JPS60202607A - Thermal conductive filler - Google Patents

Thermal conductive filler

Info

Publication number
JPS60202607A
JPS60202607A JP59059050A JP5905084A JPS60202607A JP S60202607 A JPS60202607 A JP S60202607A JP 59059050 A JP59059050 A JP 59059050A JP 5905084 A JP5905084 A JP 5905084A JP S60202607 A JPS60202607 A JP S60202607A
Authority
JP
Japan
Prior art keywords
core
conductive filler
thermal conductivity
coating
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59059050A
Other languages
Japanese (ja)
Inventor
孝志 荘司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59059050A priority Critical patent/JPS60202607A/en
Publication of JPS60202607A publication Critical patent/JPS60202607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、放熱性および電気絶縁性の共に優れたフィラ
ーに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a filler that has excellent heat dissipation properties and electrical insulation properties.

近年、電子関連製品の小形化高集積化が進むにつれて、
それらを構成する部品の放熱性、電気絶縁性に対する要
求が高まっている。
In recent years, as electronic products have become smaller and more highly integrated,
There is an increasing demand for the heat dissipation and electrical insulation properties of the components that make up these devices.

従来、電子回路封止材、溶射材として、或いは特殊な基
板の材料としてAJ、03.5in2、Mg0%SiC
等の単体の微粒子のフィラーが用いられている。
Conventionally, AJ, 03.5in2, Mg0%SiC has been used as an electronic circuit sealing material, thermal spraying material, or as a material for special substrates.
Single particulate fillers such as these are used.

しかし、Aぎ203、SiO□、MgO等は熱伝導性が
悪く、放熱性に劣り、SICは電気絶縁性がよくない。
However, Agi 203, SiO□, MgO, etc. have poor thermal conductivity and poor heat dissipation, and SIC has poor electrical insulation.

そのため、金属微粒子に合成樹脂、例えばエポキシ樹脂
等をコーテングして、熱伝導性をよくしたものが考えら
れているが、これらはコーテングした膜の強度が弱く、
特に耐熱性、熱伝導性においても充分なものではなかっ
た。
For this reason, it has been considered to improve thermal conductivity by coating metal particles with synthetic resin, such as epoxy resin, but these coated films have low strength and
In particular, the heat resistance and thermal conductivity were not sufficient.

本発明は上記の事情に鑑み、放熱性、電気絶縁性、耐熱
性忙優れた熱伝導性フィラーを提供することを目的とす
るもので、その要旨社、粒状の金属又は炭素又は炭化物
の一つを核とし、この核の表面に金属酸化物又は無ソー
ダガラスもしくはこれらの混合物をコーテングしてなる
熱伝導性フィラーにある。
In view of the above circumstances, the present invention aims to provide a thermally conductive filler with excellent heat dissipation, electrical insulation, and heat resistance. Thermal conductive filler has a core and the surface of the core is coated with metal oxide, soda-free glass, or a mixture thereof.

以下本発明を説明する。The present invention will be explained below.

本発明に係る熱伝導性フィラーは、熱伝導性のよい金属
又は炭素又は炭化物の、粒径が5〜100μ、の微粒子
を核とし、この表面に電気絶縁性の金属酸化物又は無ソ
ーダガラスの単体、或いは上記金属酸化物と無ソーダガ
ラスの混合物で、粒径が4μ以、下の微粉末をコーテン
グしたものである。
The thermally conductive filler according to the present invention has fine particles of metal, carbon, or carbide with good thermal conductivity as a core with a particle size of 5 to 100μ, and the surface of the particles is coated with electrically insulating metal oxide or soda-free glass. It is a single substance or a mixture of the above metal oxide and soda-free glass coated with fine powder having a particle size of 4μ or less.

上記核に用いられる金属としては、Ag、Cu。Examples of metals used for the core include Ag and Cu.

M o s F e SN i、W、Siが用いられる
が、AJは熱伝導性がよくフィラーを軽量化出来るが、
融点が低く熱的に弱い点があり、Cuは熱伝導性がよい
が重く、Slはもろ怖が、Si基板との膨張率がマツチ
ングする等、それぞれ一長一短があり目的によって使い
分けられる。また、炭素としては人造黒鉛、炭化物とし
てはSiCが主として使われる。
M o s F e SN i, W, and Si are used, but AJ has good thermal conductivity and can reduce the weight of the filler.
Each has advantages and disadvantages, and is used depending on the purpose: Cu has a low melting point and is thermally weak, Cu has good thermal conductivity but is heavy, and Sl is brittle and does not match the expansion coefficient with the Si substrate. Furthermore, artificial graphite is mainly used as carbon, and SiC is mainly used as carbide.

また、核の表面をコーテングする電気的絶縁性の金属酸
化物としては、he、Oa、S 1o□、MgO1Be
O,ムライト、スピネル等の単体、或いは無ソーダガラ
ス単体もしくは酸化物と無ソーダガラスの混合物が用い
られる。これらのコーテング物質は4μ以下の微粉末で
あることが好ましい。
In addition, examples of electrically insulating metal oxides that coat the surface of the nucleus include he, Oa, S1o□, and MgO1Be.
A single substance such as O, mullite, or spinel, a single soda-free glass, or a mixture of an oxide and a soda-free glass are used. These coating materials are preferably fine powders of 4 microns or less.

上記核に金属酸化物、無ソーダガラス(以下コーテイン
グ材という)をコーテングするには、次のような方法が
ある。
The following methods can be used to coat the core with a metal oxide or soda-free glass (hereinafter referred to as coating material).

a) バインダで造粒する方法 バインダーとしては、汎用の接着用樹脂が使用可能であ
るが、コスト面および樹脂特性等の面から、フェノール
系樹脂、エポキシ樹脂系等の熱硬化性樹脂が好ましい。
a) Method of granulating with binder As the binder, general-purpose adhesive resins can be used, but thermosetting resins such as phenolic resins and epoxy resins are preferred from the viewpoint of cost and resin properties.

コーティング方法は、特に制限ないが、核となる粒子が
細かいので、コーテングされるコーテイング材の2次凝
集を防止するため通常高速攪拌造粒が行なわれる。この
造粒時ζ微粉状のコーテング材とバインダーとをスラリ
ー状としてこれに核を添加しても、或いは核とコーテン
グ材を混合し、これにバインダーを添加してもよい。
The coating method is not particularly limited, but since the core particles are fine, high-speed agitation granulation is usually performed to prevent secondary agglomeration of the coating material to be coated. At the time of granulation, the finely powdered coating material and the binder may be made into a slurry and the cores may be added thereto, or the cores and the coating material may be mixed and the binder may be added thereto.

また、核およびコーテイング材の前処理としてカップリ
ング処理をしておくと強固なコーテング層が形成される
。例えば、核となる粒子とコーテング材粉末とをシラン
カップリング剤(−例を示せば信越シリコン製KBM4
05)t−予めメチルアルコールで希釈し、最終的にカ
ップリング剤が、核又はコーテング材九対して[L5w
t%残るよう゛ K配合してカップリング処理し、その
後80℃で1時間程度乾燥したものを、上記造粒に供す
る。
Furthermore, if a coupling treatment is performed as a pretreatment of the core and coating material, a strong coating layer will be formed. For example, a silane coupling agent (for example, KBM4 manufactured by Shin-Etsu Silicon Co., Ltd.
05) t- Pre-diluted with methyl alcohol, the coupling agent is finally applied to the core or coating material [L5w
The mixture was mixed with K so that t% remained, subjected to coupling treatment, and then dried at 80° C. for about 1 hour, and then subjected to the above-mentioned granulation.

また、上記造粒する場合の核とコーテング材との割合は
、重量比で核/コーテング材:100/15〜120特
に容積比で1:1が好ましい。コーテング材カ)少ない
と均一コートすることが難かしく、多すぎるとコーテン
グ層が厚くなってフィラーの放熱性が悪くなる。また、
バインダーの量は、核/バインダーの重量比100/1
〜7が好ましい。
In addition, the ratio of the core to the coating material in the above-mentioned granulation is preferably a weight ratio of core/coating material: 100/15 to 120, particularly a volume ratio of 1:1. If there is too little coating material, it will be difficult to coat it uniformly, and if it is too large, the coating layer will become thick and the heat dissipation of the filler will deteriorate. Also,
The amount of binder is a core/binder weight ratio of 100/1.
-7 is preferable.

バインダーの量が少ないと膜強度が低下し、多すぎると
放熱性が悪くなる。
If the amount of binder is too small, the film strength will be reduced, and if it is too large, heat dissipation will be poor.

b) 完全揮発性のバインダーを用いる方法核としては
融点の低いA6を以外の融点700°C以上のものを用
い、バインダーとしては700℃以上で完全に分解、揮
発するもの、惰帆ばポリビニールアルコール、ポリエチ
レングリコール、エチルセルローズ、CMC,コンスタ
ーチ等が用いられる。これら核、コーテイング材、バイ
ンダーを、上記a) とほぼ同じ配合によって造粒する
b) Method using a completely volatile binder As the core, use a substance with a melting point of 700°C or higher, other than A6, which has a low melting point, and as a binder, one that completely decomposes and evaporates at 700°C or higher, such as a polyvinyl binder. Alcohol, polyethylene glycol, ethyl cellulose, CMC, cornstarch, etc. are used. These cores, coating material, and binder are granulated using substantially the same formulation as in a) above.

この造粒物を700〜1400℃の温度で焼成するが、
焼成温度は、使用する材質によって異なり、焼結が起り
、かつ融点以下の温度範囲から選択される。この温度範
囲で高温、かつ長時間焼成する程、強固なコーテング層
が得られる。また、当然のことながら、焼成雰囲気は核
の酸化を防止するため、通常非酸化性雰囲気で行なわれ
る。しかし、核がCu或いはMoように酸化物が還元さ
れ易い場合忙は、酸化性雰囲気で焼成し、酸化物となっ
たものを水素還元雰囲気で還元してもよい。例えば核が
Cuの場合、水素気流中で900℃まで昇温し、2時間
保持したのち200℃以下に冷却してから大気中に取り
出しても、或いは、大気中で900℃に昇温し2時間保
持した後、水素雰囲気に変え1時間保持して還元し、そ
の後200℃まで冷却して大気中に取出してもよい。核
となる粒子がCuのように融点が比較的低い場合は、無
ソーダガラスを金属酸化物忙対して10〜20wt%添
加すると膜強度の強いフィラーが得られる。
This granulated material is fired at a temperature of 700 to 1400°C,
The firing temperature varies depending on the material used, and is selected from a temperature range at which sintering occurs and is below the melting point. The higher the temperature and the longer the firing in this temperature range, the stronger the coating layer will be obtained. Further, as a matter of course, the firing atmosphere is usually a non-oxidizing atmosphere in order to prevent oxidation of the nuclei. However, if the oxide is easily reduced, such as Cu or Mo, the core may be fired in an oxidizing atmosphere and the oxide may be reduced in a hydrogen reducing atmosphere. For example, if the core is Cu, it can be heated to 900°C in a hydrogen stream, held for 2 hours, cooled to 200°C or less, and then taken out into the atmosphere, or heated to 900°C in the atmosphere and 2 hours later. After holding for an hour, it may be changed to a hydrogen atmosphere and held for one hour for reduction, and then cooled to 200°C and taken out into the atmosphere. When the core particles have a relatively low melting point, such as Cu, a filler with strong film strength can be obtained by adding 10 to 20 wt % of soda-free glass to the metal oxide.

C)プラズマ気流中に噴繕して、焼結する方法先ず、前
記a)又はb) と同じバインダー、核、コーテイング
材を用い、同様な方法で核にコーテングを施す。これを
乾燥した後、プラズマ気流中を通過させ、瞬時にコーテ
ング材を焼結させる。
C) Method of sintering by ejecting in a plasma stream First, using the same binder, core, and coating material as in a) or b) above, coat the core in the same manner. After this is dried, it is passed through a plasma stream to instantaneously sinter the coating material.

この方法はAgのような低融点金属を用いた場合にも適
用でき、またコーティングされた絶縁膜は極めて強固、
かつ均一なものが形成される。
This method can also be applied when using low melting point metals such as Ag, and the coated insulating film is extremely strong.
And a uniform product is formed.

次に実施例、比較例を示し本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例、比較例においては各種フィラーをつくり、粒子
を10〜105μに整粒して、これについて熱伝導率、
電気絶縁性、コーテング皮膜強度を測定し、その優劣を
比較した。
In Examples and Comparative Examples, various fillers were made, the particles were sized to 10 to 105 μm, and the thermal conductivity,
The electrical insulation properties and coating film strength were measured and their superiority and inferiority were compared.

なお、電気絶縁性は50問戸のアクリル樹脂筒内に50
m、の厚さにフィラーを詰め、詰めたフィラーの両端を
Cu板で挾み、D〜50o■の電圧を印加し、その間の
電流の有無を測定した。絶縁性は、500V以上あれば
実用上差支えない。
In addition, the electrical insulation property is 50% in the acrylic resin cylinder.
Filler was packed to a thickness of m, and both ends of the filled filler were sandwiched between Cu plates, a voltage of D~50° was applied, and the presence or absence of current between them was measured. As long as the insulation is 500V or more, there is no problem in practical use.

また、皮膜強度の測定は、スチール製カプセル中に13
+mOO鋼球2個を入れ、約10詔のストローク、5回
/秒で50回シェイクした。シェイクした後、ミクロフ
ォトサイザーにより5μ以下の粉末の量を測定した。こ
の粉末の発生率をもって皮膜の強度を表わした。
In addition, the film strength was measured using 13
Two +mOO steel balls were inserted and shaken 50 times at a stroke of approximately 10 strokes and 5 times/second. After shaking, the amount of powder of 5 μm or less was measured using a microphotosizer. The strength of the film was expressed by the generation rate of this powder.

また、コーテイこングには、高速攪拌機(商品名:ヘン
シェルミキサー)を使用した。
In addition, a high-speed stirrer (trade name: Henschel mixer) was used for coating.

実施例1〜16 種々な核、コーテイング材、バインダーを用い、上記各
方法によってフィラーをつくりその性質を比較した。用
いたフィラーおよび測定結果を第1表に示した。
Examples 1 to 16 Fillers were made by the above methods using various cores, coating materials, and binders, and their properties were compared. The fillers used and the measurement results are shown in Table 1.

比較例1〜11 コーテイング材を使用しないもの、および単体等を粒度
10〜105μに整粒して、実施例と同・ じ物性を測
定した。使用した粒子およびその物性を第2表忙示した
Comparative Examples 1 to 11 The same physical properties as in Examples were measured using samples without coating material and single particles, etc., which were sized to a particle size of 10 to 105μ. The particles used and their physical properties are shown in the second table.

表より明かなように、次のような物性的に欠陥があるこ
とがわかる。
As is clear from the table, it can be seen that there are defects in the following physical properties.

1、樹脂をコーティングしたフィラー(比較例1〜3)
は耐用温度が150〜200℃と低くしかも熱伝導率が
極めて悪い。
1. Filler coated with resin (Comparative Examples 1 to 3)
has a low service temperature of 150 to 200°C and has extremely poor thermal conductivity.

2 セラミック単体(比較例4〜6)は熱伝導が悪い。2 The ceramic alone (Comparative Examples 4 to 6) has poor thermal conductivity.

& 樹脂単体(比較例7〜9)は耐用温度低く、熱伝導
が極めて悪い◎ 4、金属(比較例1O〜11)は熱伝導は良いが絶縁性
は全く無い。
& Resin alone (Comparative Examples 7 to 9) has a low service temperature and extremely poor thermal conductivity. ◎ 4. Metals (Comparative Examples 10 to 11) have good thermal conductivity but no insulation at all.

これ忙対して本発明品は耐熱性は200〜800℃と高
く、シかも熱伝導性に優れているものが得られ、絶縁性
も実用上不足はなく、絶縁皮膜の強度も充分である。
In contrast, the product of the present invention has a high heat resistance of 200 to 800°C, excellent thermal conductivity, and has sufficient insulation properties for practical use, and the strength of the insulation film is sufficient.

以上述べたように本発明忙係るフィラーは、熱伝導性、
電気的絶縁性、コーティング侠膜強度がともによく、電
子部品材料として特に優れているのみならず、その他に
も広い用途が見込まれる。
As mentioned above, the filler according to the present invention has thermal conductivity,
It has good electrical insulation properties and coating film strength, making it particularly excellent as a material for electronic components, and is expected to have a wide range of other uses.

Claims (1)

【特許請求の範囲】 (里) 粒状の、金属又は炭素又は炭化物の一つを核と
し、この核の表面に金属酸化物又は無ソーダガラスもし
くはこれらの混合物をコーテングしてなることを特徴と
する熱伝導性フィラー。 (2) 粒状の金属又は炭素又は炭化物が、A6.Cu
。 Mo、W、Fe、Nt、Sl、人造黒鉛、S1Cである
特許請求の範囲第1項記載の熱伝導性フィラー。 (3)金属酸化物が、ke、O,、S 1o、 、pg
o。 BeO、ムライトである特許請求の範囲第1項記載の熱
伝導性フィラー。
[Claims] (Sato) It is characterized by having a granular core of one of metal, carbon, or carbide, and coating the surface of the core with metal oxide, soda-free glass, or a mixture thereof. Thermal conductive filler. (2) Particulate metal, carbon, or carbide is A6. Cu
. The thermally conductive filler according to claim 1, which is Mo, W, Fe, Nt, Sl, artificial graphite, and S1C. (3) The metal oxide is ke, O,, S 1o, , pg
o. The thermally conductive filler according to claim 1, which is BeO or mullite.
JP59059050A 1984-03-27 1984-03-27 Thermal conductive filler Pending JPS60202607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059050A JPS60202607A (en) 1984-03-27 1984-03-27 Thermal conductive filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059050A JPS60202607A (en) 1984-03-27 1984-03-27 Thermal conductive filler

Publications (1)

Publication Number Publication Date
JPS60202607A true JPS60202607A (en) 1985-10-14

Family

ID=13102103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059050A Pending JPS60202607A (en) 1984-03-27 1984-03-27 Thermal conductive filler

Country Status (1)

Country Link
JP (1) JPS60202607A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119787U (en) * 1991-04-15 1992-10-27 ブリヂストンサイクル株式会社 bicycle stand
JPH10330802A (en) * 1997-06-02 1998-12-15 Shoei Chem Ind Co Metallic powder, and its manufacture
WO2006132185A1 (en) * 2005-06-06 2006-12-14 Nippon Kagaku Yakin Co., Ltd. Insulative and thermally conductive resin composition and formed article, and method for production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598208A (en) * 1982-07-06 1984-01-17 日本特殊陶業株式会社 Method of producing high thermoconductive glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598208A (en) * 1982-07-06 1984-01-17 日本特殊陶業株式会社 Method of producing high thermoconductive glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119787U (en) * 1991-04-15 1992-10-27 ブリヂストンサイクル株式会社 bicycle stand
JPH10330802A (en) * 1997-06-02 1998-12-15 Shoei Chem Ind Co Metallic powder, and its manufacture
WO2006132185A1 (en) * 2005-06-06 2006-12-14 Nippon Kagaku Yakin Co., Ltd. Insulative and thermally conductive resin composition and formed article, and method for production thereof
JP5340595B2 (en) * 2005-06-06 2013-11-13 日本科学冶金株式会社 Insulating thermally conductive resin composition, molded article, and method for producing the same

Similar Documents

Publication Publication Date Title
JP2014239040A (en) Thick raised print copper paste for aluminum nitride substrate
JPH07500450A (en) Silver-rich conductor composition with high thermal cycle adhesion and aging adhesion
US8344523B2 (en) Conductive composition
JPS58213070A (en) Manufacture of surface coated with conductive pigment
JP3507084B2 (en) Copper conductor composition
JPS60202607A (en) Thermal conductive filler
US5250358A (en) Palladium thick film resistor containing boron nitride
JPH02286768A (en) Insulating adhesive composition for circuit board and use thereof
JP3299083B2 (en) Method for producing carbon-based conductive paste
US3640906A (en) Electroconductive sintered glass
EP1377988A2 (en) The use of conductor compositions in electronic circuits
JPH0323512B2 (en)
CN113205901A (en) Glass frit, conductive paste and application in preparation of ceramic dielectric filter electrode
JPH0259563B2 (en)
US2985547A (en) Method for preparing coated bodies
WO2002082467A1 (en) Conductor compositions and the use thereof
TWM562487U (en) Conductive terminal material and resistor
JPH07286148A (en) Electrically-conductive adhesive for electronic material
JPS598208A (en) Method of producing high thermoconductive glass
JPS60202945A (en) Heat dissipating substrate
JP2543167B2 (en) Conductive resin composition
JPS59128223A (en) Manufacture of high heat-conductive glass
JP3433260B2 (en) Metallized substrate and manufacturing method thereof
JPS58213671A (en) Manufacture of high heat transmission ceramics
JPH01218089A (en) Manufacture of surface conductive ceramic substrate