JP5479055B2 - Thermally conductive resin composition and molded article using the same - Google Patents

Thermally conductive resin composition and molded article using the same Download PDF

Info

Publication number
JP5479055B2
JP5479055B2 JP2009274618A JP2009274618A JP5479055B2 JP 5479055 B2 JP5479055 B2 JP 5479055B2 JP 2009274618 A JP2009274618 A JP 2009274618A JP 2009274618 A JP2009274618 A JP 2009274618A JP 5479055 B2 JP5479055 B2 JP 5479055B2
Authority
JP
Japan
Prior art keywords
thermally conductive
resin composition
conductive filler
molded article
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009274618A
Other languages
Japanese (ja)
Other versions
JP2011116842A (en
Inventor
育男 上本
拓治 原野
昭人 三根生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2009274618A priority Critical patent/JP5479055B2/en
Publication of JP2011116842A publication Critical patent/JP2011116842A/en
Application granted granted Critical
Publication of JP5479055B2 publication Critical patent/JP5479055B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱伝導性樹脂組成物およびそれを用いた成形品に関し、さらに詳しくは、成形加工性に優れ、優れた熱伝導性および機械的特性を有する成形品を与える熱伝導性樹脂組成物およびそれを用いた成形品に関する。   The present invention relates to a thermally conductive resin composition and a molded article using the same, and more specifically, a thermally conductive resin composition that provides a molded article having excellent moldability and excellent thermal conductivity and mechanical properties. And a molded article using the same.

LSI等の半導体素子の集積密度増大と動作の高速化、そして電子部品の高密度実装に伴い、発熱源となる電子部品に対する放熱対策が大きな問題となっている。例えば、電子部品のハウジングには、従来、熱伝導率の高い金属やセラミックスが使われてきたが、近年、形状選択の自由度が大きく小型・軽量化の容易な樹脂系材料が用いられている。   As the integration density of semiconductor elements such as LSIs increases, the operation speed increases, and the electronic components are mounted with high density, heat dissipation measures for electronic components serving as heat sources have become a major problem. For example, metal and ceramics with high thermal conductivity have been conventionally used for housings of electronic components, but in recent years, resin-based materials that have a large degree of freedom in shape selection and are easy to reduce in size and weight have been used. .

樹脂系材料としては、従来、マトリックスとなる樹脂中に熱伝導性フィラー、例えば、カーボンファイバー(CF)、黒鉛粉末、金属粉末あるいはセラッミクス粉末等を分散し、同時に機械的特性を向上させる目的で通常ガラス繊維が配合された樹脂組成物が用いられている(例えば、特許文献1)。   Conventionally, resin-based materials are usually used for the purpose of dispersing a thermally conductive filler such as carbon fiber (CF), graphite powder, metal powder or ceramic powder in a matrix resin, and simultaneously improving mechanical properties. A resin composition containing glass fiber is used (for example, Patent Document 1).

特開2005−89652号公報JP 2005-89652 A

しかしながら、機械的特性を向上させる目的でガラス繊維を配合した樹脂組成物では、成形時のガラス繊維の配向に伴う線膨張係数の異方性が現れる。すなわち流れ方向と流れ方向に直角方向とでは異なった線膨張係数を示し、成形して得られた成形品は反りや変形を生じ、高精度を要求される電子部品には適用できないという問題があった。   However, in a resin composition in which glass fibers are blended for the purpose of improving mechanical properties, anisotropy of the linear expansion coefficient accompanying the orientation of the glass fibers during molding appears. That is, there is a problem that the linear expansion coefficient is different between the flow direction and the direction perpendicular to the flow direction, and the molded product obtained by molding is warped and deformed, and cannot be applied to electronic components that require high accuracy. It was.

そこで、本発明者らは、上記の課題を解決し、成形加工性に優れるとともに、高い熱伝導性および優れた機械的特性を有する成形品を与える熱伝導性樹脂組成物およびそれを用いた成形品を提供することを目的とした。   Accordingly, the present inventors have solved the above-mentioned problems, and have a heat conductive resin composition that gives a molded product having excellent heat processability and excellent mechanical properties while being excellent in molding processability, and molding using the same. The purpose was to provide goods.

上記課題を解決するため、本発明の熱伝導性樹脂組成物は、少なくとも、液晶ポリマー
40vol%以上と、偏平状で平均アスペクト比が2以下である熱伝導性フィラー10〜40vol%と、ガラス繊維5〜20vol%とを含み、熱伝導性フィラーとガラス繊維の体積比が熱伝導性フィラー/ガラス繊維=2/1〜/1である、光ピックアップベース用の射出成形用熱伝導性樹脂組成物であることを特徴とする。
In order to solve the above problems, the thermally conductive resin composition of the present invention comprises at least a liquid crystal polymer of 40 vol% or more, a thermal conductive filler of 10 to 40 vol % having a flat shape and an average aspect ratio of 2 or less, and glass. and a fiber 5 to 20 vol%, the volume ratio of the thermally conductive filler and the glass fibers are thermally conductive filler / glass fiber = 2 / 1-8 / 1, thermally conductive injection molding for the optical pickup base It is a resin composition.

本発明の樹脂組成物においては、上記熱伝導性フィラーが、鱗状黒鉛、銅フレーク、アルミフレーク、銀フレークおよび窒化ホウ素からなる群から選択された1種以上であることが好ましい。   In the resin composition of the present invention, the thermally conductive filler is preferably one or more selected from the group consisting of scaly graphite, copper flakes, aluminum flakes, silver flakes, and boron nitride.

本発明の成形品は、上記の本発明の熱伝導性樹脂組成物を成形して成る光ピックアップベースである。
The molded article of the present invention is an optical pickup base formed by molding the above-described thermally conductive resin composition of the present invention.

本発明の成形品は、熱伝導率が2W/(m・k)以上で、線膨張係数の異方性(TD−MD)が±10ppm/℃以下であることが好ましい。   The molded article of the present invention preferably has a thermal conductivity of 2 W / (m · k) or more and a linear expansion coefficient anisotropy (TD-MD) of ± 10 ppm / ° C. or less.

ここで、線膨張係数の異方性(TD−MD)とは、成形品の流れ方向の線膨張係数をMDとし、流れ方向と直交する方向の線膨張係数をTDとしたとき、(TD−MD)の式で示される線膨張係数の差を成形品の異方性をあらわす指標として定義される。   Here, the anisotropy of the linear expansion coefficient (TD-MD) means that when the linear expansion coefficient in the flow direction of the molded product is MD and the linear expansion coefficient in the direction orthogonal to the flow direction is TD, (TD- MD) is defined as an index representing the anisotropy of a molded article.

本発明によれば、ガラス繊維とともに、偏平状で平均アスペクト比が2以下である熱伝導性フィラーを、熱伝導性フィラーとガラス繊維の体積比が熱伝導性フィラー/ガラス繊維=2/1〜10/1となるように配合した樹脂組成物を用いることにより、成形品の線膨張係数の異方性を抑制することが可能となり、成形加工性に優れた熱伝導性樹脂組成物を提供することが可能となる。また、優れた機械的特性および熱伝導性を有する成形品を提供することが可能となる。また、成形品は、環境温度の変化や周辺部品の発熱等の影響により熱変形が抑制され、優れた寸法安定性を有する。   According to the present invention, together with the glass fiber, the heat conductive filler that is flat and has an average aspect ratio of 2 or less, the volume ratio of the heat conductive filler to the glass fiber is the heat conductive filler / glass fiber = 2/1 to 1. By using the resin composition blended so as to be 10/1, it becomes possible to suppress the anisotropy of the linear expansion coefficient of the molded product, and provide a thermally conductive resin composition excellent in molding processability. It becomes possible. In addition, it is possible to provide a molded product having excellent mechanical properties and thermal conductivity. In addition, the molded product has excellent dimensional stability because thermal deformation is suppressed by the influence of changes in environmental temperature, heat generation of peripheral components, and the like.

本発明の熱伝導性樹脂組成物に用いる鱗状黒鉛の形状を示す走査型電子顕微鏡写真の一例である。It is an example of the scanning electron micrograph which shows the shape of the scaly graphite used for the heat conductive resin composition of this invention. 本発明の熱伝導性樹脂組成物を用いて作製した光ピックアップベースを用いた光ディスク駆動装置の構造の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the optical disk drive device using the optical pick-up base produced using the heat conductive resin composition of this invention. 本発明の熱伝導性樹脂組成物を用いて作製した光ピックアップベースの構造の一例を示す模式斜視図である。It is a model perspective view which shows an example of the structure of the optical pick-up base produced using the heat conductive resin composition of this invention.

以下、本発明の実施の形態について説明する。
本発明に用いる熱可塑性樹脂は、JIS K 7191で規定する荷重たわみ温度が100℃以上の耐熱性樹脂であれば特に限定されない。具体的には、液晶ポリマー(LCP)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリイミド、ポリエーテルイミド、ポリアセタール、ポリエーテルサルホン、ポリサルホン、ポリカーボネイト、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンオキサイド、ポリフタールアミドおよびポリアミド等を挙げることができるが、液晶ポリマー(LCP)が好ましい。液晶ポリマーは耐熱性が高く、高流動で薄肉充填性が良好であり、さらに衝撃吸収性などに優れることから、電子部品のハウジングや、電子部品からの熱を外部に逃がすためのヒートシンクやファン等の放熱対策用途に適しているからである。
Embodiments of the present invention will be described below.
The thermoplastic resin used in the present invention is not particularly limited as long as it is a heat resistant resin having a deflection temperature under load defined by JIS K 7191 of 100 ° C. or higher. Specifically, liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyimide, polyetherimide, polyacetal, polyethersulfone, polysulfone, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene Examples thereof include oxides, polyphthalamides, and polyamides, and liquid crystal polymers (LCP) are preferable. Liquid crystal polymer has high heat resistance, high fluidity, good thin-wall filling, and excellent shock absorption, etc., housing of electronic parts, heat sinks and fans for releasing heat from electronic parts to the outside, etc. This is because it is suitable for heat dissipation measures.

ここで、液晶ポリマーとは、光学異方性を有する溶融相を形成する性質を有するポリマーである。光学異方性を有する溶融相は、直交偏光子を利用した偏光顕微鏡観察による偏光検査法により確認することができる。液晶ポリマーの種類は特に限定されないが、芳香族ポリエステルまたは芳香族ポリエステルアミドが好ましい。   Here, the liquid crystal polymer is a polymer having a property of forming a melt phase having optical anisotropy. A melt phase having optical anisotropy can be confirmed by a polarization inspection method using a polarizing microscope using a crossed polarizer. Although the kind of liquid crystal polymer is not particularly limited, aromatic polyester or aromatic polyester amide is preferable.

熱可塑性樹脂の体積含有率は、成形加工性を確保するため、樹脂組成物に対して40vol%以上、好ましくは40〜85vol%である。   The volume content of the thermoplastic resin is 40 vol% or more, preferably 40 to 85 vol% with respect to the resin composition in order to ensure moldability.

本発明に用いる熱伝導性フィラーは、偏平状で、平均アスペクト比が2以下、好ましくは1.1〜1.9である。熱伝導性フィラーの平均アスペクト比が2より大きいと、成形品の線膨張係数の異方性が大きくなり、反りや熱変形が発生するからである。本発明に用いる熱伝導性フィラーは、球状粒子等の嵩高い粒子に比べ、成形体へより高濃度に充填させることが可能となり、成形品の線膨張係数の異方性を低減することができる。
ここで、本発明における偏平状の熱伝導性フィラーとは、長軸と短軸を有する形状の熱伝導性フィラーであって、完全な球ではないものをいい、例えば、鱗状、一部の塊状形状等が含まれる。そして、アスペクト比は、長軸長さ/短軸長さで定義される。平均アスペクト比は、熱伝導性フィラーを走査型電子顕微鏡で観察し、視野内の各偏平状フィラーについて、長軸長さと短軸長さとをそれぞれ計測し、50個のフィラーのアスペクト比を平均して平均アスペクト比とした。また、熱伝導性フィラーの長軸長さは20〜100μm、短軸長さは10〜90μmの範囲にあることが好ましい。
The thermally conductive filler used in the present invention is flat and has an average aspect ratio of 2 or less, preferably 1.1 to 1.9. This is because if the average aspect ratio of the thermally conductive filler is larger than 2, the anisotropy of the linear expansion coefficient of the molded product increases, and warpage and thermal deformation occur. Compared with bulky particles such as spherical particles, the thermally conductive filler used in the present invention can be filled in the molded body at a higher concentration, and can reduce the anisotropy of the linear expansion coefficient of the molded product. .
Here, the flat heat conductive filler in the present invention is a heat conductive filler having a shape having a major axis and a minor axis, which is not a perfect sphere, for example, a scale shape, a part of a lump shape. Shape etc. are included. The aspect ratio is defined by the major axis length / minor axis length. The average aspect ratio is determined by observing the thermally conductive filler with a scanning electron microscope, measuring the major axis length and minor axis length of each flat filler in the field of view, and averaging the aspect ratios of 50 fillers. Average aspect ratio. Moreover, it is preferable that the major axis length of a heat conductive filler exists in the range of 20-100 micrometers, and a minor axis length exists in the range of 10-90 micrometers.

また、本発明に用いる熱伝導性フィラーの熱伝導率は、100W/(m・k)以上、好ましくは200W/(m・k)以上である。   The thermal conductivity of the thermally conductive filler used in the present invention is 100 W / (m · k) or more, preferably 200 W / (m · k) or more.

本発明に用いる熱伝導性フィラーの具体例として、鱗状黒鉛、銅フレーク、アルミフレーク、銀フレーク、窒化ホウ素等を挙げることができる。これらを1種または2種以上組み合わせて用いることができる。好ましくは、鱗状黒鉛、銅フレークまたはアルミフレークの少なくとも1種、より好ましくは鱗状黒鉛である。   Specific examples of the thermally conductive filler used in the present invention include scaly graphite, copper flakes, aluminum flakes, silver flakes, and boron nitride. These can be used alone or in combination of two or more. Preferably, at least one of scaly graphite, copper flakes or aluminum flakes, more preferably scaly graphite.

図1は、本発明に用いる鱗状黒鉛の一例を示す走査型電子顕微鏡写真である。その鱗状黒鉛の平均アスペクト比は、約1.6である。   FIG. 1 is a scanning electron micrograph showing an example of scaly graphite used in the present invention. The average aspect ratio of the scaly graphite is about 1.6.

熱伝導性フィラーの体積含有率は、樹脂組成物に対して10vol%以上、好ましくは、10〜40vol%である。10vol%より小さいと熱伝導率が低下し、40vol%より大きいと樹脂組成物の成形加工性が低下し、機械的強度も低下するからである。   The volume content of the heat conductive filler is 10 vol% or more, preferably 10 to 40 vol% with respect to the resin composition. This is because if it is less than 10 vol%, the thermal conductivity decreases, and if it exceeds 40 vol%, the molding processability of the resin composition decreases and the mechanical strength also decreases.

熱伝導性フィラーは、平均アスペクト比が2以下となるように製造されたものだけでなく、平均アスペクト比が2以下となるようにジェットミル、ヘンシェルミキサーあるいはタンブラー等を用いて加工・篩い分けしたものも用いることができる。   Thermally conductive fillers are processed and sieved using a jet mill, a Henschel mixer, or a tumbler so that the average aspect ratio is 2 or less, as well as those manufactured to have an average aspect ratio of 2 or less. Things can also be used.

本発明に用いるガラス繊維は、熱可塑性樹脂用の充填材として通常使用されているものであれば特に限定されないが、カット長が3〜6mm、繊維径が10〜13μm、平均アスペクト比(カット長/繊維径)が230〜600であるものが好ましい。   Although the glass fiber used for this invention will not be specifically limited if it is normally used as a filler for thermoplastic resins, a cut length is 3-6 mm, a fiber diameter is 10-13 micrometers, average aspect-ratio (cut length) (Fiber diameter) is preferably 230 to 600.

ガラス繊維の体積含有率は、機械的強度を確保するため、樹脂組成物に対して5vol%以上、好ましくは5〜20vol%である。   The volume content of the glass fiber is 5 vol% or more, preferably 5 to 20 vol% with respect to the resin composition in order to ensure mechanical strength.

本発明では、熱伝導性フィラーとガラス繊維の体積比が、熱伝導性フィラー/ガラス繊維=2/1〜10/1、好ましくは5/2〜10/1である。体積比が、2/1よりも小さいと、熱伝導性フィラーが少なく線膨張係数の異方性を抑制する効果が十分ではなく、また10/1よりも大きいと、熱伝導性フィラーが多く樹脂組成物の成形加工性が著しく低下するからである。   In the present invention, the volume ratio of the thermally conductive filler and glass fiber is thermally conductive filler / glass fiber = 2/1 to 10/1, preferably 5/2 to 10/1. When the volume ratio is less than 2/1, the heat conductive filler is small and the effect of suppressing the anisotropy of the linear expansion coefficient is not sufficient. When the volume ratio is greater than 10/1, the resin has a large amount of heat conductive filler. This is because the moldability of the composition is significantly reduced.

また、本発明の樹脂組成物は、原料粉を所定量混合して混練し、所定の金型を有する、射出成形機や圧縮成形機、そして押出成形機等を用いて、所望形状に成型することができる。特に、成形サイクルが短く生産性に優れる射出成形法が好ましい。   In addition, the resin composition of the present invention is mixed with a predetermined amount of raw material powder and kneaded and molded into a desired shape using an injection molding machine, a compression molding machine, an extrusion molding machine or the like having a predetermined mold. be able to. In particular, an injection molding method with a short molding cycle and excellent productivity is preferable.

本発明の成形品は、熱伝導率が2W/(m・k)以上、好ましくは6W/(m・k)以上であり、かつ線膨張係数の差(TD−MD)が15ppm/℃以下、好ましくは10ppm/℃以下である。   The molded article of the present invention has a thermal conductivity of 2 W / (m · k) or more, preferably 6 W / (m · k) or more, and a difference in linear expansion coefficient (TD-MD) of 15 ppm / ° C. or less. Preferably it is 10 ppm / ° C. or less.

本発明の成形品の例としては、電子部品のハウジングや、電子部品からの熱を外部に逃がすためのヒートシンクやファン等を挙げることができる。具体例としては、光ピックアップにおいて半導体レーザを収容する放熱体である光ピックアップベース、半導体素子用のパッケージ材料やヒートシンク材、ファンモータのケーシング、モータコア用のハウジング、二次電池用のケース、さらには、パソコンや携帯電話の筐体等を挙げることができる。   Examples of the molded article of the present invention include a housing for an electronic component, a heat sink and a fan for releasing heat from the electronic component to the outside, and the like. Specific examples include an optical pickup base that is a heat radiating body for housing a semiconductor laser in an optical pickup, a package material or heat sink material for a semiconductor element, a casing for a fan motor, a housing for a motor core, a case for a secondary battery, and And the case of a personal computer or a mobile phone.

図2は、本発明の光ピックアップベースを用いた光ディスク駆動装置の構造の一例を示す模式図である。光ディスク駆動装置は、シャーシ10と、シャーシ10に取付けられた主軸11と副軸12と、主軸11と副軸12に摺動自在に取付けられた光ピックアップ13とを備えている。光ピックアップ13は、制御系(不図示)により制御された駆動モータ(不図示)の駆動力により、主軸11と副軸12に沿って光ディスクDの半径方向に移動し、情報の記録と再生を行う。   FIG. 2 is a schematic diagram showing an example of the structure of an optical disc driving apparatus using the optical pickup base of the present invention. The optical disk drive device includes a chassis 10, a main shaft 11 and a sub shaft 12 attached to the chassis 10, and an optical pickup 13 slidably attached to the main shaft 11 and the sub shaft 12. The optical pickup 13 moves in the radial direction of the optical disc D along the main shaft 11 and the sub shaft 12 by the driving force of a driving motor (not shown) controlled by a control system (not shown), and records and reproduces information. Do.

ここで、光ピックアップ13は、図3に示す本実施例の光ピックアップベース14とレーザダイオードホルダ(不図示)を介して取付けられたレーザダイオード(不図示)とから成る。光ピックアップベース14は、基体14aと、基体14aの一端に所定の間隔で配置され基体14aと一体的に成形された2つの主軸受14b,14bを有する一方、基体14aの他端には基体14aと一体的に成形された副軸受14cを有している。主軸受14b,14bと副軸受14cは、それぞれ、主軸11と副軸12に遊挿されている。また、レーザダイオードホルダはレーザダイオードホルダ取付け部14dに取付けられる。レーザダイオードからの出射光は、図示しない光学素子により光ディスクDに向けて出射される。   Here, the optical pickup 13 comprises an optical pickup base 14 of the present embodiment shown in FIG. 3 and a laser diode (not shown) attached via a laser diode holder (not shown). The optical pickup base 14 has a base 14a and two main bearings 14b and 14b which are arranged at a predetermined interval at one end of the base 14a and are integrally formed with the base 14a. And a sub-bearing 14c molded integrally therewith. The main bearings 14b and 14b and the auxiliary bearing 14c are loosely inserted into the main shaft 11 and the auxiliary shaft 12, respectively. The laser diode holder is attached to the laser diode holder attachment portion 14d. Light emitted from the laser diode is emitted toward the optical disk D by an optical element (not shown).

本発明の光ピックアップベースは、従来の金属製の光ピックアップベースに比べ軽量であり、光ディスクに対するアクセス速度をより高速にできるだけでなく、2W/(m・k)以上の高い熱伝導率を有しており、レーザダイオードからの発熱を逃がすことができる放熱性を有している。   The optical pickup base of the present invention is lighter than the conventional metal optical pickup base, and can not only increase the access speed to the optical disc, but also has a high thermal conductivity of 2 W / (m · k) or more. Therefore, it has a heat dissipation property that can release heat generated from the laser diode.

(試料作製)
熱可塑性樹脂には液晶ポリマー(Zenite7000、デュポン社製)、熱伝導性フィラーには、鱗状黒鉛(平均アスペクト比:約1.6)、銅フレーク(平均アスペクト比:約1.7)、またはアルミフレーク(平均アスペクト比:約1.9)を、ガラス繊維には、平均直径が13μm、平均繊維長が3mmのものを用いた。
(Sample preparation)
The thermoplastic resin is a liquid crystal polymer (Zenite 7000, manufactured by DuPont), and the thermally conductive filler is a scaly graphite (average aspect ratio: about 1.6), copper flakes (average aspect ratio: about 1.7), or aluminum. Flakes (average aspect ratio: about 1.9) and glass fibers having an average diameter of 13 μm and an average fiber length of 3 mm were used.

表1の組成に配合した原料混合粉を混練押出し機に投入し、温度310〜340℃で混練し、押出して成形用ペレットを作製した。この成形用ペレットを熱プレスにより成形し、切削加工して、直径10mm、厚さ1.5mmの円柱形状の評価用成形試料を得た。また、比較として、熱伝導性フィラーに球状の黒鉛粉末(平均アスペクト比:約1.1)を用いたもの(試料9)と、炭素繊維(平均アスペクト比:約600)を用いたもの(試料10)と、2種の熱伝導性フィラーを組み合わせたもの(試料11)を、上記の方法と同様にして評価用成形試料を作製した。   The raw material mixed powder blended in the composition shown in Table 1 was put into a kneading extruder, kneaded at a temperature of 310 to 340 ° C., and extruded to produce a pellet for molding. This pellet for molding was molded by hot pressing and cut to obtain a cylindrical molded sample for evaluation having a diameter of 10 mm and a thickness of 1.5 mm. Further, as a comparison, a heat conductive filler using spherical graphite powder (average aspect ratio: about 1.1) (sample 9) and a carbon fiber (average aspect ratio: about 600) (sample) 10) and a combination of two types of thermally conductive fillers (sample 11) were prepared in the same manner as described above to produce evaluation molded samples.

(熱伝導率測定)
Xeフラッシュ法を用いて熱伝導率を算出した。熱拡散率は、NETZSCH社製 Xeフラッシュアナライザー(型式LFA447)を用いて測定し、比熱は株式会社島津製作所製熱流束示差走査熱流計(型式DSC-50)を用いて測定し、密度は水中置換法によって測定し、それらを掛け合わせて、熱伝導率を算出した。熱伝導率の測定結果を表2に示す。
(Thermal conductivity measurement)
Thermal conductivity was calculated using the Xe flash method. The thermal diffusivity is measured using a Xe flash analyzer (model LFA447) manufactured by NETZSCH, the specific heat is measured using a heat flux differential scanning heat flow meter (model DSC-50) manufactured by Shimadzu Corporation, and the density is substituted in water. The thermal conductivity was calculated by measuring by the method and multiplying them. Table 2 shows the measurement results of thermal conductivity.

(線膨張係数測定)
成形品の流れ方向の線膨張係数(MD)と、流れ方向と直交する方向の線膨張係数(TD)は、前記と同様にして得られた成形用ペレットを射出成形機よりISO 3167(JIS K7139)に準拠した多目的試験片を成形し、切削加工により流れ方向及び流れ方向と直交する方向に切り出し測定用サンプルとした。この各サンプルを株式会社リガク製 熱機械分析装置(TMA、型式CN8098F1)を用いて、JIS K7197に準拠し、温度変化に対する試料長の変化量を測定した。測定値を10-6/℃ = ppm/℃で表し、その差(TD-MD)を線膨張係数の異方性とした。
(Measurement of linear expansion coefficient)
The linear expansion coefficient (MD) in the flow direction of the molded product and the linear expansion coefficient (TD) in the direction orthogonal to the flow direction are obtained by using ISO 3167 (JIS K7139) from a molding pellet obtained in the same manner as described above from an injection molding machine. A multi-purpose test piece conforming to) was molded and cut into a flow direction and a direction perpendicular to the flow direction by cutting to obtain a measurement sample. Each sample was measured for the amount of change in sample length with respect to temperature change using a thermomechanical analyzer (TMA, model CN8098F1) manufactured by Rigaku Corporation in accordance with JIS K7197. The measured value was expressed as 10 −6 / ° C. = ppm / ° C., and the difference (TD-MD) was defined as the anisotropy of the linear expansion coefficient.

(曲げ強さ測定)
曲げ強さは、東洋ボールドウィン株式会社製 大型万能試験機(テンシロン、型式UTM-5T)を用いて,ISO 178(JIS K7171)に準拠した試験方法にて実施し求めた。試験片は、ISO 3167(JIS K7139)に準拠した多目的試験片を用いた。結果を、表2に示す。
(Bending strength measurement)
The bending strength was determined by carrying out the test according to ISO 178 (JIS K7171) using a large-scale universal testing machine (Tensilon, model UTM-5T) manufactured by Toyo Baldwin Co., Ltd. As the test piece, a multipurpose test piece based on ISO 3167 (JIS K7139) was used. The results are shown in Table 2.

表2に示すように、本発明の樹脂組成物を用いて作製した試料3,4,5,6,8,11では、熱伝導率が2W/(m・k)以上であり、線膨張係数の異方性(TD−MD)が15ppm/℃以下であった。また、曲げ強さも実用には十分な強度が得られた。一方、熱伝導性フィラーを添加しなかった場合(試料1)や、熱伝導性フィラーに球状粒子や平均アスペクト比が2より大きいフィラーを用いた場合(試料9,10)には、線膨張係数の異方性(TD−MD)が20以上であった。   As shown in Table 2, Samples 3, 4, 5, 6, 8, and 11 produced using the resin composition of the present invention had a thermal conductivity of 2 W / (m · k) or more and a linear expansion coefficient. Anisotropy (TD-MD) of 15 ppm / ° C. or less. Also, the bending strength was sufficient for practical use. On the other hand, when no thermally conductive filler is added (sample 1), or when spherical particles or a filler having an average aspect ratio greater than 2 is used as the thermally conductive filler (samples 9 and 10), the linear expansion coefficient Anisotropy (TD-MD) of 20 or more.

(光ピックアップベースの作製)
表1の試料4の組成に配合した原料混合粉を混練押出し機に投入し、温度310〜340℃で混練し押出して成形用ペレットを作製した。この成形用ペレットを射出成形機に投入し、温度310〜340℃で射出成形することにより、図3に示す形状を有する光ピックアップベースを製作した。
この光ピックアップベースは、2W/(m・k)以上の熱伝導率と、15ppm/℃以下の線膨張係数の異方性(TD−MD)であり、その高い熱伝導性により、レーザダイオードからの発熱を逃がすことができる十分な放熱性を有している。
(Production of optical pickup base)
The raw material mixed powder blended in the composition of Sample 4 in Table 1 was put into a kneading extruder, kneaded at a temperature of 310 to 340 ° C. and extruded to produce a molding pellet. The molding pellets were put into an injection molding machine and injection molded at a temperature of 310 to 340 ° C. to produce an optical pickup base having the shape shown in FIG.
This optical pickup base has a thermal conductivity of 2 W / (m · k) or more and a linear expansion coefficient anisotropy (TD-MD) of 15 ppm / ° C. or less. It has sufficient heat dissipation that can escape the heat generation.

以上、説明したように、本発明によれば、成形品の線膨張係数の異方性を抑制することができる成形加工性に優れた熱伝導性樹脂組成物を提供することができる。これにより、優れた機械的特性および熱伝導性を有する成形品を提供できる。例えば、光ピックアップベースに用いた場合、レーザ等の発光素子の発光特性を維持するのに十分な放熱性を有している。さらに、金属製のものに比べ軽量で高速移動が可能であり、光ディスクに対するアクセス速度を大幅に向上させることが可能となる。   As described above, according to the present invention, it is possible to provide a thermally conductive resin composition excellent in molding processability capable of suppressing the anisotropy of the linear expansion coefficient of a molded product. Thereby, it is possible to provide a molded article having excellent mechanical properties and thermal conductivity. For example, when used in an optical pickup base, it has sufficient heat dissipation to maintain the light emission characteristics of a light emitting element such as a laser. Furthermore, it is lighter than a metal one and can move at high speed, and the access speed to the optical disk can be greatly improved.

10 シャーシ
11 主軸
12 副軸
13 光ピックアップ
14 光ピックアップベース
14a 基体
14b 主軸受
14c 主軸受
14d レーザーダイオードホルダ取付け部
D 光ディスク
DESCRIPTION OF SYMBOLS 10 Chassis 11 Main axis | shaft 12 Sub axis | shaft 13 Optical pick-up 14 Optical pick-up base 14a Base 14b Main bearing 14c Main bearing 14d Laser diode holder attaching part D Optical disk

Claims (4)

少なくとも、液晶ポリマー40vol%以上と、偏平状で平均アスペクト比が2以下である熱伝導性フィラー10〜40vol%と、ガラス繊維5〜20vol%とを含み、熱伝導性フィラーとガラス繊維の体積比が熱伝導性フィラー/ガラス繊維=2/1〜/1である、光ピックアップベース用の射出成形用熱伝導性樹脂組成物。 At least, a liquid crystal polymer 40 vol% or more, and 10 to 40 vol% thermally conductive filler average aspect ratio of 2 or less flat, and a 5 to 20 vol% of glass fibers, the thermally conductive filler and the glass fibers volume ratio of the thermally conductive filler / glass fiber = 2 / 1-8 / 1, for injection molding a thermally conductive resin composition for the optical pick-up base. 上記熱伝導性フィラーが、鱗状黒鉛、銅フレーク、アルミフレーク、銀フレークおよび窒化ホウ素からなる群から選択された1種以上である請求項1記載の樹脂組成物。   The resin composition according to claim 1, wherein the thermally conductive filler is at least one selected from the group consisting of scaly graphite, copper flakes, aluminum flakes, silver flakes, and boron nitride. 請求項1からのいずれか一つに記載の熱伝導性樹脂組成物から成る光ピックアップベースである成形品。 Claims 1 to 2 of the molded article is an optical pickup base made of a thermally conductive resin composition of any one. 熱伝導率が2W/(m・k)以上で、線膨張係数の異方性(TD−MD)が±10ppm/℃以下である、請求項記載の成形品。 The molded article according to claim 3 , wherein the thermal conductivity is 2 W / (m · k) or more and the anisotropy of linear expansion coefficient (TD-MD) is ± 10 ppm / ° C or less.
JP2009274618A 2009-12-02 2009-12-02 Thermally conductive resin composition and molded article using the same Expired - Fee Related JP5479055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009274618A JP5479055B2 (en) 2009-12-02 2009-12-02 Thermally conductive resin composition and molded article using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009274618A JP5479055B2 (en) 2009-12-02 2009-12-02 Thermally conductive resin composition and molded article using the same

Publications (2)

Publication Number Publication Date
JP2011116842A JP2011116842A (en) 2011-06-16
JP5479055B2 true JP5479055B2 (en) 2014-04-23

Family

ID=44282549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009274618A Expired - Fee Related JP5479055B2 (en) 2009-12-02 2009-12-02 Thermally conductive resin composition and molded article using the same

Country Status (1)

Country Link
JP (1) JP5479055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385912B2 (en) 2019-12-25 2023-11-24 アクア株式会社 Refrigerator and its manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018829A (en) * 2011-11-11 2015-01-29 パナソニック株式会社 Polymer structure material
CN111108647B (en) * 2017-10-18 2022-03-29 Ntn株式会社 Housing and on-vehicle fin antenna device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273292A (en) * 1999-03-19 2000-10-03 Polyplastics Co Liquid crystalline polymer composition for optical pickup and optical pickup
JP2000273320A (en) * 1999-03-19 2000-10-03 Polyplastics Co Liquid crystal polymer composition for optical pickup and optical pickup
JP3822402B2 (en) * 1999-10-21 2006-09-20 ポリプラスチックス株式会社 Optical pickup parts
JP2003041119A (en) * 2001-07-26 2003-02-13 Toray Ind Inc Highly thermoconductive resin composition
JP2003067958A (en) * 2001-08-28 2003-03-07 Asahi Kasei Corp Optical pickup base
US20060014876A1 (en) * 2002-09-03 2006-01-19 Solvay Advanced Polymers, Llc Thermally conductive liquid crystalline polymer compositions and articles formed therefrom
JP2004295942A (en) * 2003-03-25 2004-10-21 Asahi Kasei Chemicals Corp Optical pickup base
JP2004339290A (en) * 2003-05-13 2004-12-02 Polyplastics Co Resin composition, molded article and optical pickup base for recording
JP4366156B2 (en) * 2003-09-18 2009-11-18 新日本石油株式会社 Optical pickup member comprising a wholly aromatic liquid crystal polyester resin composition as a constituent material
JP2007262295A (en) * 2006-03-29 2007-10-11 Unitika Ltd Thermoconductive resin composition and molded article consisting of the same
JP5177089B2 (en) * 2008-07-30 2013-04-03 東レ株式会社 Polyarylene sulfide resin composition, polyarylene sulfide resin composition tablet and molded product obtained therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385912B2 (en) 2019-12-25 2023-11-24 アクア株式会社 Refrigerator and its manufacturing method

Also Published As

Publication number Publication date
JP2011116842A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5241733B2 (en) Thermally conductive resin composition and plastic product
JP5513840B2 (en) Insulating sheet, circuit board, and insulating sheet manufacturing method
JP6453754B2 (en) Nanodiamond-containing thermoplastic thermal composites
JP2011094116A (en) Liquid crystal polyester resin composition, molded article, and optical pick-up lens holder
WO2005100465A1 (en) Carbon-based electrically conducting filler, composition and use thereof
JP2011012193A (en) Resin composition and use thereof
JP2008050555A (en) Thermoconductive resin composition and use thereof
JP2006328352A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
WO2017012119A1 (en) Thermally conductive core-shell structured particles
JP2006328155A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
JP2013089718A (en) Heat sink with highly heat-conducting resin, and led light source
JP5479055B2 (en) Thermally conductive resin composition and molded article using the same
JP2006022130A (en) Thermoconductive resin composition and method for producing the same
JP2011093973A (en) Liquid crystal polyester resin composition, molded article, and optical pick-up lens holder
JP5359825B2 (en) Thermally conductive resin composition
WO2006132185A1 (en) Insulative and thermally conductive resin composition and formed article, and method for production thereof
JP2003049081A (en) Thermoplastic resin composition excellent in heat radiation property
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
KR101478819B1 (en) Electrically insulating and thermally conducting polymer compositions and methods for preparing the same, and mold product using the same
JP6168851B2 (en) Heat radiation resin molding
JP2007146129A (en) Resin composition, method for producing tablet therefrom and molded article
JP5200789B2 (en) Resin composition
JP2007182990A (en) Resin composition for torque limiter part and torque limiter part composed of its composition
KR101298739B1 (en) Polymer compositions comprising different shape of dual fillers and methods for preparing the same
JP5356669B2 (en) Phenolic resin molding materials and molded products using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R150 Certificate of patent or registration of utility model

Ref document number: 5479055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees