JP2006022130A - Thermoconductive resin composition and method for producing the same - Google Patents

Thermoconductive resin composition and method for producing the same Download PDF

Info

Publication number
JP2006022130A
JP2006022130A JP2004198877A JP2004198877A JP2006022130A JP 2006022130 A JP2006022130 A JP 2006022130A JP 2004198877 A JP2004198877 A JP 2004198877A JP 2004198877 A JP2004198877 A JP 2004198877A JP 2006022130 A JP2006022130 A JP 2006022130A
Authority
JP
Japan
Prior art keywords
component
resin composition
temperature
melting point
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004198877A
Other languages
Japanese (ja)
Inventor
Wataru Kosaka
亘 小坂
Toru Iga
徹 伊賀
Tsuneo Kamiyahata
恒雄 紙谷畑
Yoshikazu Inada
義和 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Nippon Kagaku Yakin Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Nippon Kagaku Yakin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Nippon Kagaku Yakin Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004198877A priority Critical patent/JP2006022130A/en
Publication of JP2006022130A publication Critical patent/JP2006022130A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition, excellent in thermoconductivity, also excellent in the total balance of dimensional stability, flowing property, etc., and capable of being used at a low cost for all purposes. <P>SOLUTION: This thermoconductive resin composition contains the following (a) to (e) components. (a) A crystalline resin having ≥200°C melting point, (b) A low melting alloy having its solidus temperature as lower than the melting point of the crystalline resin and its liquidus temperature as higher than the melting point by ≥100°C. (c) A metal or alloy powder having ≥400°C melting point or solidus temperature and good compatibility with the (b) component. (d) Inorganic powder having a poor compatibility with the (b) component and ≥20 W/mK thermoconductivity. And (e) a fibrous reinforcing material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱伝導性樹脂組成物に関する。さらに詳しくは、高い熱伝導性と成形品の寸法精度とを兼ね備え、しかも、力学強度と流動性とのバランスに優れた熱伝導性樹脂組成物及びこの組成物の製造方法に関する。   The present invention relates to a heat conductive resin composition. More specifically, the present invention relates to a heat conductive resin composition having both high thermal conductivity and dimensional accuracy of a molded product, and having an excellent balance between mechanical strength and fluidity, and a method for producing the composition.

近年のエレクトロニクス技術の発達は、OA機器の小型化を可能とし、また、金属材料から樹脂材料への転換を促進させている。機器の小型化に伴い、機器内の発熱に対する耐熱性の向上と共に、熱伝導性の高い材料が強く求められている。
しかるに、金属と比べると、樹脂自体は熱伝導率が低く、熱伝導性と耐熱性、成形性と材料強度に優れている熱可塑性樹脂材料はないのが現状である。
Recent developments in electronics technology have made it possible to reduce the size of office automation equipment, and have promoted the transition from metal materials to resin materials. Along with the downsizing of devices, there is a strong demand for materials with high thermal conductivity as well as improved heat resistance against heat generation in the devices.
However, compared to metals, the resin itself has a low thermal conductivity, and there is no thermoplastic resin material that is excellent in thermal conductivity and heat resistance, moldability and material strength.

樹脂材料に熱伝導性を付与するため、熱伝導率の大きい充填材を配合することが考えられている。
具体的には、熱可塑性樹脂に熱伝導率が0.05cal/cm・sec・℃以上で、特定粒径の金属/金属酸化物粉末を60重量%以上添加してなる組成物が開示されている(例えば、特許文献1参照。)。
しかしながら、充填量の割に熱伝導率の向上効果が低く、最高でも2.8cal/cm・sec・℃(約1.1W/mK)程度と、樹脂単体の5倍程度である。また、過剰の充填材の配合は急激な流動性及び材料強度の低下をもたらし、現実的な使用に耐えない。
In order to impart thermal conductivity to the resin material, it is considered to add a filler having a high thermal conductivity.
Specifically, a composition comprising a thermoplastic resin having a thermal conductivity of 0.05 cal / cm · sec · ° C. or more and a metal / metal oxide powder having a specific particle size of 60% by weight or more is disclosed. (For example, refer to Patent Document 1).
However, the effect of improving the thermal conductivity is low with respect to the filling amount, and the maximum is about 2.8 cal / cm · sec · ° C. (about 1.1 W / mK), which is about 5 times that of the resin alone. Moreover, the compounding of an excessive filler brings about a rapid fluidity and a decrease in material strength, and cannot withstand practical use.

また、金属酸化物と繊維強化材を併用した組成物を用いた放熱板が開示されている(例えば、特許文献2参照。)。
しかしながら、特許文献1の技術を基礎とする用途限定発明であり、組成物自体に新規性は乏しい。
Moreover, the heat sink using the composition which used the metal oxide and the fiber reinforcement together is disclosed (for example, refer patent document 2).
However, the invention is limited to applications based on the technology of Patent Document 1, and the composition itself is not novel.

他に、黒鉛化率が高い特定の炭素繊維(と黒鉛粉末)を配合して熱伝導率を向上させたポリアリーレンスルフィド(PAS)組成物が開示されている(例えば、特許文献3〜5参照。)。
しかるに、黒鉛粉末は特許文献1と同様の思想に基づくもので、過剰な充填は流動性と強度の低下を引き起こす。
黒鉛化率の高い炭素繊維(CF)の添加はこれを補うものであり、繊維形状により熱伝導性の向上効率は若干高くなっている。しかし、4W/mK以上の高い熱伝導率を得るには、黒鉛化率の高いCFの配合を多くする必要があり、その結果、成形収縮率の異方性が大きくなり成形品に反りが発生しやすくなる。
In addition, polyarylene sulfide (PAS) compositions in which specific carbon fibers (and graphite powder) having a high graphitization rate are blended to improve thermal conductivity are disclosed (for example, see Patent Documents 3 to 5). .)
However, the graphite powder is based on the same idea as in Patent Document 1, and excessive filling causes a decrease in fluidity and strength.
Addition of carbon fiber (CF) having a high graphitization rate compensates for this, and the efficiency of improving thermal conductivity is slightly higher depending on the fiber shape. However, in order to obtain a high thermal conductivity of 4 W / mK or more, it is necessary to increase the blending of CF with a high graphitization rate. As a result, the anisotropy of the molding shrinkage ratio increases and the molded product warps. It becomes easy to do.

固体フィラー配合系の欠点を解消する技術としては、例えば、熱可塑性樹脂に、樹脂の可塑化温度で溶融しうる低融点金属と、低融点金属を樹脂中に分散させるための金属フィラーを添加してなる高熱伝導性樹脂組成物が開示されている(例えば、特許文献6,7参照。)。
しかしながら、本方法では、金属成分の配合量を多くしても流動性の低下は防げるが、配合量を増加して熱伝導率を高くした場合、材料の密度が極端に高くなるため、軽量化の要求が満たされなかった。また、固体金属フィラーを内包する溶融金属相が凝集しやすいため、成形品の外観不良を引き起こすと共に、連続相を形成する溶融金属により、耐熱性が低下する等の問題が発生するおそれがあった。
As a technique for solving the disadvantages of the solid filler compounding system, for example, a low melting point metal that can be melted at the plasticizing temperature of the resin and a metal filler for dispersing the low melting point metal in the resin are added to the thermoplastic resin. A high thermal conductive resin composition is disclosed (for example, see Patent Documents 6 and 7).
However, in this method, even if the amount of the metal component is increased, the fluidity can be prevented from decreasing, but if the amount is increased to increase the thermal conductivity, the material density becomes extremely high, so the weight is reduced. The request was not satisfied. In addition, since the molten metal phase enclosing the solid metal filler is likely to aggregate, the appearance of the molded product may be deteriorated, and the molten metal forming the continuous phase may cause problems such as a decrease in heat resistance. .

さらに、0.1〜5.0vol%の少量のカーボン系フィラーを添加した導電性樹脂組成物が開示され、黒鉛/炭素繊維が使用できることも開示されている(例えば、特許文献8参照。)。
しかるに、カーボン系フィラーは基本的に導電性の向上助剤として少量添加されるため、溶融金属相が凝集しやすいこと、及び高充填で耐熱性が低下する問題が依然残っていた。
Furthermore, a conductive resin composition to which a small amount of a carbon-based filler of 0.1 to 5.0 vol% is added is disclosed, and it is also disclosed that graphite / carbon fiber can be used (for example, see Patent Document 8).
However, since a small amount of carbon-based filler is basically added as a conductivity improving aid, there still remains a problem that the molten metal phase tends to aggregate and heat resistance is lowered due to high filling.

特開平5−86246号公報JP-A-5-86246 特開2001−151905号公報JP 2001-151905 A 特開平2−163137号公報JP-A-2-163137 特開平9−157403号公報JP-A-9-157403 特開2002−129015号公報JP 2002-129015 A 特開平6−196884号公報Japanese Patent Laid-Open No. 6-196684 特開2002−3829号公報JP 2002-3829 A 特開2002−212443号公報JP 2002-212443 A

本発明は上述の問題に鑑みなされたものであり、熱伝導性に優れ、しかも、寸法精度(精密成形性+耐熱安定性)、力学強度及び流動性の総合バランスにも優れ、かつ低コストで汎用的に使用することのできる樹脂組成物を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, has excellent thermal conductivity, and is excellent in overall balance of dimensional accuracy (precision moldability + heat stability), mechanical strength and fluidity, and at low cost. It aims at providing the resin composition which can be used universally.

上記の目的を達成するため、本発明者らが鋭意研究をした結果、特定の結晶性樹脂に、固体状態である金属粉末、無機質粉末及び特定の融解特性を有する低融点合金とを配合して溶融混練することにより、金属成分(高融点金属+低融点金属)の配合量が少なく、密度が小さいにも関わらず、非常に高い熱伝導率を発現できることを見出した。
即ち、本発明によれば、以下の熱伝導性樹脂組成物、熱伝導性樹脂組成物の製造方法及び各種成形品が提供される。
[1] 以下の(a)〜(e)成分を、以下の(i)〜(v)に示す配合量含む熱伝導性樹脂組成物。
[成分]
(a) 融点が200℃以上の結晶性樹脂
(b) 固相線温度が前記結晶性樹脂の融点以下であり、液相線温度が該融点よりも100℃以上高い低融点合金
(c) 融点又は固相線温度が400℃以上であり、前記(b)成分との相溶性が良好である金属又は合金粉末
(d) 前記(b)成分と相溶性が悪く、熱伝導率が20W/mK以上である無機粉末
(e) 繊維強化材
[配合量]
(i) 前記結晶性樹脂(a):40〜60vol%
(ii) 前記無機粉末(d) :10〜30vol%
(iii) 前記繊維強化材(e):10〜25vol%
(iv) 前記結晶性樹脂(a)と、前記低融点合金(b)と前記金属又は合金粉末(c)との和との体積比〔(a)/[(b)+(c)]〕:2.0〜30.0
(v) 前記低融点合金(b)と前記金属又は合金粉末(c)との体積比[(b)/(c)]:1.0〜4.0
In order to achieve the above object, as a result of intensive studies by the present inventors, a specific crystalline resin is blended with a metal powder in a solid state, an inorganic powder, and a low melting point alloy having specific melting characteristics. It has been found that by melt-kneading, the amount of the metal component (high melting point metal + low melting point metal) is small and the density is low, but very high thermal conductivity can be expressed.
That is, according to the present invention, the following heat conductive resin composition, a method for producing the heat conductive resin composition, and various molded articles are provided.
[1] A thermally conductive resin composition containing the following components (a) to (e) in the amounts shown in the following (i) to (v).
[component]
(A) Crystalline resin having a melting point of 200 ° C. or higher (b) Low melting point alloy whose solidus temperature is lower than the melting point of the crystalline resin and whose liquidus temperature is 100 ° C. or higher higher than the melting point (c) Alternatively, the metal or alloy powder having a solidus temperature of 400 ° C. or higher and good compatibility with the component (b) (d) The compatibility with the component (b) is poor and the thermal conductivity is 20 W / mK. Inorganic powder (e) fiber reinforcing material [blending amount]
(I) Crystalline resin (a): 40-60 vol%
(Ii) The inorganic powder (d): 10 to 30 vol%
(Iii) The fiber reinforcement (e): 10 to 25 vol%
(Iv) Volume ratio [(a) / [(b) + (c)]] of the crystalline resin (a) and the sum of the low melting point alloy (b) and the metal or alloy powder (c) : 2.0 to 30.0
(V) Volume ratio [(b) / (c)] of the low melting point alloy (b) and the metal or alloy powder (c): 1.0 to 4.0

[2] 前記(b)成分がSnを主成分とし、{Cu,Ni,Ag,Bi,Zn,Al,Mg}から選択される少なくとも一つの副成分を含む合金であり、前記(c)成分が{Cu,Ni,Zn,Al,Fe}から選択される少なくとも一つの金属又は合金であるに[1]記載の熱伝導性樹脂組成物。
[3] 前記(d)成分が{黒鉛,酸化アルミニウム,酸化マグネシウム,窒化アルミ,窒化ホウ素}から選択される少なくとも一つの成分で[1]又は[2]に記載の熱伝導性樹脂組成物。
[2] The component (b) is an alloy containing Sn as a main component and including at least one subcomponent selected from {Cu, Ni, Ag, Bi, Zn, Al, Mg}, and the component (c) The heat conductive resin composition according to [1], wherein is at least one metal or alloy selected from {Cu, Ni, Zn, Al, Fe}.
[3] The thermally conductive resin composition according to [1] or [2], wherein the component (d) is at least one component selected from {graphite, aluminum oxide, magnesium oxide, aluminum nitride, boron nitride}.

[4] 前記(a)成分が、溶融粘度(300℃、1200sec−1)50Pa・sec以下であるポリフェニレンスルフィド樹脂であり、前記(b)成分がSnを主成分とし、{Cu,Ni,Ag,Bi,Zn}から選択される少なくとも一つの副成分を含む合金であり、前記(c)成分が{Cu,Ni,Zn}から選択される少なくとも一つの金属又は合金の粉末であり、前記(d)成分が、黒鉛及び/又は球状酸化アルミナである[1]に記載の熱伝導性樹脂組成物。
[5] 前記(d)成分が、エポキシ樹脂で表面処理された黒鉛、及び/又は有機シランで表面処理された球状酸化アルミナである[4]に記載の熱伝導性樹脂組成物。
[6] 前記熱伝導性樹脂組成物の熱伝導率が4W/mK以上であり、曲げ破断強度が100MPa以上であり、荷重たわみ温度(低荷重)が200℃以上である[1]〜[5]のいずれかに記載の熱伝導性樹脂組成物。
[4] The component (a) is a polyphenylene sulfide resin having a melt viscosity (300 ° C., 1200 sec −1 ) of 50 Pa · sec or less, the component (b) is mainly composed of Sn, {Cu, Ni, Ag , Bi, Zn} is an alloy containing at least one subcomponent selected from the group (c), and the component (c) is a powder of at least one metal or alloy selected from {Cu, Ni, Zn}, d) The thermally conductive resin composition according to [1], wherein the component is graphite and / or spherical alumina oxide.
[5] The thermally conductive resin composition according to [4], wherein the component (d) is graphite surface-treated with an epoxy resin and / or spherical alumina oxide surface-treated with an organosilane.
[6] The thermal conductivity of the thermal conductive resin composition is 4 W / mK or more, the bending breaking strength is 100 MPa or more, and the deflection temperature (low load) is 200 ° C. or more [1] to [5 ] The heat conductive resin composition in any one of.

[7] [1]−[6]のいずれかに記載の熱伝導性樹脂組成物の製造方法であって、前記結晶性樹脂(a)、前記低融点合金(b)、前記金属又は合金粉末(c)、前記無機粉末(d)及び前記繊維強化材(e)を、以下の条件(1)〜(3)を満たす温度で溶融混練する工程を含む熱伝導性樹脂組成物の製造方法。
(1)前記(a)成分の結晶性樹脂を溶融する温度
(2)前記(b)成分の低融点合金の固相線温度以上の温度
(3)前記(b)成分の液相線温度より30℃以上低い温度
[7] A method for producing a thermally conductive resin composition according to any one of [1] to [6], wherein the crystalline resin (a), the low-melting point alloy (b), the metal or alloy powder (C) The manufacturing method of the heat conductive resin composition including the process of melt-kneading the said inorganic powder (d) and the said fiber reinforcement (e) at the temperature which satisfy | fills the following conditions (1)-(3).
(1) Temperature at which the crystalline resin of component (a) is melted (2) Temperature above the solidus temperature of the low melting point alloy of component (b) (3) From the liquidus temperature of component (b) Temperature lower than 30 ℃

[8] [1]〜[6]のいずれかに記載の熱伝導性樹脂組成物からなる成形品。
[9] [1]〜[6]のいずれかに記載の熱伝導性樹脂組成物からなる光ピックアップ装置用保持容器。
[10] [9]の光ピックアップ装置用保持容器と、光源と、光源の制御用ICと、対物レンズと、受光部とを含む光ピックアップ装置。
[11] [1]〜[6]のいずれかに記載の熱伝導性樹脂組成物からなる光半導体用保持容器。
[12] [1]〜[6]いずれかに記載の熱伝導性樹脂組成物からなる半導体用放熱容器。
[13] [1]〜[6]のいずれかに記載の熱伝導性樹脂組成物からなる軸受け。
[8] A molded article comprising the thermally conductive resin composition according to any one of [1] to [6].
[9] A holding container for an optical pickup device comprising the heat conductive resin composition according to any one of [1] to [6].
[10] An optical pickup device including the holding container for an optical pickup device according to [9], a light source, a control IC for the light source, an objective lens, and a light receiving unit.
[11] An optical semiconductor holding container comprising the thermally conductive resin composition according to any one of [1] to [6].
[12] A semiconductor heat dissipation container comprising the thermally conductive resin composition according to any one of [1] to [6].
[13] A bearing comprising the thermally conductive resin composition according to any one of [1] to [6].

本発明では、熱伝導性に優れ、しかも、寸法精度(精密成形性+耐熱安定性)、力学強度及び流動性の総合バランスにも優れ、かつ低コストで経済的なため、汎用的に使用することのできる熱伝導性樹脂組成物及びこの組成物の製造方法を提供できる。
また、この組成物からなる光ピックアップ保持容器や、この部品を用いた光ピックアップ装置、光半導体保持容器、軸受けを提供できる。
In the present invention, it is excellent in thermal conductivity, and has excellent overall balance of dimensional accuracy (precision moldability + heat resistance stability), mechanical strength and fluidity, and is economical and low cost. The heat conductive resin composition which can be performed, and the manufacturing method of this composition can be provided.
In addition, an optical pickup holding container made of this composition, an optical pickup device using this component, an optical semiconductor holding container, and a bearing can be provided.

以下、本発明の熱伝導性樹脂組成物を具体的に説明する。
本発明の熱伝導性樹脂組成物は、以下の(a)〜(e)成分を含む。
(a) 融点が200℃以上の結晶性樹脂
(b) 固相線温度が結晶性樹脂(a)の融点以下で、液相線温度がその融点よりも100℃以上高い低融点合金
(c) 融点又は固相線温度が400℃以上であり、(b)成分との相溶性が良好である金属又は合金粉末
(d) (b)成分と相溶性が悪く、熱伝導率が20W/mK以上である無機粉末
(e) 繊維強化材
Hereinafter, the heat conductive resin composition of this invention is demonstrated concretely.
The thermally conductive resin composition of the present invention includes the following components (a) to (e).
(A) Crystalline resin having a melting point of 200 ° C. or higher (b) Low melting point alloy (c) whose solidus temperature is lower than the melting point of the crystalline resin (a) and whose liquidus temperature is 100 ° C. higher than the melting point Metal or alloy powder having a melting point or a solidus temperature of 400 ° C. or higher and good compatibility with the component (b) (d) Incompatible with the component (b) and a thermal conductivity of 20 W / mK or higher Inorganic powder (e) Fiber reinforcement

本発明の組成物は、上記成分の混合物を溶融混練することで製造できる。上記成分を溶融混練すると、上記(c)と(d)成分は、(a)成分中にそれぞれ均質に分散する。(b)成分は相溶性の良い(c)成分と絡み合いながら、半溶融状態で分散していく。溶融混練を所定時間続けると、(b)成分は引き伸ばされながら、互いに結合してネットワークを形成する。このネットワークは、(d)成分の存在によって、より微細に形成される。また、(d)成分の存在によって、(b)成分の再凝集を防止できる。その結果、熱伝導経路が効率的に形成できるため、少ない金属量でも高い熱伝導率が得られる。しかも、この組成物を射出成形等、二次成形した場合、成形品表面に(b)成分がブリードアウトすることを抑制できるので、成形品の外観が良好となる。また、繊維強化材とも複合化できるため、荷重たわみ温度等の力学的な耐熱性を向上できる。
以下、各構成成分について説明する。
The composition of the present invention can be produced by melt-kneading a mixture of the above components. When the components are melt-kneaded, the components (c) and (d) are uniformly dispersed in the component (a). The component (b) is dispersed in a semi-molten state while being entangled with the component (c) having good compatibility. When the melt-kneading is continued for a predetermined time, the component (b) is stretched and bonded to each other to form a network. This network is formed more finely due to the presence of the component (d). Further, due to the presence of the component (d), reaggregation of the component (b) can be prevented. As a result, since the heat conduction path can be formed efficiently, high heat conductivity can be obtained even with a small amount of metal. In addition, when the composition is subjected to secondary molding such as injection molding, it is possible to suppress bleeding out of the component (b) on the surface of the molded product, so that the appearance of the molded product is improved. Moreover, since it can be combined with a fiber reinforcement, the mechanical heat resistance such as the deflection temperature under load can be improved.
Hereinafter, each component will be described.

(a)結晶性樹脂
融点が200℃以上であり、その他の成分の配合が可能な流動性を有する結晶性樹脂であれば、特に限定されない。融点が200℃未満の樹脂は、一般にガラス転移温度(軟化温度)が室温以下であるため、本発明の組成物とした場合でも寸法精度や熱寸法安定性に欠けるため不適当である。融点は、好ましくは230℃〜400℃であり、より好ましくは250℃〜350℃である。
尚、融点は、示差走査熱量計(DSC)にて、サンプル量、約10mg、スキャン速度20℃/分で測定したときの融解吸熱のピーク温度である。
(A) Crystalline resin There is no particular limitation as long as it is a crystalline resin having a melting point of 200 ° C. or higher and fluidity that can be blended with other components. A resin having a melting point of less than 200 ° C. is generally unsuitable because it has a glass transition temperature (softening temperature) of room temperature or lower, and thus lacks dimensional accuracy and thermal dimensional stability even when the composition of the present invention is used. The melting point is preferably 230 ° C. to 400 ° C., more preferably 250 ° C. to 350 ° C.
The melting point is the peak temperature of the melting endotherm when measured with a differential scanning calorimeter (DSC) at a sample amount of about 10 mg and a scanning rate of 20 ° C./min.

このような結晶性樹脂として、ポリアミド6(PA−6)に代表されるポリアミド、ポリエチレンテレフタレート(PET)、ポリシクロヘキシレンテレフタレート(PCT)に代表されるポリエステル、シンジオ・タクティック・ポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)に代表されるポリアリーレンスルフィド(PAS)、ポリエーテルエーテルケトン(PEEK)に代表されるポリケトン樹脂等が挙げられる。
これらのうち、難燃性,耐薬品性,耐水性に優れると共に、本発明で使用する他の成分によって分解することもなく、かつ流動性の割に強度が高いため、PPSが好ましい。PPSの中でも、溶融粘度が50Pa・sec以下であるPPSが好ましく、特に20Pa・sec以下のPPSが好ましい。
尚、溶融粘度は、キャピラリーレオメータにおいて、温度300℃、せん断速度1200sec−1の条件で測定した値を意味する。
As such a crystalline resin, polyamide represented by polyamide 6 (PA-6), polyethylene terephthalate (PET), polyester represented by polycyclohexylene terephthalate (PCT), syndiotactic styrene (SPS), Examples thereof include polyarylene sulfide (PAS) typified by polyphenylene sulfide (PPS), polyketone resin typified by polyether ether ketone (PEEK), and the like.
Among these, PPS is preferable because it is excellent in flame retardancy, chemical resistance, and water resistance, is not decomposed by other components used in the present invention, and has high strength for fluidity. Among PPS, PPS having a melt viscosity of 50 Pa · sec or less is preferable, and PPS of 20 Pa · sec or less is particularly preferable.
The melt viscosity means a value measured with a capillary rheometer under conditions of a temperature of 300 ° C. and a shear rate of 1200 sec −1 .

(b)低融点合金
(b)成分は、上記(a)成分の中に、(c)成分を内包した金属ネットワークを形成する。これにより、樹脂組成物の熱伝導率を向上する。
本発明においては、固相線温度が上記(a)結晶性樹脂の融点以下で、かつ液相線温度が、樹脂の融点よりも100℃以上高い低融点合金を使用する。本発明の樹脂組成物は、(b)成分のネットワークを形成するため、(b)成分の固相線温度と液相線温度の間、即ち、(b)成分が半溶融状態であるの温度で、安定的に混練して調製することが好ましい。(a)成分の融点と(b)成分の液相線温度の差が100℃未満の場合、現実的な製造において安定性に欠けるおそれがある。
尚、固相線温度と液相線温度は以下の方法で測定した値である。
各組成の合金を完全に溶融させ、この溶湯を非常にゆっくり冷却させる。冷却過程での温度変化を熱電対で測定し、熱分析曲線を作成する。熱分析曲線から変態点を読み取り、固相線温度と液相線温度を得る。
(B) Low melting point alloy (b) A component forms the metal network which included (c) component in the said (a) component. Thereby, the thermal conductivity of the resin composition is improved.
In the present invention, a low melting point alloy having a solidus temperature lower than the melting point of the crystalline resin (a) and a liquidus temperature higher by 100 ° C. or more than the melting point of the resin is used. Since the resin composition of the present invention forms a network of the component (b), the temperature between the solidus temperature and the liquidus temperature of the component (b), that is, the temperature at which the component (b) is in a semi-molten state. Therefore, it is preferable to prepare by kneading stably. When the difference between the melting point of the component (a) and the liquidus temperature of the component (b) is less than 100 ° C., there is a risk of lack of stability in realistic production.
The solidus temperature and the liquidus temperature are values measured by the following method.
The alloys of each composition are completely melted and the melt is cooled very slowly. The temperature change in the cooling process is measured with a thermocouple, and a thermal analysis curve is created. The transformation point is read from the thermal analysis curve to obtain the solidus temperature and the liquidus temperature.

低融点合金は、(a)成分の融点に合わせて、上記の条件を満たすものを適宜選択すればよいが、毒性を考慮すると鉛フリーハンダ系の合金が好ましい。
具体的な合金として、例えば、Snを主成分として{Cu,Ni,Ag,Bi,Zn,Al,Mg}に代表される副成分の少なくとも一つを配合してなる合金が好ましい。特に、以下に説明する(c)成分との馴染み(相溶性,濡れ)が良いことから、Snを主成分として{Cu,Ni,Ag,Bi,Zn}の少なくとも一つを配合してなる合金が好ましい。
The low melting point alloy may be appropriately selected according to the melting point of the component (a) and satisfying the above conditions. However, in consideration of toxicity, a lead-free solder type alloy is preferable.
As a specific alloy, for example, an alloy containing Sn as a main component and at least one of subcomponents represented by {Cu, Ni, Ag, Bi, Zn, Al, Mg} is preferable. In particular, an alloy formed by blending at least one of {Cu, Ni, Ag, Bi, Zn} with Sn as a main component because of its familiarity (compatibility, wetting) with the component (c) described below. Is preferred.

例えば、(a)成分に融点が280℃のポリフェニレンスルフィドを使用した場合、好ましい(b)成分としては、Sn−Cu、Sn−Ag−Cu合金等が挙げられる。   For example, when polyphenylene sulfide having a melting point of 280 ° C. is used as the component (a), preferable examples of the component (b) include Sn—Cu and Sn—Ag—Cu alloys.

(c)金属又は合金粉末
(c)成分は(b)成分と共に、(a)成分内部に金属ネットワークを形成し、樹脂組成物の熱伝導率を向上する。また、(b)成分は(a)成分と完全に相分離することから、樹脂組成物からブリードアウトするが、(c)成分の添加によって抑制することができる。
本発明において(c)成分は、融点又は固相線温度が400℃以上であり、(b)成分との相溶性が良好である金属又は合金粉末を使用する。(c)成分は、樹脂組成物の製造工程において固体状態である必要があり、また、(b)成分との組み合わせにおいて、(b)成分の溶融状態において相溶性が良く、(b)成分の融液中に容易に分散可能であることが必要だからである。
ここで、「(b)成分との相溶性が良好である」とは、(b)成分と(c)成分を、(b)成分の固相線温度以上の温度で混合したときに、(c)成分が(b)成分の溶融相に分散される性質を有していることを意味する。
(C) Metal or alloy powder The (c) component, together with the (b) component, forms a metal network inside the (a) component and improves the thermal conductivity of the resin composition. In addition, since the component (b) is completely phase-separated from the component (a), it bleeds out from the resin composition, but can be suppressed by adding the component (c).
In the present invention, the component (c) uses a metal or alloy powder having a melting point or a solidus temperature of 400 ° C. or higher and good compatibility with the component (b). The component (c) needs to be in a solid state in the production process of the resin composition, and in combination with the component (b), the component (b) has good compatibility in the molten state, and the component (b) This is because it must be easily dispersible in the melt.
Here, “the compatibility with the component (b) is good” means that the component (b) and the component (c) are mixed at a temperature equal to or higher than the solidus temperature of the component (b) ( It means that the component c) has the property of being dispersed in the molten phase of the component (b).

融点又は固相線温度が400℃未満では、混練中の樹脂温度により軟化して変形を起し易く、表面積の変化により低融点合金がネットワークを形成し難くなるため不適当である。融点又は固相線温度は、好ましくは500℃以上であり、より好ましくは1000℃以上である。
金属又は合金粉末の具体例としては、{Cu,Ni,Zn,Al,Fe}等から選ばれる金属粉末、又はこの中の少なくとも一つを主成分とする合金の粉末が挙げられる。好ましくは、{Cu,Ni,Zn}から選ばれる金属粉末、又はこの中の少なくとも一つを主成分とする合金の粉末である。
これら粉末の粒径は限定されないが、配合効果と成形時の危険性を考慮すると、平均粒径は10〜50μm程度のものが好ましい。
金属又は合金粉末の製造方法には限定はないが、純度及び比表面積の観点から、電解法により製造された樹枝形状の粉末、及びスタンプ法により製造された箔片形状の粉末が好ましい。
If the melting point or the solidus temperature is less than 400 ° C., it is not suitable because it softens due to the resin temperature during kneading and tends to be deformed, and it becomes difficult for the low melting point alloy to form a network due to the change in surface area. The melting point or solidus temperature is preferably 500 ° C. or higher, more preferably 1000 ° C. or higher.
Specific examples of the metal or alloy powder include metal powder selected from {Cu, Ni, Zn, Al, Fe} or the like, or an alloy powder containing at least one of them as a main component. Preferably, it is a metal powder selected from {Cu, Ni, Zn}, or an alloy powder containing at least one of them as a main component.
Although the particle size of these powders is not limited, the average particle size is preferably about 10 to 50 μm in consideration of the blending effect and the risk during molding.
There are no limitations on the method for producing the metal or alloy powder, but from the viewpoints of purity and specific surface area, a dendritic powder produced by the electrolytic method and a foil piece shaped powder produced by the stamp method are preferred.

(d)無機粉末
(d)成分は、(c)成分の分散助剤として働くと共に、(b)成分が成形品表面に析出して外観不良を起こすのを防止する。また、熱伝導率向上材として、金属である上記の(b)、(c)成分と相補的に働き、熱伝導率、成形品外観、強度のバランスを調整するため、金属成分の配合量を減らすことができ、樹脂組成物の軽量化ができる。
(d)成分には上記の(b)成分と相溶性が悪く、かつ熱伝導率が20W/mK以上であるものを使用する。(b)成分と相溶性がよいと、(d)成分と(c)成分が、(b)成分を介して凝集し易くなり、外観不良を引き起こすため不適当である。
ここで、「(b)成分と相溶性が悪い」とは、(b)成分と(d)成分を、(b)成分の固相線温度以上の温度で混合したときに、(d)成分が(b)成分の溶融相に容易に分散されることはなく、むしろ(b)成分が単独で凝集するような性質を有していることを意味する。
また、熱伝導率が20W/mK未満では、樹脂組成物の熱伝導性の向上率が小さくなる。熱伝導率は、好ましくは30W/mK以上であり、特に好ましくは50W/mK以上である。
(D) Inorganic powder The component (d) serves as a dispersion aid for the component (c) and prevents the component (b) from precipitating on the surface of the molded product to cause poor appearance. Moreover, as a heat conductivity improving material, it works complementarily with the above-mentioned components (b) and (c) which are metals, and adjusts the balance between the thermal conductivity, the appearance of the molded product, and the strength. This can reduce the weight of the resin composition.
As the component (d), those having poor compatibility with the component (b) and having a thermal conductivity of 20 W / mK or more are used. If the compatibility with the component (b) is good, the component (d) and the component (c) are likely to aggregate via the component (b), which is inappropriate because it causes poor appearance.
Here, “(b) component is poorly compatible” means that component (d) is mixed with component (b) and component (d) at a temperature equal to or higher than the solidus temperature of component (b). Does not easily disperse in the melt phase of component (b), but rather has the property that component (b) aggregates alone.
Moreover, if thermal conductivity is less than 20 W / mK, the improvement rate of the thermal conductivity of a resin composition will become small. The thermal conductivity is preferably 30 W / mK or more, and particularly preferably 50 W / mK or more.

無機粉末の具体例としては、黒鉛、酸化アルミニウム、酸化マグネシウム、窒化アルミ、窒化ホウ素等の粉末が挙げられる。この中でも特に黒鉛、球状酸化アルミニウムの粉末が好ましい。
(d)成分は、(a)成分中に分散し易いものが好ましく、そのため、相溶化剤で表面処理されたものが好ましい。これにより、樹脂組成物及びそれから成る成形体の環境安定性と強度を向上できるとともに、樹脂組成物を加工する際に、成形機の損傷を減らすことができる。
相溶化剤で表面処理された無機粉末としては、例えば、エポキシ樹脂で予め表面処理した黒鉛や、有機シランで予め表面処理した球状酸化アルミニウム等が好ましい。
無機粉末の粒径は特に限定されないが、(c)成分と同程度の粒径が好ましい。
Specific examples of the inorganic powder include powders of graphite, aluminum oxide, magnesium oxide, aluminum nitride, boron nitride and the like. Among these, graphite and spherical aluminum oxide powder are particularly preferable.
The component (d) is preferably one that is easily dispersed in the component (a), and therefore, one that has been surface-treated with a compatibilizer is preferable. As a result, the environmental stability and strength of the resin composition and the molded body comprising the resin composition can be improved, and damage to the molding machine can be reduced when the resin composition is processed.
As the inorganic powder surface-treated with a compatibilizing agent, for example, graphite pre-treated with an epoxy resin, spherical aluminum oxide pre-treated with an organic silane, or the like is preferable.
The particle size of the inorganic powder is not particularly limited, but the same particle size as the component (c) is preferable.

(e)繊維強化材
(e)成分は、最終製品に必要な材料強度を付与するために添加される。この成分には、一般に使用される繊維状充填材が使用できる。例えば、ガラス繊維(GF)、ウィスカー、炭素繊維(CF)が挙げられる。
ガラス繊維はチョップドファイバーでも、予め短繊維化して粉体にしたミルドファイバーでも良い。
ウィスカーは結晶質の繊維であり、チタン酸カリウムウィスカー,メタ珪酸カルシウムウィスカー,ホウ酸アルミニウムウィスカー等が代表的である。
炭素繊維はPAN系,ピッチ系のいずれも使用できる。
これらのうち、原料コストからみた組成物の汎用性を考慮すると、ガラス繊維、ウィスカーが好ましく、特にガラス繊維が好ましい。
(E) Fiber reinforcement (e) A component is added in order to provide the material strength required for a final product. A commonly used fibrous filler can be used for this component. Examples thereof include glass fiber (GF), whisker, and carbon fiber (CF).
The glass fiber may be a chopped fiber or a milled fiber that has been shortened into powder in advance.
Whisker is a crystalline fiber, and typical examples include potassium titanate whisker, calcium metasilicate whisker, and aluminum borate whisker.
As the carbon fiber, either PAN type or pitch type can be used.
Of these, glass fibers and whiskers are preferable, and glass fibers are particularly preferable in consideration of the versatility of the composition in terms of raw material costs.

また、繊維状充填材は、予め公知の表面処理剤(シラン系,チタネート系,エポキシ樹脂等)で処理されていてもよい。
繊維状充填材の種類やグレードは、補強効果と用途によって選択することができる。一般に、繊維長が小さい繊維は、補強効果が少ないものの、ミクロクラックの防止には充分な効果を示す場合が多く、かつ比較的等方的に補強されるため成形品の反りを抑制できる。
要求される諸特性に応じて使い分けると共に、二種類以上をブレンドして使用してもよい。例えば、比較的少量のウィスカーとチョップドGFとの組み合わせが挙げられる。
Further, the fibrous filler may be previously treated with a known surface treatment agent (silane-based, titanate-based, epoxy resin, etc.).
The type and grade of the fibrous filler can be selected depending on the reinforcing effect and application. In general, a fiber having a short fiber length has little reinforcing effect, but often has a sufficient effect for preventing microcracks, and can be prevented from warping of a molded product because it is reinforced relatively isotropically.
Depending on the required characteristics, two or more types may be blended and used. For example, a combination of a relatively small amount of whisker and chopped GF can be mentioned.

本発明の熱伝導性樹脂組成物は、上記(a)〜(e)成分を混合したものを溶融混練して製造できる。
溶融混練は、種々の公知の方法で実施できる。例えば、最も一般的な方法として、上記(a)〜(d)成分を予めヘンシェルミキサー,スーパーミキサー又はタンブラー等でドライブレンドした後、単軸又は二軸混練押出機等に供給して溶融混練し、さらに、(e)成分を押出機途中から供給して溶融混練し、その後、造粒することで熱伝導性樹脂組成物のペレットを得る方法がある。
The heat conductive resin composition of this invention can be manufactured by melt-kneading what mixed said (a)-(e) component.
Melt kneading can be carried out by various known methods. For example, as the most general method, the above components (a) to (d) are dry blended in advance using a Henschel mixer, super mixer, tumbler or the like, and then supplied to a single-screw or twin-screw kneading extruder, etc. Furthermore, there is a method of obtaining pellets of the heat conductive resin composition by supplying the component (e) from the middle of the extruder, melt kneading, and then granulating.

上記の各成分を混練する際、樹脂組成物内部に効率良く低融点合金のネットワークを形成させるに、混練中の材料温度を、(a)成分の結晶性樹脂を溶融する温度であり、低融点合金の固相線温度と液相線温度との間の温度とすることが好ましい。この温度条件では、(b)成分である低融点合金は流動性を有するが、微視的には相分離構造をとり構造粘性を示す。この状態で混練することにより、(b)成分は変形、分散しながら、相溶性の良い(c)成分を内包する。さらに混練すると、内包した(c)成分をコアとして、低融点合金は引き延ばされながら融合して、三次元的なネットワーク構造を形成する。この構造は低融点金属の構造粘性により保持されやすいため、樹脂組成物内部に効率よく形成される。このネットワークによって、樹脂組成物に高い熱伝導性を付与できる。   When kneading each of the above components, in order to efficiently form a low melting point alloy network inside the resin composition, the material temperature during kneading is the temperature at which the crystalline resin of component (a) is melted, and the low melting point The temperature is preferably between the solidus temperature and the liquidus temperature of the alloy. Under this temperature condition, the low melting point alloy as the component (b) has fluidity, but microscopically takes a phase separation structure and exhibits structural viscosity. By kneading in this state, the component (b) is included in the component (c) having good compatibility while being deformed and dispersed. When further kneaded, the low melting point alloy is fused while being stretched using the encapsulated component (c) as a core to form a three-dimensional network structure. Since this structure is easily held by the structural viscosity of the low melting point metal, it is efficiently formed inside the resin composition. By this network, high thermal conductivity can be imparted to the resin composition.

尚、混練時には投入材料に強い剪断力が負荷されるため、混練中の組成物温度は混練機の設定温度よりも上昇する。従って、混練時の温度は、低融点合金の液相線温度から充分に低い温度となるように設定することが好ましい。具体的には、低融点合金の液相線温度より30℃以上低い温度で組成物を混練できるように設定することが好ましい。
以上の観点より、溶融混練時の温度は、下記の条件を満たすように制御することが好ましい。
(1)(a)成分の結晶性樹脂を溶融する温度
(2)(b)成分の低融点合金の固相線温度以上の温度
(3)(b)成分の液相線温度より30℃以上低い温度
In addition, since a strong shearing force is applied to the input material during kneading, the composition temperature during kneading rises above the set temperature of the kneader. Therefore, it is preferable to set the temperature at the time of kneading so that it is sufficiently lower than the liquidus temperature of the low melting point alloy. Specifically, it is preferable to set so that the composition can be kneaded at a temperature lower by 30 ° C. or more than the liquidus temperature of the low melting point alloy.
From the above viewpoint, the temperature during melt-kneading is preferably controlled so as to satisfy the following conditions.
(1) Temperature at which the crystalline resin of component (a) is melted (2) Temperature above the solidus temperature of the low melting point alloy of component (b) (3) 30 ° C. or more from the liquidus temperature of component (b) Low temperature

本発明の樹脂組成物において、上記(a)成分の組成物に占める割合は、40〜60vol%である。(a)が40vol%未満であると、最終組成物の流動性が著しく悪化し、成形性から見て汎用性に劣る。一方、60vol%を越えると、(b)成分である低融点合金のネットワークが形成され難く、熱伝導率が大きく低下する。好ましくは、45〜55vol%、より好ましくは、47〜53vol%である。   In the resin composition of the present invention, the proportion of the component (a) in the composition is 40 to 60 vol%. When (a) is less than 40 vol%, the fluidity of the final composition is remarkably deteriorated and the versatility is inferior from the viewpoint of moldability. On the other hand, if it exceeds 60 vol%, it is difficult to form a network of the low melting point alloy as the component (b), and the thermal conductivity is greatly reduced. Preferably, it is 45-55 vol%, More preferably, it is 47-53 vol%.

本発明の熱伝導性樹脂組成物においては、(a)成分と、(b)及び(c)成分の体積比〔(a)/[(b)+(c)]〕は、2.0〜30.0である。この値は、組成物における樹脂量に対する金属成分総量の容量比を意味する。この値が2.0未満の場合は、金属量が多すぎる。このため、以下に説明する(b)成分と(c)成分の比が小さい場合は、流動性の低下を引き起こし成形性が劣り、大きい場合には(b)成分が表面に析出して外観不良を引き起こす。
一方、本値が30.0を越える場合は、金属量が少なすぎ、低融点合金のネットワークが形成され難く、組成物の熱伝導率が向上できない。好ましい範囲は、2.5〜10.0であり、より好ましくは、3.0〜7.0である。
In the thermally conductive resin composition of the present invention, the volume ratio [(a) / [(b) + (c)]] of the component (a) and the components (b) and (c) is 2.0 to 30.0. This value means the volume ratio of the total amount of metal components to the amount of resin in the composition. When this value is less than 2.0, the amount of metal is too large. For this reason, when the ratio of the component (b) and the component (c) described below is small, the fluidity is lowered and the moldability is inferior. When the ratio is large, the component (b) is deposited on the surface and the appearance is poor. cause.
On the other hand, when this value exceeds 30.0, the amount of metal is too small to form a low melting point alloy network, and the thermal conductivity of the composition cannot be improved. A preferable range is 2.5 to 10.0, and more preferably 3.0 to 7.0.

また、(b)成分と(c)成分の体積比[(b)/(c)]は、1.0〜4.0である。これは、低融点合金と高融点金属との容量比を示す。この値が1.0未満である場合、低融点合金のネットワークが形成され難くなり、単純に金属フィラーを充填した場合と同程度の熱伝導率しか得られない。一方、この値が4.0を越える場合、低融点合金が多すぎ、(a)成分である樹脂中への分散が悪化し外観不良が発生すると共に、金属ネットワーク自体も形成され難くなる。好ましい範囲は、1.3〜3.0であり、より好ましくは、1.5〜
2.7である。
Moreover, the volume ratio [(b) / (c)] of (b) component and (c) component is 1.0-4.0. This indicates the capacity ratio between the low melting point alloy and the high melting point metal. When this value is less than 1.0, it becomes difficult to form a network of a low melting point alloy, and only a thermal conductivity comparable to that obtained when simply filling with a metal filler is obtained. On the other hand, when this value exceeds 4.0, there are too many low melting point alloys, the dispersion | distribution in resin which is (a) component deteriorates, and an external appearance defect generate | occur | produces, and it becomes difficult to form metal network itself. The preferred range is 1.3 to 3.0, more preferably 1.5 to 3.0.
2.7.

上記(d)成分の組成物に占める割合は、10〜30vol%である。10vol%未満では、熱伝導性を高める上で金属総量を高くする必要があり、この結果、成形品表面への(b)成分の析出が多くなり外観不良が発生する。また、この値が30vol%を越えると、組成物の流動性が著しく悪化し、また、低融点合金のネットワーク形成を阻害するため、熱伝導率が低下する。好ましい範囲は、15〜27vol%、特に好ましくは15〜25vol%である。   The proportion of the component (d) in the composition is 10 to 30 vol%. If it is less than 10 vol%, it is necessary to increase the total amount of metal in order to increase the thermal conductivity. As a result, the precipitation of the component (b) on the surface of the molded article increases, resulting in poor appearance. On the other hand, when this value exceeds 30 vol%, the fluidity of the composition is remarkably deteriorated, and the network formation of the low melting point alloy is hindered, so the thermal conductivity is lowered. A preferred range is 15 to 27 vol%, particularly preferably 15 to 25 vol%.

上記(e)成分の組成物に占める割合は、10〜25vol%である。本値が10vol%未満だと成形品内部クラック発生を防止できないだけでなく、荷重たわみ温度が低下して、耐熱用途に使用できない場合がある。また、25vol%を越えると、低融点合金のネットワーク形成を阻害するため、熱伝導率の向上を妨げる。好ましい範囲は、10〜20vol%であり、より好ましい範囲は、13〜20vol%である。
(e)成分は低融点金属のネットワーク形成を阻害する方向に働くことが多いため、できる限り少量の添加が好ましい。しかし、繊維強化材が少なすぎる場合には、樹脂とその他の充填材との熱収縮率の違いから、成形後の冷却中にクラックが発生してしまうことが多い。これら一連のバランスを保つため、繊維強化材を一定の配合範囲内で添加することが好ましい。
The proportion of the component (e) in the composition is 10 to 25 vol%. If this value is less than 10 vol%, not only the occurrence of cracks in the molded product cannot be prevented, but also the deflection temperature under load is lowered, which may not be used for heat resistance. On the other hand, if it exceeds 25 vol%, the network formation of the low melting point alloy is hindered, which hinders the improvement of the thermal conductivity. A preferable range is 10 to 20 vol%, and a more preferable range is 13 to 20 vol%.
Since the component (e) often acts in the direction of inhibiting the network formation of the low melting point metal, it is preferable to add as little as possible. However, if the amount of fiber reinforcement is too small, cracks often occur during cooling after molding due to the difference in thermal shrinkage between the resin and other fillers. In order to maintain a series of these balances, it is preferable to add the fiber reinforcement within a certain blending range.

上記(a)〜(e)の必須成分の他に、本発明の効果を損なわない範囲で公知の成分を添加できる。
例えば、カーボンブラック等の顔料を添加できる。この場合、添加量は組成物全体に対し、1重量%以下が好ましい。
また、(a)成分である結晶性樹脂の欠点を補うため、その他の樹脂を添加することもできる。例えば、PPSがベースの場合、成形バリの発生と成形品の反りを抑制するため、ポリスルフォンやポリフェニレンエーテルを配合することができる。また、軸受け等向けに摺動性を向上させるため、ポリ四フッ化エチレン(PTFE)や超高分子量ポリエチレン等を配合することもできる。配合量は、組成物に配合される樹脂総量の20vol%以内が好ましい。
さらに、ケッチェンブラック等の帯電防止剤を添加できる。この場合、添加量は組成物全体に対し、1重量%以下が好ましい。
In addition to the essential components (a) to (e), known components can be added as long as the effects of the present invention are not impaired.
For example, a pigment such as carbon black can be added. In this case, the addition amount is preferably 1% by weight or less with respect to the entire composition.
In addition, in order to compensate for the drawbacks of the crystalline resin as component (a), other resins may be added. For example, when PPS is a base, polysulfone or polyphenylene ether can be blended in order to suppress generation of molding burrs and warpage of molded products. In addition, polytetrafluoroethylene (PTFE), ultrahigh molecular weight polyethylene, or the like can be blended to improve slidability for bearings and the like. The blending amount is preferably within 20 vol% of the total resin blended in the composition.
Furthermore, an antistatic agent such as ketjen black can be added. In this case, the addition amount is preferably 1% by weight or less with respect to the entire composition.

本発明の熱伝導性樹脂組成物では、その熱伝導率を4W/mK以上にすることができる。熱伝導率が3W/mK未満の樹脂組成物は、従来技術の範囲でも比較的バランスのよい材料は設計できるが、それ以上は困難である。熱伝導率が4W/mK以上であれば、成形品の放熱性が良好であると判断でき、樹脂組成物の用途範囲が広くなる。好ましくは熱伝導率を5W/mK以上にし、より好ましくは7W/mK以上とする。
また、曲げ破断強度は100MPa以上であることが好ましい。100MPa以上であれば、一般に用いられる構造部材用の、精密成形用材料の強度の範囲内であり、様々な用途に応用し易くなる。曲げ破断強度は120MPa以上であることがより好ましく、150MPa以上であることが特に好ましい。
さらに、荷重たわみ温度(低荷重)は200℃以上であることが好ましい。200℃以上であれば、本発明の樹脂組成物を、主用途である光ピックアップや光半導体用保持容器等に応用した場合、耐熱寸法安定性が充分であるからである。より好ましくは、220℃以上であり、特に250℃以上が好ましい。
尚、荷重たわみ温度は、ASTM D648に準拠し、荷重0.46MPaで測定した値である。
In the heat conductive resin composition of this invention, the heat conductivity can be 4 W / mK or more. A resin composition having a thermal conductivity of less than 3 W / mK can be designed as a relatively balanced material even in the range of the prior art, but it is difficult to do so. If the thermal conductivity is 4 W / mK or more, it can be determined that the heat dissipation of the molded product is good, and the application range of the resin composition is widened. The thermal conductivity is preferably 5 W / mK or more, more preferably 7 W / mK or more.
Moreover, it is preferable that bending fracture strength is 100 Mpa or more. If it is 100 MPa or more, it is within the range of the strength of a precision molding material for a structural member that is generally used, and can be easily applied to various applications. The bending breaking strength is more preferably 120 MPa or more, and particularly preferably 150 MPa or more.
Further, the deflection temperature under load (low load) is preferably 200 ° C. or higher. When the temperature is 200 ° C. or higher, the heat resistant dimensional stability is sufficient when the resin composition of the present invention is applied to an optical pickup, a holding container for an optical semiconductor, and the like, which are main uses. More preferably, it is 220 ° C. or higher, and particularly preferably 250 ° C. or higher.
The deflection temperature under load is a value measured with a load of 0.46 MPa in accordance with ASTM D648.

本発明の熱伝導性樹脂組成物は、成形が容易で、軽量であるという樹脂の特徴を保持しつつ、優れた熱伝導性、機械特性及び耐熱性(寸法安定性)を有している。従って、機器の内部で発生する熱を外部に放出する必要がある部品の材料として、好適に使用できる。例えば、光ピックアップ装置用保持容器、光半導体用保持容器、半導体用放熱容器等の各種部品等に好適に使用できる。
以下、本発明の熱伝導性樹脂組成物を適用した一例として、光ピックアップ装置用保持容器及びこれを使用した光(学)ピックアップ装置について説明する。
尚、光(学)ピックアップ装置とは、オーディオ用CD(コンパクトディスク)、CD−ROM、DVD(デジタルビデオディスク)、DVD−ROM、CD−R・RW、DVD±R・RW、DVD−RAM等の記録メディアに対して、レーザー光を用いて、これらの記録メディアと物理的に非接触で情報の読み書きを行うドライブ装置の総称である。
また、本発明は、以下に図示する光ピックアップ装置用保持容器及び光ピックアップ装置に限定されるものではない。
The heat conductive resin composition of the present invention has excellent heat conductivity, mechanical properties, and heat resistance (dimensional stability) while retaining the characteristics of a resin that is easy to mold and lightweight. Therefore, it can be suitably used as a material for parts that need to release heat generated inside the device to the outside. For example, it can be suitably used for various components such as a holding container for an optical pickup device, a holding container for an optical semiconductor, and a semiconductor heat dissipation container.
Hereinafter, as an example to which the thermally conductive resin composition of the present invention is applied, a holding container for an optical pickup device and an optical (study) pickup device using the same will be described.
The optical pickup device is an audio CD (compact disc), CD-ROM, DVD (digital video disc), DVD-ROM, CD-R / RW, DVD ± R / RW, DVD-RAM, etc. Is a general term for drive devices that read and write information in a physically non-contact manner with these recording media using a laser beam.
The present invention is not limited to the optical pickup device holding container and the optical pickup device shown below.

図1は光ピックアップ装置の構造の例を示す模式図であり、図2は、光ピックアップ装置に装着される光ピックアップ装置用保持容器の斜視図である。
光ピックアップ装置1は、シャーシ10とシャーシ10に取付けられた主軸11と副軸12と、主軸11と副軸12に摺動自在に取付けられた光ピックアップ13とを備えている。
FIG. 1 is a schematic view showing an example of the structure of an optical pickup device, and FIG. 2 is a perspective view of a holding container for the optical pickup device mounted on the optical pickup device.
The optical pickup device 1 includes a chassis 10, a main shaft 11 and a sub shaft 12 that are attached to the chassis 10, and an optical pickup 13 that is slidably attached to the main shaft 11 and the sub shaft 12.

光ピックアップ13(OPベースともいう)は、この装置の中の心臓部であり、光源である半導体レーザー、ハーフミラー、対物レンズ、コリメーターレンズ、フォトダイオード(受光部)を、光ピックアップ装置用保持容器13aの内部に取り付け、コンパクトに一体化したモジュールである。
光ピックアップ装置用保持容器13aは、上記の部品全体を支えて固定する指示台としての役割を果たすもので、基体21と、基体21の一端に所定の間隔で配置された基体21と一体的に形成された2つの主軸受22,22’を有する一方、基体21の他端には基体21と一体的に形成された副軸受23を有している。主軸受22,22’と副軸受23は、それぞれ、主軸11と副軸12に遊挿されている。尚、半導体レーザーは、レーザーダイオードホルダ取付部24に取付けられる。
The optical pickup 13 (also referred to as an OP base) is the heart of the device, and holds a semiconductor laser, a half mirror, an objective lens, a collimator lens, and a photodiode (light receiving unit) as light sources for the optical pickup device. It is a module that is mounted inside the container 13a and integrated in a compact manner.
The optical pickup device holding container 13a plays a role as an instruction stand for supporting and fixing the whole of the above components, and is integrally formed with the base body 21 and the base body 21 arranged at one end of the base body 21 at a predetermined interval. While having two main bearings 22, 22 ′ formed, the other end of the base 21 has a sub-bearing 23 formed integrally with the base 21. The main bearings 22, 22 ′ and the auxiliary bearing 23 are loosely inserted into the main shaft 11 and the auxiliary shaft 12, respectively. The semiconductor laser is attached to the laser diode holder attachment portion 24.

続いて、光ピックアップ装置1の動作について説明する。
光ピックアップ13は、制御系(図示せず)により制御された駆動モーター(図示せず)の駆動力により、主軸11と副軸12に沿って光ディスク14の半径方向に移動し、情報の記録と再生を行なう。
光ピックアップ13では、半導体レーザーからの出射光が、ハーフミラー等の光学部品(図示せず)により光ディスク14に垂直となるように反射され、基体21に形成された出射口25から光ディスク14に向けて出射される。そして、光ディスク14からの反射光は、光学部品を通過し受光部(図示せず)に入射する。受光した光から、光ディスク14に記録されているデータ信号を読み取る。
Next, the operation of the optical pickup device 1 will be described.
The optical pickup 13 is moved in the radial direction of the optical disk 14 along the main shaft 11 and the sub shaft 12 by the driving force of a driving motor (not shown) controlled by a control system (not shown) to record information. Perform playback.
In the optical pickup 13, the light emitted from the semiconductor laser is reflected by an optical component (not shown) such as a half mirror so as to be perpendicular to the optical disk 14, and is directed from the emission port 25 formed in the base 21 toward the optical disk 14. Are emitted. Then, the reflected light from the optical disk 14 passes through the optical component and enters a light receiving unit (not shown). The data signal recorded on the optical disk 14 is read from the received light.

光ピックアップ装置では、レーザービームの位置精度とその安定性が最も厳しく要求される。ビームの位置はOPベースの寸法変動によって変動し、PPS樹脂製OPベースの場合には、温度変化による光軸ズレが最も大きい要因である。
半導体レーザーは発熱するため、その取付部では部分的に温度が高くなり、環境温度の影響に加えて、OPベースの変形も大きくなる。また、半導体レーザー取付部の温度が上昇するため、半導体レーザーの寿命も短くなる問題もある。
In an optical pickup device, the positional accuracy and stability of a laser beam are most strictly required. The position of the beam fluctuates due to the dimensional variation of the OP base. In the case of the OP base made of PPS resin, the optical axis shift due to the temperature change is the largest factor.
Since the semiconductor laser generates heat, the temperature at the mounting portion is partially increased, and the deformation of the OP base is increased in addition to the influence of the environmental temperature. Moreover, since the temperature of the semiconductor laser mounting portion rises, there is a problem that the life of the semiconductor laser is shortened.

近年、CD−R/RW装置といった、書き換え可能な光ディスク装置の使用が増加しており、再生専用機と比較して書き込み時のレーザー発熱量が格段に大きくなっている。このため、放熱性能の観点から、OPベースを樹脂化するのは困難と思われていた。
また、DVD−ROM等の再生専用機においても、光ピックアップの小型化に伴うOPベースの薄肉化により、熱滞留による光軸ズレが懸念されるようになってきており、OPベース用樹脂材料に対する高熱伝導性の要求は高まってきている。
In recent years, the use of rewritable optical disk devices such as CD-R / RW devices has increased, and the amount of laser heat generated during writing has become significantly larger than that of read-only devices. For this reason, from the viewpoint of heat dissipation performance, it has been considered difficult to resinize the OP base.
In addition, in a read-only machine such as a DVD-ROM, there is a concern about optical axis misalignment due to heat retention due to the thinning of the OP base accompanying the downsizing of the optical pickup. The demand for high thermal conductivity is increasing.

本発明者らは実際のOPベース形状と半導体レーザーの基本特性を用いてシミュレーションを行った結果、半導体レーザーとOPベースとの熱的な接触が良好な場合、熱伝導率が4W/mK以上あれば充分な放熱効果があるとの結果を得ている。また、実際の成形品において、熱伝導率等、OPベースに必要な性能を評価したところ、熱伝導率は、4W/mK以上、成形性の観点から組成物の流動性は、スパイラルフロー長さで50mm以上、かつ曲げ破断強度が90MPa以上であればよいことを確認している。
本発明の熱伝導性樹脂組成物は、この要件を満たしており、放熱や寸法安定性が厳しく要求される部品に好適な組成物であると言える。
As a result of the simulation using the actual OP base shape and the basic characteristics of the semiconductor laser, the present inventors have found that the thermal conductivity is 4 W / mK or more when the thermal contact between the semiconductor laser and the OP base is good. Results that there is a sufficient heat dissipation effect. In addition, when the performance required for the OP base, such as thermal conductivity, was evaluated in an actual molded product, the thermal conductivity was 4 W / mK or more. From the viewpoint of moldability, the fluidity of the composition was the spiral flow length. It has been confirmed that the bending fracture strength should be 90 MPa or more.
The thermally conductive resin composition of the present invention satisfies this requirement, and can be said to be a composition suitable for parts that require severe heat dissipation and dimensional stability.

以下、本発明を実施例によってさらに具体的に説明する。
実施例1
組成物の構成原料である(a)〜(e)成分として、以下の原料を使用した。尚、(a)〜(d)成分は粉末原料である。
(a)成分:ポリフェニレンスルフィド(PPS、ディーアイシー・イーピー(株)社製、H−1:融点280℃)尚、300℃、剪断速度1200sec−1での溶融粘度は15Pa・secである。
(b)成分:鉛フリー合金の一種で、Sn−Cu合金のアトマイズ粉末(千住金属工業(株)製、固相線温度230℃、液相線温度430℃、平均粒径25μm)
(c)成分:電解(樹枝状)銅粉末(三井金属鉱業(株)社製、MD−1:平均粒径35μm、固相線温度(融点)1080℃)
(d)成分:黒鉛粉末(日本黒鉛工業(株)社製、PAG−5:人造黒鉛粉末、熱伝導率150W/mK、平均粒径40μm)
(e)成分:チョップドガラスファイバー(旭ファイバーグラス(株)社製、繊維長3mmチョップ、繊維径10μm)
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
The following raw materials were used as the components (a) to (e), which are constituent materials of the composition. In addition, (a)-(d) component is a powder raw material.
(A) Component: Polyphenylene sulfide (PPS, manufactured by DIC Corporation, H-1: melting point 280 ° C.) The melt viscosity at 300 ° C. and a shear rate of 1200 sec −1 is 15 Pa · sec.
(B) Component: A kind of lead-free alloy, Sn-Cu alloy atomized powder (manufactured by Senju Metal Industry Co., Ltd., solidus temperature 230 ° C., liquidus temperature 430 ° C., average particle size 25 μm)
(C) Component: Electrolytic (dendritic) copper powder (Mitsui Metal Mining Co., Ltd., MD-1: average particle size 35 μm, solidus temperature (melting point) 1080 ° C.)
(D) Component: Graphite powder (manufactured by Nippon Graphite Industries Co., Ltd., PAG-5: Artificial graphite powder, thermal conductivity 150 W / mK, average particle size 40 μm)
(E) Component: Chopped glass fiber (Asahi Fiber Glass Co., Ltd., fiber length 3 mm chop, fiber diameter 10 μm)

[組成物の調製]
上記(a)成分を50vol%、(b)成分を10vol%、(c)成分を5vol%、(d)成分を20vol%となるように所定量秤量し、スーパーフローターミキサー(カワタ製)に投入して3分間予備混合した。
これを、材料投入部付近のバレル設定温度を280℃に設定し、ダイス側に向けて徐々に設定温度を上げ、ダイス側(押出機先端付近)の設定温度を320℃に設定した二軸混練押出機(東芝機械(株)製、TEM37BS)に供給しながら、中間から(e)成分であるGFを、組成物に占める容積比が15vol%となるようにサイドフィードして溶融混練及び押出して、ペレット状樹脂組成物を得た。
この樹脂組成物について、熱伝導率、材料強度、流動性及び成形品外観の評価を実施した。また、射出成形時の温度条件の最適化、及び混練時のせん断による発熱を評価するため、押出機での樹脂温度を測定した。
評価方法は以下の通りである。
[Preparation of composition]
Weigh out a predetermined amount so that the component (a) is 50 vol%, the component (b) is 10 vol%, the component (c) is 5 vol%, and the component (d) is 20 vol%, and put into a super floater mixer (manufactured by Kawata). And premixed for 3 minutes.
This is a biaxial kneading in which the barrel set temperature near the material charging part is set to 280 ° C., the set temperature is gradually increased toward the die side, and the set temperature on the die side (near the tip of the extruder) is set to 320 ° C. While feeding to an extruder (Toshiba Machine Co., Ltd., TEM37BS), from the middle, component (e) GF, which is the component, is side-feeded so that the volume ratio in the composition is 15 vol%, and melt-kneaded and extruded. A pellet-shaped resin composition was obtained.
The resin composition was evaluated for thermal conductivity, material strength, fluidity, and molded product appearance. In addition, the resin temperature in the extruder was measured in order to optimize the temperature conditions during injection molding and to evaluate the heat generation due to shear during kneading.
The evaluation method is as follows.

(1)コンパウンド時の樹脂温度
組成物の混練時に使用した二軸混練押出機のスクリュ先端から約5cm離れた点のダイブロック内樹脂温度を測定した。この温度は混練時の実際の樹脂温度を表わしている。
(2)熱伝導率
ペレット状樹脂組成物を320℃でプレス成形して5mm厚みの平板を作製し、試料成形体とした。
熱伝導率の測定は、定常熱流計(DYNATEC R&D社製、型番TCHM−DV)を用いた。試料の上下面の温度差を正確に測定するため、図3に示すように、CC熱電対(銅線32−コンスタンタン線34を溶接接点33で溶接したもの)を、試料成形体31の上下面にホットプレスにより埋め込んだ。ホットプレスを用いることにより、試料成形体31の上下面の平面度も向上する。熱流量を安定させるため、1時間所定温度に加熱した後、測定した。
(1) Resin temperature at the time of compounding The resin temperature in the die block at a point about 5 cm away from the screw tip of the twin-screw kneading extruder used at the time of kneading the composition was measured. This temperature represents the actual resin temperature during kneading.
(2) Thermal conductivity The pellet-shaped resin composition was press-molded at 320 ° C. to produce a 5 mm-thick flat plate, which was used as a sample molded body.
The thermal conductivity was measured using a steady heat flow meter (manufactured by DYNATEC R & D, model number TCHM-DV). In order to accurately measure the temperature difference between the upper and lower surfaces of the sample, as shown in FIG. It was embedded by hot press. By using the hot press, the flatness of the upper and lower surfaces of the sample molded body 31 is also improved. In order to stabilize the heat flow, it was measured after heating to a predetermined temperature for 1 hour.

(3)スパイラルフロー長さ(SFL)
1mm厚みのスパイラルフロー金型を使用し、金型温度135℃、樹脂温度320℃、射出圧力 約100MPa(1000kgf/cm)で射出成形したときの流動長さで評価した。一般に、SFLが50mm未満の場合、成形が極めて困難となる。
(4)曲げ破断強度
上記SFLと同じ温度条件で、ASTM規格の曲げ試験片を成形し、ASTM D−790に準拠して評価した。試験片の形状は、長さ×巾×厚み=127×12.7×3.2mmとした。
(5)射出成形品外観
上記(4)の曲げ試験片の表面外観を目視にて評価した。表面の荒れ、フローマークの程度により、優/良/可/×(不可)の4ランクで評価した。また、微視的な外観については、一部の組成品を光学顕微鏡にて表面観察を行って評価した。
実施例1及び後述する実施例2−7の評価結果を表1に示す。
(3) Spiral flow length (SFL)
A spiral flow mold having a thickness of 1 mm was used, and the flow length when injection molding was performed at a mold temperature of 135 ° C., a resin temperature of 320 ° C., and an injection pressure of about 100 MPa (1000 kgf / cm 2 ) was evaluated. In general, when the SFL is less than 50 mm, molding becomes extremely difficult.
(4) Bending Fracture Strength ASTM standard bending test pieces were molded under the same temperature conditions as the above SFL, and evaluated according to ASTM D-790. The shape of the test piece was length × width × thickness = 127 × 12.7 × 3.2 mm.
(5) Appearance of injection molded product The surface appearance of the bending test piece of (4) above was visually evaluated. Evaluation was made according to four ranks of excellent / good / good / × (impossible) depending on the roughness of the surface and the degree of flow mark. Further, the microscopic appearance was evaluated by observing the surface of a part of the composition with an optical microscope.
Table 1 shows the evaluation results of Example 1 and Example 2-7 described later.

Figure 2006022130
Figure 2006022130

実施例1は、各原料の配合量が、成分比の限定範囲のほぼ中間にあり、好適な組成の場合を示している。評価した結果、熱伝導率、曲げ破断強度及び流動性はいずれも高かった。外観については、顕微鏡で観察(倍率100倍)した結果、(b)成分の細かい粒子が成形品表面に、均一にブリードアウトしているのが観察された。但し、目視観察では均質な外観であり、実用上問題がないと判断できた。   Example 1 shows a case where the blending amount of each raw material is approximately in the middle of the limited range of the component ratio and has a suitable composition. As a result of the evaluation, the thermal conductivity, bending breaking strength and fluidity were all high. As for the appearance, as a result of observation with a microscope (magnification 100 times), it was observed that fine particles of component (b) were bleeding out uniformly on the surface of the molded product. However, it was judged by visual observation that there was a homogeneous appearance and there was no practical problem.

実施例2−6
上記(a)〜(e)成分の配合比を表1に示すように変更した他は、実施例1と同様にして樹脂組成物を製造し、評価した。
実施例2は、(a)成分の配合量を下限まで少なくし、かつ(b)/(c)を限界まで高くした例を示している。(b)を多くして流動性を上げる方向に調製したものであるが、混練時の樹脂温度上昇が大きく、SFLの流動性も成形できる下限に近かった。但し、熱伝導率は最も高かった。成形品外観については、成形品表面にフローマークが見られたが、実用上許容範囲であった。
Example 2-6
A resin composition was produced and evaluated in the same manner as in Example 1 except that the blending ratio of the components (a) to (e) was changed as shown in Table 1.
Example 2 shows an example in which the amount of component (a) is reduced to the lower limit and (b) / (c) is increased to the limit. Although it was prepared in the direction of increasing the fluidity by increasing (b), the resin temperature rise during kneading was large, and the fluidity of SFL was close to the lower limit for molding. However, the thermal conductivity was the highest. As for the appearance of the molded product, a flow mark was observed on the surface of the molded product, but this was practically acceptable.

実施例3は、(a)成分の配合量を上限まで多く、かつ(b)/(c)を下限まで低くした例を示す。この結果、熱伝導率は5W/mK、流動性は優れていた。GFの配合量を下限まで少なくした結果、曲げ破断強度は若干低いが実用上問題ない値であった。成形品外観は、一般的なフィラーグレードと遜色なく極めて良好であった。
実施例4は、(a)成分に対する金属総量の比(a)/{(b)+(c)}を大きくした例を示す。(d)成分を上限まで多くしてバランスをとった結果、強度・流動性が高いまま、熱伝導率も高いレベルを維持していることが確認できた。成形品外観も極めて良好であった。
Example 3 shows an example in which the blending amount of the component (a) is increased to the upper limit and (b) / (c) is decreased to the lower limit. As a result, the thermal conductivity was 5 W / mK and the fluidity was excellent. As a result of reducing the blending amount of GF to the lower limit, the bending rupture strength was slightly low but practically no problem. The appearance of the molded product was extremely good, comparable to general filler grades.
Example 4 shows an example in which the ratio (a) / {(b) + (c)} of the total metal amount to the component (a) is increased. As a result of balancing by increasing the component (d) to the upper limit, it was confirmed that the heat conductivity was maintained at a high level while the strength and fluidity were high. The appearance of the molded product was also very good.

実施例5は、強度を重視して(e)成分の繊維強化材を上限まで添加した例を示す。この結果、混練時の樹脂温度が高く、SFLの流動性も実用できる下限であった。(e)成分が多くなると、(b)成分のネットワークが形成し難くなることから、熱伝導率も低下した。流動性が低いため、成形品表面にフローマークが見られた。しかし、総合的には、実用上許容範囲であった。   Example 5 shows an example in which the fiber reinforcing material of the component (e) is added up to the upper limit with emphasis on strength. As a result, the resin temperature at the time of kneading was high, and the fluidity of SFL was also the lower limit for practical use. When the amount of the component (e) increases, it becomes difficult to form a network of the component (b), so that the thermal conductivity also decreases. Since the fluidity was low, a flow mark was seen on the surface of the molded product. However, in general, it was practically acceptable.

実施例6は、(a)成分に対する金属総量の比(a)/{(b)+(c)}を上限まで大きくした例を示す。また、(e)成分の繊維強化材も上限まで添加した。その結果、曲げ破断強度のレベルは極めて高く、流動性も優れていた。成形品外観は、一般的なフィラーグレードと遜色なく極めて良好であった。   Example 6 shows an example in which the ratio (a) / {(b) + (c)} of the total amount of metal to the component (a) is increased to the upper limit. Moreover, the fiber reinforcing material of (e) component was also added to the upper limit. As a result, the level of bending fracture strength was extremely high and the fluidity was excellent. The appearance of the molded product was extremely good, comparable to general filler grades.

実施例7
(e)成分として、チョップド炭素繊維(三菱化学(株)製、K223HG、繊維径10μm、繊維長6mm)を使用し、(a)〜(e)成分の配合比を表1に示すように変更した他は、実施例1と同様にして樹脂組成物を製造し、評価した。
Example 7
As the component (e), chopped carbon fiber (Mitsubishi Chemical Co., Ltd., K223HG, fiber diameter 10 μm, fiber length 6 mm) was used, and the mixing ratio of components (a) to (e) was changed as shown in Table 1. In the same manner as in Example 1, a resin composition was produced and evaluated.

比較例1−6
上記(a)〜(e)成分の配合比を表2に示すように変更した他は、実施例1と同様にして樹脂組成物を製造し、評価した。
比較例1−6の評価結果を表2に示す。
Comparative Example 1-6
A resin composition was produced and evaluated in the same manner as in Example 1 except that the blending ratio of the components (a) to (e) was changed as shown in Table 2.
The evaluation results of Comparative Example 1-6 are shown in Table 2.

Figure 2006022130
Figure 2006022130

比較例1は、(c)成分が無い例である。(c)成分であるCu粉末が無いと、(b)成分であるSn−Cu合金はPPS樹脂と相溶性がないため、完全に分離してしまい、押出機ストランドの表面にブリードアウトしてしまう。同様に、射出成形品でも、表面にSn−Cu合金の大きなシミを生じた。実施例1の金属成分を全てSn−Cu合金に変更した組成だが、Sn−Cu合金の分散性が著しく低いために、流動性と強度も低下した。
他に、(b)成分を12.5vol%、(c)成分を2.5vol%[(b)/(c)=5]の場合も、同様の状況にあることを確認した。
Comparative Example 1 is an example without component (c). Without the Cu powder as the component (c), the Sn-Cu alloy as the component (b) is not compatible with the PPS resin and thus completely separates and bleeds out to the surface of the extruder strand. . Similarly, a large spot of Sn—Cu alloy was generated on the surface of the injection molded product. Although the composition was obtained by changing all the metal components of Example 1 to Sn—Cu alloy, the fluidity and strength were also lowered because the dispersibility of the Sn—Cu alloy was extremely low.
In addition, it was confirmed that the same situation was observed when the component (b) was 12.5 vol% and the component (c) was 2.5 vol% [(b) / (c) = 5].

比較例2は、(b)成分が無い例である。Sn−Cu合金のネットワーク形成ができないため、単純に熱伝導性の固体フィラーを配合した実施例1の場合に相当する。その結果、流動性と熱伝導率が大きく低下した。
他に、(b)成分を5.0vol%、(c)成分を10.0vol%[(b)/(c)=0.5]の場合を検討した結果、流動性は若干改善されるものの、熱伝導率は3.0W/mK程度と低いことが確認された。
Comparative Example 2 is an example without component (b). Since a network of Sn—Cu alloy cannot be formed, this corresponds to the case of Example 1 in which a heat conductive solid filler is simply blended. As a result, fluidity and thermal conductivity were greatly reduced.
In addition, as a result of examining the case where the component (b) is 5.0 vol% and the component (c) is 10.0 vol% [(b) / (c) = 0.5], the fluidity is slightly improved. The thermal conductivity was confirmed to be as low as about 3.0 W / mK.

比較例3は、(d)成分を少なくして、樹脂に対する金属総量{(b)+(c)}を多くした例である。(b)/(c)は適正範囲であることから、熱伝導率、流動性及び曲げ破断強度は良好な値を示すが、金属ネットワークをより微細に分散させる効果を持つ黒鉛(d)が少ないことから、成形品表面に目視で観察できる程度の金属斑点が見られた。また、混練時のストランドにもSn−Cu合金の塊が見られた。
比較例4は、比較例3とは逆に、(d)成分を多くして、流動性を上げるため(b)/(c)を高くした例である。(e)成分も低くしているが、粘度が高く混練時の樹脂温度は400℃程度まで上昇してPPS樹脂の分解に伴う発煙が多かった。熱伝導率は良好であるが、射出成形が困難である程、流動性が低く、曲げ破断強度も低かった。
Comparative Example 3 is an example in which the total amount of metal {(b) + (c)} relative to the resin is increased by reducing the component (d). Since (b) / (c) is in the proper range, the thermal conductivity, fluidity and bending rupture strength show good values, but there is little graphite (d) having the effect of finely dispersing the metal network. For this reason, metal spots that can be visually observed on the surface of the molded product were observed. In addition, Sn—Cu alloy lumps were also observed in the strands during kneading.
In contrast to Comparative Example 3, Comparative Example 4 is an example in which (b) / (c) is increased in order to increase fluidity by increasing the component (d). Although the component (e) was also low, the viscosity was high and the temperature of the resin during kneading increased to about 400 ° C., resulting in a lot of fuming accompanying decomposition of the PPS resin. Although the thermal conductivity was good, the more difficult the injection molding, the lower the fluidity and the lower the bending rupture strength.

比較例5は、(e)成分である繊維強化材を多くした例を示す。その結果、GFによる粘度増加が非常に大きく、混練時の樹脂温度が400℃を越えた。従って、危険なため材料調製ができなかった。
比較例6は、(e)成分である繊維強化材を少なくし、その他の組成比を最適組成に近い値にした例である。流動性は特に良好で、熱伝導率及び成形品外観も良好であるが、材料強度が低く実際の成形品での実用に耐えないことがわかった。
The comparative example 5 shows the example which increased the fiber reinforcement which is (e) component. As a result, the increase in viscosity due to GF was very large, and the resin temperature during kneading exceeded 400 ° C. Therefore, it was dangerous to prepare the material.
Comparative Example 6 is an example in which the amount of the fiber reinforcing material as the component (e) is reduced and the other composition ratios are close to the optimum composition. It was found that the fluidity was particularly good and the thermal conductivity and the appearance of the molded product were good, but the material strength was low and it could not withstand practical use with an actual molded product.

実施例8
(b)成分を、組成がSn−2.0Ag−6.0CuであるSn−Ag−Cu合金(千住金属工業(株)製、M33:固相線温度217℃、液相線温度380℃、平均粒径40μm)とした他は、実施例1と同様にして樹脂組成物を製造し、評価した。
実施例8−10及び比較例7の評価結果を表3に示す。
Example 8
The component (b) was Sn-Ag-Cu alloy having a composition of Sn-2.0Ag-6.0Cu (manufactured by Senju Metal Industry Co., Ltd., M33: solidus temperature 217 ° C, liquidus temperature 380 ° C, A resin composition was produced and evaluated in the same manner as in Example 1 except that the average particle size was 40 μm.
The evaluation results of Examples 8-10 and Comparative Example 7 are shown in Table 3.

Figure 2006022130
Figure 2006022130

実施例8の結果、混練時の樹脂温度が、液相線温度より30℃以上低く、また、実施例1と同等の材料特性が得られた。   As a result of Example 8, the resin temperature at the time of kneading was lower by 30 ° C. or more than the liquidus temperature, and the material characteristics equivalent to Example 1 were obtained.

実施例9
樹脂組成物のペレットを作製するときの押出機の設定温度を350℃とした他は、実施例8と同様にして樹脂組成物を製造し、評価した。
混練時の押出機温度を350℃に設定し、結果的に樹脂温度を370℃に上昇させた例であり、流動性・材料強度は実施例8とほぼ同等で高いが、熱伝導率が低下傾向になることが確認された。
Example 9
A resin composition was produced and evaluated in the same manner as in Example 8 except that the setting temperature of the extruder when producing pellets of the resin composition was 350 ° C.
This is an example in which the extruder temperature at the time of kneading was set to 350 ° C., and as a result, the resin temperature was increased to 370 ° C., and the fluidity and material strength were almost the same as in Example 8, but the thermal conductivity decreased. It was confirmed that it became a trend.

実施例10
(d)成分を、球状アルミナ((株)マイクロン製、AX35−125:熱伝導率25W/mK、平均粒径35μm)とした他は、実施例1と同様にして樹脂組成物を製造し、評価した。
実施例1と比べて、(d)成分の熱伝導率は低い(黒鉛の熱伝導率は、通常50〜100W/mK程度)ものに変更しても、本発明の特徴は発揮されていることが確認できた。球状アルミナに変更した場合、流動性は向上しており、成形品外観は更に良くなった。熱伝導率は低下しているものの依然として高いレベルを保持していることが確認できた。
Example 10
(D) A resin composition was produced in the same manner as in Example 1, except that the component was spherical alumina (manufactured by Micron Corporation, AX35-125: thermal conductivity 25 W / mK, average particle size 35 μm). evaluated.
Compared with Example 1, the thermal conductivity of the component (d) is low (the thermal conductivity of graphite is usually about 50 to 100 W / mK), and the features of the present invention are exhibited. Was confirmed. When changed to spherical alumina, the fluidity was improved and the appearance of the molded product was further improved. Although the thermal conductivity was lowered, it was confirmed that it still maintained a high level.

比較例7
(d)成分を、ガラスビーズ(ポッターズ・バロティーニ(株)製、GB731:熱伝導率1W/mK、平均粒径30μm)とた他は、実施例1と同様にして樹脂組成物を製造し、評価した。
この例は、(d)成分を(b)+(c)成分の分散助剤としてのみ考えた場合の効果を示す。Sn−Cu合金の分散性や、成形品の表面外観は良好と判断されたが、熱伝導率は大きく低下した。この結果、(d)成分の熱伝導率も組成物の熱伝導率に寄与していることが確認できた。
Comparative Example 7
(D) A resin composition was produced in the same manner as in Example 1 except that the components were glass beads (manufactured by Potters Ballotini Co., Ltd., GB731: thermal conductivity 1 W / mK, average particle size 30 μm). ,evaluated.
This example shows the effect when the component (d) is considered only as a dispersion aid for the components (b) + (c). Although the dispersibility of the Sn—Cu alloy and the surface appearance of the molded product were judged to be good, the thermal conductivity was greatly reduced. As a result, it was confirmed that the thermal conductivity of the component (d) also contributed to the thermal conductivity of the composition.

実施例11
実施例1で作製した熱伝導性樹脂組成物を使用して、図2に示す形状のDVD−ROM用OPベースを成形した。成形温度条件は、樹脂温度330℃、金型温度145℃とした。
尚、OPベースの寸法は、約縦25mm奥行40mm高さ13mm肉厚2.0mmである。
このOPベースの放熱性を、以下の方法によって評価した。
光源である半導体レーザーをOPベースに装着して、半導体レーザーホルダー部(レーザー表面からの距離約3mm)の温度上昇を熱電対により測定した。
半導体レーザーを発光させた状態で、環境温度60℃の恒温槽内にOPベースをセットし、熱平衡に達した時点の温度を測定した。その結果、測定部の温度上昇は2.5℃に止まっており、充分な放熱効果が認められた。
Example 11
Using the thermally conductive resin composition produced in Example 1, an OP base for DVD-ROM having the shape shown in FIG. 2 was molded. The molding temperature conditions were a resin temperature of 330 ° C. and a mold temperature of 145 ° C.
The OP base is approximately 25 mm long, 40 mm deep, 13 mm high, and 2.0 mm thick.
This OP-based heat dissipation was evaluated by the following method.
A semiconductor laser as a light source was mounted on the OP base, and the temperature rise of the semiconductor laser holder (distance from the laser surface of about 3 mm) was measured with a thermocouple.
With the semiconductor laser emitted, the OP base was set in a constant temperature bath at an ambient temperature of 60 ° C., and the temperature when the thermal equilibrium was reached was measured. As a result, the temperature rise of the measurement part was stopped at 2.5 ° C., and a sufficient heat dissipation effect was recognized.

尚、この材料を使用した成形品に発生するバリが非常に少ないという特長も確認された。これは高い熱伝導率のため、金型のパーティング面に流入する流動成分(樹脂+金属)が急速に固化するためバリが少なくなったものと推察され、精密部品用材料として好適な特性であると言える。   In addition, the feature that the burr | flash which generate | occur | produces in the molded article using this material is very few was also confirmed. This is because of the high thermal conductivity, the fluid component (resin + metal) flowing into the parting surface of the mold rapidly solidifies, and it is assumed that the burrs are reduced. It can be said that there is.

比較例8
一般的なDVD−ROM用OPベースのグレードであるポリフェニレンスルフィド(出光石油化学(株)製、K531A1:熱伝導率0.5W/mK、SFL80mm)を用いた他は、実施例11と同様にしてDVD−ROM用OPベースを成形し、評価した。
その結果、放熱性の評価では+8℃の温度上昇を観測した。
Comparative Example 8
Except using polyphenylene sulfide (made by Idemitsu Petrochemical Co., Ltd., K531A1: thermal conductivity 0.5 W / mK, SFL 80 mm), which is a general OP-based grade for DVD-ROM, the same as Example 11 An OP base for DVD-ROM was molded and evaluated.
As a result, a temperature increase of + 8 ° C. was observed in the evaluation of heat dissipation.

比較例9
同一形状を持つアルミ・ダイキャスト製OPベースを作製し、実施例11と同じ方法で放熱性を評価した。
その結果、+1℃の温度上昇を観測した。
Comparative Example 9
An aluminum die-cast OP base having the same shape was produced, and the heat dissipation was evaluated in the same manner as in Example 11.
As a result, a temperature increase of + 1 ° C. was observed.

尚、実施例11及び比較例8、9で作製したOPベースを用いて、20℃→80℃での光軸ズレ量を測定したが、実施例11は比較例8とほぼ同一の光軸ズレ量を示し、OPベースとして充分な温度特性を有することも確認した。   Incidentally, the optical axis deviation amount at 20 ° C. → 80 ° C. was measured using the OP base produced in Example 11 and Comparative Examples 8 and 9, but Example 11 has almost the same optical axis deviation as Comparative Example 8. It was also confirmed that it has sufficient temperature characteristics as an OP base.

本発明の熱伝導性樹脂組成物は、熱伝導性(放熱性)、寸法安定性、流動性及び強度に優れており、しかも、これを加工した成形品は、表面外観がよい。
また、本発明の樹脂組成物を用いることで、寸法安定性と放熱性に優れた光ピックアップ装置用保持容器、及び当該部品を備えた光ピックアップ装置を提供することができる。
本発明の樹脂組成物は、光ピックアップの半導体レーザーと同様に、発熱するその他の光半導体用保持容器、及び一般的な半導体の放熱容器としても好適に使用できる。
The thermally conductive resin composition of the present invention is excellent in thermal conductivity (heat dissipation), dimensional stability, fluidity and strength, and a molded product obtained by processing this has a good surface appearance.
Further, by using the resin composition of the present invention, it is possible to provide an optical pickup device holding container excellent in dimensional stability and heat dissipation, and an optical pickup device including the component.
The resin composition of the present invention can be suitably used as other optical semiconductor holding containers that generate heat, and general semiconductor heat dissipation containers as well as semiconductor lasers for optical pickups.

また、軸受等の摺動部材では一般的に摩擦係数の小さい充填材を配合した樹脂組成物が使用されているが、高速で摺動する部材では摩擦面で発生した熱が表面に滞留して基材が軟化してしまい、充填材が表面に剥離していわゆるアブレッシブ摩耗が進むことがある。本発明の材料は、この用途に関しても、好適に使用できる。例えば、低摩擦係数を発現する黒鉛とCFが配合され、軟質のフィラーが配合されているものは、摺動の相手材を損傷させることが少ない。加えて、任意成分としてPPSの一部をPTFEに変更する等により、更に熱発生と熱滞留による温度上昇を少なくすることができる。   In addition, a resin composition containing a filler with a small friction coefficient is generally used for sliding members such as bearings. However, in a member that slides at high speed, heat generated on the friction surface is retained on the surface. The base material may be softened, the filler may be peeled off from the surface, and so-called abrasive wear may progress. The material of the present invention can also be suitably used for this application. For example, when graphite and CF which express a low friction coefficient are blended and a soft filler is blended, the sliding counterpart material is rarely damaged. In addition, the temperature rise due to heat generation and heat retention can be further reduced by changing a part of PPS as an optional component to PTFE.

光ピックアップ装置の構造の例を示す模式図である。It is a schematic diagram which shows the example of the structure of an optical pick-up apparatus. 光ピックアップ装置に装着される光ピックアップ装置用保持容器の斜視図である。It is a perspective view of the holding container for optical pickup devices mounted on the optical pickup device. 熱伝導率の測定方法を説明するための概略図である。It is the schematic for demonstrating the measuring method of thermal conductivity.

符号の説明Explanation of symbols

1 光ピックアップ装置
10 シャーシ
11 主軸
12 副軸
13 光ピックアップ
13a 光ピックアップ装置用保持容器
14 光ディスク
21 基体
22、22’ 主軸受
23 副軸受
24 レーザーダイオードホルダ取付部
25 出射口
DESCRIPTION OF SYMBOLS 1 Optical pick-up apparatus 10 Chassis 11 Main axis | shaft 12 Sub axis | shaft 13 Optical pick-up 13a Holding container for optical pick-up apparatuses 14 Optical disk 21 Base | substrate 22, 22 'Main bearing 23 Sub bearing 24 Laser diode holder attachment part 25 Outlet

Claims (13)

以下の(a)〜(e)成分を、以下の(i)〜(v)に示す配合量含む熱伝導性樹脂組成物。
[成分]
(a) 融点が200℃以上の結晶性樹脂
(b) 固相線温度が前記結晶性樹脂の融点以下であり、液相線温度が該融点よりも100℃以上高い低融点合金
(c) 融点又は固相線温度が400℃以上であり、前記(b)成分との相溶性が良好である金属又は合金粉末
(d) 前記(b)成分と相溶性が悪く、熱伝導率が20W/mK以上である無機粉末
(e) 繊維強化材
[配合量]
(i) 前記結晶性樹脂(a):40〜60vol%
(ii) 前記無機粉末(d) :10〜30vol%
(iii) 前記繊維強化材(e):10〜25vol%
(iv) 前記結晶性樹脂(a)と、前記低融点合金(b)と前記金属又は合金粉末(c)との和との体積比〔(a)/[(b)+(c)]〕:2.0〜30.0
(v) 前記低融点合金(b)と前記金属又は合金粉末(c)との体積比[(b)/(c)]:1.0〜4.0
The heat conductive resin composition which contains the following (a)-(e) component and the compounding quantity shown to the following (i)-(v).
[component]
(A) Crystalline resin having a melting point of 200 ° C. or higher (b) Low melting point alloy whose solidus temperature is lower than the melting point of the crystalline resin and whose liquidus temperature is 100 ° C. or higher higher than the melting point (c) Alternatively, the metal or alloy powder having a solidus temperature of 400 ° C. or higher and good compatibility with the component (b) (d) The compatibility with the component (b) is poor and the thermal conductivity is 20 W / mK. Inorganic powder (e) fiber reinforcing material [blending amount]
(I) Crystalline resin (a): 40-60 vol%
(Ii) The inorganic powder (d): 10 to 30 vol%
(Iii) The fiber reinforcement (e): 10 to 25 vol%
(Iv) Volume ratio [(a) / [(b) + (c)]] of the crystalline resin (a) and the sum of the low melting point alloy (b) and the metal or alloy powder (c) : 2.0 to 30.0
(V) Volume ratio [(b) / (c)] of the low melting point alloy (b) and the metal or alloy powder (c): 1.0 to 4.0
前記(b)成分がSnを主成分とし、{Cu,Ni,Ag,Bi,Zn,Al,Mg}から選択される少なくとも一つの副成分を含む合金であり、
前記(c)成分が{Cu,Ni,Zn,Al,Fe}から選択される少なくとも一つの金属又は合金である請求項1に記載の熱伝導性樹脂組成物。
The component (b) is an alloy containing Sn as a main component and containing at least one subcomponent selected from {Cu, Ni, Ag, Bi, Zn, Al, Mg},
The thermally conductive resin composition according to claim 1, wherein the component (c) is at least one metal or alloy selected from {Cu, Ni, Zn, Al, Fe}.
前記(d)成分が{黒鉛,酸化アルミニウム,酸化マグネシウム,窒化アルミ,窒化ホウ素}から選択される少なくとも一つの成分である請求項1又は2に記載の熱伝導性樹脂組成物。   The thermally conductive resin composition according to claim 1 or 2, wherein the component (d) is at least one component selected from {graphite, aluminum oxide, magnesium oxide, aluminum nitride, boron nitride}. 前記(a)成分が、溶融粘度(300℃、1200sec−1)50Pa・sec以下であるポリフェニレンスルフィド樹脂であり、
前記(b)成分がSnを主成分とし、{Cu,Ni,Ag,Bi,Zn}から選択される少なくとも一つの副成分を含む合金であり、
前記(c)成分が{Cu,Ni,Zn}から選択される少なくとも一つの金属又は合金の粉末であり、
前記(d)成分が、黒鉛及び/又は球状酸化アルミナである請求項1に記載の熱伝導性樹脂組成物。
The component (a) is a polyphenylene sulfide resin having a melt viscosity (300 ° C., 1200 sec −1 ) of 50 Pa · sec or less,
The component (b) is an alloy containing Sn as a main component and including at least one subcomponent selected from {Cu, Ni, Ag, Bi, Zn},
The component (c) is a powder of at least one metal or alloy selected from {Cu, Ni, Zn},
The thermally conductive resin composition according to claim 1, wherein the component (d) is graphite and / or spherical alumina oxide.
前記(d)成分が、エポキシ樹脂で表面処理された黒鉛、及び/又は有機シランで表面処理された球状酸化アルミナである請求項4に記載の熱伝導性樹脂組成物。   The thermally conductive resin composition according to claim 4, wherein the component (d) is graphite surface-treated with an epoxy resin and / or spherical alumina oxide surface-treated with an organic silane. 前記熱伝導性樹脂組成物の熱伝導率が4W/mK以上であり、曲げ破断強度が100MPa以上であり、荷重たわみ温度(低荷重)が200℃以上である請求項1〜5のいずれかに記載の熱伝導性樹脂組成物。   The thermal conductivity of the thermal conductive resin composition is 4 W / mK or higher, the bending breaking strength is 100 MPa or higher, and the deflection temperature under load (low load) is 200 ° C. or higher. The heat conductive resin composition as described. 請求項1〜6のいずれかに記載の熱伝導性樹脂組成物の製造方法であって、
前記結晶性樹脂(a)、前記低融点合金(b)、前記金属又は合金粉末(c)、前記無機粉末(d)及び前記繊維強化材(e)を、
以下の条件(1)〜(3)を満たす温度で溶融混練する工程を含む熱伝導性樹脂組成物の製造方法。
(1)前記(a)成分の結晶性樹脂を溶融する温度
(2)前記(b)成分の低融点合金の固相線温度以上の温度
(3)前記(b)成分の液相線温度より30℃以上低い温度
It is a manufacturing method of the heat conductive resin composition in any one of Claims 1-6,
The crystalline resin (a), the low melting point alloy (b), the metal or alloy powder (c), the inorganic powder (d) and the fiber reinforcing material (e),
The manufacturing method of the heat conductive resin composition including the process of melt-kneading at the temperature which satisfy | fills the following conditions (1)-(3).
(1) Temperature at which the crystalline resin of component (a) is melted (2) Temperature above the solidus temperature of the low melting point alloy of component (b) (3) From the liquidus temperature of component (b) Temperature lower than 30 ℃
請求項1〜6のいずれかに記載の熱伝導性樹脂組成物からなる成形品。   The molded article which consists of a heat conductive resin composition in any one of Claims 1-6. 請求項1〜6のいずれかに記載の熱伝導性樹脂組成物からなる光ピックアップ装置用保持容器。   A holding container for an optical pickup device comprising the thermally conductive resin composition according to any one of claims 1 to 6. 請求項9の光ピックアップ装置用保持容器と、光源と、光源の制御用ICと、対物レンズと、受光部とを含む光ピックアップ装置。   An optical pickup device comprising: the optical pickup device holding container according to claim 9; a light source; a light source control IC; an objective lens; 請求項1〜6のいずれかに記載の熱伝導性樹脂組成物からなる光半導体用保持容器。   The holding container for optical semiconductors which consists of a heat conductive resin composition in any one of Claims 1-6. 請求項1〜6のいずれかに記載の熱伝導性樹脂組成物からなる半導体用放熱容器。   The semiconductor thermal radiation container which consists of a heat conductive resin composition in any one of Claims 1-6. 請求項1〜6のいずれかに記載の熱伝導性樹脂組成物からなる軸受け。   The bearing which consists of a heat conductive resin composition in any one of Claims 1-6.
JP2004198877A 2004-07-06 2004-07-06 Thermoconductive resin composition and method for producing the same Ceased JP2006022130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198877A JP2006022130A (en) 2004-07-06 2004-07-06 Thermoconductive resin composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198877A JP2006022130A (en) 2004-07-06 2004-07-06 Thermoconductive resin composition and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006022130A true JP2006022130A (en) 2006-01-26

Family

ID=35795647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198877A Ceased JP2006022130A (en) 2004-07-06 2004-07-06 Thermoconductive resin composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006022130A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132185A1 (en) * 2005-06-06 2006-12-14 Nippon Kagaku Yakin Co., Ltd. Insulative and thermally conductive resin composition and formed article, and method for production thereof
JP2007070587A (en) * 2005-08-12 2007-03-22 Tosoh Corp Polyarylene sulfide resin composition
JP2007106950A (en) * 2005-10-17 2007-04-26 Tosoh Corp Polyarylene sulfide composition
JP2007106949A (en) * 2005-10-17 2007-04-26 Tosoh Corp Polyarylene sulfide composition
WO2009054567A1 (en) * 2007-10-23 2009-04-30 Cheil Industries Inc. Thermal conductive polymer composite and article using the same
EP2204403A1 (en) * 2008-12-30 2010-07-07 Cheil Industries Inc. Resin composition
JP2010155993A (en) * 2008-12-30 2010-07-15 Cheil Industries Inc Resin composition
JP2010526888A (en) * 2007-04-24 2010-08-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thermoplastic resin composition having electromagnetic interference shielding properties
JP2010258373A (en) * 2009-04-28 2010-11-11 Polyplastics Co Container of electronic circuit board
JP2011116956A (en) * 2009-10-26 2011-06-16 Asahi Organic Chemicals Industry Co Ltd Phenol resin-molding material and sliding member
US20110206933A1 (en) * 2008-11-05 2011-08-25 Cheil Industries Inc. Electrically Insulating Thermally Conductive Polymer Composition
US8105964B2 (en) 2006-11-06 2012-01-31 Hexcel Composites, Ltd. Composite materials
US8173723B2 (en) 2008-12-10 2012-05-08 Cheil Industries Inc. EMI/RFI shielding resin composite material and molded product made using the same
JP2012238676A (en) * 2010-05-10 2012-12-06 Shin Kobe Electric Mach Co Ltd Resin molding
WO2013069271A1 (en) * 2011-11-11 2013-05-16 パナソニック株式会社 Polymer structure
KR101274816B1 (en) 2008-02-14 2013-06-13 주식회사 엘지화학 Resin composition having high heat resistance, thermal conductivity and reflectivity and the method of the same
JP2013532219A (en) * 2010-06-28 2013-08-15 ディーエスエム アイピー アセッツ ビー.ブイ. Thermally conductive polymer composition
US20140235753A1 (en) * 2011-08-12 2014-08-21 Sakai Chemical Industry Co., Ltd. Coated magnesium oxide particles, method for the production thereof, heat-releasing filler, and resin composition
KR101555396B1 (en) 2008-05-08 2015-09-23 후지고분시고오교오가부시끼가이샤 Thermally conductive resin composition
EP2985370A4 (en) * 2013-04-12 2017-09-20 China Petroleum&Chemical Corporation Polymer/filler/metal composite fiber and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239354A (en) * 1991-12-06 1993-09-17 Phillips Petroleum Co Poly(arylene sulfide) composition
JP2001294751A (en) * 2000-04-17 2001-10-23 Idemitsu Petrochem Co Ltd Polyarylene sulfide resin composition and use
WO2003029352A1 (en) * 2001-09-27 2003-04-10 Nippon Kagaku Yakin Co., Ltd. Resin composition with high thermal conductivity and process for producing the same
JP2003119383A (en) * 2001-10-15 2003-04-23 Toray Ind Inc Polyarylene sulfide resin composition
JP2004075881A (en) * 2002-08-20 2004-03-11 Idemitsu Petrochem Co Ltd Optical component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239354A (en) * 1991-12-06 1993-09-17 Phillips Petroleum Co Poly(arylene sulfide) composition
JP2001294751A (en) * 2000-04-17 2001-10-23 Idemitsu Petrochem Co Ltd Polyarylene sulfide resin composition and use
WO2003029352A1 (en) * 2001-09-27 2003-04-10 Nippon Kagaku Yakin Co., Ltd. Resin composition with high thermal conductivity and process for producing the same
JP2003119383A (en) * 2001-10-15 2003-04-23 Toray Ind Inc Polyarylene sulfide resin composition
JP2004075881A (en) * 2002-08-20 2004-03-11 Idemitsu Petrochem Co Ltd Optical component

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5340595B2 (en) * 2005-06-06 2013-11-13 日本科学冶金株式会社 Insulating thermally conductive resin composition, molded article, and method for producing the same
WO2006132185A1 (en) * 2005-06-06 2006-12-14 Nippon Kagaku Yakin Co., Ltd. Insulative and thermally conductive resin composition and formed article, and method for production thereof
JP2007070587A (en) * 2005-08-12 2007-03-22 Tosoh Corp Polyarylene sulfide resin composition
JP2007106950A (en) * 2005-10-17 2007-04-26 Tosoh Corp Polyarylene sulfide composition
JP2007106949A (en) * 2005-10-17 2007-04-26 Tosoh Corp Polyarylene sulfide composition
US8980770B2 (en) 2006-11-06 2015-03-17 Hexcel Composites Limited Composite materials
US8263503B2 (en) 2006-11-06 2012-09-11 Hexcel Composites, Ltd. Composite materials
US9603229B2 (en) 2006-11-06 2017-03-21 Hexcel Composites Limited Composite materials
US8105964B2 (en) 2006-11-06 2012-01-31 Hexcel Composites, Ltd. Composite materials
US8980771B2 (en) 2006-11-06 2015-03-17 Hexcel Composites Limited Composite materials
JP2010526888A (en) * 2007-04-24 2010-08-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thermoplastic resin composition having electromagnetic interference shielding properties
WO2009054567A1 (en) * 2007-10-23 2009-04-30 Cheil Industries Inc. Thermal conductive polymer composite and article using the same
KR100963673B1 (en) * 2007-10-23 2010-06-15 제일모직주식회사 Thermal conductive polymer composite and article using the same
KR101274816B1 (en) 2008-02-14 2013-06-13 주식회사 엘지화학 Resin composition having high heat resistance, thermal conductivity and reflectivity and the method of the same
KR101555396B1 (en) 2008-05-08 2015-09-23 후지고분시고오교오가부시끼가이샤 Thermally conductive resin composition
US20110206933A1 (en) * 2008-11-05 2011-08-25 Cheil Industries Inc. Electrically Insulating Thermally Conductive Polymer Composition
US8173723B2 (en) 2008-12-10 2012-05-08 Cheil Industries Inc. EMI/RFI shielding resin composite material and molded product made using the same
JP2010155993A (en) * 2008-12-30 2010-07-15 Cheil Industries Inc Resin composition
US7939167B2 (en) 2008-12-30 2011-05-10 Cheil Industries Inc. Resin composition
EP2204403A1 (en) * 2008-12-30 2010-07-07 Cheil Industries Inc. Resin composition
JP2010258373A (en) * 2009-04-28 2010-11-11 Polyplastics Co Container of electronic circuit board
JP2011116956A (en) * 2009-10-26 2011-06-16 Asahi Organic Chemicals Industry Co Ltd Phenol resin-molding material and sliding member
JP2012238676A (en) * 2010-05-10 2012-12-06 Shin Kobe Electric Mach Co Ltd Resin molding
JP2013532219A (en) * 2010-06-28 2013-08-15 ディーエスエム アイピー アセッツ ビー.ブイ. Thermally conductive polymer composition
US20140235753A1 (en) * 2011-08-12 2014-08-21 Sakai Chemical Industry Co., Ltd. Coated magnesium oxide particles, method for the production thereof, heat-releasing filler, and resin composition
US9340661B2 (en) * 2011-08-12 2016-05-17 Sakai Chemical Industry Co., Ltd. Coated magnesium oxide particles, method for the production thereof, heat-releasing filler, and resin composition
WO2013069271A1 (en) * 2011-11-11 2013-05-16 パナソニック株式会社 Polymer structure
EP2985370A4 (en) * 2013-04-12 2017-09-20 China Petroleum&Chemical Corporation Polymer/filler/metal composite fiber and preparation method thereof
US10787754B2 (en) 2013-04-12 2020-09-29 China Petroleum & Chemical Corporation Polymer/filler/metal composite fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2006022130A (en) Thermoconductive resin composition and method for producing the same
JP4150015B2 (en) Totally aromatic liquid crystal polyester resin composition and optical pickup lens holder
JP4945097B2 (en) Totally aromatic liquid crystal polyester resin composition and optical pickup lens holder
CN1117357C (en) Optical pickup device holding container
JPWO2003029352A1 (en) High thermal conductive resin composition and method for producing the same
JP2006328155A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
JP5456225B2 (en) Totally aromatic liquid crystal polyester composition and optical pickup lens holder using the same
JP6675028B1 (en) Pellet of liquid crystal polyester resin composition and method for producing pellet of liquid crystal polyester resin composition
WO2008063709A2 (en) Thermally conductive polymer compounds containing zinc sulfide
WO2007063795A1 (en) Resin composition and molded article obtained by molding same
JP2003049081A (en) Thermoplastic resin composition excellent in heat radiation property
JP2006249187A (en) Seal ring
JP2004339290A (en) Resin composition, molded article and optical pickup base for recording
JP2772342B2 (en) Resin composition for optical pickup parts and optical pickup parts
JP2007016221A (en) Resin material for molding and molded product
JP4989918B2 (en) Totally aromatic liquid crystal polyester resin composition and optical pickup lens holder
JP2007146129A (en) Resin composition, method for producing tablet therefrom and molded article
JP5479055B2 (en) Thermally conductive resin composition and molded article using the same
JP4475977B2 (en) Sliding resin composition
JP2008047288A (en) Optic
JP6040742B2 (en) Polyarylene sulfide resin composition
JP2002080735A (en) Liquid crystal resin composition and formed article
KR101298739B1 (en) Polymer compositions comprising different shape of dual fillers and methods for preparing the same
JP5560649B2 (en) Resin composition for sliding member and resin sliding member
JP4265328B2 (en) Polyarylene sulfide resin composition and molded article using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A977 Report on retrieval

Effective date: 20091013

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A131 Notification of reasons for refusal

Effective date: 20110105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20110614

Free format text: JAPANESE INTERMEDIATE CODE: A01

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20111025