WO2006132185A1 - Insulative and thermally conductive resin composition and formed article, and method for production thereof - Google Patents

Insulative and thermally conductive resin composition and formed article, and method for production thereof Download PDF

Info

Publication number
WO2006132185A1
WO2006132185A1 PCT/JP2006/311231 JP2006311231W WO2006132185A1 WO 2006132185 A1 WO2006132185 A1 WO 2006132185A1 JP 2006311231 W JP2006311231 W JP 2006311231W WO 2006132185 A1 WO2006132185 A1 WO 2006132185A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
resin
resin composition
alloy
filler
Prior art date
Application number
PCT/JP2006/311231
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Agari
Tsuneo Kamiyahata
Yoshikazu Inada
Original Assignee
Nippon Kagaku Yakin Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kagaku Yakin Co., Ltd. filed Critical Nippon Kagaku Yakin Co., Ltd.
Priority to JP2007520091A priority Critical patent/JP5340595B2/en
Publication of WO2006132185A1 publication Critical patent/WO2006132185A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Definitions

  • Insulating thermally conductive resin composition Insulating thermally conductive resin composition, molded article, and method for producing the same
  • the present invention relates to an insulating heat conductive resin composition, a molded article, and a method for producing the same, and more specifically, has high electrical insulation and high thermal conductivity that can be used for a casing of an electronic device.
  • the present invention relates to an insulating heat conductive resin composition excellent in moldability, a molded product, and a method for producing the same.
  • Patent Document 2 a method of coating the surface of high thermal conductive powder with an electrically insulating coating has been proposed (for example, Patent Document 2).
  • Patent Document 1 JP-A-5-239321
  • Patent Document 2 JP-A-8-183875
  • the present invention solves the above-mentioned problems, can obtain a molded product having high insulation and thermal conductivity, and has an insulating thermal conductive resin composition excellent in molding processability and The object was to provide a molded product as well as a manufacturing method thereof.
  • the insulating heat conductive resin composition of the present invention comprises a matrix resin of 15 vol% or more, an electrically insulating filler, a metal powder having a melting point of 500 ° C or more, And a low melting point alloy having a melting point of 500 ° C. or lower.
  • the resin composition of the present invention is obtained by kneading a mixed powder composed of a low-melting-point alloy, a metal powder, an electrically insulating filler and a resin in a state where the low-melting-point alloy is heated to a temperature at which the low-melting-point alloy is in a semi-molten state.
  • the viscosity of the low melting point alloy is made higher than that in the case of complete melting so that the viscosity difference from the resin is reduced. It can be made easy to disperse by scab.
  • a resin composition in which the low melting point alloy is more uniformly dispersed in the resin can be obtained.
  • the low melting point alloy contacts or welds the electrically insulating fillers to connect the electrically insulating fillers together to form a three-dimensional heat transfer path.
  • the low melting point alloy uniformly dispersed in the resin connects the electrically insulating fillers with a small volume content compared to the conventional one, and forms a heat transfer path uniformly distributed in three dimensions.
  • the electric conduction path is interrupted by the electrically insulating filler, and becomes insulating.
  • the low melting point metal also comes in contact with the metal powder, forms a three-dimensional heat transfer path and exhibits high thermal conductivity, but tends to exhibit conductivity. Therefore, it is possible to achieve both high thermal conductivity and high electrical insulation by optimizing the quantity ratio of the electrically insulating filler and the metal powder. As a result, it is possible to provide a resin composition having a high thermal conductivity and electrical insulation without reducing the molding processability by setting the volume content of the resin serving as the matrix to 15 vol% or more.
  • the term “electrical insulation” means that the volume resistivity measured by a method according to JIS K6911 is at least ⁇ cm.
  • the resin composition according to one embodiment of the present invention comprises a thermoplastic resin of 30 vol% or more, an electric insulating filler of 5 to 40 vol%, a metal powder of 1 to: L0 vol%, and a low melting point. Alloy 1 ⁇ : Contains LOvol%.
  • a metal filler having an oxide film on the surface can be used for the electrically insulating filter.
  • the metal filler includes metal powder, metal flakes, and metal fibers.
  • a metal having a thermal conductivity of 80 WZm'K or more at 300K can be used, and examples thereof include copper, aluminum, tungsten, silicon, iridium, molybdenum, zinc, conoleto, nickel, and iron.
  • Aluminum flakes are preferably used as the metal filler. Further, metal powder is contained separately from the above metal filler, but this metal powder has substantially no oxide film on the surface, and iron, copper, nickel, titanium, chromium, and at least of these metals. Those selected from the group consisting of alloys including one kind can be used.
  • the low melting point alloy is selected from the group consisting of Sn-Cu, Sn-Al, Sn-Zn, Sn-Pt, Sn-Mn, Sn-Ag, Sn-Au, Al-Li, and Zn-U. At least one alloy can be used.
  • As the matrix resin a resin having a deflection temperature under load of 100 ° C or higher can be used. Moreover, it is preferable that the thermal conductivity of the resin composition is 2 WZm′K or more.
  • the matrix resin is a thermosetting resin
  • the electrically insulating filler is 5 to 65 vol%
  • the metal powder is 1 to 10 vol%.
  • a metal filler having an acid film on the surface and Z or an inorganic filler can be used.
  • the metal powder any one selected from iron, copper, nickel, titanium, chromium, and a group force that is an alloy power including at least one of these metals can be used.
  • Low melting point alloys include Bi-Sn, Bi-In, In-Zn, In-Sn, In-Ag, In-Na ⁇ Na-Sn, Na-Au, Na-Ba ⁇ Na-Li ⁇ Li-
  • a group force consisting of Ag, Li—Ca ⁇ and Li—Ba can be used with at least one selected alloy.
  • thermosetting resin a resin having a deflection temperature under load of 100 ° C or higher can be used.
  • the thermal conductivity of the resin composition is 2 WZm′K or more.
  • a molded article comprising the insulating thermally conductive resin composition of the present invention has a matrix resin of 15 vol% or more, an electrically insulating filler, a metal powder having a melting point of 500 ° C or more, and a melting point of 500
  • a mixed powder containing a low melting point alloy having a melting point of not higher than ° C is heated, the matrix resin is melted and kneaded, and the mixture is formed into a desired shape.
  • Examples of those that use thermosetting resin for matrix resin include printed circuit boards, LED module cases, and heat dissipation containers for electronic components.
  • the rosin composition of the present invention can be produced, for example, using the following method. That is, a mixed powder containing matrix resin, a metal filler having an oxide film on the surface, a metal powder having a melting point of 500 ° C or higher, and a low melting point alloy having a melting point of 500 ° C or lower is heated.
  • the low melting point alloy is mixed in a semi-molten state in which the solid phase portion and the liquid phase portion are mixed, and the matrix resin is mixed in the molten state, and the mixture is formed into a desired shape.
  • the resin composition of the present invention uses an electrically insulating filler, thereby reducing the filling rate of the filler, lowering the specific gravity compared to the conventional resin composition using a ceramic filler. It is possible to provide a resin composition which is excellent in formability and suitable for a molded article having high insulation and high thermal conductivity.
  • the insulating thermally conductive resin composition according to the present invention comprises a matrix resin of 15 vol% or more, an electrically insulating filler, a metal powder having a melting point of 500 ° C or higher, and a low melting point of 500 ° C or lower. Melting point alloy.
  • the matrix resin used in the present invention is a thermoplastic resin! / Is a thermosetting resin, and a heat-resistant resin having a deflection temperature under load specified in JIS K7191 of 100 ° C or higher is used.
  • thermoplastic resins include polyphenylene sulfide (PPS), liquid crystal polymer, polyether ether ketone (PEEK), polyimide, polyether imide, polyacetal, polyether sulfone, polysulfone, polycarbonate, Polyethylene terephthalate, polybutylene terephthalate, polyphenylene oxide, polyphthalamide, polyamide and the like PPS power is preferred.
  • PPS has a low viscosity at the time of melting, and the filler can be easily dispersed.
  • the degree of freedom in selecting a low melting point alloy to be used can be increased.
  • Thermosetting resins include phenol resin, polyimide resin, epoxy resin, isocyanate resin, furan resin, polyurethane resin, aryl resin, key resin, unsaturated poly Examples include ester resin, diallyl phthalate resin, melamine resin, and the like. Epoxy resin is preferable.
  • the epoxy resin is not particularly limited, and a known epoxy resin can be used.
  • examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetrabromobisphenol A type epoxy resin, naphthalene type epoxy resin, biphenol type epoxy resin, tetramethylbiphenol type.
  • Curing agents include amine curing agents such as aliphatic amines, aromatic amines, and aliphatic cyclic amines, phenol novolaks, xylene novolacs, biphenol novolacs, bisphenol A novolacs, dicyclopentadiene phenol novolacs, etc.
  • a phenolic curing agent or a catalytic curing agent such as dicyanamide can be used.
  • accelerators such as tertiary amines, imidazoles, and aromatic polyamines can be used.
  • the volume content of the matrix rosin is 15 vol% or more, more preferably 15 vol% to 65 vol%, in order to ensure molding processability.
  • the temperature is equal to or higher than the melting point of the thermoplastic resin, preferably 250 ° C.
  • the mixture is heated and kneaded in a temperature range of ⁇ 400 ° C., more preferably 300 ° C. to 350 ° C.
  • a thermosetting resin it can be kneaded at a temperature not higher than its decomposition temperature, preferably not higher than 300 ° C.
  • a metal filler having an acid film on the surface and Z or an inorganic filler can be used.
  • Metal fillers having an oxide film on the surface include metal powder, metal flakes, and metal fibers.
  • a metal having a thermal conductivity of 80 W / m ′ K or more at 300 K can be used, for example, copper, aluminum, tandastene, silicon, iridium, molybdenum, zinc, cobalt, nickel, iron, etc. I can list them.
  • the metal filler forms an oxide film that preferably has an oxide film on the entire surface.
  • dry oxidation such as air oxidation at room temperature or high temperature
  • wet oxidation using an acid such as nitric acid and an acid oxidation method such as an electrolytic acid using an electrolytic solution can be used.
  • the metal filler having an acid film on the surface improves the insulation by the surface acid film, while the bulk portion other than the surface has a high thermal conductivity, so that it has a high thermal conductivity and a high electrical insulation. Both can be achieved.
  • Aluminum flakes are preferably used for the metal filler having an acid oxide film on the surface. It has high thermal conductivity, and has a highly insulating and strong oxide film formed of natural acid on the surface. It needs to be further oxidized to form an oxide film. It is not.
  • the inorganic filler includes magnesium oxide, acid aluminum, titanium oxide, acid oxide, zinc oxide, copper oxide, iron oxide, zirconium oxide, and other oxide fillers, aluminum nitride, nitride Nitride fillers such as boron, silicon nitride, titanium nitride, carbide fillers such as silicon carbide, titanium carbide, boron carbide, and hydrated metal compound fillers such as aluminum hydroxide, magnesium hydroxide, boehmite, etc. Can be mentioned.
  • the inorganic filler is one selected from the group force consisting of magnesium oxide, aluminum oxide, boron nitride, aluminum nitride, silicon carbide, and a combination thereof.
  • the volume content thereof is 5 to 40 vol%, more preferably 10 to 35 vol%. This is because if the volume content is less than 5 vol%, sufficient thermal conductivity cannot be obtained, and if it exceeds 40 vol%, the molding processability of the resin composition decreases. Further, when an inorganic filler is used in the electrically insulating filler, the volume content is 5 to 65 vol%, more preferably 15 to 65 vol%. If the volume content is less than 5 vol%, sufficient thermal conductivity cannot be obtained, and if it is greater than 65 vol%, the molding cacheability of the resin composition decreases.
  • the size of the electrically insulating filler is, in the case of a metal filler, a sieve passing rate of 150 m force S98% or more, more preferably a sieve passing rate of 100 / zm is 98% or more.
  • the particle size is preferably 1 to 50 m.
  • the surface of the electrically insulating filler can be modified with a coupling agent! /, With a sizing agent, in order to impart affinity to the matrix resin. Matrix rosin Therefore, it is possible to improve the dispersibility of the electrically insulating filler and to further improve the thermal conductivity.
  • the coupling agent known coupling agents such as silane, titanium, and aluminum can be used.
  • isopropyl triisostearoyl titanate or acetoalkoxyaluminum diisopropylate can be used.
  • the aluminum flake is immersed in a solution in which the coupling agent is water! /, Or a solution in an organic solvent for a predetermined time, or a solution in which the coupling agent is dissolved is sprayed on an aluminum-based filler. Can be used.
  • the surface of the electrically insulating filler can be modified by coating it with fluorine resin.
  • the electrical insulation can be further improved, flame retardancy can be imparted to the electrically insulating filler, and scattering of the electrically insulating filler can also be suppressed. By suppressing scattering, workability can be improved.
  • the electrically insulating filler is immersed in a fluororesin dispersion or organosol for a predetermined time. / Or is sprayed with a fluororesin-containing dispersion or organosol on an aluminum filler and fired! The / can be dried.
  • the low melting point alloy is an alloy having a melting point (liquidus temperature) of 500 ° C or lower, which is preferably a semi-molten one at the melting temperature of the above heat-resistant resin. Can be used. As specific examples, a case where a thermoplastic resin is used for the matrix resin and a case where a thermosetting resin is used will be described.
  • Sn-based alloys include Sn-Cu, Sn-Al, Sn-Zn, Sn-Te, Sn-Pt, Sn-P, Sn-Mn, Sn-Ag, Sn-Ca, Sn — Mg, Sn—Au, Sn—Ba, Sn—Ge, Li-based alloys include Al—Li, Cu—Li, and Zn—Li.
  • an alloy having a liquidus temperature of 400 ° C or lower that is, Sn—Cu, Sn—Al, Sn—Zn, Sn—Pt, Sn—Mn, Sn—Ag, Sn—Au, Al—Li, At least one alloy selected from the group force selected from Zn-U force can be used. This is because the degree of freedom in selecting the kneaded oil to be kneaded can be increased. More preferably, at least one alloy selected from the group force consisting of Sn—Cu, Sn—Al, and Sn—Zn forces can be used. It is easy to obtain and low cost. More preferably, Sn—Cu can be used.
  • thermosetting resin Bi-Sn, Bi-In, In-Zn, In-Sn, In-Ag, In-Ag, In-Na-Na-Sn, Na-Au, Na-Ba ⁇ Na-Li ⁇ Li-Ag, Li-Ca ⁇ Li-Ba and the like can be mentioned. More preferably, an alloy having a liquidus temperature of 400 ° C. or lower, that is, at least one alloy selected from the group consisting of Bi—Sn, Bi—In, In—Zn, and In—Sn is used. be able to.
  • BiSn can be used. This is because the selection range of the melting point is wide and the thermal conductivity is high.
  • the particle size of the low melting point alloy is preferably 5 mm or less. This is because if the particle size is larger than 5 mm, it takes time to melt, and further, it is uniformly dispersed in the matrix resin.
  • the shape is not particularly limited, and any shape such as a spherical shape, a teardrop shape, a lump shape, or a dendritic shape can be used.
  • the metal powder that is separate from the metal filler having the oxide film on the surface is substantially free of the oxide film on the surface, and is made of iron, copper, nickel, titanium, chromium, and these metals. Alloying force including at least one kind of group force which is selected Any force One kind of metal can be used Copper, iron or nickel is preferable.
  • the volume content of the low melting point alloy is 1 to: LOvol%, more preferably 1 to 7vol%. If it is smaller than lvol%, the amount of the low melting point alloy connecting the electrically insulating filler is reduced and the thermal conductivity is lowered. On the other hand, if it is larger than 10 vol%, the amount of low melting point alloy having a low thermal conductivity increases and the thermal conductivity decreases.
  • the volume content of the metal powder is 1 to 10 vol%, more preferably 1 to 5 vol%. If it is less than lvol%, the effect of improving the thermal conductivity is not sufficient. If it is greater than 10 vol%, the electrical insulation is reduced.
  • the volume content of the metal powder is preferably smaller than the volume content of the low melting point alloy. This is because if the volume content of the metal powder is larger than the volume content of the low-melting point alloy, the effect of decreasing the electrical insulation is greater than the effect of increasing the thermal conductivity.
  • the resin composition of the present invention improves the strength and elastic modulus of the molded article, or is made of metal fibers comprising the above metals, or glass fibers, alumina fibers, titanic acid. Ceramic fiber such as calcium fiber and silicon nitride fiber or calcium carbonate Can contain.
  • the resin composition of the present invention is prepared by dry blending a resin, an electrically insulating filler, etc. in advance, supplying it to a single-screw or twin-screw kneading extruder, etc., and kneading and then granulating.
  • a pellet can be produced and molded into a desired shape using an injection molding machine, a compression molding machine, an extrusion molding machine or the like having a predetermined mold.
  • the kneading temperature is preferably set to a temperature within the kneading temperature range of the resin, and further to a temperature at which the low melting point alloy is mixed in a solid phase and a liquid phase.
  • a Henschel mixer, a super mixer, a tumbler, or the like can be used.
  • the metal powder having a high density can be dry blended separately from the resin, fed from the middle of extrusion (side feed), and kneaded. Further, the fibrous filler can also be kneaded by side feeding separately from the metal powder.
  • the method of kneading the thermosetting resin composition is to melt and knead the resin, insulation filler, etc. using a roll, a mixer, a kneader, a kneader, a single-screw kneading extruder, a twin-screw kneading extruder, etc. went.
  • the kneading temperature was set to a temperature at which the low melting point alloy was in a mixed state of liquid and solid layers.
  • a thermosetting resin for molding material it is kneaded, cooled and pulverized, and pelletized or tableted.
  • the molding can be formed into a desired shape by transfer molding, compression molding, injection molding or the like.
  • the resin composition according to the present embodiment includes a matrix resin of 30 vol% or more, an electrically insulating filler of 5 to 40 vol%, a metal powder of 1 to LOvol%, and a low melting point alloy of 1 to LOLO%. It is a waste. More preferably, a thermoplastic resin is used for the matrix resin, and a metal filler having an acid film on the surface is used for the electrically insulating filler. Furthermore, aluminum flakes are preferably used for the metal filler. The volume content of the aluminum flakes is 5 to 40 vol%, more preferably 10 to 35 vol%. When the volume content is less than 5 vol%, sufficient thermal conductivity cannot be obtained, and when the volume content exceeds 40 vol%, the moldability of the cocoon and resin composition decreases.
  • the resin composition according to the present embodiment can reduce the filling rate of the filler as compared with the conventional resin composition using a ceramic filler, so that it has a low specific gravity and a moldability.
  • it is possible to provide a resin composition having excellent insulation properties and high thermal conductivity. This Therefore, it can be applied to a housing of an electronic component and a heat sink or a fan for releasing heat from the electronic component to the outside.
  • a heat sink material of a semiconductor element a casing of a fan motor, a housing for a motor core, a case for a secondary battery, a case of a notebook computer or a mobile phone, and the like.
  • the matrix resin is a thermosetting resin
  • the thermosetting resin is 15 vol% or more
  • the electrically insulating filler is 5 to 65 vol%
  • the metal powder is 1 ⁇ : LOvol% and low melting point alloy 1 ⁇ : L0vol%.
  • a metal filler having an oxide film on the surface and Z or an inorganic filler are used for the electrically insulating filler.
  • the volume content of the thermosetting resin is at least 15 vol%, more preferably at least 25 vol%, in order to ensure moldability.
  • the resin composition according to the present embodiment has the same effects and uses as the resin composition according to Embodiment 1. It can also be used for adhesives, printed circuit boards, LED module cases, and heat dissipation containers for electronic components. Adhesives are used to bond electronic components such as IC chips, resistors, capacitors, etc. mounted on substrates in semiconductor elements, high-density substrates and module components, adhesion between circuit boards and heat sinks, and LED chip substrates. It can be used for bonding. It can also be used to bond ceramic parts and metal parts in in-vehicle engines.
  • the printed circuit board can be used as a new printed circuit board that replaces the conventional glass epoxy board in order to prevent the temperature rise of the printed circuit board on which electronic components are mounted at high density. Furthermore, in order to improve heat dissipation, it is also possible to provide a structure in which a metal heat dissipation plate is provided on one side of a substrate made of the resin composition of the present invention, and wiring is provided on another side.
  • the LED module case is a combination of an insulating substrate made of the resin composition of the present invention and a heat sink as a countermeasure against heat in LED devices for lighting and backlights in which a large number of LEDs are arranged on the substrate. It can be set as a trick. In addition, it can be used as a heat dissipation container for electronic components in semiconductor packages and LED packages in order to improve heat dissipation.
  • the alloy used was a 4-30% Cu-Sn composition so that it was in a semi-molten state when kneaded with rosin.
  • the raw material mixed powder blended in the composition shown in Table 1 was put into a kneading extruder, kneaded at a temperature of 290 to 310 ° C, and extruded to produce a molding pellet.
  • the molding pellets were molded by hot pressing to obtain a sample having a diameter of 50 mm and a thickness of 5 mm for measuring thermal conductivity and measuring electrical insulation.
  • Epoxy resin (biphenol type epoxy resin and tetramethylbiphenol type epoxy resin), phenolic curing agent (phenol novolak) as curing agent, 2-ethylimidazole as curing accelerator, inorganic filler As acid ⁇ magnesium (Kyowa Chemical Industry, average particle size 30 ⁇ m) or acid ⁇ aluminum (Kinsei Matec), metal powder is copper powder (Nikko Materials, particle size 20-25 ⁇ m), Bi-Sn alloy powder (average particle size 25 m) was used as the low melting point alloy. The alloy used was a composition of 15 to 98% Bi—Sn so as to be in a semi-molten state when kneaded with rosin.
  • thermoplastic thermally conductive resin composition manufactured by DYNATECH R & D (model TCHM DV) steady state heat flow meter was used.
  • CC copper-constantan thermocouples were embedded in the upper and lower surfaces of the sample by hot pressing in order to accurately measure the temperature difference between the upper and lower surfaces of the sample.
  • the flatness of the sample can be improved, and the adhesion between the sample and the thermocouple can be increased.
  • the measurement was performed after maintaining the temperature at a predetermined temperature for 1 hour. Tables 1 and 2 show the results of thermal conductivity measurements.
  • thermosetting heat conductive resin composition it is not necessary to embed a thermocouple in the sample! ⁇ Laser
  • the thermal conductivity was calculated using one flash method.
  • the thermal diffusivity was measured according to JIS R1611 by laser flash method using a thermal constant measuring device (model number TC7000) manufactured by ULVAC-RIKO, and the specific heat was measured by a heat flux differential scanning heat flow meter (model number) DSC—50) was measured according to JIS K7123, the density was measured according to the JIS K7 112A method by the underwater substitution method, and these were multiplied to calculate the thermal conductivity.
  • Table 3 shows the measurement results of thermal conductivity.
  • the volume resistivity and applied voltage were measured according to JIS K6911.
  • an HP16008B measurement cell and an HP4339A high resistance meter were used.
  • conductive rubber was placed on the top and bottom surfaces of the sample. The results are shown in Tables 1 to 3.
  • the tensile shear adhesive strength of a composition using a thermosetting resin as a matrix resin was measured according to JIS K6850.
  • Example 4 Example 5
  • Example 6 Epoxy resin 4 0 3 8 3 2
  • V Applied voltage
  • ⁇ -cm Volume resistivity
  • MPa Adhesive strength
  • Example 7 Example 8
  • Example 9 Comparative Example 4 Epoxy resin 5 0 48 4 2 1 0 0 Aluminum oxide 5 0 50 50 0
  • Example 1 by using aluminum flakes, volume resistivity 10 1 (> ⁇ 'cm or more, good insulation with applied voltage of 100 V or more, and good thermal conductivity with thermal conductivity of 2 WZm'K or more.
  • the thermal conductivity of 2 WZm'K can also be obtained, but it has to be filled with 50 vol%, and the molding processability is reduced.
  • Comparative Example 3 has a thermal conductivity of Force using boron nitride, which is said to be good, With a filling amount almost the same as in Example 1, it was impossible to obtain a thermal conductivity of 2 W Zm'K.
  • thermosetting resin a volume resistivity of 10 1 ⁇ ⁇ 'cm or higher, an applied voltage of 100 V or higher, and a thermal conductivity of 2 WZm'K or higher. Good thermal conductivity could be secured. Moreover, even when a filler such as an insulating filler was included, the same high adhesive strength as in the case of a single resin could be obtained.

Abstract

Provided is an insulative and thermally conductive composition comprising 15 vol % or more of a matrix resin, an electrically insulating filler, a metal powder having a melting point of 500˚C or higher and a low melting point alloy having a melting point of 500˚C or less. The resin composition is excellent in forming processability and can produce a formed article having high insulating property and thermal conductivity. Furthermore,a method for producing the resin composition and a method for producing the formed article are also provided.

Description

明 細 書  Specification
絶縁性熱伝導性樹脂組成物及び成形品並びにその製造方法  Insulating thermally conductive resin composition, molded article, and method for producing the same
技術分野  Technical field
[0001] 本発明は、絶縁性熱伝導性榭脂組成物及び成形品並びにその製造方法に関し、 さらに詳しくは電子機器の筐体等に使用可能な、高電気絶縁性と高熱伝導率を有し 、成形加工性に優れた絶縁性熱伝導性榭脂組成物及び成形品並びにその製造方 法に関する。  TECHNICAL FIELD [0001] The present invention relates to an insulating heat conductive resin composition, a molded article, and a method for producing the same, and more specifically, has high electrical insulation and high thermal conductivity that can be used for a casing of an electronic device. The present invention relates to an insulating heat conductive resin composition excellent in moldability, a molded product, and a method for producing the same.
背景技術  Background art
[0002] LSI等の半導体素子の集積密度の増大と動作の高速化、そして電子部品の高密 度実装に伴い、発熱源となる電子部品に対する放熱対策が大きな問題となっている 。例えば、電子部品のハウジングには、従来、熱伝導率の大きい金属やセラミックス 力 S用いられてきたが、近年、形状選択の自由度が大きく小型化の容易な榭脂系材料 が用いられている。榭脂系材料としては、従来、マトリックスとなる榭脂中に熱伝導率 の大きい充填材、例えば、金属や合金あるいはセラミックスを分散した榭脂組成物が 用いられている(例えば特許文献 1)。しかし、金属は大きな熱伝導性を付与できる一 方、高 ヽ導電性を有するため榭脂系材料に電気絶縁性を付与できな ヽと ヽぅ問題が ある。これに対し、高熱伝導性粉末の表面を電気絶縁性被膜で被覆する方法が提案 されて ヽる(例えば特許文献 2)。  [0002] With increasing integration density of semiconductor elements such as LSIs, speeding up of operation, and high-density mounting of electronic components, heat dissipation countermeasures for electronic components serving as heat sources have become a major problem. For example, metal and ceramics with high thermal conductivity S have been used for the housing of electronic parts. However, in recent years, grease-based materials that have a high degree of freedom in shape selection and are easy to miniaturize have been used. . Conventionally, a resin composition in which a filler having a high thermal conductivity, for example, a metal, an alloy, or ceramics is dispersed in a matrix resin, is used as the resin material (for example, Patent Document 1). However, metals can give large thermal conductivity, while they have high electrical conductivity, so there is a problem that electrical insulation cannot be imparted to the resin-based material. On the other hand, a method of coating the surface of high thermal conductive powder with an electrically insulating coating has been proposed (for example, Patent Document 2).
特許文献 1 :特開平 5— 239321号公報  Patent Document 1: JP-A-5-239321
特許文献 2 :特開平 8— 183875号公報  Patent Document 2: JP-A-8-183875
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、特許文献 2の方法では、高熱伝導性粉末の表面を電気絶縁性膜で 被覆する方法として CVDを採用するが、その方法では高コストにならざるを得ず、よ り低コストの榭脂系材料が望まれている。また、高熱伝導性セラミックスを用いる場合 、高熱伝導性を確保するには高充填とする必要があり、その硬度が高いため、成形 装置の混練部材が破損し易!、と 、う問題があった。 [0004] そこで、本発明は、上記の課題を解決し、高 ヽ絶縁性と熱伝導率を有する成形品 を得ることができ、成形加工性に優れた絶縁性熱伝導性榭脂組成物及び成形品並 びにその製造方法を提供することを目的とした。 However, in the method of Patent Document 2, CVD is adopted as a method of coating the surface of the high thermal conductive powder with an electrically insulating film. However, this method is inevitably expensive. A low-cost rosin-based material is desired. In addition, when using high thermal conductivity ceramics, it is necessary to make the filling high in order to ensure high thermal conductivity, and because of its high hardness, the kneading member of the molding apparatus is easily damaged! . [0004] Therefore, the present invention solves the above-mentioned problems, can obtain a molded product having high insulation and thermal conductivity, and has an insulating thermal conductive resin composition excellent in molding processability and The object was to provide a molded product as well as a manufacturing method thereof.
課題を解決するための手段  Means for solving the problem
[0005] 上記課題を解決するため、本発明の絶縁性熱伝導性榭脂組成物は、マトリックス榭 脂 15vol%以上と、電気絶縁性フイラ一と、融点が 500°C以上の金属粉と、融点が 5 00°C以下の低融点合金とを含むことを特徴とする。  [0005] In order to solve the above problems, the insulating heat conductive resin composition of the present invention comprises a matrix resin of 15 vol% or more, an electrically insulating filler, a metal powder having a melting point of 500 ° C or more, And a low melting point alloy having a melting point of 500 ° C. or lower.
本発明の榭脂組成物は、低融点合金が半溶融状態となる温度に加熱した状態で、 低融点合金、金属粉、電気絶縁性フイラ一および樹脂から成る混合粉を混練するこ とにより得ることができる。本発明によれば、低融点合金を半溶融状態とすることによ り、低融点合金の粘度を完全溶融の場合よりも高くして樹脂との粘度差が小さくなる ようにし、低融点合金を榭脂により分散し易くすることができる。そのため、低融点合 金を完全溶融の状態で混練した場合に比べ、低融点合金が榭脂中により均一に分 散した榭脂組成物が得られる。低融点合金は、電気絶縁性フイラ一に接触あるいは 溶着して電気絶縁性フイラ一同士を連結し、 3次元の伝熱経路を形成する。榭脂中 に均一に分散された低融点合金は、従来に比べ少な ヽ体積含有率でその電気絶縁 性フイラ一同士を連結し、かつ、 3次元により均一に分布した伝熱経路を形成するが 、電気絶縁性フイラ一により電気伝導路は遮断され、絶縁性となる。また、低融点金 属は金属粉とも接触し、 3次元の伝熱経路を形成し高熱伝導性を発揮するが導電性 を示しやすくなる。したがって、電気絶縁性フイラ一と、金属粉の量比を最適化するこ とによって高熱伝導性と高電気絶縁性を両立させることができる。これにより、マトリツ タスとなる樹脂の体積含有率を 15vol%以上として成形加工性を低下させることなぐ かつ高い熱伝導率と電気絶縁性を有する榭脂組成物を提供することができる。  The resin composition of the present invention is obtained by kneading a mixed powder composed of a low-melting-point alloy, a metal powder, an electrically insulating filler and a resin in a state where the low-melting-point alloy is heated to a temperature at which the low-melting-point alloy is in a semi-molten state. be able to. According to the present invention, by setting the low melting point alloy in a semi-molten state, the viscosity of the low melting point alloy is made higher than that in the case of complete melting so that the viscosity difference from the resin is reduced. It can be made easy to disperse by scab. Therefore, compared with the case where the low melting point alloy is kneaded in a completely melted state, a resin composition in which the low melting point alloy is more uniformly dispersed in the resin can be obtained. The low melting point alloy contacts or welds the electrically insulating fillers to connect the electrically insulating fillers together to form a three-dimensional heat transfer path. The low melting point alloy uniformly dispersed in the resin connects the electrically insulating fillers with a small volume content compared to the conventional one, and forms a heat transfer path uniformly distributed in three dimensions. The electric conduction path is interrupted by the electrically insulating filler, and becomes insulating. The low melting point metal also comes in contact with the metal powder, forms a three-dimensional heat transfer path and exhibits high thermal conductivity, but tends to exhibit conductivity. Therefore, it is possible to achieve both high thermal conductivity and high electrical insulation by optimizing the quantity ratio of the electrically insulating filler and the metal powder. As a result, it is possible to provide a resin composition having a high thermal conductivity and electrical insulation without reducing the molding processability by setting the volume content of the resin serving as the matrix to 15 vol% or more.
なお、本発明にお 、て、電気絶縁性とは、 JIS K6911に準じた方法で測定された 体積抵抗率が ΙΟ^ Ω 'cm以上であることをいう。  In the present invention, the term “electrical insulation” means that the volume resistivity measured by a method according to JIS K6911 is at least ΩΩcm.
[0006] 本発明の一の態様に係る榭脂組成物は、熱可塑性榭脂を 30vol%以上、電気絶 縁性フイラ一を 5〜40vol%、金属粉を 1〜: L0vol%、そして低融点合金を 1〜: LOvol %含むものである。 [0007] ここで、電気絶縁性フイラ一には、表面に酸ィ匕膜を有する金属フィラーを用いること ができる。その金属フィラーには、金属粉、金属フレーク、そして金属ファイバーが含 まれる。金属としては、 300Kにおいて 80WZm'K以上の熱伝導率を有するものを 用いることができ、例えば、銅、アルミニウム、タングステン、ケィ素、イリジウム、モリブ デン、亜鉛、コノ レト、ニッケル、鉄等を挙げることができる。その金属フィラーには、 アルミフレークを用いることが好ましい。また、上記の金属フィラーと別に金属粉を含 むが、この金属粉は実質的に表面に酸ィ匕膜を有しないものであり、鉄、銅、ニッケル 、チタン、クロム、そしてこれら金属の少なくとも 1種を含む合金からなる群から選択さ れたものを用いることができる。また、低融点合金には、 Sn— Cu、 Sn— Al、 Sn— Zn 、 Sn— Pt、 Sn— Mn、 Sn— Ag、 Sn— Au、 Al— Li、そして Zn— Uから成る群から選 択された少なくとも 1種の合金を用いることができる。また、マトリックス榭脂には、荷重 たわみ温度が 100°C以上の榭脂を用いることができる。また、榭脂組成物の熱伝導 率が 2WZm'K以上であることが好ましい。 [0006] The resin composition according to one embodiment of the present invention comprises a thermoplastic resin of 30 vol% or more, an electric insulating filler of 5 to 40 vol%, a metal powder of 1 to: L0 vol%, and a low melting point. Alloy 1 ~: Contains LOvol%. [0007] Here, a metal filler having an oxide film on the surface can be used for the electrically insulating filter. The metal filler includes metal powder, metal flakes, and metal fibers. As the metal, a metal having a thermal conductivity of 80 WZm'K or more at 300K can be used, and examples thereof include copper, aluminum, tungsten, silicon, iridium, molybdenum, zinc, conoleto, nickel, and iron. be able to. Aluminum flakes are preferably used as the metal filler. Further, metal powder is contained separately from the above metal filler, but this metal powder has substantially no oxide film on the surface, and iron, copper, nickel, titanium, chromium, and at least of these metals. Those selected from the group consisting of alloys including one kind can be used. The low melting point alloy is selected from the group consisting of Sn-Cu, Sn-Al, Sn-Zn, Sn-Pt, Sn-Mn, Sn-Ag, Sn-Au, Al-Li, and Zn-U. At least one alloy can be used. As the matrix resin, a resin having a deflection temperature under load of 100 ° C or higher can be used. Moreover, it is preferable that the thermal conductivity of the resin composition is 2 WZm′K or more.
[0008] また、本発明の別の態様に係る榭脂組成物は、マトリックス榭脂が熱硬化性榭脂で あって、電気絶縁性フイラ一を 5〜65vol%、金属粉を l〜10vol%、そして低融点合 金を 1〜: LOvol%含むものである。  [0008] In addition, in the resin composition according to another aspect of the present invention, the matrix resin is a thermosetting resin, the electrically insulating filler is 5 to 65 vol%, and the metal powder is 1 to 10 vol%. , And low melting point alloy 1 to: LOvol%.
[0009] ここで、電気絶縁性フイラ一には、表面に酸ィ匕膜を有する金属フィラー及び Z又は 無機フィラーを用いることができる。また、金属粉には、鉄、銅、ニッケル、チタン、クロ ム、そしてこれら金属の少なくとも 1種を含む合金力 なる群力 選択されたいずれか 1種を用いることができる。また、低融点合金には、 Bi— Sn、 Bi— In、 In— Zn、 In— Sn、 In— Ag、 In—Naゝ Na— Sn、 Na—Au、 Na—Baゝ Na—Liゝ Li—Ag、 Li—Caゝ そして Li— Baから成る群力 選択された少なくとも 1種の合金を用いることができる。 また、熱硬化性榭脂には、荷重たわみ温度が 100°C以上の榭脂を用いることができ る。また、榭脂組成物の熱伝導率が 2WZm'K以上であることが好ましい。  [0009] Here, in the electrically insulating filter, a metal filler having an acid film on the surface and Z or an inorganic filler can be used. Further, as the metal powder, any one selected from iron, copper, nickel, titanium, chromium, and a group force that is an alloy power including at least one of these metals can be used. Low melting point alloys include Bi-Sn, Bi-In, In-Zn, In-Sn, In-Ag, In-Na ゝ Na-Sn, Na-Au, Na-Ba ゝ Na-Li ゝ Li- A group force consisting of Ag, Li—Ca ゝ and Li—Ba can be used with at least one selected alloy. For thermosetting resin, a resin having a deflection temperature under load of 100 ° C or higher can be used. Moreover, it is preferable that the thermal conductivity of the resin composition is 2 WZm′K or more.
[0010] 本発明の絶縁性熱伝導性榭脂組成物から成る成形品は、マトリックス榭脂 15vol% 以上と、電気絶縁性フイラ一と、融点が 500°C以上の金属粉と、融点が 500°C以下の 低融点合金とを含む混合粉を加熱し、マトリックス榭脂を溶融状態として混練し、混合 物を所望形状に成形して成ることを特徴とするものである。本発明の成形品としては 、マトリックス榭脂に熱硬化性榭脂を用いるものとして、プリント基板、 LEDモジュール ケース、そして電子部品用放熱容器等を挙げることができる。 [0010] A molded article comprising the insulating thermally conductive resin composition of the present invention has a matrix resin of 15 vol% or more, an electrically insulating filler, a metal powder having a melting point of 500 ° C or more, and a melting point of 500 A mixed powder containing a low melting point alloy having a melting point of not higher than ° C is heated, the matrix resin is melted and kneaded, and the mixture is formed into a desired shape. As the molded product of the present invention, Examples of those that use thermosetting resin for matrix resin include printed circuit boards, LED module cases, and heat dissipation containers for electronic components.
[0011] 本発明の榭脂組成物は、例えば、以下の方法を用いて製造することができる。すな わち、マトリックス榭脂と、表面に酸化膜を有する金属フィラーと、融点 500°C以上の 金属粉と、融点が 500°C以下の低融点合金とを含む混合粉を加熱して、低融点合金 が固相部と液相部が混在した半溶融状態とし、マトリックス榭脂を溶融状態として混 練し、混合物を所望形状に成形する。 [0011] The rosin composition of the present invention can be produced, for example, using the following method. That is, a mixed powder containing matrix resin, a metal filler having an oxide film on the surface, a metal powder having a melting point of 500 ° C or higher, and a low melting point alloy having a melting point of 500 ° C or lower is heated. The low melting point alloy is mixed in a semi-molten state in which the solid phase portion and the liquid phase portion are mixed, and the matrix resin is mixed in the molten state, and the mixture is formed into a desired shape.
発明の効果  The invention's effect
[0012] 本発明の榭脂組成物は電気絶縁性フイラ一を用いることにより、従来のセラミックス 系充填材を用いる榭脂組成物に比べ充填材の充填率を低減し、低比重で、かつ成 形加工性に優れており、高絶縁性かつ高熱伝導性の成形品に好適な榭脂組成物を 提供することができる。  [0012] The resin composition of the present invention uses an electrically insulating filler, thereby reducing the filling rate of the filler, lowering the specific gravity compared to the conventional resin composition using a ceramic filler. It is possible to provide a resin composition which is excellent in formability and suitable for a molded article having high insulation and high thermal conductivity.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described.
本発明に係る絶縁性熱伝導性榭脂組成物は、マトリックス榭脂 15vol%以上と、電 気絶縁性フイラ一と、融点が 500°C以上の金属粉と、融点が 500°C以下の低融点合 金とを含むものである。  The insulating thermally conductive resin composition according to the present invention comprises a matrix resin of 15 vol% or more, an electrically insulating filler, a metal powder having a melting point of 500 ° C or higher, and a low melting point of 500 ° C or lower. Melting point alloy.
[0014] 本発明に用いるマトリックス榭脂には、熱可塑性榭脂ある!/、は熱硬化性榭脂であつ て、 JIS K7191で規定する荷重たわみ温度が 100°C以上の耐熱性榭脂を用いるこ とができる。具体的には、熱可塑性榭脂としては、ポリフエ-レンスルフイド (PPS)、液 晶ポリマー、ポリエーテルエーテルケトン(PEEK)、ポリイミド、ポリエーテルイミド、ポ リアセタール、ポリエーテルサルホン、ポリサルホン、ポリカーボネート、ポリエチレンテ レフタレート、ポリブチレンテレフタレート、ポリフエ-レンオキサイド、ポリフタールアミ ド、そしてポリアミド等を挙げることができる力 PPS力好ましい。 PPSは溶融時の粘 度が低く充填材が分散し易いので、充填材を高充填できる力もである。また、 PPSは 耐熱性が高いので、用いる低融点合金の選択の自由度を大きくすることができる。  [0014] The matrix resin used in the present invention is a thermoplastic resin! / Is a thermosetting resin, and a heat-resistant resin having a deflection temperature under load specified in JIS K7191 of 100 ° C or higher is used. Can be used. Specifically, thermoplastic resins include polyphenylene sulfide (PPS), liquid crystal polymer, polyether ether ketone (PEEK), polyimide, polyether imide, polyacetal, polyether sulfone, polysulfone, polycarbonate, Polyethylene terephthalate, polybutylene terephthalate, polyphenylene oxide, polyphthalamide, polyamide and the like PPS power is preferred. PPS has a low viscosity at the time of melting, and the filler can be easily dispersed. In addition, since PPS has high heat resistance, the degree of freedom in selecting a low melting point alloy to be used can be increased.
[0015] また、熱硬化性榭脂としては、フエノール榭脂、ポリイミド榭脂、エポキシ榭脂、イソ シァネート榭脂、フラン榭脂、ポリウレタン榭脂、ァリル榭脂、ケィ素榭脂、不飽和ポリ エステル榭脂、ジァリルフタレート榭脂、メラミン榭脂等を挙げることができるが、ェポ キシ榭旨が好ましい。 [0015] Thermosetting resins include phenol resin, polyimide resin, epoxy resin, isocyanate resin, furan resin, polyurethane resin, aryl resin, key resin, unsaturated poly Examples include ester resin, diallyl phthalate resin, melamine resin, and the like. Epoxy resin is preferable.
[0016] ここで、エポキシ榭脂は特に限定されず、公知のエポキシ榭脂を用いることができる 。例を挙げれば、ビスフエノール A型エポキシ榭脂、ビスフエノール F型エポキシ榭脂 、テトラブロモビスフエノール A型エポキシ榭脂、ナフタレン型エポキシ榭脂、ビフエノ ール型エポキシ榭脂、テトラメチルビフエノール型エポキシ榭脂、ビフエノール型ェポ キシ榭脂とテトラメチルビフエノール型エポキシ榭脂の混合物等の 2官能型エポキシ 榭脂や、フエノールノボラック型エポキシ榭脂、 0—クレゾ一ルノボラック型エポキシ榭 脂、フエノールァラルキル型エポキシ榭脂、ナフトールァラルキル型エポキシ榭脂、 ナフトールノボラック型エポキシ榭脂等の多官能型エポキシ榭脂を用いることができ る。また、硬化剤には、脂肪族ァミン、芳香族ァミン、脂肪族環状アミン等のアミン系 硬化剤や、フエノールノボラック、キシレンノボラック、ビフエ-ルノボラック、ビスフエノ ール Aノボラック、ジシクロペンタジェンフエノールノボラック等のフエノール系硬化剤 、あるいはジシアンアミド等の触媒系硬化剤を用いることができる。また、硬化反応を 促進させるため、 3級ァミン、イミダゾール、芳香族ポリアミン等の促進剤を用いること ができる。  Here, the epoxy resin is not particularly limited, and a known epoxy resin can be used. Examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetrabromobisphenol A type epoxy resin, naphthalene type epoxy resin, biphenol type epoxy resin, tetramethylbiphenol type. Epoxy resin, bifunctional epoxy resin, bifunctional epoxy resin such as mixture of tetramethylbiphenol type epoxy resin, phenol novolac type epoxy resin, 0-cresol novolac type epoxy resin, phenol Polyfunctional epoxy resins such as aralkyl epoxy resin, naphthol aralkyl epoxy resin, and naphthol novolac epoxy resin can be used. Curing agents include amine curing agents such as aliphatic amines, aromatic amines, and aliphatic cyclic amines, phenol novolaks, xylene novolacs, biphenol novolacs, bisphenol A novolacs, dicyclopentadiene phenol novolacs, etc. A phenolic curing agent or a catalytic curing agent such as dicyanamide can be used. In order to accelerate the curing reaction, accelerators such as tertiary amines, imidazoles, and aromatic polyamines can be used.
[0017] マトリックス榭脂の体積含有率は、成形加工性を確保するため、 15vol%以上、より 好ましくは 15vol%〜65vol%である。  [0017] The volume content of the matrix rosin is 15 vol% or more, more preferably 15 vol% to 65 vol%, in order to ensure molding processability.
[0018] 充填材との混練に際しては、熱可塑性榭脂の融点以上の温度、好ましくは 250°C[0018] Upon kneading with the filler, the temperature is equal to or higher than the melting point of the thermoplastic resin, preferably 250 ° C.
〜400°C、より好ましくは 300°C〜350°Cの温度範囲に加熱して混練する。また、熱 硬化性榭脂の場合、その分解温度以下の温度、好ましくは 300°C以下の温度で混 練することができる。 The mixture is heated and kneaded in a temperature range of ˜400 ° C., more preferably 300 ° C. to 350 ° C. In the case of a thermosetting resin, it can be kneaded at a temperature not higher than its decomposition temperature, preferably not higher than 300 ° C.
[0019] 電気絶縁性フイラ一には、表面に酸ィ匕膜を有する金属フィラー及び Z又は無機フィ ラーを用いることができる。表面に酸ィ匕膜を有する金属フィラーには、金属粉、金属フ レーク、そして金属ファイバーが含まれる。金属としては、 300Kにおいて 80W/m' K以上の熱伝導率を有するものを用いることができ、例えば、銅、アルミニウム、タン ダステン、ケィ素、イリジウム、モリブデン、亜鉛、コバルト、ニッケル、鉄等を挙げるこ とができる。金属フイラ一は表面の全面に酸ィ匕膜を有することが好ましぐ酸化膜を形 成するには、常温あるいは高温における空気酸ィ匕等の乾式酸化、硝酸等の酸を用 Vヽる湿式酸化、そして電解液を用いる電解酸ィ匕等の酸ィ匕方法を用いることができる。 表面に酸ィ匕膜を有する金属フイラ一は、その表面酸ィ匕膜により絶縁性を向上させる 一方、表面以外のバルタ部分が高い熱伝導性を有するため、高熱伝導性と高電気 絶縁性を両立させることができる。 [0019] In the electrically insulating filler, a metal filler having an acid film on the surface and Z or an inorganic filler can be used. Metal fillers having an oxide film on the surface include metal powder, metal flakes, and metal fibers. As the metal, a metal having a thermal conductivity of 80 W / m ′ K or more at 300 K can be used, for example, copper, aluminum, tandastene, silicon, iridium, molybdenum, zinc, cobalt, nickel, iron, etc. I can list them. The metal filler forms an oxide film that preferably has an oxide film on the entire surface. To achieve this, dry oxidation such as air oxidation at room temperature or high temperature, wet oxidation using an acid such as nitric acid, and an acid oxidation method such as an electrolytic acid using an electrolytic solution can be used. . The metal filler having an acid film on the surface improves the insulation by the surface acid film, while the bulk portion other than the surface has a high thermal conductivity, so that it has a high thermal conductivity and a high electrical insulation. Both can be achieved.
[0020] 表面に酸ィ匕膜を有する金属フィラーにはアルミフレークを用いることが好ましい。高 い熱伝導性を有しており、かつ表面には自然酸ィ匕により形成された絶縁性の高く強 固な酸化膜を有しており、酸化膜を形成するためにさらに酸化する必要がないからで ある。  [0020] Aluminum flakes are preferably used for the metal filler having an acid oxide film on the surface. It has high thermal conductivity, and has a highly insulating and strong oxide film formed of natural acid on the surface. It needs to be further oxidized to form an oxide film. It is not.
[0021] また、無機フィラーには、酸化マグネシウム、酸ィ匕アルミニウム、酸化チタン、酸ィ匕ケ ィ素、酸化亜鉛、酸化銅、酸化鉄、酸化ジルコニウム等の酸化物フィラー、窒化アル ミニゥム、窒化ホウ素、窒化ケィ素、窒化チタン等の窒化物フィラー、炭化ケィ素、炭 化チタン、炭化ホウ素等の炭化物フィラー、そして水酸ィ匕アルミニウム、水酸化マグネ シゥム、ベーマイト等の水和金属化合物フィラーを挙げることができる。好ましくは、無 機フイラ一は、酸化マグネシウム、酸ィ匕アルミニウム、窒化ホウ素、窒化アルミニウム、 炭化ケィ素そしてこれらの組み合わせ力 成る群力 選択された 1種である。  [0021] In addition, the inorganic filler includes magnesium oxide, acid aluminum, titanium oxide, acid oxide, zinc oxide, copper oxide, iron oxide, zirconium oxide, and other oxide fillers, aluminum nitride, nitride Nitride fillers such as boron, silicon nitride, titanium nitride, carbide fillers such as silicon carbide, titanium carbide, boron carbide, and hydrated metal compound fillers such as aluminum hydroxide, magnesium hydroxide, boehmite, etc. Can be mentioned. Preferably, the inorganic filler is one selected from the group force consisting of magnesium oxide, aluminum oxide, boron nitride, aluminum nitride, silicon carbide, and a combination thereof.
[0022] 電気絶縁性フイラ一として表面に酸ィ匕膜を有する金属フィラーを用いる場合、その 体積含有率は、 5〜40vol%、より好ましくは 10〜35vol%である。体積含有率が 5v ol%より小さいと十分な熱伝導性が得られず、 40vol%より大きいと榭脂組成物の成 形加工性が低下するからである。また、電気絶縁性フイラ一に無機フィラーを用いる 場合、体積含有率は、 5〜65vol%、より好ましくは 15〜65vol%である。体積含有 率が 5vol%より小さ 、と十分な熱伝導性が得られず、 65vol%より大き ヽと榭脂組成 物の成形カ卩ェ性が低下するからである。  [0022] When a metal filler having an oxide film on the surface is used as the electrically insulating filter, the volume content thereof is 5 to 40 vol%, more preferably 10 to 35 vol%. This is because if the volume content is less than 5 vol%, sufficient thermal conductivity cannot be obtained, and if it exceeds 40 vol%, the molding processability of the resin composition decreases. Further, when an inorganic filler is used in the electrically insulating filler, the volume content is 5 to 65 vol%, more preferably 15 to 65 vol%. If the volume content is less than 5 vol%, sufficient thermal conductivity cannot be obtained, and if it is greater than 65 vol%, the molding cacheability of the resin composition decreases.
[0023] また、電気絶縁性フイラ一の大きさは、金属フィラーの場合、ふるい通過率 150 m 力 S98%以上、より好ましくはふるい通過率 100 /z mが 98%以上である。また、無機フ イラ一の場合、粒径は 1〜50 mが好ましい。  [0023] The size of the electrically insulating filler is, in the case of a metal filler, a sieve passing rate of 150 m force S98% or more, more preferably a sieve passing rate of 100 / zm is 98% or more. In the case of an inorganic filler, the particle size is preferably 1 to 50 m.
[0024] なお、マトリックス榭脂に対する親和性を付与するため、電気絶縁性フイラ一の表面 をカップリング剤ある!/、はサイジング剤で改質することもできる。マトリックス榭脂に対 する電気絶縁性フイラ一の分散性を向上させて、熱伝導性をさら〖こ向上させること力 S できる。カップリング剤には、シラン系やチタン系、そしてアルミニウム系の公知のカツ プリング剤を用いることができる。例えば、イソプロピルトリイソステアロイルチタネート やァセトアルコキシアルミニウムジイソプロピレート等を用いることができる。改質は、 アルミフレークを、カップリング剤を水ある!/、は有機溶剤に溶解した溶液に所定時間 浸漬する、あるいはカップリング剤を溶解した溶液をアルミ系充填材に噴霧する等の 方法を用いることができる。 [0024] It should be noted that the surface of the electrically insulating filler can be modified with a coupling agent! /, With a sizing agent, in order to impart affinity to the matrix resin. Matrix rosin Therefore, it is possible to improve the dispersibility of the electrically insulating filler and to further improve the thermal conductivity. As the coupling agent, known coupling agents such as silane, titanium, and aluminum can be used. For example, isopropyl triisostearoyl titanate or acetoalkoxyaluminum diisopropylate can be used. For the modification, the aluminum flake is immersed in a solution in which the coupling agent is water! /, Or a solution in an organic solvent for a predetermined time, or a solution in which the coupling agent is dissolved is sprayed on an aluminum-based filler. Can be used.
[0025] また、電気絶縁性フイラ一の表面をフッ素榭脂でコーティングして表面を改質するこ ともできる。電気絶縁性をさらに向上させることができるとともに、電気絶縁性フイラ一 に難燃性を付与し、電気絶縁性フイラ一の飛散も抑制できる。飛散を抑制することで 、作業性を向上できる。改質は、電気絶縁性フイラ一をフッ素榭脂のディスパージヨン あるいはオルガノゾルに所定時間浸漬する、ある!/、はフッ素榭脂含有ディスパージョ ンあるいはオルガノゾルをアルミ系充填材に噴霧し、焼成ある!/、は乾燥する方法を用 いることがでさる。  [0025] In addition, the surface of the electrically insulating filler can be modified by coating it with fluorine resin. The electrical insulation can be further improved, flame retardancy can be imparted to the electrically insulating filler, and scattering of the electrically insulating filler can also be suppressed. By suppressing scattering, workability can be improved. For the modification, the electrically insulating filler is immersed in a fluororesin dispersion or organosol for a predetermined time. / Or is sprayed with a fluororesin-containing dispersion or organosol on an aluminum filler and fired! The / can be dried.
[0026] また、低融点合金には、上記の耐熱性榭脂の溶融温度にお!、て半溶融状態となる ものが好ましぐ融点 (液相線温度)が 500°C以下の合金を用いることができる。具体 例としては、マトリックス榭脂に熱可塑性榭脂を用いる場合と熱硬化性榭脂を用いる 場合について、それぞれ説明する。熱可塑性榭脂を用いる場合、 Sn系合金として、 Sn-Cu, Sn— Al、 Sn— Zn、 Sn— Te、 Sn— Pt、 Sn— P、 Sn— Mn、 Sn— Ag、 Sn — Ca、 Sn— Mg、 Sn— Au、 Sn— Ba、 Sn— Ge、 Li系合金として、 Al— Li、 Cu— Li 、 Zn— Li等を挙げることができる。より好ましくは、液相線温度が 400°C以下の合金、 すなわち、 Sn— Cu、 Sn— Al、 Sn— Zn、 Sn— Pt、 Sn— Mn、 Sn— Ag、 Sn— Au、 Al—Li、そして Zn—U力 成る群力 選択された少なくとも 1種の合金を用いること ができる。これにより、混練する榭脂の選択の自由度を大きくすることができるからで ある。さらに好ましくは、 Sn— Cu、 Sn— Al、そして Sn— Zn力 成る群力 選択され た少なくとも 1種の合金を用いることができる。入手が容易で低コストだ力 である。さ らに好ましくは、 Sn—Cuを用いることができる。融点の選択の範囲が広ぐかつ熱伝 導率が高いからである。 [0027] また、熱硬化性榭脂を用いる場合、 Bi— Sn、 Bi— In、 In— Zn、 In— Sn、 In— Ag、 In— Ag、 In—Naゝ Na— Sn、 Na—Au、 Na— Baゝ Na—Liゝ Li—Ag、 Li—Caゝ Li— Ba等を挙げることができる。より好ましくは、液相線温度が 400°C以下の合金、すな わち、 Bi— Sn、 Bi— In、 In— Zn、 In— Snから成る群から選択された少なくとも 1種の 合金を用いることができる。これにより、混練する榭脂の選択の自由度を大きくするこ とができるからである。また、入手が容易で低コストだ力もである。さらに好ましくは、 Bi Snを用いることができる。融点の選択の範囲が広ぐかつ熱伝導率が高いからで ある。 [0026] In addition, the low melting point alloy is an alloy having a melting point (liquidus temperature) of 500 ° C or lower, which is preferably a semi-molten one at the melting temperature of the above heat-resistant resin. Can be used. As specific examples, a case where a thermoplastic resin is used for the matrix resin and a case where a thermosetting resin is used will be described. When thermoplastic resin is used, Sn-based alloys include Sn-Cu, Sn-Al, Sn-Zn, Sn-Te, Sn-Pt, Sn-P, Sn-Mn, Sn-Ag, Sn-Ca, Sn — Mg, Sn—Au, Sn—Ba, Sn—Ge, Li-based alloys include Al—Li, Cu—Li, and Zn—Li. More preferably, an alloy having a liquidus temperature of 400 ° C or lower, that is, Sn—Cu, Sn—Al, Sn—Zn, Sn—Pt, Sn—Mn, Sn—Ag, Sn—Au, Al—Li, At least one alloy selected from the group force selected from Zn-U force can be used. This is because the degree of freedom in selecting the kneaded oil to be kneaded can be increased. More preferably, at least one alloy selected from the group force consisting of Sn—Cu, Sn—Al, and Sn—Zn forces can be used. It is easy to obtain and low cost. More preferably, Sn—Cu can be used. This is because the selection range of the melting point is wide and the thermal conductivity is high. [0027] When thermosetting resin is used, Bi-Sn, Bi-In, In-Zn, In-Sn, In-Ag, In-Ag, In-Na-Na-Sn, Na-Au, Na-Ba ゝ Na-Li ゝ Li-Ag, Li-Ca ゝ Li-Ba and the like can be mentioned. More preferably, an alloy having a liquidus temperature of 400 ° C. or lower, that is, at least one alloy selected from the group consisting of Bi—Sn, Bi—In, In—Zn, and In—Sn is used. be able to. This is because the degree of freedom of selection of the kneaded oil to be kneaded can be increased. It is also easy to obtain and low cost. More preferably, BiSn can be used. This is because the selection range of the melting point is wide and the thermal conductivity is high.
[0028] 低融点合金の粒径は 5mm以下が好ましい。粒径が 5mmより大きいと、溶融に時間 を要し、さらにマトリックス榭脂に均一に分散しに《なるからである。また、形状は特 に限定されず、球状、涙滴状、塊状、樹枝状等いずれの形状でも用いることができる  [0028] The particle size of the low melting point alloy is preferably 5 mm or less. This is because if the particle size is larger than 5 mm, it takes time to melt, and further, it is uniformly dispersed in the matrix resin. Further, the shape is not particularly limited, and any shape such as a spherical shape, a teardrop shape, a lump shape, or a dendritic shape can be used.
[0029] また、表面に酸化膜を有する金属フィラーと別体の金属粉末は、実質的に表面に 酸ィ匕膜を有しないものであり、鉄、銅、ニッケル、チタン、クロム、そしてこれら金属の 少なくとも 1種を含む合金力 なる群力 選択されたいずれ力 1種の金属を用いること ができる力 銅、鉄又はニッケルが好ましい。 [0029] Further, the metal powder that is separate from the metal filler having the oxide film on the surface is substantially free of the oxide film on the surface, and is made of iron, copper, nickel, titanium, chromium, and these metals. Alloying force including at least one kind of group force which is selected Any force One kind of metal can be used Copper, iron or nickel is preferable.
[0030] 低融点合金の体積含有率は、 1〜: LOvol%、より好ましくは l〜7vol%である。 lvol %より小さいと電気絶縁性フイラ一を連結する低融点合金の量が少なくなり熱伝導率 が低下する。一方、 10vol%より大きいと熱伝導率の小さい低融点合金の量が増えて 熱伝導率が低下するからである。また、金属粉末の体積含有率は l〜10vol%、より 好ましくは l〜5vol%である。 lvol%より小さいと熱伝導率を向上させる効果が十分 でなぐ 10vol%より大きいと電気絶縁性が低下するからである。なお、金属粉末の体 積含有率は低融点合金の体積含有率より小さヽことが好ま Uヽ。金属粉末の体積含 有率が低融点合金の体積含有率より大きいと、熱伝導率を高める効果よりも電気絶 縁性の低下の影響が大き 、からである。  [0030] The volume content of the low melting point alloy is 1 to: LOvol%, more preferably 1 to 7vol%. If it is smaller than lvol%, the amount of the low melting point alloy connecting the electrically insulating filler is reduced and the thermal conductivity is lowered. On the other hand, if it is larger than 10 vol%, the amount of low melting point alloy having a low thermal conductivity increases and the thermal conductivity decreases. The volume content of the metal powder is 1 to 10 vol%, more preferably 1 to 5 vol%. If it is less than lvol%, the effect of improving the thermal conductivity is not sufficient. If it is greater than 10 vol%, the electrical insulation is reduced. The volume content of the metal powder is preferably smaller than the volume content of the low melting point alloy. This is because if the volume content of the metal powder is larger than the volume content of the low-melting point alloy, the effect of decreasing the electrical insulation is greater than the effect of increasing the thermal conductivity.
[0031] また、本発明の榭脂組成物は、必要に応じて、成形品の強度や弾性率を向上させ るため、上記の金属から成る金属繊維、あるいは、ガラス繊維、アルミナ繊維、チタン 酸カルシウム繊維、窒化ケィ素繊維等のセラミックス繊維あるいは炭酸カルシウム等 を含むことちできる。 [0031] In addition, the resin composition of the present invention, if necessary, improves the strength and elastic modulus of the molded article, or is made of metal fibers comprising the above metals, or glass fibers, alumina fibers, titanic acid. Ceramic fiber such as calcium fiber and silicon nitride fiber or calcium carbonate Can contain.
[0032] また、本発明の榭脂組成物は、榭脂、電気絶縁性フイラ一等を予めドライブレンドし 、単軸または二軸混練押出機等に供給して溶融混練し、その後に造粒することでぺ レットを作製し、所定の金型を有する、射出成形機や圧縮成形機、そして押出成形 機等を用いて、所望形状に成型することができる。混練温度は、低融点合金を添カロ する場合、榭脂の混練温度範囲内であり、更に、低融点合金が固相、液相混在した 状態となる温度に設定することが好ましい。ドライブレンドには、ヘンシェルミキサー、 スーパーミキサー又はタンブラ一等を用いることができる。また、必要により密度の大 きい金属粉は、榭脂とは別にドライブレンドし、押出途中から供給し (サイドフィード)、 混練することもできる。また、繊維状充填材も、金属粉とは別にサイドフィードして混 練することができる。熱硬化性榭脂組成物の混練方法は、ロール、ミキサー、ニーダ 一、コニーダー、単軸混練押出機、二軸混練押出機などを用いて、榭脂、絶縁フイラ 一等を溶融混練することで行った。混練温度は低融点合金が液層、固層混在した状 態となる温度に設定した。成形材料用熱硬化性榭脂の場合、混練後冷却、粉砕処 理し、ペレット化やタブレット化し、成形はトランスファー成形や圧縮成形、射出成形 等で所望形状に成形できる。  [0032] In addition, the resin composition of the present invention is prepared by dry blending a resin, an electrically insulating filler, etc. in advance, supplying it to a single-screw or twin-screw kneading extruder, etc., and kneading and then granulating. Thus, a pellet can be produced and molded into a desired shape using an injection molding machine, a compression molding machine, an extrusion molding machine or the like having a predetermined mold. When the low melting point alloy is added, the kneading temperature is preferably set to a temperature within the kneading temperature range of the resin, and further to a temperature at which the low melting point alloy is mixed in a solid phase and a liquid phase. For dry blending, a Henschel mixer, a super mixer, a tumbler, or the like can be used. If necessary, the metal powder having a high density can be dry blended separately from the resin, fed from the middle of extrusion (side feed), and kneaded. Further, the fibrous filler can also be kneaded by side feeding separately from the metal powder. The method of kneading the thermosetting resin composition is to melt and knead the resin, insulation filler, etc. using a roll, a mixer, a kneader, a kneader, a single-screw kneading extruder, a twin-screw kneading extruder, etc. went. The kneading temperature was set to a temperature at which the low melting point alloy was in a mixed state of liquid and solid layers. In the case of a thermosetting resin for molding material, it is kneaded, cooled and pulverized, and pelletized or tableted. The molding can be formed into a desired shape by transfer molding, compression molding, injection molding or the like.
[0033] 実施の形態 1. [0033] Embodiment 1.
本実施の形態に係る榭脂組成物は、マトリックス榭脂を 30vol%以上、電気絶縁性 フィラーを 5〜40vol%、金属粉を 1〜: LOvol%、そして低融点合金を 1〜: LOvol%含 むものである。より好ましくは、マトリックス榭脂に熱可塑性榭脂を用い、電気絶縁性 フィラーに表面に酸ィ匕膜を有する金属フィラーを用いるものである。さらに、好ましく は金属フィラーにアルミフレークを用いるものである。アルミフレークの体積含有率は 、 5〜40vol%、より好ましくは 10〜35vol%である。体積含有率が 5vol%より小さい と十分な熱伝導性が得られず、 40vol%より大き ヽと榭脂組成物の成形加工性が低 下するからである。  The resin composition according to the present embodiment includes a matrix resin of 30 vol% or more, an electrically insulating filler of 5 to 40 vol%, a metal powder of 1 to LOvol%, and a low melting point alloy of 1 to LOLO%. It is a waste. More preferably, a thermoplastic resin is used for the matrix resin, and a metal filler having an acid film on the surface is used for the electrically insulating filler. Furthermore, aluminum flakes are preferably used for the metal filler. The volume content of the aluminum flakes is 5 to 40 vol%, more preferably 10 to 35 vol%. When the volume content is less than 5 vol%, sufficient thermal conductivity cannot be obtained, and when the volume content exceeds 40 vol%, the moldability of the cocoon and resin composition decreases.
[0034] 本実施の形態に係る榭脂組成物は、従来のセラミックス系充填材を用いる榭脂組 成物に比べ充填材の充填率を低減することができるので、低比重で、成形加工性に 優れて、さらに高絶縁性かつ高熱伝導性の榭脂組成物を提供することができる。これ により、電子部品のハウジング、そして電子部品からの熱を外部に逃がすためのヒー トシンクやファンなどにも適用することができる。例えば、半導体素子のヒートシンク材 、ファンモータのケーシング、モータコア用のハウジング、二次電池用のケース、さら には、ノ ソコンや携帯電話の筐体等に好適に用いることができる。 [0034] The resin composition according to the present embodiment can reduce the filling rate of the filler as compared with the conventional resin composition using a ceramic filler, so that it has a low specific gravity and a moldability. In addition, it is possible to provide a resin composition having excellent insulation properties and high thermal conductivity. this Therefore, it can be applied to a housing of an electronic component and a heat sink or a fan for releasing heat from the electronic component to the outside. For example, it can be suitably used for a heat sink material of a semiconductor element, a casing of a fan motor, a housing for a motor core, a case for a secondary battery, a case of a notebook computer or a mobile phone, and the like.
[0035] 実施の形態 2.  Embodiment 2.
本実施の形態に係る榭脂組成物は、マトリックス榭脂が熱硬化性榭脂であって、熱 硬化性榭脂を 15vol%以上、電気絶縁性フイラ一を 5〜65vol%、金属粉を 1〜: LOv ol%、そして低融点合金を 1〜: L0vol%含むものである。好ましくは、電気絶縁性フィ ラーに表面に酸ィ匕膜を有する金属フィラー及び Z又は無機フィラーを用いるものであ る。熱硬化性榭脂の体積含有率は、成形加工性を確保するため、 15vol%以上、より 好ましくは 25vol%以上である。  In the resin composition according to the present embodiment, the matrix resin is a thermosetting resin, the thermosetting resin is 15 vol% or more, the electrically insulating filler is 5 to 65 vol%, and the metal powder is 1 ~: LOvol% and low melting point alloy 1 ~: L0vol%. Preferably, a metal filler having an oxide film on the surface and Z or an inorganic filler are used for the electrically insulating filler. The volume content of the thermosetting resin is at least 15 vol%, more preferably at least 25 vol%, in order to ensure moldability.
[0036] 本実施の形態に係る榭脂組成物は、実施の形態 1に係る榭脂組成物と同様の効果 及び用途を有する。さらに、接着剤、プリント基板、 LEDモジュールケース、そして電 子部品用放熱容器等にも用いることができる。接着剤は、半導体素子、高密度基板 やモジュール部品等において、基板上に実装される ICチップや抵抗、コンデンサ等 の電子部品の接着や、回路基板と放熱板の接着、 LEDチップの基板への接着等に 用いることができる。また、車載エンジンにおける、セラミックス部品や金属部品同士 の接着にも用いることができる。また、プリント基板においては、電子部品が高密度に 実装されたプリント基板の温度上昇を防ぐため、従来のガラスエポキシ板に替わる新 たなプリント基板として用いることができる。さらに、放熱性を高めるため、本発明の榭 脂組成物からなる基板の片面に金属の放熱板を設け、別の片面に配線を設ける構 成とすることもできる。また、 LEDモジュールケースは、基板上に多数の LEDが配置 された照明用やバックライト用の LED装置において、熱対策のため、本発明の榭脂 組成物からなる絶縁基板と放熱板を一体ィ匕した構成とすることができる。また、電子 部品用放熱容器として、放熱性を向上させるため、半導体パッケージや LEDパッケ ージに用いることができる。  [0036] The resin composition according to the present embodiment has the same effects and uses as the resin composition according to Embodiment 1. It can also be used for adhesives, printed circuit boards, LED module cases, and heat dissipation containers for electronic components. Adhesives are used to bond electronic components such as IC chips, resistors, capacitors, etc. mounted on substrates in semiconductor elements, high-density substrates and module components, adhesion between circuit boards and heat sinks, and LED chip substrates. It can be used for bonding. It can also be used to bond ceramic parts and metal parts in in-vehicle engines. In addition, the printed circuit board can be used as a new printed circuit board that replaces the conventional glass epoxy board in order to prevent the temperature rise of the printed circuit board on which electronic components are mounted at high density. Furthermore, in order to improve heat dissipation, it is also possible to provide a structure in which a metal heat dissipation plate is provided on one side of a substrate made of the resin composition of the present invention, and wiring is provided on another side. In addition, the LED module case is a combination of an insulating substrate made of the resin composition of the present invention and a heat sink as a countermeasure against heat in LED devices for lighting and backlights in which a large number of LEDs are arranged on the substrate. It can be set as a trick. In addition, it can be used as a heat dissipation container for electronic components in semiconductor packages and LED packages in order to improve heat dissipation.
実施例  Example
[0037] 以下、実施例により本発明について詳細に説明する。 (試料作製) [0037] Hereinafter, the present invention will be described in detail by way of examples. (Sample preparation)
〈実施例 1〜3〉  <Examples 1 to 3>
榭脂にはポリフエ-レンスルフイド(PPS)、アルミフレークは東洋アルミニウム製(ふ るい通過率 粒径 45 m 98%)、金属粉には銅粉(日鉱マテリアルズ製、粒径 20 〜25 μ m)、低融点合金には Sn—Cu合金粉末(平均粒径 25 μ m)を用いた。なお、 合金は、榭脂との混練時に半溶融状態となるように、 4〜30%Cu—Snの組成を用い た。  Polyphenol-sulfide (PPS) for rosin, aluminum flakes made of Toyo Aluminum (screen passage particle size 45 m 98%), copper powder for metal powder (Nikko Materials, particle size 20-25 μm) Sn-Cu alloy powder (average particle size 25 μm) was used as the low melting point alloy. The alloy used was a 4-30% Cu-Sn composition so that it was in a semi-molten state when kneaded with rosin.
[0038] 表 1の組成に配合した原料混合粉を混練押出し機に投入し、温度 290〜310°Cで 混練し押出して成形用ペレットを作製した。この成形用ペレットを熱プレスにより成形 して、直径 50mm、厚さ 5mmの円柱形状の熱伝導率測定用と電気絶縁性測定用の 試料を得た。  [0038] The raw material mixed powder blended in the composition shown in Table 1 was put into a kneading extruder, kneaded at a temperature of 290 to 310 ° C, and extruded to produce a molding pellet. The molding pellets were molded by hot pressing to obtain a sample having a diameter of 50 mm and a thickness of 5 mm for measuring thermal conductivity and measuring electrical insulation.
[0039] 〈比較例 1〜3〉  <Comparative Examples 1-3>
比較のため、熱伝導性充填剤にアルミナ (マイクロン製、平均粒径 35 m)と、窒化 ホウ素 (三井ィ匕学製、平均粒径 0. 85 m)を用いた試料も作製した。表 2に組成を 示す。  For comparison, a sample using alumina (manufactured by Micron, average particle size of 35 m) and boron nitride (manufactured by Mitsui Chemicals, average particle size of 0.85 m) as a heat conductive filler was also prepared. Table 2 shows the composition.
[0040] 〈実施例 4〜9〉  <Examples 4 to 9>
榭脂にはエポキシ榭脂(ビフエノール型エポキシ榭脂とテトラメチルビフエノール型 エポキシ榭脂の混合物)、硬化剤としてフエノール系硬化剤(フエノールノボラック)、 硬化促進剤として 2ェチルイミダゾール、無機フイラ一として酸ィ匕マグネシウム (協和 化学工業製、平均粒径 30 μ m)又は酸ィ匕アルミニウム (キンセイマテック製)、金属粉 には銅粉(日鉱マテリアルズ製、粒径 20〜25 μ m)、低融点合金には Bi— Sn合金 粉末 (平均粒径 25 m)を用いた。なお、合金は、榭脂との混練時に半溶融状態とな るように、 15〜98%Bi— Snの組成を用いた。  Epoxy resin (biphenol type epoxy resin and tetramethylbiphenol type epoxy resin), phenolic curing agent (phenol novolak) as curing agent, 2-ethylimidazole as curing accelerator, inorganic filler As acid 匕 magnesium (Kyowa Chemical Industry, average particle size 30 μm) or acid 匕 aluminum (Kinsei Matec), metal powder is copper powder (Nikko Materials, particle size 20-25 μm), Bi-Sn alloy powder (average particle size 25 m) was used as the low melting point alloy. The alloy used was a composition of 15 to 98% Bi—Sn so as to be in a semi-molten state when kneaded with rosin.
[0041] 〈比較例 4〉  <Comparative Example 4>
比較のため、エポキシ榭脂、硬化剤、硬化促進剤のみからなる試料も作製した。表 3に組成を示す。  For comparison, a sample consisting only of an epoxy resin, a curing agent, and a curing accelerator was also prepared. Table 3 shows the composition.
[0042] (熱伝導率測定) [0042] (Measurement of thermal conductivity)
熱可塑性熱伝導性榭脂組成物の場合、 DYNATECH R&D社製 (型番 TCHM DV)の定常熱流計を用いた。測定に際し、試料の上下面の温度差を正確に測定 するため、 CC (銅ーコンスタンタン)熱電対を試料の上下面にホットプレスにより埋め 込んだ。ホットプレスを用いることにより、試料の平坦性を高めるとともに、試料と熱電 対との密着性を高めることができる。また、熱流量を安定させるため、 1時間、所定温 度に保った後、測定を行った。熱伝導率の測定結果を表 1から表 2に示す。なお、熱 硬化性熱伝導性榭脂組成物の場合、熱電対を試料に埋め込む必要のな!ヽレーザ 一フラッシュ法を用いて熱伝導率を算出した。熱拡散率はアルバック理工 (株)製熱 定数測定装置(型番 TC7000)を用いて、レーザーフラッシュ法で JIS R1611にし たがって測定し、比熱は (株)島津製作所製熱流束示差走査熱流計 (型番 DSC— 5 0)を用いて、 JIS K7123にしたがって測定し、密度は水中置換法によって JIS K7 112A法にしたがって測定し、それらを掛け合わせて、熱伝導率を計算した。熱伝導 率の測定結果を表 3に示す。 In the case of thermoplastic thermally conductive resin composition, manufactured by DYNATECH R & D (model TCHM DV) steady state heat flow meter was used. During the measurement, CC (copper-constantan) thermocouples were embedded in the upper and lower surfaces of the sample by hot pressing in order to accurately measure the temperature difference between the upper and lower surfaces of the sample. By using a hot press, the flatness of the sample can be improved, and the adhesion between the sample and the thermocouple can be increased. In addition, in order to stabilize the heat flow, the measurement was performed after maintaining the temperature at a predetermined temperature for 1 hour. Tables 1 and 2 show the results of thermal conductivity measurements. In the case of a thermosetting heat conductive resin composition, it is not necessary to embed a thermocouple in the sample!熱 Laser The thermal conductivity was calculated using one flash method. The thermal diffusivity was measured according to JIS R1611 by laser flash method using a thermal constant measuring device (model number TC7000) manufactured by ULVAC-RIKO, and the specific heat was measured by a heat flux differential scanning heat flow meter (model number) DSC—50) was measured according to JIS K7123, the density was measured according to the JIS K7 112A method by the underwater substitution method, and these were multiplied to calculate the thermal conductivity. Table 3 shows the measurement results of thermal conductivity.
[0043] (電気絶縁性測定)  [0043] (Electrical insulation measurement)
JIS K6911に準拠して、体積抵抗率と印加電圧を測定した。体積抵抗率の測定 には、 HP16008B測定セルと、 HP4339A高抵抗計を用いた。なお、接触抵抗を低 減するため試料の上下面に導電性ゴムを配置した。結果を表 1から表 3に示す。  The volume resistivity and applied voltage were measured according to JIS K6911. For measuring the volume resistivity, an HP16008B measurement cell and an HP4339A high resistance meter were used. In order to reduce contact resistance, conductive rubber was placed on the top and bottom surfaces of the sample. The results are shown in Tables 1 to 3.
[0044] (接着強度測定)  [0044] (Adhesive strength measurement)
マトリックス榭脂に熱硬化性榭脂を用いた組成物について、 JIS K6850に準拠し て、引張りせん断接着強さを測定した。  The tensile shear adhesive strength of a composition using a thermosetting resin as a matrix resin was measured according to JIS K6850.
[0045] [表 1]  [0045] [Table 1]
Figure imgf000013_0001
[0046] [表 2]
Figure imgf000013_0001
[0046] [Table 2]
Figure imgf000014_0001
Figure imgf000014_0001
[0047] [表 3-1] 実施例 4 実施例 5 実施例 6 エポキシ樹脂 4 0 3 8 3 2  [0047] [Table 3-1] Example 4 Example 5 Example 6 Epoxy resin 4 0 3 8 3 2
MgO 6 0 6 0 6 0  MgO 6 0 6 0 6 0
Cu 0 1 3  Cu 0 1 3
Bi-Sn 0 1 5  Bi-Sn 0 1 5
熱伝導率(WAi · K) 4. 0 4. 4 5. 2  Thermal conductivity (WAi · K) 4. 0 4. 4 5. 2
絶縁特性  Insulation characteristics
印加電圧(V) 1 0 00 1 0 00 1 00 0 体積抵抗率(Ω - cm) 1 015 1 0 1 1 01 5 接着強度 (MPa) 1 4 1 4 1 4 Applied voltage (V) 1 0 00 1 0 00 1 00 0 Volume resistivity (Ω-cm) 1 0 15 1 0 1 1 0 1 5 Adhesive strength (MPa) 1 4 1 4 1 4
[表 3- 2] 実施例 7 実施例 8 実施例 9 比較例 4 エポキシ樹脂 5 0 48 4 2 1 0 0 酸化アルミニウム 5 0 50 50 0[Table 3-2] Example 7 Example 8 Example 9 Comparative Example 4 Epoxy resin 5 0 48 4 2 1 0 0 Aluminum oxide 5 0 50 50 0
Cu 0 1 3 0Cu 0 1 3 0
Bi-Sn 0 1 5 0 熱伝導率 (W/m · Κ) 3. 6 4. 0 4. 5 0. 2 絶縁特性 Bi-Sn 0 1 5 0 Thermal conductivity (W / m · Κ) 3. 6 4. 0 4. 5 0. 2 Insulation characteristics
印加電圧(V) 1 0 0 0 1 00 0 1 00 0 1 0 00 体積抵抗率(Ω · cm) 1 0 " 1 01 4 1 01 4 1 015 接着強度 (MPa) 1 4 1 4 1 4 1 5 [0048] (結果) Applied voltage (V) 1 0 0 0 1 00 0 1 00 0 1 0 00 Volume resistivity (Ω · cm) 1 0 "1 0 1 4 1 0 1 4 1 0 15 Adhesive strength (MPa) 1 4 1 4 1 4 1 5 [0048] (Result)
実施例 1から 3では、アルミフレークを用いることにより、体積抵抗率 101(>Ω 'cm以 上、印加電圧 100V以上の良好な絶縁性と、熱伝導率 2WZm'K以上の良好な熱 伝導性を得ることができた。比較例 2でも 2WZm'Kの熱伝導率を得ることができるが 、 50vol%も充填する必要があり成形加工性が低下した。比較例 3は、熱伝導率が良 好と言われている窒化ホウ素を用いた力 実施例 1とほぼ同程度の充填量では、 2W Zm'Kの熱伝導率を得ることはできな力つた。 In Examples 1 to 3, by using aluminum flakes, volume resistivity 10 1 (> Ω 'cm or more, good insulation with applied voltage of 100 V or more, and good thermal conductivity with thermal conductivity of 2 WZm'K or more. In Comparative Example 2, the thermal conductivity of 2 WZm'K can also be obtained, but it has to be filled with 50 vol%, and the molding processability is reduced.Comparative Example 3 has a thermal conductivity of Force using boron nitride, which is said to be good, With a filling amount almost the same as in Example 1, it was impossible to obtain a thermal conductivity of 2 W Zm'K.
[0049] また、熱硬化性榭脂を用いた実施例 4から 9では、体積抵抗率 10Ω 'cm以上、印 加電圧 100V以上の良好な絶縁性と、熱伝導率 2WZm'K以上の良好な熱伝導性 を確保することができた。また、絶縁性フイラ一等の充填剤を含んでいても、榭脂単 独の場合と同様の高い接着強度を得ることができた。 [0049] In Examples 4 to 9 using a thermosetting resin, a volume resistivity of 10 1 Ω Ω 'cm or higher, an applied voltage of 100 V or higher, and a thermal conductivity of 2 WZm'K or higher. Good thermal conductivity could be secured. Moreover, even when a filler such as an insulating filler was included, the same high adhesive strength as in the case of a single resin could be obtained.

Claims

請求の範囲 The scope of the claims
[I] マトリックス榭脂 15vol%以上と、電気絶縁性フイラ一と、融点が 500°C以上の金属 粉と、融点が 500°C以下の低融点合金とを含む絶縁性熱伝導性榭脂組成物。  [I] Matrix resin 15 vol% or more, an electrically insulating filler, an insulating thermally conductive resin composition containing a metal powder having a melting point of 500 ° C. or higher and a low melting point alloy having a melting point of 500 ° C. or lower object.
[2] 上記マトリックス榭脂を 30vol%以上、上記電気絶縁性フイラ一を 5〜40vol%、上 記金属粉を l〜10vol%、そして上記低融点合金を l〜10vol%含む請求項 1記載 の榭脂組成物。  [2] The matrix resin according to claim 1, comprising 30% by volume or more of the matrix resin, 5 to 40% by volume of the electrically insulating filler, 1 to 10% by volume of the above metal powder, and 1 to 10% by volume of the low melting point alloy. A rosin composition.
[3] 上記電気絶縁性フイラ一が、表面に酸ィ匕膜を有する金属フィラーである請求項 2記 載の榭脂組成物。  [3] The resin composition according to claim 2, wherein the electrically insulating filler is a metal filler having an acid film on the surface.
[4] 上記金属フィラーがアルミフレークである請求項 3記載の榭脂組成物。  [4] The resin composition according to claim 3, wherein the metal filler is aluminum flakes.
[5] 上記金属粉が、鉄、銅、ニッケル、チタン、クロム、そしてこれら金属の少なくとも 1種 を含む合金からなる群から選択された 、ずれか 1種である請求項 2から 4の ヽずれか 一つに記載の榭脂組成物。  [5] The deviation according to any one of claims 2 to 4, wherein the metal powder is selected from the group consisting of iron, copper, nickel, titanium, chromium, and an alloy containing at least one of these metals. The rosin composition according to any one of the above.
[6] 上記低融点合金が、 Sn— Cu、 Sn— Al、 Sn— Zn、 Sn— Pt、 Sn— Mn、 Sn— Ag、[6] The low melting point alloy is Sn—Cu, Sn—Al, Sn—Zn, Sn—Pt, Sn—Mn, Sn—Ag,
Sn— Au、 Al—Li、そして Zn—Uから成る群から選択された少なくとも 1種の合金で ある請求項 2から 5のいずれか一つに記載の榭脂組成物。 6. The resin composition according to claim 2, wherein the resin composition is at least one alloy selected from the group consisting of Sn—Au, Al—Li, and Zn—U.
[7] 上記熱可塑性榭脂の荷重たわみ温度が 100°C以上である請求項 2から 6のいずれ か一つに記載の榭脂組成物。 7. The resin composition according to any one of claims 2 to 6, wherein the deflection temperature under load of the thermoplastic resin is 100 ° C or higher.
[8] 熱伝導率が 2WZm'K以上である請求項 2から 7のいずれか一つに記載の榭脂組 成物。 8. The resin composition according to any one of claims 2 to 7, wherein the thermal conductivity is 2WZm'K or more.
[9] 上記マトリックス榭脂が熱硬化性榭脂であって、上記電気絶縁性フイラ一を 5〜65ν ol%、上記金属粉を l〜10vol%、そして上記低融点合金を l〜10vol%含む請求 項 1記載の榭脂組成物。  [9] The matrix resin is a thermosetting resin and contains 5 to 65 νol% of the electrically insulating filler, 1 to 10 vol% of the metal powder, and 1 to 10 vol% of the low melting point alloy. The rosin composition according to claim 1.
[10] 上記電気絶縁性フイラ一が表面に酸ィ匕膜を有する金属フィラー及び Ζ又は無機フ イラ一である請求項 9記載の榭脂組成物。  10. The resin composition according to claim 9, wherein the electrically insulating filler is a metal filler and a soot or an inorganic filler having an acid film on the surface.
[II] 上記金属粉が、鉄、銅、ニッケル、チタン、クロム、そしてこれら金属の少なくとも 1種 を含む合金力もなる群力も選択されたいずれか 1種である請求項 9又は 10に記載の 榭脂組成物。  [II] The metal powder according to claim 9 or 10, wherein the metal powder is any one selected from iron, copper, nickel, titanium, chromium, and an alloy force including at least one of these metals and also an alloying force. Fat composition.
[12] 上記低融点合金が、 Bi— Sn、 Bi— In、 In— Zn、 In— Sn、 In— Ag、 In— Naゝ Na — Sn、 Na— Au、 Na— Ba、 Na— Li、 Li— Ag、 Li— Ca、そして Li— Baから成る群か ら選択された少なくとも 1種の合金である請求項 9から 11のいずれか一つに記載の榭 脂組成物。 [12] The low melting point alloy is Bi-Sn, Bi-In, In-Zn, In-Sn, In-Ag, In-Na ゝ Na The at least one alloy selected from the group consisting of —Sn, Na—Au, Na—Ba, Na—Li, Li—Ag, Li—Ca, and Li—Ba. The resin composition according to one.
[13] 上記熱硬化性榭脂の荷重たわみ温度が 100°C以上である請求項 9から 12のいず れか一つに記載の榭脂組成物。  13. The resin composition according to any one of claims 9 to 12, wherein the deflection temperature under load of the thermosetting resin is 100 ° C or higher.
[14] 熱伝導率が 2WZm'K以上である請求項 9から 13のいずれか一つに記載の榭脂 組成物。 [14] The resin composition according to any one of [9] to [13], wherein the thermal conductivity is 2 WZm′K or more.
[15] マトリックス榭脂 15vol%以上と、電気絶縁性フイラ一と、融点が 500°C以上の金属 粉と、融点が 500°C以下の低融点合金とを含む絶縁性熱伝導性榭脂組成物力ゝら成 る成形品。  [15] Matrix resin 15 vol% or more, an electrically insulating filler, an insulating heat conductive resin composition containing a metal powder having a melting point of 500 ° C. or higher and a low melting point alloy having a melting point of 500 ° C. or lower Molded product made of physical strength.
[16] 上記成形品が、マトリックス榭脂として熱硬化性榭脂を含むプリント基板である請求 項 15記載の成形品。  16. The molded article according to claim 15, wherein the molded article is a printed board containing a thermosetting resin as a matrix resin.
[17] 上記成形品が、マトリックス榭脂として熱硬化性榭脂を含む LEDモジュールケース である請求項 15記載の成形品。  17. The molded product according to claim 15, wherein the molded product is an LED module case containing a thermosetting resin as a matrix resin.
[18] 上記成形品が、マトリックス榭脂として熱硬化性榭脂を含む電子部品用放熱容器で ある請求項 15記載の成形品。  18. The molded product according to claim 15, wherein the molded product is a heat radiating container for electronic parts containing a thermosetting resin as a matrix resin.
[19] マトリックス榭脂 15vol%以上と、電気絶縁性フイラ一と、融点 500°C以上の金属粉 と、融点が 500°C以下の低融点合金とを含む混合粉を加熱して、低融点合金が固相 部と液相部が混在した半溶融状態とし、マトリックス榭脂を溶融状態として混練し、混 合物を所望形状に成形する絶縁性熱伝導性榭脂組成物の製造方法。  [19] A mixed powder containing 15% by volume or more of matrix resin, an electrically insulating filler, a metal powder having a melting point of 500 ° C or higher, and a low melting point alloy having a melting point of 500 ° C or lower is heated to produce a low melting point. A method for producing an insulating thermally conductive resin composition in which an alloy is mixed in a semi-molten state in which a solid phase part and a liquid phase part are mixed, matrix resin is kneaded in a molten state, and the mixture is formed into a desired shape.
PCT/JP2006/311231 2005-06-06 2006-06-05 Insulative and thermally conductive resin composition and formed article, and method for production thereof WO2006132185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007520091A JP5340595B2 (en) 2005-06-06 2006-06-05 Insulating thermally conductive resin composition, molded article, and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-165693 2005-06-06
JP2005165693 2005-06-06

Publications (1)

Publication Number Publication Date
WO2006132185A1 true WO2006132185A1 (en) 2006-12-14

Family

ID=37498386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311231 WO2006132185A1 (en) 2005-06-06 2006-06-05 Insulative and thermally conductive resin composition and formed article, and method for production thereof

Country Status (2)

Country Link
JP (1) JP5340595B2 (en)
WO (1) WO2006132185A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525145A (en) * 2007-04-24 2010-07-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thermally conductive and electrically resistive liquid crystal polymer composition
JP2011500935A (en) * 2007-10-23 2011-01-06 チェイル インダストリーズ インコーポレイテッド Thermally conductive polymer composite and molded article using the same
WO2012017646A1 (en) * 2010-08-03 2012-02-09 パナソニック株式会社 Molded structure and motor comprising same
JP2012072363A (en) * 2010-08-31 2012-04-12 Miki Polymer Co Ltd Heat-conductive resin composition and heat-radiating material comprising the same
WO2012101976A1 (en) * 2011-01-25 2012-08-02 パナソニック株式会社 Molded structure and motor
WO2012101977A1 (en) * 2011-01-25 2012-08-02 パナソニック株式会社 Mold structure and motor
WO2013021669A1 (en) * 2011-08-09 2013-02-14 東洋アルミニウム株式会社 Thermally conductive resin composition and heat dissipating material containing same
CN107460393A (en) * 2017-07-26 2017-12-12 界首市绿暄照明科技有限公司 A kind of LED lamp base material of low thermal coefficient of expansion
CN109535648A (en) * 2018-10-01 2019-03-29 宁波中创焊接技术有限公司 A kind of preparation method of the high heat conductivity insulation composite suitable for encapsulating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202607A (en) * 1984-03-27 1985-10-14 昭和電工株式会社 Thermal conductive filler
JPH06196884A (en) * 1992-12-25 1994-07-15 Toshiba Corp High-heat-conductivity composite
JPH1112481A (en) * 1997-06-20 1999-01-19 Toray Dow Corning Silicone Co Ltd Thermally conductive polymer composition
WO2003029352A1 (en) * 2001-09-27 2003-04-10 Nippon Kagaku Yakin Co., Ltd. Resin composition with high thermal conductivity and process for producing the same
JP2006022130A (en) * 2004-07-06 2006-01-26 Idemitsu Kosan Co Ltd Thermoconductive resin composition and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328352A (en) * 2005-04-28 2006-12-07 Idemitsu Kosan Co Ltd Insulating thermally-conductive resin composition, molded product, and method for producing the same
JP2006328155A (en) * 2005-05-24 2006-12-07 Idemitsu Kosan Co Ltd Insulating thermally-conductive resin composition, molded product, and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202607A (en) * 1984-03-27 1985-10-14 昭和電工株式会社 Thermal conductive filler
JPH06196884A (en) * 1992-12-25 1994-07-15 Toshiba Corp High-heat-conductivity composite
JPH1112481A (en) * 1997-06-20 1999-01-19 Toray Dow Corning Silicone Co Ltd Thermally conductive polymer composition
WO2003029352A1 (en) * 2001-09-27 2003-04-10 Nippon Kagaku Yakin Co., Ltd. Resin composition with high thermal conductivity and process for producing the same
JP2006022130A (en) * 2004-07-06 2006-01-26 Idemitsu Kosan Co Ltd Thermoconductive resin composition and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525145A (en) * 2007-04-24 2010-07-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thermally conductive and electrically resistive liquid crystal polymer composition
JP2011500935A (en) * 2007-10-23 2011-01-06 チェイル インダストリーズ インコーポレイテッド Thermally conductive polymer composite and molded article using the same
WO2012017646A1 (en) * 2010-08-03 2012-02-09 パナソニック株式会社 Molded structure and motor comprising same
JP2012072363A (en) * 2010-08-31 2012-04-12 Miki Polymer Co Ltd Heat-conductive resin composition and heat-radiating material comprising the same
JP2012072364A (en) * 2010-08-31 2012-04-12 Toyo Aluminium Kk Heat conductive resin composition and heat radiation material including the same
WO2012101976A1 (en) * 2011-01-25 2012-08-02 パナソニック株式会社 Molded structure and motor
WO2012101977A1 (en) * 2011-01-25 2012-08-02 パナソニック株式会社 Mold structure and motor
JPWO2012101976A1 (en) * 2011-01-25 2014-06-30 パナソニック株式会社 Mold structure and motor
WO2013021669A1 (en) * 2011-08-09 2013-02-14 東洋アルミニウム株式会社 Thermally conductive resin composition and heat dissipating material containing same
CN107460393A (en) * 2017-07-26 2017-12-12 界首市绿暄照明科技有限公司 A kind of LED lamp base material of low thermal coefficient of expansion
CN109535648A (en) * 2018-10-01 2019-03-29 宁波中创焊接技术有限公司 A kind of preparation method of the high heat conductivity insulation composite suitable for encapsulating

Also Published As

Publication number Publication date
JP5340595B2 (en) 2013-11-13
JPWO2006132185A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP5340595B2 (en) Insulating thermally conductive resin composition, molded article, and method for producing the same
JP6822836B2 (en) Hexagonal boron nitride powder, its manufacturing method, resin composition and resin sheet
JP5330910B2 (en) Resin composition and use thereof
TWI644855B (en) Hexagonal crystal boron nitride powder, its manufacturing method, resin composition and resin flake
JP7069485B2 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
KR102033987B1 (en) Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate
JP5513840B2 (en) Insulating sheet, circuit board, and insulating sheet manufacturing method
KR101784196B1 (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
JP6023474B2 (en) Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof
TW202010707A (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipation material using same
JP5652307B2 (en) Prepress and laminate for heat and pressure molding
WO2015059950A1 (en) Polyimide resin composition, and heat-conductive adhesive film produced using same
JP2006328155A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
US20150366054A1 (en) Metal foil-clad substrate, circuit board and electronic-component mounting substrate
Vu et al. 3D printing of copper particles and poly (methyl methacrylate) beads containing poly (lactic acid) composites for enhancing thermomechanical properties
JP7352173B2 (en) Compositions, cured products, multilayer sheets, heat dissipation parts, and electronic parts
JP2007056209A (en) Adhesive for circuit connection
WO2016063695A1 (en) Metal-foil-clad substrate, circuit board, and substrate with heat-generating body mounted thereon
JP2014189701A (en) High thermal conductive resin cured product, high thermal conductive semi-cured resin film and high thermal conductive resin composition
WO2019131097A1 (en) Encapsulating epoxy resin composition for ball grid array package, cured epoxy resin object, and electronic component/device
JP2017098379A (en) Resin composition, circuit board, exothermic body-mounted substrate and circuit board manufacturing method
JP2008106126A (en) Thermally conductive material, heat releasing substrate using this and its manufacturing method
CN111479773B (en) Glass-coated aluminum nitride particles, process for producing the same, and heat-radiating resin composition containing the same
WO2008010297A1 (en) Thermally conductive thermosetting resin composition and process for producing the same
WO2015178393A1 (en) Metal-foil-clad substrate, circuit board, and substrate with electronic component mounted thereon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007520091

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06756977

Country of ref document: EP

Kind code of ref document: A1