業株式会社製)79質量部、2−エチル−4−メチルイミダゾール(和光純薬工業株式会社製)2質量部を混合し、120℃で1時間加熱硬化させた試料を直径1cmの円状に切り出し、体積と質量から算出した値を用いた。
実施例及び比較例で得られた成型体の中心部を直径1cmの円状に切り出し、レーザーフラッシュ法(TC−7000、アルバック理工社製)にて熱拡散率αを測定し、比熱Cp、密度σから下記式3を用いて熱伝導率Kを算出した。
K=α×Cp×σ (式3)
(Evaluation of cured product)
The volume filling rate (A) in the examples and comparative examples was calculated from the following formula 1 by calculating the density from the blending amount at the time of preparing the resin composition.
The volume filling rate (B) of the examples and comparative examples was calculated by the following formula 2 by cutting the center part of the molded body into a circular shape having a diameter of 1 cm, calculating the density from the volume and mass.
The weight (D) of the examples and comparative examples was determined by cutting the center of the molded body into a circle having the same diameter of 2 cm as the butadiene rubber sheet and measuring the mass of a sample other than the circular sample having a diameter of 2 cm.
The weight (E) of the examples and comparative examples was determined by cutting the center of the molded body into a circle with the same diameter of 2 cm as the butadiene rubber sheet and measuring the mass of the circular sample with a diameter of 2 cm.
A = 100 × (x / z) / (x / z + X / Z) (Formula 1)
A: Filling ratio of copper powder [volume%]
x: Mass of copper powder in resin composition (c) [g]
X: Mass of resin in resin composition (c) [g]
z: Copper density = 8.9 g / cm 3
Z: Resin density = 1.2 g / cm 3
Y = (B / 100) * z + (1-B / 100) * Z (Formula 2)
B: Filling rate of copper powder [volume%]
Y: Density of the compact [g / cm 3 ]
z: Copper density = 8.9 g / cm 3
Z: Resin density = 1.2 g / cm 3
The resin has a density of 100 parts by mass of bisphenol A type liquid epoxy resin (jER828EL, manufactured by Japan Epoxy Resin Co., Ltd.), 79 parts by mass of methylcyclohexene-1,2-dicarboxylic acid anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.), 2- A sample obtained by mixing 2 parts by mass of ethyl-4-methylimidazole (manufactured by Wako Pure Chemical Industries, Ltd.), heat-cured at 120 ° C. for 1 hour, was cut into a 1 cm diameter circle, and the value calculated from the volume and mass was used. It was.
The center part of the molded body obtained in the examples and comparative examples was cut into a 1 cm diameter circle, and the thermal diffusivity α was measured by a laser flash method (TC-7000, manufactured by ULVAC-RIKO), specific heat Cp, density The thermal conductivity K was calculated from σ using the following formula 3.
K = α × Cp × σ (Formula 3)

表1中、以下の基準に従って評価した:
20W/m℃<K:「◎」、
10W/m℃<K≦20W/m℃:「○」、
K≦10W/m℃:「×」。
In Table 1, it was evaluated according to the following criteria:
20 W / m ° C. <K: “◎”,
10 W / m ° C. <K ≦ 20 W / m ° C .: “◯”,
K ≦ 10 W / m ° C .: “x”.

Figure 0005476089
Figure 0005476089

本発明の製造方法により製造された圧縮成型品は、プリント配線板、接着シート、自動車や電子機器などの構造部品の分野で好適に利用可能である。   The compression molded product produced by the production method of the present invention can be suitably used in the field of structural parts such as printed wiring boards, adhesive sheets, automobiles and electronic devices.

Claims (3)

樹脂(a)、及び無機充填剤(b)を少なくとも含有する樹脂組成物(c)を圧縮成型する工程を含む圧縮成型品(d)の製造方法において、該樹脂組成物(c)中の該無機充填剤(b)の体積充填率(A)と該圧縮成型品(d)中の該無機充填剤(b)の体積充填率(B)とが、B/A≧1.05を満たし、圧縮成型時に押し出された樹脂組成物(e)の重量(D)と前記圧縮成型品(d)の重量(E)とが、D/E≧0.10を満たし、かつ、該樹脂組成物(e)中の無機充填剤(b)の体積充填率(C)と、前記樹脂組成物(c)中の無機充填剤(b)の体積充填率(A)とが、0≦C<Aを満たすことを特徴とする前記圧縮成型品の製造方法。 In the method for producing a compression molded article (d), comprising a step of compression molding a resin composition (c) containing at least a resin (a) and an inorganic filler (b), the resin composition (c) in the resin composition (c) volume filling ratio of the inorganic filler (b) (a) and said compression molded article (d) in the inorganic filler volume filling ratio of (b) and (B), but was fully the B / a ≧ 1.05 The weight (D) of the resin composition (e) extruded during compression molding and the weight (E) of the compression molded product (d) satisfy D / E ≧ 0.10, and the resin composition The volume filling rate (C) of the inorganic filler (b) in the product (e) and the volume filling rate (A) of the inorganic filler (b) in the resin composition (c) are 0 ≦ C <. A method for producing the compression molded product, wherein A is satisfied . 前記無機充填剤(b)が、金属である、請求項1に記載の方法。 Wherein the inorganic filler (b) is a metal, methods who claim 1. 前記圧縮成型品(d)が、電子材料用樹脂圧縮成型品である、請求項1又は2に記載の方法。 It said compression molded article (d) is an electronic material resin compression molding, methods who according to claim 1 or 2.
JP2009244556A 2009-10-23 2009-10-23 Method for producing compression molded product of resin composition highly filled with inorganic filler Expired - Fee Related JP5476089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009244556A JP5476089B2 (en) 2009-10-23 2009-10-23 Method for producing compression molded product of resin composition highly filled with inorganic filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009244556A JP5476089B2 (en) 2009-10-23 2009-10-23 Method for producing compression molded product of resin composition highly filled with inorganic filler

Publications (2)

Publication Number Publication Date
JP2011088383A JP2011088383A (en) 2011-05-06
JP5476089B2 true JP5476089B2 (en) 2014-04-23

Family

ID=44107089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244556A Expired - Fee Related JP5476089B2 (en) 2009-10-23 2009-10-23 Method for producing compression molded product of resin composition highly filled with inorganic filler

Country Status (1)

Country Link
JP (1) JP5476089B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262109A (en) * 1988-04-13 1989-10-19 Nichias Corp Manufacture of sheet made of flexible fluoroplastic
JP2001287232A (en) * 2000-04-07 2001-10-16 Sekisui Chem Co Ltd Method and apparatus for continuously producing resin molding containing aggregate
JP2006103099A (en) * 2004-10-04 2006-04-20 Shin Etsu Polymer Co Ltd Method for producing molded article, and molded article
JP2007137017A (en) * 2005-11-22 2007-06-07 Seikoh Giken Co Ltd Mold for molding fuel cell separator, manufacturing process of fuel cell separator and fuel cell separator

Also Published As

Publication number Publication date
JP2011088383A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
TWI633813B (en) Boron nitride-resin composite circuit substrate, boron nitride-resin composite heat release plate integrated circuit substrate
JP6512105B2 (en) Metal resin composite
JP5330910B2 (en) Resin composition and use thereof
JP7145876B2 (en) Nitride ceramic resin composite
JP5038007B2 (en) Composition, metal-based circuit board using the composition
JP6135991B2 (en) Epoxy resin inorganic composite sheet for sealing
KR101784196B1 (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
JP2018104260A (en) Hexagonal boron nitride powder, method for producing the same, resin composition and resin sheet
WO2015093260A1 (en) Thermosetting resin composition and metal-resin composite
JP6285155B2 (en) Heat dissipation member and its use
KR20210132639A (en) Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder
WO2006132185A1 (en) Insulative and thermally conductive resin composition and formed article, and method for production thereof
JP2016155946A (en) Thermosetting resin composition, thermally conductive resin sheet, circuit board, and power module
JP2006233016A (en) Epoxy resin composition and semiconductor device
JP5476089B2 (en) Method for producing compression molded product of resin composition highly filled with inorganic filler
JPH0953001A (en) Electroconductive epoxy resin composition
JPWO2015087722A1 (en) Metal resin composite
JP2008088405A (en) Resin composition, heat conductive sheet, highly heat conductive adhesive sheet with metal foil and highly heat conductive adhesive sheet with metal plate
JP2008069238A (en) Thermoconductive paste
JP2011089063A (en) Epoxy resin cured product in which metal powder is highly filled up, and manufacturing method therefor
JP2016113483A (en) Sheet-like resin composition, bonding method using sheet-like resin composition, and adhesive body bonded by bonding method
CN111479773A (en) Glass-coated aluminum nitride particles, process for producing the same, and heat-radiating resin composition containing the same
JP5863708B2 (en) Ink for solder resist, cured product thereof, and printed wiring board using the same
JP2000336244A (en) Liquid sealing resin composition and semiconductor device using the composition
WO2013161844A1 (en) Resin composition having high thermal conductivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140207

R150 Certificate of patent or registration of utility model

Ref document number: 5476089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees