JPS58213671A - Manufacture of high heat transmission ceramics - Google Patents

Manufacture of high heat transmission ceramics

Info

Publication number
JPS58213671A
JPS58213671A JP57097373A JP9737382A JPS58213671A JP S58213671 A JPS58213671 A JP S58213671A JP 57097373 A JP57097373 A JP 57097373A JP 9737382 A JP9737382 A JP 9737382A JP S58213671 A JPS58213671 A JP S58213671A
Authority
JP
Japan
Prior art keywords
water
raw material
dispersion
mixing
nonionic surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57097373A
Other languages
Japanese (ja)
Other versions
JPS6222941B2 (en
Inventor
安藤 汀
沢木 昭
伊藤 幸昭
隆史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP57097373A priority Critical patent/JPS58213671A/en
Publication of JPS58213671A publication Critical patent/JPS58213671A/en
Publication of JPS6222941B2 publication Critical patent/JPS6222941B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は熱伝導率を顕著に改善し、しかも高絶縁性を保
持するセラミックスの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ceramics that significantly improves thermal conductivity and maintains high insulation properties.

例えば、高アルζす磁器の薄板からなるプリント配線基
板は、近年電子回路の実装密度の上昇に伴なって発熱密
度も大きくなって来たため熱放散の高い材料が強く要望
されているが、比較的廉価で高い熱伝導率を示す理由に
よって般用される高アルミナ磁器の場合も量産面から上
限とされるり5!!チの高純度品においても0.07c
al/aa−sea・℃程度に止tシ、上記の要望を満
たすことができなかった。
For example, printed wiring boards made of thin plates of high-aluminum porcelain have had higher heat dissipation density in recent years as the mounting density of electronic circuits has increased, so there is a strong demand for materials with high heat dissipation. Even in the case of high alumina porcelain, which is commonly used because it is inexpensive and exhibits high thermal conductivity, there is an upper limit for mass production. ! 0.07c even for high purity products
However, the above requirements could not be met.

本発明は上記プリント配線基板を初め、各種セラミック
スの絶縁抵抗をさして低下させることなく、熱伝導率を
顕著に改善した高熱伝導性セラミックスの製造法を確立
したもので、以下実施例と共にその詳細を説明する。
The present invention has established a method for producing highly thermally conductive ceramics that significantly improves thermal conductivity without significantly reducing the insulation resistance of various types of ceramics, including the above-mentioned printed wiring boards. explain.

実施例1 (イ)アルミナゾル(#コO0,アルミナ含有率ioチ
9日産化学)   /301 0aCO3(市販品)平均粒径0.コp      O
,コfMgCOs (市販品)平均粒径o、iμ   
  o、ty無水けい酸(市販品)平均粒径0.3μ 
 0./fからなるセラミックス原料の微粉末(第1の
原料粉末)に 非イオン性界面活性剤(ノニオンE−230゜HLB価
tzs、日本油脂)仏!2 水                       コ
ア40 ccを配合、マグネチツクスターラによって混
合して第1の分散液%を作る。
Example 1 (a) Alumina sol (#koO0, alumina content iochi9 Nissan Chemical) /301 0aCO3 (commercial product) average particle size 0. Cop O
, cofMgCOs (commercial product) average particle size o, iμ
o, ty silicic anhydride (commercial product) average particle size 0.3μ
0. A nonionic surfactant (Nonion E-230° HLB value tzs, NOF) is added to the ceramic raw material fine powder (first raw material powder) consisting of /f! 2 Blend 40 cc of water core and mix by magnetic stirrer to make the first % dispersion.

(ロ)Fears (市販品、平均粒径0.jp)  
   #JfMoss  (市販品、平均粒径0.jp
)     7JIFからなる無機質材料の微粉末(第
コの原料粉末)に ポリエチレンオキサイド (水溶性粒子結合剤)     /f 水                     41−
10 ccを配合、同じくマグネチツクスターラによっ
て混合して第2の分散液霜を作シ、 (ハ)四塩化エチレン(非水溶性の溶媒)  /#6O
f非イオン性界面活性剤(OP−rob。
(b) Fears (commercial product, average particle size 0.jp)
#JfMoss (commercial product, average particle size 0.jp
) Polyethylene oxide (water-soluble particle binder) /f water 41-
10 cc was mixed using the same magnetic stirrer to create a second dispersion frost. (c) Ethylene tetrachloride (water-insoluble solvent) / #6O
f Nonionic surfactant (OP-rob.

HI、B価仏3、日本油脂)   Ffの両者を前と同
様マグネチツクスターラによって混合して非水溶媒0を
作シ、 に)上記0と鵬を攪拌し乍ら温合し、非イオン性界面活
性剤によって第2の原料粉末を水に分散させたものを非
水溶媒中で乳化し、無数のW2塊がθ中に分散してなる
W2−〇エマルジョンを作る。
HI, B value 3, Nippon Oil & Fats) Ff are mixed using a magnetic stirrer as before to make non-aqueous solvent 0. The second raw material powder is dispersed in water using a surfactant and then emulsified in a non-aqueous solvent to create a W2-〇 emulsion in which countless W2 lumps are dispersed in θ.

(ホ)W2−0工!ルジヨンと上記児を攪拌し乍ら混合
し、これらW2−0エマルジヨンと第1の分散液Wiに
配合されたHLB価の異なる非イオン性界面活性剤によ
って■−0−Wt複合エマルジョンを作る。
(E) W2-0 construction! The W2-0 emulsion and the above-mentioned components are mixed with stirring, and a -0-Wt composite emulsion is prepared using the W2-0 emulsion and a nonionic surfactant having a different HLB value, which is blended into the first dispersion Wi.

この% −0−%複合エマルジ目ンは、第1の分散液W
中に、非水溶媒0によって被覆された塊状の第2の分散
液W2が分散している泥漿状を呈した。
This %-0-% composite emulsion consists of the first dispersion W
The second dispersion W2 coated with the non-aqueous solvent 0 was dispersed in the form of a slurry.

(へ)上記泥漿状の%−〇−穎複合エマルジョンをドク
ターブレード法によって成形した。
(f) The slurry-like %-0-glum composite emulsion was molded by a doctor blade method.

(ト)この成形品を露点J0℃の水素雰囲気中において
14!20℃、1時間保持して焼成しj o11+1 
Xj OHx O,6m Otlh 結晶t” 11 
タ。
(G) This molded product was held and fired at 14!20°C for 1 hour in a hydrogen atmosphere with a dew point of J0°C.
Xj OHx O,6m Otlh Crystalt” 11
Ta.

焼結品は粉末冶・令状に焼結され九Feと勤の微粒子か
らなるaO〜601tの無数の多面体が膜厚4!〜7μ
前後の焼結されたアルミナの絶縁層によって強固に結合
した緻密な断面形状を呈した。
The sintered product is sintered using powder metallurgy and is made up of countless polyhedrons of aO to 601t consisting of fine particles of 9-Fe and Zinc with a film thickness of 4! ~7μ
It had a dense cross-sectional shape that was firmly bonded by the front and rear sintered alumina insulating layers.

このようにして得た焼結品の緒特性を測定した結果を第
1表に示す。
Table 1 shows the results of measuring the properties of the sintered product thus obtained.

上表から、本発明の上記実施例によって得られた焼結品
は、従来の高純度(271%)アルミナ磁器に比して、
懸念された絶縁抵抗の低下を無視しうる程度に止め、目
的とする熱伝導率を格段と上昇させ、特に高い熱放散性
が要求される前に述べ九プリント配線基板を対象とした
場合、従来量も優れたものとされる鉄板にガラスを焼付
けたホーロー基板の熱伝導率0./12&しら・sea
・℃に対してtaO@も高く、電子回路の実装密度を格
段と高めることができる。
From the above table, it can be seen that the sintered product obtained by the above embodiment of the present invention has a
It suppresses the feared decrease in insulation resistance to a negligible level and significantly increases the target thermal conductivity, making it ideal for printed wiring boards that require particularly high heat dissipation. The thermal conductivity of the enamel board, which is made by baking glass onto an iron plate, is said to be excellent in terms of quantity and quality. /12 & shira・sea
・TaO@ is also high relative to °C, and the packaging density of electronic circuits can be significantly increased.

なお、上記実施例1においては第1の原料粉末としてア
ルミナゾルに鉱化剤としてCaCO5*MgCO3,5
iOzの微量を配合したが、これらの一部または全部を
ステアリン酸カルシウム、ステアリン酸マグネシウム、
けい酸エチル等非水溶性有機化合物に代えると共に非水
溶媒Oに配合することによって該非水溶媒の機能を高め
、かつ焼成過程においてCaO−MgO−Sing系ガ
ラスを生成して焼結され九Fe、Moの微粉末と、これ
を被覆するアルミナの絶縁層の密着性を更に高めること
かでき、また第1の分散液Wにメチルセルp−ス等水溶
性の粒子結合剤の微量(水に対して0.3−以下)を添
加することによって噴霧乾燥によって造粒された!N粒
の表面を被覆するゲル状のアルミナ微粉末からなる薄層
を硬化して取扱いを容易とし、上記非水溶媒0に対して
同じく非水溶性の粒子結合剤としてエチルセルロース等
の微量を添加することも有効である。
In addition, in the above Example 1, CaCO5*MgCO3,5 was added as a mineralizer to alumina sol as the first raw material powder.
Although a small amount of iOz was added, some or all of these were added to calcium stearate, magnesium stearate,
By replacing it with a water-insoluble organic compound such as ethyl silicate and blending it with the non-aqueous solvent O, the function of the non-aqueous solvent is enhanced, and in the sintering process, a CaO-MgO-Sing system glass is produced and sintered with nine Fe, It is possible to further improve the adhesion between the Mo fine powder and the alumina insulating layer covering it. Granulated by spray drying by adding 0.3- or less! A thin layer of gel-like alumina fine powder covering the surface of the N grains is hardened to make handling easier, and a trace amount of ethyl cellulose or the like is added as a water-insoluble particle binder to the non-aqueous solvent 0. It is also effective.

実施例コ フォルステライト磁器(4電0−8iOz )原料微粉
末平均粒径0.!μ   lOf非イオン性界面活性剤
(ノイグンHA −770、HLB価17、第一工業製
薬)  ≠2水                  
    コ000 ccの混合物からなる第1の分散液
W1と、Fe2Og (市販品、平均粒径0.3fi)
    //3ftポリビニルアルコール(テン力B−
or)(水溶性粒子結合剤)    /1 水                        
’!’00 eeの混合物からなる第コの分散液希と、 二塩化エチレン(非水溶性の溶媒)  タタoy非イオ
ン性界面活性剤(ノイゲンEA−ss、HLB価≠1第
一工業製薬)    11の混合物からなる非水溶媒0
の3者によって前例と同様、泥漿状の% −0−%エマ
ルジ目ンを作シ、石膏型による鋳込成形を行った後、露
点−2j℃の水素雰囲気中において14410℃、0.
1時間保持の条件で焼成して得たり■φX/mtの焼結
品は、金属鉄の微粒子の焼結体からなるjo〜60九数
の多面体が、jμ前後の7オルステライト磁器の絶縁層
によって強固に結合した断面形状を呈した。
Example Coforsterite porcelain (4 electric 0-8 iOz) Raw material fine powder Average particle size 0. ! μlOf nonionic surfactant (Noigun HA-770, HLB value 17, Daiichi Kogyo Seiyaku) ≠2 water
First dispersion W1 consisting of a mixture of 000 cc of Fe2Og (commercial product, average particle size 0.3fi)
//3ft polyvinyl alcohol (Ten force B-
or) (water-soluble particle binder) /1 water
'! '00 ee diluted dispersion consisting of a mixture of ethylene dichloride (a water-insoluble solvent) and a nonionic surfactant (Noogen EA-ss, HLB value≠1 Daiichi Kogyo Seiyaku) 11. Non-aqueous solvent consisting of a mixture 0
Similar to the previous example, a slurry-like %-0-% emulsion was made by three people, and after casting in a plaster mold, it was heated to 14410°C and 0.5°C in a hydrogen atmosphere with a dew point of -2j°C.
A sintered product of ■φX/mt obtained by firing under conditions of holding for 1 hour consists of a polyhedron of jo to 609 made of a sintered body of fine particles of metallic iron, and an insulating layer of 7 orsterite porcelain of around jμ. It exhibited a cross-sectional shape that was strongly connected.

この焼結品は第2表の通シ、フォルステライト磁器の特
性にさして悪影響をもたらすことなく熱伝導率を大巾に
改善する著効を示した。
As shown in Table 2, this sintered product showed remarkable effects in greatly improving the thermal conductivity of forsterite porcelain without having any adverse effects on its properties.

上記実施例1およびコは共にプリント配線基板を対象と
したが、本発明は実施例コの通り鋳込成型をも可能とす
るから絶縁抵抗を初めセラミックスの緒特性と共に特に
高い熱放散性を要求されるICパッケージ等厚肉のセラ
ミックスを初め板状体に限らず円筒棒等の製造に適用す
ることができる。
Embodiments 1 and 2 above are both intended for printed wiring boards, but since the present invention can also be cast as in embodiment 1, it requires particularly high heat dissipation properties as well as insulation resistance and other properties of ceramics. The present invention can be applied to the production of thick-walled ceramics such as IC packages, etc., not only to plate-shaped bodies but also to cylindrical rods and the like.

また、高絶縁性の第1の原料微粉末として特に高い熱伝
導性を有するベリリアを採用することによって更に熱放
散性を高めることが可能であυ、高熱伝導性の第2の原
料微粉末としては実施例において示したFe20s m
 Mo5s等焼成によって金属化する酸化物に限らず他
の化合物、あるいは金属を直接使用してもよく、また非
酸化性雰囲気中において安定h stc 、 BN等の
炭化物。
In addition, it is possible to further improve heat dissipation by using beryllia, which has particularly high thermal conductivity, as the highly insulating first raw material fine powder, and as the highly thermally conductive second raw material fine powder. is Fe20s m shown in the example
In addition to oxides that are metallized by firing such as Mo5s, other compounds or metals may be used directly, and carbides such as h stc and BN that are stable in a non-oxidizing atmosphere.

窒化物類も使用できるが、これら第1と第2の原料微粉
末は熱膨張係数および焼結温度が近(以□  する材料
の組合せが好ましい。
Although nitrides can also be used, the first and second raw material fine powders have similar coefficients of thermal expansion and sintering temperatures (the following combinations of materials are preferred).

しかして、上記第1の原料微粉末によって形成される絶
縁層は2μ程度の極めて薄い膜厚においても充分固有の
特性を示し、厚くした場合も膜厚に応じた熱放散性を示
すのでこの面からは特に限定されないが3〜tμ程度が
好ましく、所望の膜厚に応じて第1の原料微粉末および
第2の原料微粉末の配合割合が定められる。
Therefore, the insulating layer formed from the above-mentioned first raw material fine powder exhibits sufficient specific characteristics even at an extremely thin film thickness of about 2 μm, and even when it is thickened, it exhibits heat dissipation properties according to the film thickness. Although not particularly limited, it is preferably about 3 to tμ, and the blending ratio of the first raw material fine powder and the second raw material fine powder is determined depending on the desired film thickness.

次に、満足すべき%−0−Wlエマルジョンを製造する
ため好ましい条件は、先ず県とOの含量は癌に対して等
量乃至//参(容量比、以下同様)、W2とOの関係も
W2がOに対して等量乃至//IIであシ、更にWl中
の界面活性剤は水に対してo、i−o、z%、0中の界
面活性剤は非水溶性の溶剤に対してO,コ〜コ% 、%
中の第一の原料微粉末は水に対して2〜4%である。
Next, the preferable conditions for producing a satisfactory %-0-Wl emulsion are: first, the content of O and O is equal to or less than the cancer (volume ratio, hereinafter the same), and the relationship between W2 and O is as follows: Also, W2 is equivalent to //II with respect to O, and furthermore, the surfactant in Wl is o, io, z% with respect to water, and the surfactant in 0 is a water-insoluble solvent. For O, Co ~ Co%, %
The first raw material fine powder inside is 2 to 4% based on water.

なお、鬼および0に配合する非イオン性界面活性剤は、
前に述べた通シ、それらのHLB価によって前者は水中
に油を加えて乳化し、後者は油中に油を加えて乳化する
ためのもので前者光に配合する非イオン性界面活性剤の
HLB価は13以上、後者Oに配合する非イオン性界面
活性剤のHLB価は!以下である。
The nonionic surfactants added to Oni and 0 are:
As mentioned above, depending on their HLB value, the former is for adding oil to water and emulsifying it, the latter is for adding oil to oil and emulsifying it, and the former is for adding a nonionic surfactant to the light. The HLB value is 13 or more, and the HLB value of the nonionic surfactant added to the latter O! It is as follows.

手続補正書(自発) 58年 ら月 6日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和57年特許願第97373号 2、発明の名称 高熱伝導性セラミックスの製造法 3、補正をする者 事件との関係  特許出願人 住 所  名古屋市瑞穂区高辻町14番18号名 称(
454)   日本特殊陶、業株式会社代表者  小川
修法 4、代理人 住 所   郵便番号 467 氏 名  名古屋市瑞穂区高田町4町目3番3号5、補
正の対象 1、明細書第5頁第13行目中、及び第9頁第11行目
中、 「無数の多面体」を「無数の塊状体」に訂正します。
Procedural amendment (voluntary) dated May 6, 1958 Kazuo Wakasugi, Commissioner of the Patent Office1, Indication of the case: Patent Application No. 97373 of 1982, Title of the invention: Process for manufacturing highly thermally conductive ceramics, 3, Amendments made. Relationship with the Patent Case Patent Applicant Address 14-18 Takatsuji-cho, Mizuho-ku, Nagoya Name (
454) NGK Spark Plug Co., Ltd. Representative: Shuho Ogawa 4, Agent Address: Postal Code: 467 Name: 4-3-3-5, Takada-cho, Mizuho-ku, Nagoya City, Subject of Amendment 1, Specification, Page 5 In line 13 and in line 11 of page 9, ``innumerable polyhedra'' has been corrected to ``innumerable lumps.''

2、同第7頁第9行目中、 「140%」を「70%」に訂正します。2, page 7, line 9, Correct "140%" to "70%".

3、同第8頁第4行目〜6行目中、 「によって噴霧乾燥によって造粒された顆粒の表面を被
覆するゲル状のアルミナ微粉束からなる薄層を硬化して
取扱いを容易とし」を削除します。
3, page 8, lines 4 to 6, "The thin layer of gel-like alumina fine powder bundles that coat the surface of the granules granulated by spray drying is hardened to facilitate handling." Delete.

4、同第12頁第4行目〜最終行を下記に訂正します。4. The 4th to last line of page 12 will be corrected as follows.

「所望の膜厚に応じて第1の原料微粉末及び第2の原料
微粉末の配合割合が定められる。
“The blending ratio of the first raw material fine powder and the second raw material fine powder is determined according to the desired film thickness.

次に、1足すべきW2−O−W、エマルジョンを製造す
るため好ましい条件は、先ずW2とOの合量はWlに対
して等量及至1/4(容量比、以下同様)、Wiと0の
関係もW2がOに対して等量及至1/4であり、また第
1及び第2の原料粉末はそれぞれ第1の分散液W1及び
−第2の分散液W2中に、スラリー状として分散させる
よう水に対する配合割合が決定されるが、両者共金量中
10〜40重量%程度である。更に第1の分散液W、中
の界面活性剤は水記対して0.1〜0.5重量%の範囲
であり、非水溶媒0中の界面活性剤は非水溶性の溶剤に
対して0.2〜2重量%である。
Next, W2-O-W should be added by 1, and the preferable conditions for producing an emulsion are: First, the total amount of W2 and O is equal to Wl to 1/4 (capacity ratio, the same applies hereinafter), Wi and 0 The relationship between W2 and O is equal to 1/4, and the first and second raw material powders are dispersed in the form of a slurry in the first dispersion W1 and the -second dispersion W2, respectively. The blending ratio with respect to water is determined so that the amount of metal is about 10 to 40% by weight of both metals. Further, the surfactant in the first dispersion W is in the range of 0.1 to 0.5% by weight based on the water content, and the surfactant in the non-aqueous solvent is in the range of 0.1 to 0.5% by weight based on the water-insoluble solvent. It is 0.2 to 2% by weight.

なお、Wl及び0に配合する非イオン性界面活性剤は、
前に述べたようにそれらのHLB価によって前者は水中
に油を加えて乳化し、後者は油中に水を加えて乳化する
ためのもので前者W、に配合する非イオン性界面活性剤
のHLB価は15以上、後者Oに配合する非イオン性界
面活性剤のHLB価は5以下とすることがそれぞれ好ま
しい。」 以上 389−
In addition, the nonionic surfactant added to Wl and 0 is as follows:
As mentioned earlier, depending on their HLB value, the former is for adding oil to water and emulsifying it, and the latter is for adding water to oil and emulsifying it. It is preferable that the HLB value is 15 or more, and the HLB value of the nonionic surfactant added to the latter O is 5 or less. ” Above 389-

Claims (1)

【特許請求の範囲】 (イ)高絶縁性を有するセラミックス原料の微粉末を第
1の原料粉末とし、辷れに非イオン性界面活性剤と水と
を加えて混合して第1の分散液雀を作る工程。 (ロ)上18第1の原料粉末よシも高い熱伝導率を有す
る、金属、焼成によって金属化する金属の化合物、炭化
物、窒化物等無機質材料から選ばれた1種以上の微粉末
を第一の原料粉末とし、これに水溶性の粒子結合剤と水
とを加えて混合して第2の分散液W2を作る工程。 (ハ)非水溶性の溶剤と、(イ)の非イオン性界面活性
剤よ)もHLB価の低い非イオン性界面活に)上記W2
を0と混合、乳化してW* −0エマルジヨンを作る工
程。 (へ)上記W2−0工iルジヨンとWlを混合、県中に
馬−0を分散させた泥漿状の複合エマルジ目ン%−〇−
W1を作る工程。 (へ)上記泥漿状複合エマルジ目ン% −0−Wiを用
いて所望の素体をドクターブレード法または鋳込成屋法
によって成形する工程。 (ト)  非酸化性雰囲気中において焼結する工程。 からなる高熱伝導性セラミックスの製造方法。
[Claims] (a) A fine powder of a ceramic raw material having high insulating properties is used as a first raw material powder, and a nonionic surfactant and water are added and mixed to form a first dispersion. The process of making a sparrow. (b) Above 18, the first raw material powder also has one or more fine powders selected from inorganic materials such as metals, metal compounds that can be metallized by firing, carbides, and nitrides, which have high thermal conductivity. A step of preparing a second dispersion W2 by adding and mixing a water-soluble particle binder and water to the first raw material powder. (C) Water-insoluble solvent and (B) nonionic surfactant) are also nonionic surfactants with low HLB value) W2 above
The process of mixing and emulsifying W*-0 with 0 to create a W*-0 emulsion. (f) A slurry-like composite emulsion made by mixing the above W2-0 process and Wl and dispersing Uma-0 throughout the prefecture%-〇-
Process of making W1. (f) A step of molding a desired element body using the slurry-like composite emulsion % -0-Wi by a doctor blade method or a casting process. (g) A process of sintering in a non-oxidizing atmosphere. A method for producing highly thermally conductive ceramics consisting of
JP57097373A 1982-06-07 1982-06-07 Manufacture of high heat transmission ceramics Granted JPS58213671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57097373A JPS58213671A (en) 1982-06-07 1982-06-07 Manufacture of high heat transmission ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57097373A JPS58213671A (en) 1982-06-07 1982-06-07 Manufacture of high heat transmission ceramics

Publications (2)

Publication Number Publication Date
JPS58213671A true JPS58213671A (en) 1983-12-12
JPS6222941B2 JPS6222941B2 (en) 1987-05-20

Family

ID=14190701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57097373A Granted JPS58213671A (en) 1982-06-07 1982-06-07 Manufacture of high heat transmission ceramics

Country Status (1)

Country Link
JP (1) JPS58213671A (en)

Also Published As

Publication number Publication date
JPS6222941B2 (en) 1987-05-20

Similar Documents

Publication Publication Date Title
US4613455A (en) Ceramic heater and a method for its production
US5518969A (en) Process for producing low shrink ceramic composition
JPH0817217B2 (en) Copper-based sintered paste and multilayer ceramic packages
JPH04254477A (en) Glass-aluminum nitride composite material
JPH0450107A (en) Aluminum nitride granule and production thereof
US4381198A (en) Ceramic metallizing ink
US5346720A (en) Palladium thick film resistor containing boron nitride
US5637261A (en) Aluminum nitride-compatible thick-film binder glass and thick-film paste composition
US3556843A (en) Metallized ceramic and method and composition therefor
JPS58213671A (en) Manufacture of high heat transmission ceramics
JPS58204863A (en) Manufacture of hightemperature heat conductive ceramics
JPS598208A (en) Method of producing high thermoconductive glass
JPH02221162A (en) Production of aluminum nitride-based sintered body
JPH0261408B2 (en)
JPS6221740B2 (en)
JPS6243956B2 (en)
JPS6128629B2 (en)
US3962487A (en) Method of making ceramic semiconductor elements with ohmic contact surfaces
JPS59207883A (en) Manufacture of aluminum nitride sintered body
JPH01197355A (en) Inorganic sintered body and production thereof
JPS6121959A (en) Manufacture of composite sintered body
JPH02212363A (en) Production of sintered compact of aluminum nitride
JPH03218977A (en) Production of aluminum nitride sintered body
JPS60202607A (en) Thermal conductive filler
JPS5891059A (en) Composite ceramic sintered body and manufacture