JP6168851B2 - Heat radiation resin molding - Google Patents

Heat radiation resin molding Download PDF

Info

Publication number
JP6168851B2
JP6168851B2 JP2013115226A JP2013115226A JP6168851B2 JP 6168851 B2 JP6168851 B2 JP 6168851B2 JP 2013115226 A JP2013115226 A JP 2013115226A JP 2013115226 A JP2013115226 A JP 2013115226A JP 6168851 B2 JP6168851 B2 JP 6168851B2
Authority
JP
Japan
Prior art keywords
resin
heat
molded body
resin composition
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013115226A
Other languages
Japanese (ja)
Other versions
JP2014234407A (en
Inventor
洋 若狭谷
洋 若狭谷
眞 荒深
眞 荒深
亮一 古田
亮一 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP2013115226A priority Critical patent/JP6168851B2/en
Publication of JP2014234407A publication Critical patent/JP2014234407A/en
Application granted granted Critical
Publication of JP6168851B2 publication Critical patent/JP6168851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子・電気部品等の放熱特性を良好にする放熱樹脂成形体に関するもので、特に、放熱が要求される対象物に接触させることで放熱性向上を可能とした放熱樹脂成形体に関するものである。   The present invention relates to a heat-dissipating resin molded body that improves heat dissipation characteristics of electronic / electrical parts and the like, and more particularly, to a heat-dissipating resin molded body that can improve heat dissipation by contacting an object that requires heat dissipation. Is.

近年、パソコン、携帯電話機、デジタルカメラ、プロジェクタ、光ディスク装置、情報端末等の電子機器分野において、機能の複合化、高性能化、小型化、薄型化、軽量化等が進み、また、取扱う信号量の増大や処理スピードの高速化により、電子部品からの発熱は増える傾向にある。また、自動車、照明のような電気分野においても、特に、自動車のみを見ても、車両に搭載される電子部品数は増加の一途にあり、かつ、小型化、高性能化等に伴い、電子部品の発熱量が高くなってきている。電子部品の発熱量が高くなると、電子部品や機器内の温度が上昇して、その熱により電子部品や機器の機能が低下したり、誤作動が生じたり、破損したりする可能性がある。このため、各種の電子部品で発生する熱をより効率良く放散させる熱対策の放熱設計が非常に重要な課題になっており、電子部品等の熱源に対して高い放熱特性を示す素材の開発が進められている。   In recent years, in the field of electronic devices such as personal computers, mobile phones, digital cameras, projectors, optical disk devices, information terminals, etc., composite functions, high performance, miniaturization, thinning, weight reduction, etc. have progressed, and the amount of signals handled Due to the increase in processing speed and the increase in processing speed, the heat generated from electronic components tends to increase. Also, in the electrical field such as automobiles and lighting, especially when only automobiles are viewed, the number of electronic components mounted on the vehicle is increasing, and with downsizing and higher performance, etc. The amount of heat generated by parts is increasing. When the calorific value of the electronic component increases, the temperature inside the electronic component or device rises, and the heat may reduce the function of the electronic component or device, cause malfunction, or damage. For this reason, heat dissipation design for heat countermeasures to dissipate the heat generated in various electronic components more efficiently is a very important issue, and the development of materials that exhibit high heat dissipation characteristics for heat sources such as electronic components It is being advanced.

ところで、放熱特性を示す放熱材料として、従来、電子部品のハウジング等において熱伝導率の高い金属材料やセラミック材料が用いられてきたが、部品の更なる小型化、軽量化、高性能化等のためには、軽量性や高い成形加工性が要求される。そこで、これらの要求に応える材料として、形状選択の自由度が高く、安価である樹脂材料への代替が進んでいる。しかしながら、汎用の樹脂自体は熱伝導性が低い。このため、熱伝導率の高い充填材料を樹脂に充填して複合材料とすることで、例えば、特許文献1や特許文献2のように、樹脂組成物を高熱伝導率化する試みが広くなされている。   By the way, as a heat dissipation material exhibiting heat dissipation characteristics, metal materials and ceramic materials having high thermal conductivity have been conventionally used in electronic component housings, etc., but further miniaturization, weight reduction, high performance, etc. of components have been used. Therefore, light weight and high moldability are required. Therefore, as a material that meets these requirements, an alternative to a resin material that has a high degree of freedom in shape selection and is inexpensive is in progress. However, general-purpose resins themselves have low thermal conductivity. For this reason, attempts have been made to increase the thermal conductivity of resin compositions by, for example, Patent Document 1 and Patent Document 2 by filling a resin with a high thermal conductivity filling material to form a composite material. Yes.

特開2009−007552号公報JP 2009-007552 A 特開2003−120688号公報JP 2003-120688 A

ところが、特許文献1や特許文献2に記載の樹脂成形品は、熱伝導率の高い充填材料を樹脂に充填して熱伝導率を高めた熱伝導樹脂についての発明であり、当該熱伝導樹脂から成形した成形体自体の熱伝導率は高いが、放熱設計としては熱伝導率以外の他の特性を満足しないと使用できない場合がある。そこで、熱伝導率以外の他の特性を満足させるために、放熱させたい成形体(以下放熱対象物と呼ぶ)に熱伝導率を高めた熱伝導樹脂の成形体を接触させて放熱性を向上させる方策が考えられる。この際、放熱対象物に接する熱伝導樹脂の成形体の表面が粗いと、放熱対象物と熱伝導樹脂の成形体との接触面積が少なく、また放熱対象物と熱伝導樹脂の成形体との間隙が断熱層として働き、熱の伝導が阻害される。   However, the resin molded products described in Patent Document 1 and Patent Document 2 are inventions regarding a heat conductive resin in which a high thermal conductivity filling material is filled into the resin to increase the heat conductivity. Although the molded product itself has a high thermal conductivity, it may not be used as a heat dissipation design unless other characteristics other than the thermal conductivity are satisfied. Therefore, in order to satisfy other characteristics other than the thermal conductivity, heat dissipation is improved by bringing a molded body of heat conductive resin with increased thermal conductivity into contact with the molded body to be radiated (hereinafter referred to as heat dissipation object). Measures can be considered. At this time, if the surface of the heat conductive resin molded body in contact with the heat radiation object is rough, the contact area between the heat radiation object and the heat conductive resin molded body is small, and the heat radiation object and the heat conductive resin molded body The gap acts as a heat insulating layer, impeding heat conduction.

そこで、本発明は、上記事情に鑑みてなされたものであり、放熱対象物と接触させて放熱性向上を可能とする放熱樹脂成形体の提供を課題とするものである。   Then, this invention is made | formed in view of the said situation, and makes it a subject to provide the thermal radiation resin molded object which makes a thermal radiation object contact and enables heat dissipation improvement.

請求項1の発明の放熱樹脂成形体は、有機合成樹脂として熱可塑性樹脂と、熱伝導性フィラーと、無機短繊維として旧モース硬度が5以下である塩基性硫酸マグネシウムまたはチタン酸カルシウムを含有した樹脂組成物を成形した成形体であって、前記成形体の表面粗さが十点平均粗さRzで6μm未満であるものである。
ここで、上記十点平均粗さRzは、粗さ曲線からその平均線の方向に基準長さ(L)だけを抜き取り、この抜取り部分の平均線から縦倍率の方向に測定した、最も高い山頂から5番目までの山頂の標高(Yp)の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高(Yv)の絶対値の平均値との和を求め、この値をマイクロメートル(μm)で表したものをいい、JIS B 0601(1994)に準拠して測定された値である。このときの平均は算術平均(相加平均とも呼ばれる)の値であり、この発明において平均とは、算術平均(相加平均とも呼ばれる)の値である。
The heat-dissipating resin molding of the invention of claim 1 contains a thermoplastic resin as a synthetic organic resin , a thermally conductive filler, and basic magnesium sulfate or calcium titanate having an old Mohs hardness of 5 or less as an inorganic short fiber. A molded article obtained by molding a resin composition, wherein the molded article has a surface roughness of 10-point average roughness Rz of less than 6 μm.
Here, the ten-point average roughness Rz is the highest peak measured by extracting only the reference length (L) from the roughness curve in the direction of the average line and measuring in the direction of the vertical magnification from the average line of the extracted portion. Calculate the sum of the absolute value of the altitude (Yp) of the top of the mountain from the first to the fifth and the average of the absolute value of the altitude (Yv) of the bottom from the lowest valley to the fifth. The value is expressed in terms of (μm), and is a value measured according to JIS B 0601 (1994). The average at this time is a value of an arithmetic average (also referred to as an arithmetic average). In the present invention, the average is a value of an arithmetic average (also referred to as an arithmetic average).

ここで、旧モース硬度とは、硬度を1〜10に規定した鉱物の硬さでの指標で示し、具体的には、硬さを計る試料物質で標準物質をこすり、ひっかき傷の有無で硬さを測定します。なお、新モース硬度は旧モース硬度を15段階に分けたものです。   Here, the old Mohs hardness is indicated by an index of the hardness of the mineral with the hardness defined as 1 to 10, and specifically, the standard material is rubbed with a sample material for measuring the hardness, and the hardness is determined by the presence or absence of scratches. Measure the thickness. The new Mohs hardness is the old Mohs hardness divided into 15 levels.

請求項2の発明の放熱樹脂成形体は、前記樹脂組成物の前記無機短繊維が平均繊維径0.1μm〜1.0μmの範囲内であり、平均繊維長3μm〜30μmの範囲内であるものである。   The heat-radiating resin molding of the invention of claim 2 is such that the inorganic short fibers of the resin composition are in the range of an average fiber diameter of 0.1 μm to 1.0 μm and an average fiber length of 3 μm to 30 μm. It is.

請求項3の発明の放熱樹脂成形体は、前記樹脂組成物の前記無機短繊維の配合割合が、前記樹脂組成物全体において1重量%〜50重量%の範囲内であるものである。   In the heat-dissipating resin molded body of the invention of claim 3, the blending ratio of the inorganic short fibers of the resin composition is in the range of 1% by weight to 50% by weight with respect to the whole resin composition.

請求項4の発明の放熱樹脂成形体は、前記樹脂組成物が更に強化繊維を含有し、前記樹脂組成物の前記無機短繊維の配合割合が、前記熱可塑性樹脂と前記熱伝導性フィラーと前記強化繊維との合計含有量100重量部に対して、1重量部〜30重量部の範囲内であるものである。 In the heat-dissipating resin molded body of the invention of claim 4, the resin composition further contains reinforcing fibers, and the blending ratio of the inorganic short fibers of the resin composition is such that the thermoplastic resin , the thermally conductive filler, and the It is within the range of 1 to 30 parts by weight with respect to 100 parts by weight of the total content with the reinforcing fibers.

請求項5の発明の放熱樹脂成形体は、請求項4の構成において、前記樹脂組成物の前記無機短繊維の配合割合が、前記樹脂組成物全体において5重量%〜10重量%の範囲内であるものである。なお、上記各種数値は、厳格であることを要求するものではなく概ねであり、当然、測定等による誤差を含む概略値であり、数割の誤差を否定するものではない。   The heat-dissipating resin molded body of the invention of claim 5 is the structure of claim 4, wherein the blending ratio of the inorganic short fibers of the resin composition is within the range of 5% by weight to 10% by weight in the whole resin composition. There is something. In addition, the above-mentioned various numerical values are not required to be strict, but are approximate, and are naturally approximate values including errors due to measurement and the like, and do not deny errors of several percent.

請求項1の発明にかかる放熱樹脂成形体は、有機合成樹脂として熱可塑性樹脂と、熱伝導性フィラーと、無機短繊維を含有した樹脂組成物を成形した成形体であって、前記成形体の表面粗さが十点平均粗さRzで6μm未満である。
ここで、本発明者らは放熱性が高い成形体を形成できる樹脂組成物について鋭意実験研究を重ねた結果、有機合成樹脂として熱可塑性樹脂と、熱伝導性フィラーとを含有する樹脂組成物において無機短繊維を加えることで、当該樹脂組成物から得られる成形体の表面粗さが向上して放熱対象物に対する密着性が高まり、これにより放熱対象物からの熱伝導が高まることで放熱対象物からの放熱性が向上されることを見出し、本発明を完成させたものである。
即ち、本発明の放熱樹脂成形体によれば、無機短繊維が配合されていることによって、形成される成形体において表面粗さが十点平均粗さRzで6μ未満と向上して平滑な表面性が得られ、放熱対象物との密着性が良好となる。したがって、放熱対象物に接触させることで放熱対象物から効率よく熱を伝導させることができ、更に、熱伝導性フィラーによる高い熱伝導性によって放熱性が高まる。
The heat-dissipating resin molded body according to the invention of claim 1 is a molded body obtained by molding a resin composition containing a thermoplastic resin , a thermally conductive filler, and an inorganic short fiber as an organic synthetic resin . The surface roughness is less than 6 μm in terms of 10-point average roughness Rz.
Here, the present inventors have conducted extensive experimental research on a resin composition capable of forming a molded product having high heat dissipation, and as a result, in a resin composition containing a thermoplastic resin as an organic synthetic resin and a thermally conductive filler. By adding inorganic short fibers, the surface roughness of the molded body obtained from the resin composition is improved and adhesion to the heat dissipation object is increased, thereby increasing heat conduction from the heat dissipation object, thereby increasing the heat dissipation object. The present invention has been completed by finding that the heat radiation from the heat is improved.
That is, according to the heat-dissipating resin molded body of the present invention, the blended inorganic short fibers improve the surface roughness of the molded body to be less than 6 μ in terms of the 10-point average roughness Rz, resulting in a smooth surface. Property is obtained, and the adhesiveness to the heat dissipation object is improved. Therefore, heat can be efficiently conducted from the heat dissipation object by bringing it into contact with the heat dissipation object, and heat dissipation is further enhanced by the high thermal conductivity of the heat conductive filler.

この発明にかかる放熱樹脂成形体によれば、前記無機短繊維の旧モース硬度が5以下である。このように硬度が小さく柔らかい無機短繊維を樹脂組成物に配することで良好な表面の平滑性を有する放熱樹脂成形体とすることができる。したがって、容易に放熱対象物と良好な密着性が得られ、より効率よく熱を放熱対象物から伝導させて放熱することができる。   According to the heat radiating resin molded body according to the present invention, the old Mohs hardness of the inorganic short fibers is 5 or less. Thus, by disposing soft inorganic short fibers having a small hardness in the resin composition, it is possible to obtain a heat-dissipating resin molded body having good surface smoothness. Therefore, good adhesion to the object to be radiated can be easily obtained, and heat can be radiated by conducting heat from the object to be radiated more efficiently.

請求項2の発明にかかる放熱樹脂成形体によれば、前記樹脂組成物の前記無機短繊維は、平均繊維径が0.1μm〜1.0μmの範囲内であり、平均繊維長が3μm〜30μmの範囲内であり、平均繊維径及び平均繊維長をこの範囲に規定することで、請求項1に記載の効果に加えて、より確実に表面が平滑な放熱樹脂成形体とすることができる。   According to the heat radiating resin molded body of the invention of claim 2, the inorganic short fibers of the resin composition have an average fiber diameter in the range of 0.1 μm to 1.0 μm and an average fiber length of 3 μm to 30 μm. By defining the average fiber diameter and the average fiber length within this range, in addition to the effect of the first aspect, a heat radiation resin molded body having a smooth surface can be obtained more reliably.

請求項3の発明にかかる放熱樹脂成形体によれば、前記無機短繊維は、前記樹脂組成物全体において1重量%〜50重量%の範囲内の配合割合で配合され、無機短繊維を上記範囲内で配合することによって、請求項1または請求項2に記載の効果に加えて、表面平滑性が高い放熱樹脂成形体が安定して得られる。   According to the heat-radiating resin molded body of the invention of claim 3, the inorganic short fibers are blended in a blending ratio within the range of 1% by weight to 50% by weight in the entire resin composition, and the inorganic short fibers are in the above range. In addition to the effect of Claim 1 or Claim 2, the heat dissipation resin molding with high surface smoothness is stably obtained by mix | blending inside.

請求項4の発明にかかる放熱樹脂成形体によれば、前記樹脂組成物が更に強化繊維を含有し、前記無機短繊維の配合割合は、前記熱可塑性樹脂と前記熱伝導性フィラーと前記強化繊維との合計量100重量部に対して、1重量部〜30重量部の範囲内としている。これによって、請求項1または請求項2に記載の効果に加えて、強化繊維が含まれている場合において、表面平滑性に優れる成形体が安定して得られる。 According to the heat-dissipating resin molded body according to the invention of claim 4, the resin composition further contains reinforcing fibers, and the blending ratio of the inorganic short fibers is the thermoplastic resin , the thermally conductive filler, and the reinforcing fibers. With respect to the total amount of 100 parts by weight, the amount is in the range of 1 to 30 parts by weight. Thereby, in addition to the effect of Claim 1 or Claim 2, when the reinforcement fiber is contained, the molded object which is excellent in surface smoothness is obtained stably.

請求項5の発明にかかる放熱樹脂成形体によれば、前記無機短繊維の配合割合は、樹脂組成物全体において5重量%〜10重量%の範囲内としている。これによって、請求項4に記載の効果に加えて、強化繊維等の繊維状フィラーが含まれている場合において、表面平滑性に優れる成形体がより安定して得られる。   According to the heat-radiating resin molded body of the invention of claim 5, the blending ratio of the inorganic short fibers is in the range of 5% by weight to 10% by weight in the entire resin composition. Thereby, in addition to the effect of Claim 4, when the fibrous fillers, such as a reinforced fiber, are contained, the molded object which is excellent in surface smoothness is obtained more stably.

図1は溶融混練機としての押出機を使用して樹脂組成物を調製する際の模式図である。FIG. 1 is a schematic view when a resin composition is prepared using an extruder as a melt kneader. 図2は放熱性についての測定方法を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a measurement method for heat dissipation. 図3は成形体の表面粗さと放熱性との関係を実施例1と比較例1との比較で示した特性図である。FIG. 3 is a characteristic diagram showing the relationship between the surface roughness of the molded body and the heat dissipation in comparison between Example 1 and Comparative Example 1.

以下、本発明の実施の形態について説明する。
本実施の形態にかかる放熱樹脂成形体は、有機合成樹脂と、熱伝導性フィラーと、無機短繊維とを含有した樹脂組成物を成形したものである。
Embodiments of the present invention will be described below.
The heat-dissipating resin molded body according to the present embodiment is obtained by molding a resin composition containing an organic synthetic resin, a thermally conductive filler, and inorganic short fibers.

従来、熱伝導性樹脂材料として、樹脂以外の添加物、例えば、放熱性を向上させるために熱伝導性フィラー等のフィラーを多量に加えると、流動性の低下により成形性が低下し、成形体の表面の平滑性が得られにくい。したがって、放熱対象物に密着させて放熱をさせるには不向きであった。
そこで、本発明では、熱伝導性フィラーによって所望の熱伝導率を確保しつつ、無機短繊維を配合することにより、成形体における表面粗さの向上、即ち、優れた放熱対象物への密着性確保を可能としている。
Conventionally, as a thermally conductive resin material, additives other than resin, for example, when a large amount of filler such as a thermally conductive filler is added in order to improve heat dissipation, the moldability decreases due to a decrease in fluidity, and the molded body It is difficult to obtain smooth surface. Therefore, it was unsuitable for making it heat-dissipate in close contact with the heat dissipation object.
Therefore, in the present invention, the surface roughness of the molded body is improved by blending the inorganic short fibers while ensuring the desired thermal conductivity with the thermally conductive filler, that is, excellent adhesion to the heat dissipation object. It is possible to secure.

ここで、成形体における表面粗さの向上を可能とする無機短繊維としては、絶縁性を示す塩基性硫酸マグネシウム、チタン酸カリウム等を使用することができ、これらは比較的入手が容易で安価であり、比重も小さい。また、これらは1種を単独でまたは2種以上を組み合わせて使用できるが、塩基性硫酸マグネシウム、チタン酸カリウムを用いるのが好ましい。これらは旧モース硬度が5以下と柔らかい無機短繊維であるからである。また、これら無機短繊維は、超臨界でのCVD(化学気相成長法)法等によってステアリン酸系カップリング等の表面処理を施したものであっても良い。更に、300℃〜600℃の熱処理等によって水和物をなくした無水物のものを使用することも可能である。   Here, as the inorganic short fiber capable of improving the surface roughness in the molded body, basic magnesium sulfate, potassium titanate, etc., which exhibit insulation properties can be used, and these are relatively easily available and inexpensive. And the specific gravity is small. Moreover, these can be used individually by 1 type or in combination of 2 or more types, However, It is preferable to use basic magnesium sulfate and potassium titanate. This is because these are short inorganic fibers having an old Mohs hardness of 5 or less. In addition, these inorganic short fibers may be subjected to surface treatment such as stearic acid-based coupling by a supercritical CVD (chemical vapor deposition) method or the like. Furthermore, it is also possible to use an anhydride having no hydrate by heat treatment at 300 ° C. to 600 ° C.

また、この無機短繊維は、平均繊維径が0.1μm〜1.0μmであり、平均繊維長が3μm〜30μmであるものが好ましい。
平均繊維径が1.0μmを超えると、充填率が低下して均一分散性に欠け、また、成形時の流動性及び成形加工性が低下し、放熱樹脂成形体表面の表面粗さが悪くなる。一方、平均繊維径が0.1μm未満の無機短繊維は、製造が比較的困難であり入手しにくく、更に、繊維同士が凝集を起こしやすくて均一に分散させることが困難であったり、成形加工時に折れ易かったりして安定性に欠ける恐れがある。
The inorganic short fibers preferably have an average fiber diameter of 0.1 μm to 1.0 μm and an average fiber length of 3 μm to 30 μm.
When the average fiber diameter exceeds 1.0 μm, the filling rate is reduced and the uniform dispersibility is deteriorated, and the fluidity and molding processability at the time of molding are lowered, and the surface roughness of the surface of the heat-dissipating resin molded body is deteriorated. . On the other hand, inorganic short fibers having an average fiber diameter of less than 0.1 μm are relatively difficult to produce and are difficult to obtain, and moreover, fibers tend to aggregate and are difficult to disperse uniformly, or may be molded. Sometimes it breaks easily and lacks stability.

また、平均繊維長が30μmより長いと、充填率の低下や繊維同士の絡み合いにより均一分散性に欠け、また、成形時の流動性及び成形加工性が低下し、放熱樹脂成形体表面の表面粗さが悪くなる。一方、平均繊維長が3μm未満の無機短繊維は、製造が比較的困難であり入手しにくく、また、繊維同士が凝集を起こしやすくなり、均一に分散させることが困難となる恐れがある。
したがって、平均繊維径が0.1μm〜1.0μmであり、平均繊維長が3μm〜30μmである無機短繊維を用いることによって、表面の平滑性が高い放熱樹脂成形体を形成できる。
On the other hand, if the average fiber length is longer than 30 μm, uniform dispersibility is lacking due to a decrease in filling rate or entanglement between fibers, and fluidity and molding processability at the time of molding are reduced, resulting in a surface roughness of the surface of the heat-dissipating resin molded body. It gets worse. On the other hand, inorganic short fibers having an average fiber length of less than 3 μm are relatively difficult to produce and difficult to obtain, and the fibers tend to agglomerate, making it difficult to uniformly disperse them.
Therefore, by using inorganic short fibers having an average fiber diameter of 0.1 μm to 1.0 μm and an average fiber length of 3 μm to 30 μm, it is possible to form a heat dissipation resin molded body having a high surface smoothness.

このような無機短繊維は、樹脂組成物全体において1重量%〜50重量%の範囲内の配合割合で配合されるのが好ましい。無機短繊維の配合割合をこの範囲内にすることで十点平均粗さRz6μm未満の表面粗さを有する成形体が安定して得られる。
特に、樹脂組成物において後述する繊維状の強化繊維を配合する場合、無機短繊維の配合割合は、有機合成樹脂と熱伝導性フィラーと強化繊維との合計量100重量部に対して、1重量部〜30重量部の範囲内とすることで放熱樹脂成形体の補強と放熱性の両立が可能となる。更に、このような強化繊維等の繊維状のフィラーを樹脂組成物に配する場合、無機短繊維の配合割合は樹脂組成物全体において5重量%〜10重量%の範囲内とするのが更により好ましい。
Such inorganic short fibers are preferably blended at a blending ratio in the range of 1% by weight to 50% by weight in the entire resin composition. By setting the blending ratio of the inorganic short fibers within this range, a molded article having a surface roughness of less than 10-point average roughness Rz 6 μm can be stably obtained.
In particular, when blending fibrous reinforcing fibers described later in the resin composition, the blending ratio of the inorganic short fibers is 1 weight with respect to 100 parts by weight of the total amount of the organic synthetic resin, the heat conductive filler, and the reinforcing fibers. By making it within the range of 30 parts by weight to 30 parts by weight, it is possible to achieve both the reinforcement of the heat-dissipating resin molding and the heat dissipation. Furthermore, when arranging such fibrous fillers such as reinforcing fibers in the resin composition, the blending ratio of the inorganic short fibers is still more preferably in the range of 5 wt% to 10 wt% in the entire resin composition. preferable.

ここで、本実施の形態にかかる樹脂組成物を構成する有機合成樹脂としては、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリ塩化ビニリデン(PVDC)樹脂、ポリスチレン(PS)樹脂、ポリ酢酸ビニル(PVAc)樹脂、アクリル(PMMA)樹脂、アクリルニトリルスチレン(AS)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ポリサルホン(PSF)樹脂、ポリエーテルサルフォン(PES)樹脂、ポリスルホン(PSF)樹脂、ポリアリレート(PAR)樹脂、液晶ポリマー(LCP)樹脂、非晶ポリアレート(PAR)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、熱可塑性ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、アラミド(AR)樹脂、ABS樹脂、ポリアミド(PA)樹脂等のポリアミド系樹脂、ポリアセタール(POM)樹脂、ポリカーボネート(PC)樹脂、変性ポリフェニレンエーテル(PPE)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリフェニレンサルファイド(PPS)樹脂、環状ポリオレフィン(COP)樹脂等の熱可塑性樹脂が挙げられ、これら1種を単独でまたは2種以上を組み合わせて使用できる。
特に、ポリフェニレンサルファイド(PPS)樹脂は、高い耐熱性、機械的物性、耐化学薬品性、寸法安定性、難燃性を有していることから、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料等に広く使用できる。
Examples of the organic synthetic resin of such resin composition according to the present embodiment, positive Riechiren (PE) resin, polypropylene (PP) resin, polyvinyl chloride (PVC) resins, polyvinylidene chloride (PVDC) resin, polystyrene (PS) resin, polyvinyl acetate (PVAc) resin, an acrylic (PMMA) resin, acrylonitrile styrene (AS) tree butter, Po Li polytetrafluoroethylene (PTFE) resin, polysulfone (PSF) resin, polyethersulfone ( PES) resin, polysulfone (PSF) resin, polyarylate (PAR) resin, liquid crystal polymer (LCP) resin, amorphous polyarate (PAR) resin, polyetheretherketone (PEEK) resin, thermoplastic polyimide (PI) resin, polyamide Imide (PAI) resin, Aramid (AR) tree Polyamide resins such as ABS resin and polyamide (PA) resin, polyacetal (POM) resin, polycarbonate (PC) resin, modified polyphenylene ether (PPE) resin, polybutylene terephthalate (PBT) resin, polyethylene terephthalate (PET) resin, Examples thereof include thermoplastic resins such as polyphenylene sulfide (PPS) resin and cyclic polyolefin (COP) resin, and these can be used alone or in combination of two or more.
In particular, polyphenylene sulfide (PPS) resin has high heat resistance, mechanical properties, chemical resistance, dimensional stability, and flame retardancy. Can be widely used for chemical equipment parts materials.

有機合成樹脂の配合割合は、樹脂組成物全体において20重量%〜70重量%の範囲内であるのが好ましい。有機合成樹脂の配合割合が20重量%未満である場合、脆くなり強度が不足してしまう一方で、70重量%を超えると、樹脂組成物全体における熱伝導性フィラーの配合量が少なくなり十分な放熱性を得ることができないからである。   The blending ratio of the organic synthetic resin is preferably in the range of 20% by weight to 70% by weight in the entire resin composition. When the blending ratio of the organic synthetic resin is less than 20% by weight, it becomes brittle and the strength is insufficient. On the other hand, when it exceeds 70% by weight, the blending amount of the heat conductive filler in the entire resin composition is small and sufficient. This is because heat dissipation cannot be obtained.

更に、本実施の形態にかかる樹脂組成物に配合される熱伝導性フィラーは、絶縁性であっても導電性であってもよく、絶縁性の熱伝導性フィラーとしては、窒化ホウ素、窒化アルミニウム、窒化珪素等の窒素化合物や、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化ケイ素、酸化ベリリウム、酸化銅、亜酸化銅等の金属酸化物や、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物や、マグネサイト(炭酸マグネシウム)、炭化珪素、ダイヤモンド等の炭素化合物や、シリカ、タルク、マイカ、カオリン、ベントナイト、パイロフェライト等のセラミック類、ホウ化チタン、チタン酸カルシウム等が使用できる。   Furthermore, the heat conductive filler blended in the resin composition according to the present embodiment may be insulating or conductive. Examples of the insulating heat conductive filler include boron nitride and aluminum nitride. Nitrogen compounds such as silicon nitride, metal oxides such as aluminum oxide, magnesium oxide, zinc oxide, silicon oxide, beryllium oxide, copper oxide and cuprous oxide, and metal hydroxides such as magnesium hydroxide and aluminum hydroxide In addition, carbon compounds such as magnesite (magnesium carbonate), silicon carbide and diamond, ceramics such as silica, talc, mica, kaolin, bentonite and pyroferrite, titanium boride, calcium titanate and the like can be used.

これらの中でも、熱伝導性、成形品のそり等の観点から、窒化ホウ素や窒化アルミニウムなどの窒素化合物が好ましく、窒化ホウ素が特に好ましい。なお、この窒化ホウ素は、c−BN(立方晶構造)、w−BN(ウルツ鉱構造)、h−BN(六方晶構造)、r−BN(菱面体晶構造)、t−BN(乱層構造)等の何れの構造であってもよいが、グラファイトと類似の構造を有する六方晶構造型が好ましい。六方晶構造の窒化ホウ素を用いることにより、成形体を得る際に用いる成形機や金型の摩耗を低減できる。また、窒化ホウ素の形状には、球状のものと鱗片状のものがあり、本発明にはいずれも用いることができるが、鱗片状のものを用いると、絶縁性に優れ、機械的特性が良好な成形体が得られる。   Among these, nitrogen compounds such as boron nitride and aluminum nitride are preferable, and boron nitride is particularly preferable from the viewpoints of thermal conductivity, warpage of a molded product, and the like. This boron nitride is composed of c-BN (cubic structure), w-BN (wurtzite structure), h-BN (hexagonal structure), r-BN (rhombohedral structure), t-BN (turbulent layer). Any structure such as (structure) may be used, but a hexagonal structure type having a structure similar to graphite is preferable. By using boron nitride having a hexagonal crystal structure, it is possible to reduce wear of a molding machine or a mold used when obtaining a molded body. In addition, there are spherical and scaly forms of boron nitride, and any of them can be used in the present invention. When a scaly thing is used, it has excellent insulating properties and good mechanical properties. Can be obtained.

また、導電性の熱伝導フィラーとしては、黒鉛、カーボンブラック、グラファイト、炭素繊維(特に石炭ピッチ系(Pitch)、PAN系が好ましい)、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等の炭素化合物や、銀、銅、ニッケル、アルミ、ステンレス、チタン、SUS等の金属繊維または金属粉末、酸化すず、酸化亜鉛等の金属酸化物、フェライト類等の金属系化合物が使用できる。
これらの中でも、安価で、かつ、熱伝導性や導電性を効果的に向上できる点から、炭素繊維等の炭素化合物が好ましい。
In addition, as the conductive heat conductive filler, carbon such as graphite, carbon black, graphite, carbon fiber (especially, coal pitch type (Pitch), PAN type is preferable), carbon nanotube (CNT), carbon nanofiber (CNF), etc. Compounds, metal fibers such as silver, copper, nickel, aluminum, stainless steel, titanium, SUS, or metal powder, metal oxides such as tin oxide and zinc oxide, and metal compounds such as ferrites can be used.
Among these, carbon compounds such as carbon fibers are preferable because they are inexpensive and can effectively improve thermal conductivity and conductivity.

そして、これら熱伝導性フィラーは、1種を単独でまたは2種以上を組み合わせて使用できるが、絶縁性または導電性の電気特性については、樹脂組成物の使途等に応じて選択される。なお、熱伝導性フィラーの形状については、種々の形状のものを使用でき、例えば、繊維状、板状、鱗片状、棒状、粒状、ロッド状、チューブ状、曲板状、針状、曲板状、針状等が挙げられる。また、これら熱伝導性フィラーは、シランカップリング処理、チタネートカップリング処理、エポキシ処理、ウレタン処理、酸化処理等の表面処理が施されていてもよい。このような表面処理が施されていることで、樹脂界面との接着性や親和性が向上したり、混錬等の作業性が容易であったりする。なお、導電性フィラーをシリカにて被覆することにより、導電性フィラーに絶縁性が付与された絶縁性フィラーとし、これを熱伝導性フィラーとして使用することも可能である。   These thermally conductive fillers can be used singly or in combination of two or more, but the insulating or conductive electrical characteristics are selected according to the use of the resin composition. In addition, about the shape of a heat conductive filler, the thing of various shapes can be used, for example, fiber shape, plate shape, scale shape, rod shape, granular shape, rod shape, tube shape, curved plate shape, needle shape, curved plate Shape, needle shape and the like. Moreover, these heat conductive fillers may be subjected to surface treatment such as silane coupling treatment, titanate coupling treatment, epoxy treatment, urethane treatment, oxidation treatment and the like. By such surface treatment being performed, adhesion and affinity with the resin interface are improved, and workability such as kneading is easy. In addition, it is also possible to use an insulating filler in which insulation is imparted to the conductive filler by coating the conductive filler with silica, and this can be used as a thermally conductive filler.

熱伝導性フィラーの配合割合は、樹脂組成物全体において5重量%〜50重量%の範囲内であるのが好ましい。熱伝導性フィラーの配合割合が5重量%未満である場合、樹脂組成物の成形体において熱伝導性が低くて十分な放熱性が得られない一方で、50重量%を超えると、樹脂脂組成物の比重が増大し、流動性が低下して成形加工性が悪化したり、熱伝導性フィラーの配合量に対する無機短繊維の配合量が少なくて、放熱樹脂成形体において表面粗さの向上効果が得られなかったりするためである。
特に、本実施の形態においては、無機短繊維を配合することによって、熱伝導性フィラーを高充填した場合であっても、表面粗さがRz6μm未満の良好な表面平滑性を有する成形体が得られることから、放熱対象物からの優れた熱伝導性を得ることができる。
The blending ratio of the heat conductive filler is preferably in the range of 5% by weight to 50% by weight in the entire resin composition. When the blending ratio of the heat conductive filler is less than 5% by weight, the resin composition has a low thermal conductivity and sufficient heat dissipation cannot be obtained. The specific gravity of the product increases, the fluidity decreases, the molding processability deteriorates, and the amount of inorganic short fibers is less than the amount of thermally conductive filler, improving the surface roughness of the heat-dissipating resin molding This is because it is not possible to obtain.
In particular, in the present embodiment, by blending the inorganic short fibers, a molded article having a good surface smoothness with a surface roughness of less than Rz 6 μm can be obtained even when the thermally conductive filler is highly filled. Therefore, it is possible to obtain excellent thermal conductivity from the object to be radiated.

また、本実施の形態にかかる樹脂組成物においては、強度や剛性を向上させるために強化繊維等のフィラーを配合することも可能である。本実施の形態にかかる樹脂組成物に適宜配合される強化繊維としては、例えば、ガラス繊維(チョップドファイバー、ミルドファイバー等)アラミド繊維、PBO繊維(ザイロン)、炭素繊維、ボロン繊維、ポリエチレン繊維(ダイニーマを含む)、ナイロン繊維、ケナフ、ヘンプ、亜麻、アルミナ繊維、シリカ繊維、チタン酸カリウム繊維、炭化ケイ素等の炭化物繊維、窒化ケイ素等の窒化物繊維等を単体で、またはこれらを混合して用いることができる。
なお、強化繊維の配合割合は、樹脂組成物全体において50重量%以下とするのが好ましい。50重量%を超えると、放熱樹脂成形体の樹脂組成物全体における熱伝導性フィラーや無機短繊維の配合量が少なくなり十分な放熱性が得られなくなるためである。
Moreover, in the resin composition concerning this Embodiment, in order to improve intensity | strength and rigidity, it is also possible to mix | blend fillers, such as a reinforced fiber. Examples of the reinforcing fiber appropriately blended in the resin composition according to the present embodiment include glass fiber (chopped fiber, milled fiber, etc.) aramid fiber, PBO fiber (Zylon), carbon fiber, boron fiber, polyethylene fiber (Dyneema). Nylon fiber, kenaf, hemp, flax, alumina fiber, silica fiber, potassium titanate fiber, carbide fiber such as silicon carbide, nitride fiber such as silicon nitride, etc. alone or in combination be able to.
In addition, it is preferable that the mixture ratio of a reinforced fiber shall be 50 weight% or less in the whole resin composition. If it exceeds 50% by weight, the blending amount of the heat conductive filler and the inorganic short fibers in the entire resin composition of the heat radiating resin molded body is reduced, and sufficient heat dissipation cannot be obtained.

そして、本実施の形態にかかる樹脂組成物は、通常、これらの原料成分を各種公知の溶融混練機にて溶融混練し、ペレット化され、樹脂成形材料、主には、射出成形用の材料として提供するものであり、射出成形等の公知の成形加工法によって所望の形状に成形して放熱樹脂成形体とされる。なお、溶融混練の前に予め必要に応じて、原料成分を、ヘンシェルミキサー、V型ブレンダー、メカノケミカル装置、押出混合機、スタティックミキサー、ダイナミックミキサー、タンブラー、スーパーミキサー、プラストミル等の混合手段によって混合することも可能である。また、樹脂組成物の調製は、工業的コストからも溶融混練法が好ましいが、これに限定されるものではなく、例えば、炭化水素等の溶液を添加して混合する溶液混合法によって調製することも可能である。   The resin composition according to the present embodiment is usually obtained by melting and kneading these raw material components in various known melt kneaders, pelletized, and resin molding material, mainly as a material for injection molding. It is provided, and is formed into a desired shape by a known molding method such as injection molding to obtain a heat radiation resin molded body. In addition, before melt-kneading, if necessary, the raw material components are mixed by mixing means such as a Henschel mixer, V-type blender, mechanochemical device, extrusion mixer, static mixer, dynamic mixer, tumbler, super mixer, plast mill, etc. It is also possible to do. Also, the preparation of the resin composition is preferably a melt-kneading method in terms of industrial cost, but is not limited to this, and for example, it is prepared by a solution mixing method in which a solution such as hydrocarbon is added and mixed. Is also possible.

ここで、溶融混練機としては、単軸、多軸等の押出機、バンバリーミキサー、ニーダー、ロール、フィーダールーダー、ブラベンダー等を使用することができる。特に、押出機としては、単軸型、2軸型等の押出機を使用でき、好ましくは、原料中の水分や、樹脂から発生する揮発ガスを脱気できるベントを有し、混練状態を良好にできるベント式2軸押出機である。
また、これら溶融混練機への原料成分の供給方法は特に限定されず、各々の原料成分をそれぞれ単独で供給することもできるし、また、各々の原料成分を一括供給してもよく、更に、ホッパーやサイドフィーダに分割配合し逐次供給してもよい。
Here, as the melt kneader, a single-screw or multi-screw extruder, a Banbury mixer, a kneader, a roll, a feeder ruder, a brabender, or the like can be used. In particular, as the extruder, a single-screw type or twin-screw type extruder can be used, and preferably has a vent capable of degassing moisture in the raw material and volatile gas generated from the resin, and a good kneading state This is a bent type twin screw extruder.
In addition, the method of supplying the raw material components to these melt-kneaders is not particularly limited, and each raw material component can be supplied individually, or each raw material component may be supplied in a batch, You may divide and mix into a hopper or a side feeder and supply them sequentially.

特に、溶融混練により破壊され易い成分、例えば、ガラス繊維等を配合する場合においては、2軸等の押出機のような溶融混練機に原料を一括供給して溶融混錬すると、ガラス繊維等の破壊され易い成分は混練押出時の剪断により細かく砕かれその成分の機能が低下してしまうため、破壊され易い成分以外を溶融混練機の上流のホッパーに供給し、中流以降で破壊され易い成分を溶融混練機のサイドフィーダに供給して混錬させるサイドフィード添加を行うのが望ましい。これによって、ガラス繊維等の破壊され易い成分の寸法形状を保持することができ、成形後の成形体において十分な強度や剛性等の特性を得ることができる。
なお、押出機のような溶融混練機によって押出された樹脂は、直接切断してペレット化されるか、またはストランドを形成した後、かかるストランドをペレタイザ等で切断してペレット化される。
In particular, in the case of blending components that are easily destroyed by melt-kneading, for example, glass fibers, etc., if raw materials are supplied all at once to a melt-kneader such as a biaxial extruder, Components that are easily destroyed are finely crushed by shearing during kneading extrusion and the function of the components is reduced, so that components other than those that are easily destroyed are supplied to the hopper upstream of the melt-kneader, and components that are easily destroyed after the middle stream It is desirable to add side feed that is supplied to the side feeder of the melt kneader and kneaded. As a result, it is possible to maintain the size and shape of components that are easily broken, such as glass fibers, and to obtain characteristics such as sufficient strength and rigidity in the molded body after molding.
The resin extruded by a melt kneader such as an extruder is directly cut into pellets, or after forming a strand, the strand is cut with a pelletizer or the like to be pelletized.

また、成形加工法としては、樹脂組成物について一般に用いられている成形法、例えば、射出成形、押出成形、ブロー成形、プレス成形、圧縮成形、ガスアシスト等の中空成形、真空成形、カレンダー成形、異型成形、回転成形、トランスファー成形、フィルム成形、発泡成形(超臨界流体も含む)、シート成形、熱成形、積層成形等が利用できるが、特に、射出成形等の溶融成形が好ましい。高圧で金型内へ流し込む射出成形法によると、無機短繊維や強化繊維等の繊維状の配合成分ものは射出方向に平行に配向する傾向にあり、成形体表面にフィラーが浮き出るのが防止され、表面が滑らかな成形体が得られ易い。なお、成形加工時に磁場、電場、超音波などを印加することにより配合成分の配向を制御することも可能である。   Further, as the molding method, a molding method generally used for the resin composition, for example, injection molding, extrusion molding, blow molding, press molding, compression molding, hollow molding such as gas assist, vacuum molding, calendar molding, Atypical molding, rotational molding, transfer molding, film molding, foam molding (including supercritical fluid), sheet molding, thermoforming, laminate molding, and the like can be used, and melt molding such as injection molding is particularly preferable. According to the injection molding method of pouring into the mold at high pressure, fibrous compounded components such as inorganic short fibers and reinforcing fibers tend to be oriented parallel to the injection direction, preventing the filler from floating on the surface of the molded body. It is easy to obtain a molded body having a smooth surface. In addition, it is also possible to control the orientation of the compounding components by applying a magnetic field, an electric field, an ultrasonic wave, or the like during the molding process.

更に、放熱樹脂成形体の成形形態としては、放熱対象物と接触させて放熱性向上を可能とするために放熱対象物に合わせて、樹脂成形品、樹脂フィルム、樹脂シート等の様々な形態を例示することができる。表面粗さが向上して表面平滑性が優れた放熱樹脂成形体をこれらの成形形態に形成することよって放熱対象物への密着性を向上させることができ、熱を効率よく伝達して放散できる。   Furthermore, as a molding form of the heat radiating resin molded body, various forms such as a resin molded product, a resin film, a resin sheet, and the like are made in accordance with the heat radiating object in order to make the heat radiating object improved by contacting with the heat radiating object. It can be illustrated. By forming a heat-dissipating resin molded body with improved surface roughness and excellent surface smoothness in these molding forms, it is possible to improve adhesion to a heat-dissipating object, and to efficiently transmit and dissipate heat. .

このようにして形成された樹脂組成物の放熱樹脂成形体は、熱伝導性フィラーによって高い熱伝導性が確保されつつ、無機短繊維が配合されたことで、表面粗さが向上して十点平均粗さRzで6μm未満と平滑な表面性が得られ、優れた表面外観となる。したがって、表面粗さが向上したことによって、放熱対象物に接合させると、その放熱対象物との接触面積が大きく密着性が高くなり、それによって、接触熱抵抗や放熱対象物との間隙で生じる断熱性が低減し、放熱対象物の熱が伝導されやすく、熱の放散によって対象物の温度を下げる放熱性が高まる。   The heat-radiating resin molded body of the resin composition formed in this way is improved in surface roughness due to the addition of inorganic short fibers while ensuring high thermal conductivity by the thermally conductive filler. A smooth surface property of an average roughness Rz of less than 6 μm is obtained, and an excellent surface appearance is obtained. Therefore, when the surface roughness is improved, when it is joined to the object to be radiated, the contact area with the object to be radiated becomes large and the adhesiveness is increased, thereby causing a contact thermal resistance or a gap with the object to be radiated. The heat insulating property is reduced, the heat of the object to be radiated is easily conducted, and the heat radiating property to lower the temperature of the object by the heat dissipation is increased.

そして、このように放熱性を向上させた本実施の形態の放熱樹脂成形体は、電子部品等の熱を外部に逃すための放熱材料として、電子材料、磁性材料、触媒材料、構造体材料、光学材料、医療材料、自動車材料、建築材料等の各種の用途、例えば、熱源に接合させて熱の拡散を図るヒートシンク、放熱フィンとしての使途の他、家電、OA機器部品、AV機器部品、精密機器、自動車内外装部品におけるハウジング(例えば、パソコン・携帯電話等のハウジング、パワートランジスタやダイオード等の半導体素子のハウジングや、車載用ECUや、LED等の発光素子のハウジング、モータコア用ハウジング等)、ケーシング(例えば、ファンモータのケーシング、二次電池用のケース、パソコンや携帯電話の筐体等)、シャーシ、放熱板、反射板(例えば、液晶表示装置のバックライト、ファクシミリ装置またはスキャナー装置のスキャナーランプ、自動車用ヘッドランプ等の反射板)、熱交換機、基板(例えば、電子部品を実装する基板、光ピックアップベース等)、セパレータ、熱電変換素子、ファン、パッキン、パネル等の射出成形品等、幅広い用途に使用できる。
特に、本実施の形態の樹脂組成物は、樹脂であることで複雑な形状の成形加工が容易で加工性に富み、また、材料的にも軽量であることから、かかる樹脂組成物から成形される放熱樹脂成形体においては、金属材料と比較して、適用可能な製品形状の自由度も高く、低コスト化及び軽量化が可能である。
And the heat radiating resin molded body of the present embodiment with improved heat dissipation as described above is an electronic material, a magnetic material, a catalyst material, a structure material, as a heat radiating material for releasing heat of electronic parts and the like to the outside. Various uses such as optical materials, medical materials, automotive materials, building materials, for example, heat sinks that diffuse heat by joining to heat sources, heat dissipation fins, home appliances, OA equipment parts, AV equipment parts, precision Equipment, housings for automobile interior and exterior parts (for example, housings for personal computers and mobile phones, housings for semiconductor elements such as power transistors and diodes, in-vehicle ECUs, housings for light emitting elements such as LEDs, housings for motor cores, etc.) Casing (for example, fan motor casing, secondary battery case, personal computer or mobile phone casing), chassis, heat sink, Projection plates (for example, backlights for liquid crystal display devices, scanner lamps for facsimile devices or scanner devices, reflectors for automobile headlamps, etc.), heat exchangers, substrates (for example, substrates for mounting electronic components, optical pickup bases, etc.) , Separators, thermoelectric conversion elements, fans, packings, panels, and other injection molded products.
In particular, since the resin composition of the present embodiment is a resin, it is easy to mold a complex shape, has high processability, and is light in material, so it is molded from such a resin composition. In the heat-dissipating resin molded body, the degree of freedom of the applicable product shape is high as compared with the metal material, and the cost and weight can be reduced.

因みに、本実施の形態の樹脂組成物から形成される放熱樹脂成形体を利用できる具体的な製品部品としては、例えば、パソコン、ゲーム機、VTR、テレビ、アイロン、エアコン、空気清浄機、マイナスイオン発生器、掃除機、冷蔵庫、アイロン、ドライヤー等の美容機器、照明器具、炊飯器、電子レンジ、マイクロ波調理用鍋、耐熱食器等の調理用器具等の家庭電気製品部品や、携帯情報端末(いわゆるPDA)、電子辞書、電子書籍、携帯テレビ、コンパクトディスク、レーザーディスク(登録商標)、記録媒体(CD、MD、DVD、次世代高密度ディスク、ハードディスク、ICカード、スマートメディア、メモリースティック等)のドライブ・読取装置、光ケーブル用フェルール、コイル、半導体素子・抵抗等の封止物、端子台、プリント基板、回路基板、チップ、サーマルヘッド、センサー、コネクター、ソケット、リレー部品、コイルボビン、光ピックアップ、発振子、LSI、CPU、コンピュータ関連部品等の電気・電子部品や、LED照明、ランプソケット、ランプリフレクター、ランプハウジングなど照明器具部品や、CRT、液晶、プラズマ、プロジェクタ、有機EL、オーディオバックパネル等のディスプレー装置や、ステレオ、スピーカー等の音響製品部品や、プリンタ、コピー機、スキャナー、ファックス、分離爪、ヒータホルダー等の複写機・印刷機関連部品や、パチンコ、スロットマシーン等の遊戯機関連部品や、インペラー、ファン歯車、ギヤ、軸受け、モーター部品及びケース等の機械部品、ブレーカー等の配電部品、自動車用機構部品、エンジン部品、エンジンルーム内部品、ランプリフレクター、ランプハウジング、インストルメンタルパネル、センターコンソールパネル、ディフレクター、ランプ、カーステレオ、カーナビケーション、カーオーディオビジュアル、オートモバイルコンピューター部品等の電装・内装部品等の自動車等の車両部品や、航空機・宇宙機用の部品や、センサー類の部品や、電話機(携帯電話、固定電話等)、モデム等の通信機器部品や、光学カメラ、デジタルカメラ、タイプライター等の画像表示・記録機器や、パラボラアンテナ、電動工具等の製品部品が挙げられる。   Incidentally, specific product parts that can use the heat-dissipating resin molded body formed from the resin composition of the present embodiment include, for example, personal computers, game machines, VTRs, TVs, irons, air conditioners, air purifiers, negative ions, and the like. Generators, vacuum cleaners, refrigerators, irons, hair dryers and other beauty equipment, lighting equipment, rice cookers, microwave ovens, microwave cooking pots, cooking utensils such as heat-resistant dishes, and portable information terminals ( So-called PDAs), electronic dictionaries, electronic books, mobile TVs, compact discs, laser discs (registered trademark), recording media (CD, MD, DVD, next-generation high-density discs, hard disks, IC cards, smart media, memory sticks, etc.) Drives / readers, optical cable ferrules, coils, sealing elements such as semiconductor elements and resistors, terminal blocks, Electrical / electronic parts such as lint boards, circuit boards, chips, thermal heads, sensors, connectors, sockets, relay parts, coil bobbins, optical pickups, oscillators, LSIs, CPUs, computer-related parts, LED lighting, lamp sockets, lamps Lighting fixture parts such as reflectors and lamp housings, display devices such as CRTs, liquid crystals, plasmas, projectors, organic ELs, audio back panels, acoustic product parts such as stereos and speakers, printers, copiers, scanners, fax machines, separations Copier / printer-related parts such as nails and heater holders, pachinko and slot machine-related parts, machine parts such as impellers, fan gears, gears, bearings, motor parts and cases, and power distribution parts such as breakers , Automotive mechanical parts, Automotive parts such as engine parts, engine compartment parts, lamp reflectors, lamp housings, instrument panels, center console panels, deflectors, lamps, car stereos, car navigation, car audio visuals, auto mobile computer parts, etc. Vehicle parts, aircraft / spacecraft parts, sensor parts, telephone (cell phones, landline phones, etc.), communication equipment parts such as modems, optical cameras, digital cameras, typewriters, etc. -Product parts such as recording equipment, parabolic antennas, and power tools.

次に本発明の実施の形態にかかる放熱樹脂成形体の実施例を、図1乃至図3を参照しながら、具体的に説明する。
本実施例の放熱樹脂成形体を形成する樹脂組成物は、有機合成樹脂として、ポリフェニレンサルファイド(PPS:DIC(株)社製『MA510』)を用い、熱伝導性フィラーとして、窒化ホウ素(モメンティブ・マテリアルズ・パフォーマンス・ジャパン合同会社製『PT110S』)を用い、強化繊維として、ガラス繊維(扁平ガラス繊維:日東紡積(株)社製『CSG3PA−830S』繊維径長径27μm、短径4μm、繊維長3mm)を用い、無機短繊維として、塩基性硫酸マグネシウム(宇部マテリアルズ(株)社製『モスハイジ』繊維径0.5〜1.0μm、繊維長10〜30μm)を使用し、表1に示したように実施例1及び実施例2を配合調製したものである。
Next, examples of the heat-dissipating resin molded body according to the embodiment of the present invention will be specifically described with reference to FIGS. 1 to 3.
The resin composition forming the heat-dissipating resin molded body of this example uses polyphenylene sulfide (PPS: “MA510” manufactured by DIC Corporation) as an organic synthetic resin, and boron nitride (momentive Materials Performance Japan GK “PT110S”) and glass fiber (flat glass fiber: “CSG3PA-830S” manufactured by Nitto Boseki Co., Ltd.) Fiber diameter major axis 27 μm, minor axis 4 μm, fiber Table 1 using basic magnesium sulfate ("Moss Heidi" fiber diameter 0.5 to 1.0 µm, fiber length 10 to 30 µm, manufactured by Ube Materials Co., Ltd.) as inorganic short fibers. As shown, Example 1 and Example 2 were blended and prepared.

調製方法を図1によってより具体的説明すると、有機合成樹脂としてのポリフェニレンサルファイド(PPS)1と、熱伝導性フィラーとしての窒化ホウ素2と、無機短繊維としての塩基性硫酸マグネシウム3とを予備混合した混合物を、ベント式2軸押出機(池貝(株)社製『PCM30型』)20の上流のホッパー21に投入して溶融混練し、更に、強化繊維としてのガラス繊維4を独立で上記ベント式2軸押出機20の下流側のサイドフィーダ22に加えて途中フィードし溶融混錬した後、ストランドを押し出し、該ストランドを空冷後にホットカッター23を用いて切断して樹脂組成物のペレット10を調製した。
次いで、この樹脂組成物のペレット10を射出成形して放熱樹脂成形体40(図2)を形成した。なお、放熱樹脂成形体40の形状は、以下に説明する放熱性評価のための幅80mm、長さ80mm、厚み5mmの平板形状とした。
The preparation method will be described in more detail with reference to FIG. 1. Polyphenylene sulfide (PPS) 1 as an organic synthetic resin, boron nitride 2 as a heat conductive filler, and basic magnesium sulfate 3 as an inorganic short fiber are premixed. The mixed mixture is put into a hopper 21 upstream of a vent type twin-screw extruder (“PCM30 type” manufactured by Ikegai Co., Ltd.) 20 and melt-kneaded. Further, the glass fibers 4 as reinforcing fibers are independently vented. In addition to the side feeder 22 on the downstream side of the twin screw extruder 20, the feed is halfway fed and melted and kneaded, and then the strand is extruded, and the strand is air-cooled and then cut using a hot cutter 23 to obtain the resin composition pellets 10. Prepared.
Next, the resin composition pellets 10 were injection molded to form a heat-dissipating resin molded body 40 (FIG. 2). The shape of the heat-dissipating resin molded body 40 was a flat plate shape having a width of 80 mm, a length of 80 mm, and a thickness of 5 mm for evaluating heat dissipation described below.

そして、上記平板形状の放熱樹脂成形体40を使用して表面粗さの測定及び放熱性の測定を行った。
表面粗さの測定は、表面粗さ形状測定機((株)東京精密社製『サーフコム1400D』)を用いて、表面粗さ(10点平均粗さ:Rz)を測定した。なお、測定長さは4.0mm、カットオフ波長0.8mm、測定速度0.15mm/sとした。
And the measurement of surface roughness and the heat dissipation were performed using the said flat plate-shaped heat radiation resin molding 40. FIG.
For the measurement of the surface roughness, the surface roughness (10-point average roughness: Rz) was measured using a surface roughness shape measuring instrument (“Surfcom 1400D” manufactured by Tokyo Seimitsu Co., Ltd.). The measurement length was 4.0 mm, the cutoff wavelength was 0.8 mm, and the measurement speed was 0.15 mm / s.

放熱性の測定は、図2に示したように、ヒータ31上に放熱樹脂成形体40と同じ形状の幅80mm、長さ80mm、厚み5mmのアルミ板32を載せ、かかるアルミ板32をヒータ31によって120℃に加熱して安定させる。この120℃に加熱したアルミ板32の上に放熱樹脂成形体40を載せ、更に放熱樹脂成形体40の上に放熱樹脂成形体40と同じ形状の幅80mm、長さ80mm、厚み5mmのアルミ板33をすばやく載せ、ヒータ31の電源をOFFにして加熱を停止し、その後、放熱樹脂成形体40の上に載せたアルミ板33の放熱樹脂成形体40との接触面に対し反対面となる上面側の温度を経時的に測定した。その経時的な温度変化についての特性を図3に示す。これによって、放熱樹脂成形体40を放熱対象物であるアルミ板32に接合させたときの放熱樹脂成形体40による放熱効果を知ることができる。   As shown in FIG. 2, the heat dissipation is measured by placing an aluminum plate 32 having a width of 80 mm, a length of 80 mm, and a thickness of 5 mm on the heater 31 and having the same shape as the heat dissipation resin molded body 40. To stabilize by heating to 120 ° C. On the aluminum plate 32 heated to 120 ° C., the heat-dissipating resin molded body 40 is placed, and on the heat-dissipating resin molded body 40, an aluminum plate having the same shape as that of the heat-dissipating resin molded body 40 has a width of 80 mm, a length of 80 mm, and a thickness of 5 mm. 33 is quickly placed, the heater 31 is turned off to stop heating, and then the upper surface of the aluminum plate 33 placed on the heat radiating resin molded body 40 is the opposite surface to the contact surface with the heat radiating resin molded body 40. The side temperature was measured over time. FIG. 3 shows the characteristics of the temperature change with time. Thereby, it is possible to know the heat radiation effect of the heat radiating resin molded body 40 when the heat radiating resin molded body 40 is joined to the aluminum plate 32 which is a heat radiating object.

ここで、測定には、比較のために、無機短繊維としての塩基性硫酸マグネシウムを用いずに、有機合成樹脂としてのポリフェニレンサルファイド(PPS)と、熱伝導性フィラーとしての窒化ホウ素と、強化繊維としてのガラス繊維を用いて、表1に示す配合割合で、上記実施例と同様の製造手順で作製した比較例1の樹脂組成物の成形体も使用した。表面粗さの測定については、実施例1及び実施例2の放熱樹脂成形体、並びに比較例1の樹脂組成物の成形体を使用して行い、また、放熱性の測定については、実施例1の放熱樹脂成形体、及び比較例1の樹脂組成物の成形体を使用して行った。   Here, for comparison, for comparison, without using basic magnesium sulfate as an inorganic short fiber, polyphenylene sulfide (PPS) as an organic synthetic resin, boron nitride as a thermally conductive filler, and reinforcing fiber A molded product of the resin composition of Comparative Example 1 produced by the same production procedure as in the above Examples was also used at the blending ratio shown in Table 1 using the glass fiber as. About the measurement of surface roughness, it carries out using the heat-radiation resin molding of Example 1 and Example 2, and the molding of the resin composition of Comparative Example 1, and about the measurement of heat dissipation, it is Example 1. The heat-dissipating resin molded body and the molded body of the resin composition of Comparative Example 1 were used.

なお、表1の数値は実施例及び比較例の樹脂組成物の各配合成分を重量部で示したものである。表1に示すように、実施例1と実施例2においては、有機合成樹脂及び熱伝導性フィラーの配合量を同じとし、強化繊維と無機短繊維の配合総量は同一としつつもその配合比を変化させ、実施例1では、樹脂組成物全体において無機短繊維の配合割合を10重量%とし、実施例2では、樹脂組成物全体において無機短繊維の配合割合を5重量%とした。また、比較例1においては、有機合成樹脂と熱伝導性フィラーの配合量を実施例1及び実施例2と同じとし、これに強化繊維を配合して樹脂組成物全体の強化繊維配合量は実施例1及び実施例2の配合総量と同一とした。   In addition, the numerical value of Table 1 shows each compounding component of the resin composition of an Example and a comparative example by a weight part. As shown in Table 1, in Example 1 and Example 2, the blending amounts of the organic synthetic resin and the thermally conductive filler are the same, and the blending ratio of the reinforcing fibers and the inorganic short fibers is the same, but the blending ratio is the same. In Example 1, the blending ratio of the inorganic short fibers was 10% by weight in the entire resin composition, and in Example 2, the blending ratio of the inorganic short fibers was 5% by weight in the entire resin composition. Further, in Comparative Example 1, the blending amount of the organic synthetic resin and the heat conductive filler is the same as in Example 1 and Example 2, and the reinforcing fiber is blended into this, and the blending amount of the reinforcing fiber in the entire resin composition is carried out. The total amount of Example 1 and Example 2 was the same.

Figure 0006168851
Figure 0006168851

以下、測定結果について説明する。
実施例1及び実施例2の放熱樹脂成形体においては、表1に示したように実施例1では十点平均粗さの表面粗さ(Rz)が2.0μm、また、実施例2では表面粗さ(Rz)が2.9μmと、比較例1の表面粗さ(Rz)6.0μmより小さい値となっており、成形体中に占めるフィラー、繊維の総量が同じであっても無機短繊維を配した実施例は表面平滑性が向上し、平滑な表面が得られている。
Hereinafter, the measurement results will be described.
In the heat-dissipating resin molded bodies of Example 1 and Example 2, as shown in Table 1, the surface roughness (Rz) of ten-point average roughness is 2.0 μm in Example 1, and the surface in Example 2 is The roughness (Rz) is 2.9 μm, which is smaller than the surface roughness (Rz) of 6.0 μm of Comparative Example 1, and even if the total amount of filler and fibers in the molded body is the same, the inorganic short In the example in which the fibers are arranged, the surface smoothness is improved and a smooth surface is obtained.

また、放熱性について、実施例1と比較例1とでは、図3の特性図に示したように、比比較例1と比較して実施例1において、放熱対象物のアルミ板32からの温度が速やかに大きく降下した。即ち、十点平均粗さの表面粗さ(Rz)が小さくて表面平滑性が高い実施例1は、放熱対象物への良好な密着性によって、高い放熱性を示すことが分かった。
なお、表1において、熱伝導率は、ホットディスク法熱物性測定装置(京都電子工業(株)製、TPA−501)を用いて、ホットディスク法(非定常面熱源法、ISO/CD 22007-2)により測定したところ、実施例1は3.2(W/m・k)であり、実施例2も3.2(W/m・k)と同じ熱伝導率を示した。そして、比較例1は3.3(W/m・k)と実施例1及び実施例2と略同じ熱伝導率であった。
したがって、本実施の形態の放熱樹脂成形体は、それ自身、無機短繊維を配合していない比較例1にかかる従来の樹脂成形体と同様の高い熱伝導性を有し、放熱樹脂成形体の表面平滑性が向上したことによって放熱対象物からより多くの熱の放散を可能としている。
As for the heat dissipation, in Example 1 and Comparative Example 1, as shown in the characteristic diagram of FIG. 3, the temperature from the aluminum plate 32 of the object to be radiated in Example 1 compared to Comparative Example 1 is shown. Quickly descended greatly. That is, it was found that Example 1, which has a small surface roughness (Rz) of 10-point average roughness and high surface smoothness, exhibits high heat dissipation due to good adhesion to a heat dissipation object.
In Table 1, the thermal conductivity is measured using a hot disk method (unsteady surface heat source method, ISO / CD 22007-) using a hot disk method thermophysical property measuring apparatus (manufactured by Kyoto Electronics Industry Co., Ltd., TPA-501). When measured by 2), Example 1 was 3.2 (W / m · k), and Example 2 also showed the same thermal conductivity as 3.2 (W / m · k). And the comparative example 1 was 3.3 (W / m * k) and the thermal conductivity substantially the same as Example 1 and Example 2. FIG.
Therefore, the heat radiating resin molded body of the present embodiment itself has the same high thermal conductivity as that of the conventional resin molded body according to Comparative Example 1 in which the inorganic short fibers are not blended. Improved surface smoothness allows more heat to be dissipated from the heat dissipation object.

以上説明してきたように、本発明の実施例の放熱樹脂成形体においては、有機合成樹脂としてのポリフェニレンサルファイドと熱伝導性フィラーとしての窒化ホウ素に、無機短繊維として旧モース硬度が5以下の塩基性硫酸マグネシウムが配合されていることで、表面粗さが小さく表面平滑性に優れた成形体とすることができる。このため、放熱対象物に接合させると、放熱対象物との接触面積が向上し密着性が良くなり、それによって、接触熱抵抗が低く、また、放熱対象物との間隙で生じる断熱性が低減することにより放熱対象物からの熱が伝導されやすく、放熱対象物の熱を放熱させる放熱性が高くなる。
特に、表1で示したように、本実施例2においては、熱伝導性フィラーと強化繊維の配合量が合計で55重量%と有機合成樹脂成分以外の配合成分が高充填量であるにも関わらず、無機短繊維が配合されていることによって、表面の粗さが小さくて表面平滑性に優れる放熱樹脂成形体となり、かつ、熱伝導性フィラーによる高い熱伝導性も得られた。
As described above, in the heat-dissipating resin molded body of the embodiment of the present invention, polyphenylene sulfide as an organic synthetic resin and boron nitride as a heat conductive filler, a base having an old Mohs hardness of 5 or less as an inorganic short fiber By incorporating the functional magnesium sulfate, a molded body having a small surface roughness and excellent surface smoothness can be obtained. For this reason, when bonded to a heat dissipation object, the contact area with the heat dissipation object is improved and the adhesion is improved, thereby reducing the contact thermal resistance and reducing the heat insulation generated in the gap with the heat dissipation object. By doing so, the heat from the object to be radiated is easily conducted, and the heat radiation property to dissipate the heat from the object to be radiated becomes high.
In particular, as shown in Table 1, in Example 2, the total amount of the thermally conductive filler and the reinforcing fiber is 55% by weight, and the component other than the organic synthetic resin component has a high filling amount. Regardless, the incorporation of inorganic short fibers resulted in a heat-dissipating resin molded body having a small surface roughness and excellent surface smoothness, and high thermal conductivity due to the thermally conductive filler.

なお、本実施の形態の樹脂組成物から形成された放熱樹脂成形体によれば、表面粗さが小さくて成形体表面の平滑性が高く、表面の凹凸が少ないため、製品化過程において対象物等の他の部材に擦れたときに成形体表面の凸部分の磨耗や凸部分根元への応力集中で凸部分が破損し樹脂粉が剥離してしまうといった事態を防止でき安定した生産化を図ることができる。また、表面の凹凸が多いと、電気伝導性の良い熱伝導性フィラー等が含まれる成形体を電子機器中の電子基板等に使用した場合、かかる電子基板の上に凸部分の破損で剥離した樹脂粉が付着することで電気的に短絡が生じてしまう可能性があるが、本実施の形態の樹脂組成物から形成された放熱樹脂成形体においては、表面の凹凸が少ないため上記電気的に短絡が生じてしまう事態を防止することも可能である。   In addition, according to the heat radiating resin molded body formed from the resin composition of the present embodiment, the surface roughness is small, the smoothness of the surface of the molded body is high, and there are few surface irregularities. For example, when the surface of the molded body is rubbed against another member, the convex portion is worn or the stress concentrates on the base of the convex portion, and the convex portion is damaged and the resin powder is peeled off. be able to. Also, if there are many irregularities on the surface, when a molded body containing a thermally conductive filler with good electrical conductivity is used for an electronic substrate in an electronic device, it peels off due to damage to the convex portion on the electronic substrate. The resin powder may cause an electrical short circuit, but in the heat-dissipating resin molded body formed from the resin composition of the present embodiment, the above electrical It is also possible to prevent a situation where a short circuit occurs.

更に、本発明を実施するに際しては、本実施例の樹脂組成物から形成された放熱樹脂成形体のように、強化繊維としてのガラス繊維によって強化された構造とすることも可能であり、この場合高い強度・靭性・剛性が得られる。   Furthermore, when carrying out the present invention, it is possible to have a structure reinforced with glass fibers as reinforcing fibers, such as a heat-dissipating resin molded body formed from the resin composition of this example. High strength, toughness and rigidity can be obtained.

なお、上記実施例の放熱樹脂成形体における樹脂組成物の配合組成においては、射出成形材料として具体化した例を説明したが、本発明を実施する場合には、この例に限定されるものではなく、有機合成樹脂、熱伝導性フィラー、無機短繊維、強化繊維の配合割合は種々に変更することができる。   In the compounding composition of the resin composition in the heat-dissipating resin molded body of the above example, the example embodied as an injection molding material has been described. However, the present invention is not limited to this example. The blending ratio of the organic synthetic resin, the heat conductive filler, the inorganic short fiber, and the reinforcing fiber can be variously changed.

また、本発明の放熱樹脂成形体における樹脂組成物には、必要に応じて、分散剤、難燃剤、酸化防止剤、熱安定剤、紫外線防止剤、耐候剤、光安定剤、可塑剤等の各種安定剤、増粘剤、潤滑剤、離型剤、耐炎剤、カップリング剤、核剤、光拡散剤、発泡剤、帯電防止剤、架橋剤、着色防止剤、顔料、染料、着色剤等の添加剤を加えることも可能である。   In addition, the resin composition in the heat-dissipating resin molded body of the present invention includes a dispersant, a flame retardant, an antioxidant, a heat stabilizer, an ultraviolet light inhibitor, a weathering agent, a light stabilizer, a plasticizer, and the like as necessary. Various stabilizers, thickeners, lubricants, release agents, flame retardants, coupling agents, nucleating agents, light diffusing agents, foaming agents, antistatic agents, crosslinking agents, anti-coloring agents, pigments, dyes, coloring agents, etc. It is also possible to add other additives.

そして、本発明を実施するに際しては、放熱樹脂成形体のその他の部分の構成、成分、配合、製造方法等についても、上記実施例に限定されるものではない。
なお、本発明の実施の形態及び実施例で挙げている数値は、その全てが臨界値を示すものではなく、ある数値は製造コスト、製造が容易な形態等から決定した値であり、実施に好適な好適値を示すものであるから、上記数値を許容値内で若干変更してもその実施を否定するものではない。
And when implementing this invention, it is not limited to the said Example about the structure of another part of a thermal radiation resin molding, a component, a mixing | blending, a manufacturing method, etc.
It should be noted that the numerical values given in the embodiments and examples of the present invention are not all critical values, and certain numerical values are values determined from manufacturing cost, easy manufacturing, etc. Since it indicates a preferable preferable value, even if the numerical value is slightly changed within the allowable value, its implementation is not denied.

1 PPS(有機合成樹脂)
2 窒化ホウ素(熱伝導性フィラー)
3 塩基性硫酸マグネシウム(無機短繊維)
4 ガラス繊維(強化繊維)
10 樹脂組成物(ペレット)
40 放熱樹脂成形体
1 PPS (organic synthetic resin)
2 Boron nitride (thermally conductive filler)
3 Basic magnesium sulfate (inorganic short fiber)
4 Glass fiber (reinforced fiber)
10 Resin composition (pellet)
40 Heat dissipation resin molding

Claims (5)

有機合成樹脂として熱可塑性樹脂と、熱伝導性フィラーと、無機短繊維として旧モース硬度が5以下である塩基性硫酸マグネシウムまたはチタン酸カルシウムを含有した樹脂組成物を成形した成形体であって、
前記成形体の表面粗さが十点平均粗さRzで6μm未満であることを特徴とする放熱樹脂成形体。
A molded product obtained by molding a resin composition containing a thermoplastic resin as an organic synthetic resin , a thermally conductive filler, and basic magnesium sulfate or calcium titanate having an old Mohs hardness of 5 or less as an inorganic short fiber,
The heat-radiating resin molded body, wherein the surface roughness of the molded body is less than 6 μm in terms of 10-point average roughness Rz.
前記樹脂組成物の前記無機短繊維は、平均繊維径が0.1μm〜1.0μmの範囲内であり、平均繊維長が3μm〜30μmの範囲内であることを特徴とする請求項1に記載の放熱樹脂成形体。   The inorganic short fibers of the resin composition have an average fiber diameter in the range of 0.1 µm to 1.0 µm and an average fiber length in the range of 3 µm to 30 µm. Heat dissipation resin molding. 前記樹脂組成物における前記無機短繊維の配合割合は、前記樹脂組成物全体において1重量%〜50重量%の範囲内であることを特徴とする請求項1または請求項2に記載の放熱樹脂成形体。   The heat dissipation resin molding according to claim 1 or 2, wherein a blending ratio of the inorganic short fibers in the resin composition is in a range of 1 wt% to 50 wt% in the entire resin composition. body. 前記樹脂組成物が更に強化繊維を含有し、前記無機短繊維の配合割合が、前記熱可塑性樹脂と前記熱伝導性フィラーと前記強化繊維との合計量100重量部に対して1重量部〜30重量部の範囲内であることを特徴とする請求項1または請求項2に記載の放熱樹脂成形体。 The resin composition further contains reinforcing fibers, and the blending ratio of the inorganic short fibers is 1 to 30 parts by weight with respect to 100 parts by weight of the total amount of the thermoplastic resin , the thermally conductive filler, and the reinforcing fibers. The heat-radiating resin molded body according to claim 1 or 2 , wherein the heat-radiating resin molded body is within a range of parts by weight. 前記樹脂組成物における前記無機短繊維の配合割合は、前記樹脂組成物全体において5重量%〜10重量%の範囲内としたことを特徴とする請求項4に記載の放熱樹脂成形体。   5. The heat-dissipating resin molded body according to claim 4, wherein a blending ratio of the inorganic short fibers in the resin composition is in a range of 5 wt% to 10 wt% in the entire resin composition.
JP2013115226A 2013-05-31 2013-05-31 Heat radiation resin molding Active JP6168851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013115226A JP6168851B2 (en) 2013-05-31 2013-05-31 Heat radiation resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013115226A JP6168851B2 (en) 2013-05-31 2013-05-31 Heat radiation resin molding

Publications (2)

Publication Number Publication Date
JP2014234407A JP2014234407A (en) 2014-12-15
JP6168851B2 true JP6168851B2 (en) 2017-07-26

Family

ID=52137354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013115226A Active JP6168851B2 (en) 2013-05-31 2013-05-31 Heat radiation resin molding

Country Status (1)

Country Link
JP (1) JP6168851B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6555009B2 (en) * 2015-08-24 2019-08-07 日本ゼオン株式会社 Thermal conductive sheet and manufacturing method thereof
JP7382169B2 (en) * 2019-07-31 2023-11-16 旭化成株式会社 Polyacetal resin composition and molded article
KR20220047813A (en) 2019-09-10 2022-04-19 교와 가가꾸고교 가부시키가이샤 Thermal conductivity improving agent, thermal conductivity improvement method, thermally conductive resin composition and thermally conductive resin molded article
CN114113214B (en) * 2021-10-11 2023-08-01 四川大学 Uniform high-temperature heat transfer characteristic testing device suitable for supercritical fluid

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3512519B2 (en) * 1995-04-10 2004-03-29 大塚化学ホールディングス株式会社 High thermal conductive resin composition and film thereof
JP2001267480A (en) * 2000-03-17 2001-09-28 Jsr Corp Thermally conductive sheet and method for manufacturing it
JP4623244B2 (en) * 2000-04-11 2011-02-02 信越化学工業株式会社 Electromagnetic wave absorbing heat conductive silicone rubber composition
JP2003113318A (en) * 2001-10-05 2003-04-18 Bridgestone Corp Thermoplastic elastomer composition and heat-radiating sheet
JP5358871B2 (en) * 2005-06-28 2013-12-04 日本精工株式会社 Cylinder roller bearing cage, cylindrical roller bearing
JP2011021069A (en) * 2009-07-14 2011-02-03 Sakai Chem Ind Co Ltd Heat-radiating filler composition, resin composition, heat-radiating grease and heat-radiating coating composition
JP5572062B2 (en) * 2009-10-30 2014-08-13 旭化成イーマテリアルズ株式会社 Thermally conductive sheet

Also Published As

Publication number Publication date
JP2014234407A (en) 2014-12-15

Similar Documents

Publication Publication Date Title
CN109415557B (en) Polycarbonate-based polymer composition with enhanced thermal conductivity and ductility and use thereof
KR101457016B1 (en) Thermal conductive thermoplastic resin composition having excellent water-resistance and article using the same
US8946333B2 (en) Thermally conductive plastic compositions, extrusion apparatus and methods for making thermally conductive plastics
JP5525682B2 (en) Polyarylene sulfide resin composition and molded article comprising the same
JP6062579B2 (en) High thermal conductive resin molding and method for producing the same
US20140080954A1 (en) Methods for making thermally conductve compositions containing boron nitride
KR101082636B1 (en) Thermally conductive thermoplastic resin composition having good electroconductivity and preparation method thereof
US9434870B2 (en) Thermally conductive plastic compositions, extrusion apparatus and methods for making thermally conductive plastics
JP6789220B2 (en) Thermally Conductive Plastic Compositions, Extruders and Methods for Producing Thermally Conductive Plastics
JP2006328352A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
JP5308859B2 (en) Highly light-resistant and heat-conductive resin molded product for lighting equipment
JP6168851B2 (en) Heat radiation resin molding
JP2013089718A (en) Heat sink with highly heat-conducting resin, and led light source
JP2006328155A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
JP2008260830A (en) Heat-conductive resin composition
JP5327024B2 (en) Two-color molded product with heat dissipation part and equipment with heating element
JP5740097B2 (en) High heat conductive resin molding for heat sink
KR100885653B1 (en) Hybrid filler type resin composition for high thermal conductivity
KR101355026B1 (en) Thermoplastic resin composition with excellent thermal conductivity and moldability
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
KR101478819B1 (en) Electrically insulating and thermally conducting polymer compositions and methods for preparing the same, and mold product using the same
JP2007246883A (en) Polyphenylene sulfide resin composition and molded article thereof
KR20140080115A (en) Electrically conductive thermoplastic resin composition with excellent thermal conductivity and reduced anisotropy in thermal conductivity
JP2013209508A (en) Thermoplastic resin composition and molded article thereof
JP2007146129A (en) Resin composition, method for producing tablet therefrom and molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170627

R150 Certificate of patent or registration of utility model

Ref document number: 6168851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250