JP2015018829A - Polymer structure material - Google Patents

Polymer structure material Download PDF

Info

Publication number
JP2015018829A
JP2015018829A JP2011247183A JP2011247183A JP2015018829A JP 2015018829 A JP2015018829 A JP 2015018829A JP 2011247183 A JP2011247183 A JP 2011247183A JP 2011247183 A JP2011247183 A JP 2011247183A JP 2015018829 A JP2015018829 A JP 2015018829A
Authority
JP
Japan
Prior art keywords
graphite
heat
resin
powder
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011247183A
Other languages
Japanese (ja)
Inventor
堀 賢哉
Kenya Hori
賢哉 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011247183A priority Critical patent/JP2015018829A/en
Priority to PCT/JP2012/007134 priority patent/WO2013069271A1/en
Publication of JP2015018829A publication Critical patent/JP2015018829A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Reinforced Plastic Materials (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal conductive film or structure containing, for example, a heat conductive pigment powder, which is superior in heat conduction and less brittle, to obtain physical properties of pigment by mixing a large amount of pigment powders or particles with a polymer, in which hard and brittle physical properties of the pigment powder are also strongly reflected on the film or structure.SOLUTION: The heat conductor is a structure material which filled with graphite etc. as a heat conductive material by 70 wt.% or more; and a fiber material by 5-15 wt.% of entire structure material. With this, a thermal conductive structure with high heat conductivity and less brittle, which is filled with a large amount thermally conductive fillers such as graphite is obtained.

Description

本発明は、内部で熱を発する電子機器、家電製品等の筐体、放熱板、反射板等に用いる部材に関し、より詳細には、放熱性、ならびに、絶縁性、加工性、耐食性、に優れた高機能の部材に関する。   The present invention relates to a member used for a casing, a heat sink, a reflector, etc. of an electronic device that emits heat inside, a household electrical appliance, and the like, and more specifically, excellent in heat dissipation, insulation, workability, and corrosion resistance. It relates to a highly functional member.

更に本発明は、前記部材を用いた電子機器用又は家電製品用の筐体、シートならびに、この筐体、シートを用いた電子機器又は家電製品、自動車部品や該部品の装飾に関する。   Furthermore, the present invention relates to a casing and sheet for electronic devices or household electrical appliances using the above-described members, and an electronic device or household electrical appliance using the casing and sheets, automobile parts, and decorations of the parts.

電子機器の小型化、高性能化に伴い、これらの電子部品から放出される熱が、狭い空間に蓄積されることが多くなり、該空間からの排熱が問題となっている。つまり、電子機器内の発熱による機器内部の高温化は、精密な電子機器本体の性能を損なう恐れがあるため、熱を効率よく外部へ排出することが重要な課題となっている。
熱伝導率に優れた材料として、ダイヤモンド、グラファイト、カーボンナノチューブなどの炭素材料や窒化ホウ素、アルミナなどが知られているが、いずれも粒または粉状の物質であり、これら材料を用いて構造材を得る場合、価格が高く、かつ構造材が脆くなるという課題がある。
With the downsizing and high performance of electronic devices, heat emitted from these electronic components is often accumulated in a narrow space, and exhaust heat from the space is a problem. That is, since the high temperature inside the device due to heat generation in the electronic device may impair the performance of the precise electronic device body, it is an important issue to efficiently discharge the heat to the outside.
As materials having excellent thermal conductivity, carbon materials such as diamond, graphite, and carbon nanotubes, boron nitride, and alumina are known, but all of them are granular or powdery substances, and structural materials using these materials are used. However, there is a problem that the price is high and the structural material becomes brittle.

このような課題を解決するために、特許文献1には、発熱による機器内部の高温化を対策するために、グラファイトからなるシートを該機器内部または外部へ設置することで熱を効率よく外部へ排出することが開示されているが、グラファイトから成るシートは材料及び製造コストの関係上高価である。   In order to solve such a problem, Patent Document 1 discloses that heat is efficiently transferred to the outside by installing a sheet made of graphite inside or outside the device in order to prevent the temperature inside the device from being increased due to heat generation. Although it is disclosed to discharge, sheets made of graphite are expensive due to material and manufacturing costs.

特許文献2には、低コストで加工性及び放熱性の良好な材料として、金属や金属酸化物等を顔料として含有させた曲げ加工性に優れた樹脂膜からなる熱放射性材料が開示されている。ここで、顔料としての金属や金属酸化物の熱拡散率(数百[W/(mK)])は、グラファイト(数千[W/(mK)])よりも少なく、樹脂の熱拡散率はほぼゼロである。そのため、顔料として金属や金属酸化物を用いる場合は顔料/樹脂比率をより多くする必要があるのに対してグラファイトを顔料として用いる場合は該比率が比較的少なくても所望の熱拡散率を向上できる。   Patent Document 2 discloses a heat-radiating material made of a resin film excellent in bending workability, which contains a metal, a metal oxide, or the like as a pigment as a low-cost material with good workability and heat dissipation. . Here, the thermal diffusivity (several hundred [W / (mK)]) of the metal or metal oxide as the pigment is less than that of graphite (several thousand [W / (mK)]), and the thermal diffusivity of the resin is Nearly zero. Therefore, when using a metal or metal oxide as a pigment, it is necessary to increase the pigment / resin ratio, whereas when using graphite as a pigment, the desired thermal diffusivity is improved even if the ratio is relatively small. it can.

特許文献3には、ミクロン粒度のグラファイト、ダイヤモンド、石英粉末など充填剤と、金属やグラファイトのナノ粒子をポリマーへブレンドすることで膜の熱伝達を向上することが開示されている。   Patent Document 3 discloses that heat transfer of a film is improved by blending a filler such as micron-sized graphite, diamond, and quartz powder, and nanoparticles of metal or graphite into a polymer.

特許文献4には、電気絶縁性、熱伝導性の酸化アルミニウム充填剤と熱および電気伝導性のグラファイト充填剤をナイロン、ポリアミド、ポリエステルへブレンドすることで熱伝導と電気抵抗を向上することが開示されている。   Patent Document 4 discloses that heat conduction and electrical resistance are improved by blending an electrically insulating and thermally conductive aluminum oxide filler and a thermally and electrically conductive graphite filler into nylon, polyamide and polyester. Has been.

特許文献5には、硬化性ポリマーと最大粒径25ミクロン未満のシリカ、ダイヤモンド、グラファイトなど熱伝導性フィラーとのブレンド組成物により、熱伝導材料とそれに対応する合わせ面との間に存在する現場熱抵抗を低減することが開示されている。   Patent Document 5 discloses that a blend composition of a curable polymer and a thermally conductive filler such as silica, diamond, and graphite having a maximum particle size of less than 25 microns is present between a thermally conductive material and a corresponding mating surface. Reducing thermal resistance is disclosed.

特許文献6には、構造材の強度向上のためにガラス繊維を15重量%以下充填することが開示されている。     Patent Document 6 discloses that glass fiber is filled at 15% by weight or less in order to improve the strength of the structural material.

特開2010−171030号公報JP 2010-171030 A 特開2008−155392号公報JP 2008-155392 A 特開2007−504663号公報JP 2007-504663 A 特開2010−535876号公報JP 2010-535876 A 特開2007−503506号公報JP 2007-503506 A 特開2005−239794号公報JP 2005-239794 A

特許文献2に対し、グラファイト、カーボンナノチューブなどの特殊な炭素材料は樹脂への分散性が低いため、顔料分散樹脂膜の熱拡散率を向上することが困難であることが課題である。さらに、グラファイト及びカーボンアノチューブは異方性材料であり、グラファイトの熱拡散特性は高い方向で1000[W/(mK)]以上であるが、低い方向は数10[W/(mK)]程度であるため、グラファイトを樹脂へ混錬する場合、成膜時にグラファイトを配向させなければ良好な熱拡散特性は得られなかった。   A problem with Patent Document 2 is that it is difficult to improve the thermal diffusivity of the pigment-dispersed resin film because special carbon materials such as graphite and carbon nanotubes have low dispersibility in the resin. Furthermore, graphite and carbon anotube are anisotropic materials, and the thermal diffusion characteristics of graphite are 1000 [W / (mK)] or more in the high direction, but the low direction is about several tens [W / (mK)]. Therefore, when graphite is kneaded into a resin, good thermal diffusion characteristics cannot be obtained unless the graphite is oriented during film formation.

特許文献3に対し、ミクロン粒度の充填材として用いているグラファイトを配向するためには非極性の粒子が必要であり、ナノ粒子として用いているグラファイトを配向するためにはグラファイトよりも小さい非極性粒子が必要である。さらに、異方性材料を用いる場合においても配向することないため、求める特性を充填率でカバーしなければならないため、ポリマー中への隙間無い充填材またはナノ粒子のブレンドにより、得られるポリマーマトリックスは樹脂の柔軟性等物性を著しく変化させてしまう。   In contrast to Patent Document 3, non-polar particles are required to orient graphite used as a micron-size filler, and non-polar particles smaller than graphite to orient graphite used as nanoparticles. Particles are needed. In addition, even when using anisotropic materials, the polymer matrix is obtained by blending fillers or nanoparticles with no gaps in the polymer, since the desired properties must be covered by the filling rate because they are not oriented. The physical properties such as flexibility of the resin are remarkably changed.

特許文献4に対し、該樹脂は主鎖よりも側鎖にパイ電子を多く含む化学構造であること、各充填剤の粒径、形状が特定の範囲であることが必要であり、上述内容が変化すると高分子構造体へ求める熱物性、機械特性、外観、などを満足できない。   In contrast to Patent Document 4, the resin must have a chemical structure containing more pi electrons in the side chain than the main chain, and the particle size and shape of each filler must be in a specific range. If it changes, the thermophysical properties, mechanical properties, appearance, etc. required for the polymer structure cannot be satisfied.

特許文献5に対し、熱硬化性ポリマーは主鎖にパイ電子を多く含む高分子であること、充填するフィラーを異方性材料のグラファイトとした場合に該粒径は大きくアスペクト比が大きくなければ配向し難いこと、などにより、特許文献6の熱伝導材料は熱拡散特性を向上するために高分子構造体の樹脂機械特性を低減し、さらに熱拡散特性を向上するためにフィラー充填率を増加すると脆くなることが懸念される。   In contrast to Patent Document 5, if the thermosetting polymer is a polymer containing many pi electrons in the main chain, and the filler used is graphite, an anisotropic material, the particle size must be large and the aspect ratio should not be large. Due to the difficulty of orientation, etc., the heat conducting material of Patent Document 6 reduces the resin mechanical properties of the polymer structure in order to improve the thermal diffusion properties, and further increases the filler filling rate in order to improve the thermal diffusion properties. Then there is concern about becoming brittle.

特許文献6は、粉体の充填率は15重量%以下に制御している。粉体の優れた熱伝導率を構造材へ反映する場合、粉体の充填率は少なくとも70重量%必要であり、粉体を70重量%以上充填すると、構造材が脆くなるという課題がある。   In Patent Document 6, the powder filling rate is controlled to 15% by weight or less. When reflecting the excellent thermal conductivity of the powder to the structural material, the filling rate of the powder needs to be at least 70% by weight, and if the powder is filled by 70% by weight or more, the structural material becomes brittle.

上記課題を解決するため、本発明の熱伝導体は、熱伝導材である黒鉛などを構造材全体の70重量%以上充填させた構造材であって、繊維材を構造材全体の5〜15重量%充填したことを特徴とする。   In order to solve the above-mentioned problems, the thermal conductor of the present invention is a structural material in which 70% by weight or more of the entire structural material is filled with graphite or the like as the thermal conductive material, and the fiber material is 5 to 15% of the entire structural material. It is characterized by filling in weight%.

これにより、黒鉛などの熱伝導性充填物質が多く充填された、熱伝導率が高い構造材であっても、脆くない熱伝導性構造体を提供できる。   Thereby, even if it is a structural material with high heat conductivity filled with many heat conductive fillers, such as graphite, the heat conductive structure which is not brittle can be provided.

樹脂へ分散混合する熱伝導率に優れた粉または粒状材料を70重量%以上含む脆い構造材であっても、繊維材を5〜15重量%充填することで衝撃強度の強い構造体を提供することができる。   Even if it is a brittle structural material containing 70% by weight or more of powder or granular material having excellent thermal conductivity dispersed and mixed in the resin, a structure having high impact strength is provided by filling 5 to 15% by weight of the fiber material. be able to.

従って、樹脂または添加剤の適切な選択によって、柔軟なシートから剛健かつ金属よりも軽い構造体など、例えばパーソナル・コンピュータ等の電子機器、冷蔵庫等の家電製品、エアコンの室内機や室外機のラジエターなど、熱の放散が必要とされるものの筐体材料を目的とした部品として極めて有用である。   Accordingly, by appropriate selection of resin or additive, a flexible sheet to a rigid and lighter structure than a metal, such as an electronic device such as a personal computer, a household appliance such as a refrigerator, an indoor unit of an air conditioner, or a radiator of an outdoor unit Although it is necessary to dissipate heat, etc., it is extremely useful as a part intended for a housing material.

本発明者は、粉体または粒状態の顔料などを70重量%以上含む構造材料の衝撃強度を向上する方法を見出した。   The present inventor has found a method for improving the impact strength of a structural material containing 70% by weight or more of powder or granular pigments.

一般に、顔料比率の高い材料は、構造体に顔料の物性が反映され、顔料が柔軟でない材料の場合に得られる構造体は脆くなるので、顔料比率は低く抑え、かつ更なる衝撃強度の向上目的で、ゴム材を繋ぎ材料として添加する。
上述構造体に含まれる上述の粉または粒状の材料を、熱伝導性に優れた黒鉛とし、上述構造体の特徴を高い熱伝導率とした場合、含有する黒鉛の含有率によって構造体の熱伝導率は変化するため、構造体の衝撃強度を向上する目的で、ゴム材を添加する場合においても、黒鉛の含有率は低減すると、得られる構造体の熱伝導率は低減するので、黒鉛の繋ぎ材料である樹脂の含有率を低減しなければならない。
本発明の構造体は、上述の粉または粒状の材料比率を低減しないで繊維材を分散することにより、粉または粒状の材料の特性を低減しないで、強度の強い構造体を提供できる。
粉末と繊維材と繋ぎ材料は、構造体の中にまんべんなく分散存在しても構わないし、繊維の層と粉末の層が繋ぎ材料を介して層状に形成しても構わない。
In general, a material with a high pigment ratio reflects the physical properties of the pigment in the structure, and the structure obtained when the pigment is not flexible is brittle. Therefore, the pigment ratio is kept low and the impact strength is further improved. Then, rubber material is added as a connecting material.
When the above-mentioned powder or granular material contained in the above-mentioned structure is graphite having excellent thermal conductivity and the above-mentioned structure has a high thermal conductivity, the heat conduction of the structure depends on the content of graphite contained. Since the rate changes, even when rubber material is added for the purpose of improving the impact strength of the structure, if the graphite content is reduced, the thermal conductivity of the resulting structure will be reduced. The content of the resin, which is a material, must be reduced.
The structure of the present invention can provide a strong structure without reducing the characteristics of the powder or granular material by dispersing the fiber material without reducing the above-mentioned powder or granular material ratio.
The powder, the fiber material, and the connecting material may be dispersed evenly in the structure, or the fiber layer and the powder layer may be formed in layers via the connecting material.

[粉または粒状材料]
本発明の構造体は熱伝導率に優れた構造体であり、用いる粉または粒状材料は熱伝導率に優れた黒鉛または窒化ホウ素などであって、高い熱拡散率を得るためには、材料のアスペクト比が大きいことが望ましいが、粒径や形状は特に限定されるものではない。
[Powder or granular material]
The structure of the present invention is a structure excellent in thermal conductivity, and the powder or granular material used is graphite or boron nitride excellent in thermal conductivity, and in order to obtain a high thermal diffusivity, Although it is desirable that the aspect ratio is large, the particle size and shape are not particularly limited.

尚、高い熱伝導率を得るために、カーボンナノチューブ、フラーレン、ダイヤモンドから少なくとも1つ選択される熱拡散性の炭素材料を混合しても構わない。   In order to obtain high thermal conductivity, a heat diffusible carbon material selected from at least one of carbon nanotubes, fullerenes, and diamonds may be mixed.

[繋ぎ材料]
本発明に用いる構造体の繋ぎとなる材料は高分子であって、特に黒鉛を多量に分散することが有利な以下の高分子である。高分子材料の単位化学構造において不飽和結合を持っていれば特に限定されるものではなく、用途別に強度や柔軟性や耐熱性などに着目して選択すればよく、複種類の樹脂を混合しても構わないし、必要によって硬化剤、離型剤、など添加剤を用いても構わない。
[Bonding material]
The material used for linking the structures used in the present invention is a polymer, and particularly the following polymers that are advantageous for dispersing a large amount of graphite. It is not particularly limited as long as it has an unsaturated bond in the unit chemical structure of the polymer material, and it may be selected by paying attention to strength, flexibility, heat resistance, etc. for each application. However, additives such as a curing agent and a release agent may be used as necessary.

[繊維材料]
本発明に用いる繊維材料は、熱伝導性構造体に練りこむことができる材料であれば、ガラス、カーボン、アラミド等高分子、金属、鉱物など熱伝導構造体に用いる材料と親和できれば特に限定されることはなく、親和性など向上する目的で、必要に応じて材料表面に表面処理されていても構わない。
繊維自体の強度が高い材料が熱伝導性構造体の強度を向上する効果が大きく、例えば、ガラスにおいて、Eガラスよりも強度が高いSガラスは熱伝導性構造体の強度を向上する効果がEガラスよりも大きい。
繊維材料は、取り扱いし易くする目的で、切断されていても構わないが、短か過ぎると期待する効果が十分に得られないため、切断された材料は、粉状であるよりも1mm長以上であるほうが、熱伝導構造体の強度を向上する効果が大きい。また、材料の直径は細いほど効果が大きく、100μmφ以下であることが望ましい。
[Fiber material]
The fiber material used in the present invention is not particularly limited as long as it is compatible with the material used for the heat conductive structure such as glass, carbon, aramid, polymers, metals, minerals, etc., as long as the material can be kneaded into the heat conductive structure. The surface of the material may be surface-treated as necessary for the purpose of improving affinity and the like.
A material having high strength of the fiber itself has a large effect of improving the strength of the heat conductive structure. For example, in glass, S glass having a strength higher than that of E glass has an effect of improving the strength of the heat conductive structure. Bigger than glass.
The fiber material may be cut for the purpose of facilitating handling, but since the effect expected when it is too short cannot be obtained sufficiently, the cut material is 1 mm or more in length rather than being powdery. If so, the effect of improving the strength of the heat conduction structure is greater. Further, the thinner the diameter of the material, the greater the effect, and it is desirable that the diameter is 100 μmφ or less.

[熱伝導材料と繋ぎ材料の混合]
各材料の混合は、井元製作所製IMC−1889型200cc小型ミキサを用いた。撹拌部のブレードはイリプスブレードであり、三菱製ギアモータGM−Sによりブレードを最大120rpm程度で回転させて粉または粒状の熱伝導材料と繋ぎ材料を撹拌した。ミキサのみで混合する場合、繋ぎ材料に熱伝導材を少しずつ、所望の添加量まで添加し、繊維材の添加は、ガラス繊維の様に繊維種の中では比較的硬い繊維材は繊維長を破断しないように、低濃度または低回転数または短時間の攪拌で構造体の元となる塗料を作製すればよい。
[Mixing of heat conduction material and connecting material]
Each material was mixed using an IMC-1889 type 200 cc small mixer manufactured by Imoto Seisakusho. The blade of the agitation part is an Ellipse blade, and the blade or gear is rotated at a maximum of about 120 rpm by a Mitsubishi gear motor GM-S to agitate the powder or granular heat conduction material and the connecting material. When mixing only with a mixer, heat conduction material is added to the joining material little by little to the desired addition amount, and fiber material is added to fiber materials that are relatively hard fiber types such as glass fiber. What is necessary is just to produce the coating material used as the origin of a structure by low density | concentration or low rotation speed, or stirring for a short time so that it may not fracture.

[繋ぎ材料の溶解]
材料を分散する際に樹脂をより細かい状態とするために撹拌中に加熱することもできるが、該温度が樹脂または添加したい添加剤などの熱分解温度近辺である場合は用いる樹脂または添加剤などを変更しなければならないが、樹脂を溶剤に溶解することで、低温で樹脂または添加剤などの流動性を確保できる。
[Dissolution of connecting material]
In order to make the resin finer when dispersing the material, it can also be heated during stirring, but if the temperature is near the thermal decomposition temperature of the resin or additive to be added, the resin or additive to be used, etc. However, by dissolving the resin in a solvent, the fluidity of the resin or additive can be secured at a low temperature.

樹脂の溶解は、ペレットや粉状などなるべく表面積を大きくして溶剤が浸透し易い状態にした樹脂に対してアセトンなどの溶剤を例えば樹脂1に対して溶剤1の比率で混合して溶解することができるし、樹脂が膨潤して水飴状態になる程度に溶剤を添加して熱伝導材料と伴にミキサ混合しても構わない。   The resin is dissolved by mixing a solvent such as acetone with a ratio of the solvent 1 to the resin 1, for example, in a resin or pellets or powder that has a surface area as large as possible to allow the solvent to penetrate. Alternatively, a solvent may be added to such an extent that the resin swells and becomes a water tank state, and the mixture may be mixed with the heat conductive material.

超音波洗浄器や攪拌機を用いれば短時間で溶解することができ、加温することで更に短時間で溶解することができる。樹脂の溶解はレゾールタイプのフェノール樹脂など、必要無い場合については溶剤を用いる必要は無い。   If an ultrasonic cleaner or a stirrer is used, it can be dissolved in a short time, and can be dissolved in a shorter time by heating. When the resin is not required to be dissolved, such as a resol type phenol resin, it is not necessary to use a solvent.

[熱伝導性構造体の成膜]
熱伝導材料を練り込んだ樹脂混合物はプレス法にて成膜し該膜を評価したが、成膜工法は特に限定されるものではない。本発明の樹脂混合物は成膜変形時に樹脂が流動して各材料の繋ぎになり易いように、加熱条件下でプレス圧を加えて成膜した。
[Deposition of thermal conductive structure]
The resin mixture kneaded with the heat conductive material was formed into a film by the press method and the film was evaluated, but the film forming method is not particularly limited. The resin mixture of the present invention was formed by applying a press pressure under heating conditions so that the resin flowed easily when the film was deformed and the materials were easily connected.

加熱条件及びプレス圧も特に限定されるものではなく、樹脂または添加剤の熱分解温度以下、または熱硬化性樹脂を用いる場合は熱硬化温度に設定しても構わない。   The heating conditions and the pressing pressure are not particularly limited, and may be set to the thermal decomposition temperature or lower of the resin or additive, or when using a thermosetting resin, the thermosetting temperature.

プレス圧は所望の厚みに成形できる圧力であれば特に限定されるものではなく、成膜物100平方ミリメートル当たり0.1MPa以上程度で構わない。   The press pressure is not particularly limited as long as it can be molded to a desired thickness, and may be about 0.1 MPa or more per 100 mm 2 of the film-formed product.

成形厚み及び面積も特に限定されるものではなく、所望の厚み及び面積に形成すればよいが、熱拡散特性を測定するための試料として厚みは0.1〜2μm、面積は直径5〜40mmがカットなどで取り出せる形状とした。   The molding thickness and area are not particularly limited, and may be formed to a desired thickness and area, but the thickness is 0.1 to 2 μm and the area is 5 to 40 mm in diameter as a sample for measuring thermal diffusion characteristics. The shape can be removed by cutting.

膜の比重は各材料と樹脂の混合比率により変化するが、理論比重を50%以上満足する高充填な比重であることを確認して以下評価を実施した。   The specific gravity of the film varies depending on the mixing ratio of each material and the resin, but the following evaluation was performed after confirming that the specific gravity was a high filling specific gravity satisfying the theoretical specific gravity of 50% or more.

以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to these Examples.

[実施例及び比較例1〜3]
実施例の熱伝導性構造体は、繋ぎ材料をレゾール樹脂(旭有機材製フェノール樹脂HP3000A),熱伝導性材料は和光純薬製特級試薬黒鉛を用い、繊維材はSガラス(AGY社製S−2G 3mm長)を用いた繊維材の比率(構造体全体の5〜15重量%)及び材料種類を変化した。上述熱伝導性構造体における黒鉛の比率は構造体全体の70重量%以上になるように調整した。
実施例の熱伝導構造体は黒鉛の比率を増大すると衝撃強度が小さくなる傾向であったが、熱伝導性構造体における黒鉛の比率を構造体全体の75重量%とした場合は、構造体の衝撃強度は10kJ/mであり、該構造体の熱伝導率は35W/mKであった。
比較例1の構造体は組成が繋ぎ材料のみである以外は成膜方法など実施例と同様とした。
比較例2の構造体は東レ製の高衝撃強度ABS樹脂(トヨラック930)のみからなる構造体であって、成膜方法など実施例と同様とした。
比較例3の熱伝導性材料構造体は黒鉛の比率は構造体全体の70重量%以上であり、繊維を含まない以外は成膜方法など実施例と同様とした。
比較例4の熱伝導性材料構造体は黒鉛の比率は構造体全体の70重量%以上であり、繋ぎ樹脂を東レ製の高衝撃強度ABS樹脂(トヨラック930)とし、繊維を含まない以外は成膜方法など実施例と同様とした。
[Examples and Comparative Examples 1 to 3]
The thermal conductive structure of the example uses a resol resin (phenol resin HP3000A manufactured by Asahi Organic Chemicals) as a connecting material, a special grade reagent graphite manufactured by Wako Pure Chemicals as a thermal conductive material, and S glass (S manufactured by AGY). -2G 3 mm length) and the ratio of the material (5 to 15% by weight of the entire structure) and the material type were changed. The ratio of graphite in the above heat conductive structure was adjusted to be 70% by weight or more of the entire structure.
The thermal conductive structures of the examples tended to decrease the impact strength when the ratio of graphite was increased. However, when the ratio of graphite in the thermal conductive structure was 75% by weight of the entire structure, The impact strength was 10 kJ / m 2 and the thermal conductivity of the structure was 35 W / mK.
The structure of Comparative Example 1 was the same as the example in the film forming method, except that the composition was only the connecting material.
The structure of Comparative Example 2 was a structure made only of Toray's high impact strength ABS resin (Toyolac 930), and the same film forming method and the like were used.
The ratio of the graphite of the heat conductive material structure of Comparative Example 3 was 70% by weight or more of the entire structure, and the film forming method was the same as in the examples except that the fiber was not included.
In the heat conductive material structure of Comparative Example 4, the ratio of graphite is 70% by weight or more of the entire structure, and the joining resin is Torayak high impact strength ABS resin (Toyolac 930), and it does not contain fibers. The film method was the same as in the examples.

比較例1はレゾール樹脂の衝撃強度2kJ/m直接反映された構造体であり、熱伝導率は0.3以下であった。
比較例2は高衝撃強度ABS樹脂の衝撃強度13kJ/m直接反映された構造体であるが、熱伝導率は0.3以下であった。
比較例3の熱伝導構造体は、熱伝導率が高い黒鉛を75重量%含むため熱伝導率は35W/mKと高かったが、衝撃強度は1kJ/m未満であった。
比較例4の熱伝導構造体は、熱伝導率が高い黒鉛を75重量%含むため熱伝導率は35W/mKと高かったが、衝撃強度の高いABSを用いているにも関わらず衝撃強度は1kJ/m未満であった。
Comparative Example 1 was a structure directly reflecting the impact strength 2 kJ / m 2 of the resole resin, and the thermal conductivity was 0.3 or less.
Comparative Example 2 is the impact strength 13 kJ / m 2 directly reflects structure having a high impact strength ABS resin but the thermal conductivity was 0.3 or less.
The heat conductive structure of Comparative Example 3 contained 75% by weight of graphite having a high heat conductivity, so that the heat conductivity was as high as 35 W / mK, but the impact strength was less than 1 kJ / m 2 .
The thermal conductivity structure of Comparative Example 4 contained 75% by weight of graphite having a high thermal conductivity, so that the thermal conductivity was as high as 35 W / mK. However, although the impact strength was high, the impact strength was It was less than 1 kJ / m 2 .

[構造体の評価]
[熱伝導率試験]
放熱性試験は、NETZSCH社製熱拡散率測定装置LFA457Microflashにて試料を測定確認した。放熱性試験は上述加熱プレスにて作製した膜を試料形状10mm×10mm×1mmtと直径25mm×約0.4mmtにカットしてそれぞれ厚み方向と面内方向の熱特性を測定した。
[強度測定]
強度試験は、株式会社安田精機製作所製D型衝撃試験機No.258‐Dにて試料のシャルピー衝撃強度を測定確認した。
実施例及び比較例の構造体の評価結果
表1より、本発明の熱伝導性構造体は熱伝導性特性を低減しないで、上述構造体の強度を向上した熱伝導性構造体を提供する。
[Evaluation of structure]
[Thermal conductivity test]
In the heat dissipation test, the sample was measured and confirmed with a thermal diffusivity measuring device LFA457 Microflash manufactured by NETZSCH. In the heat dissipation test, the film produced by the above heating press was cut into a sample shape of 10 mm × 10 mm × 1 mmt and a diameter of 25 mm × about 0.4 mmt, and the thermal characteristics in the thickness direction and in-plane direction were measured.
[Strength measurement]
The strength test was conducted using a D-type impact tester No. The Charpy impact strength of the sample was measured and confirmed using 258-D.
Results of Evaluation of Structures of Examples and Comparative Examples From Table 1, the thermally conductive structure of the present invention provides a thermally conductive structure with improved strength of the above-described structure without reducing thermal conductivity characteristics.

良好な放熱性具備し、この部材を用いた電子機器用又は家電製品用の筐体、シートならびに、この筐体、シートを用いた電子機器又は家電製品に用いる部材に関する。   The present invention relates to a housing and sheet for electronic devices or home appliances using the member, and a member used for an electronic device or home appliance using the housing and the sheet.

Claims (3)

構造材全体に対して、粉末が70重量%以上、及び、繊維材が5〜15重量%を含有することを特徴とする高分子構造材。 A polymer structural material comprising 70% by weight or more of powder and 5 to 15% by weight of a fiber material with respect to the entire structural material. 前記粉末が黒鉛、カーボン、窒化ホウ素、アルミナのいずれかである請求項1に記載の高分子構造材。 The polymer structural material according to claim 1, wherein the powder is any one of graphite, carbon, boron nitride, and alumina. 前記粉末が黒鉛、カーボン、窒化ホウ素、アルミナを少なくとも1種類含む混合物である、請求項1に記載の高分子構造材。 The polymer structural material according to claim 1, wherein the powder is a mixture containing at least one kind of graphite, carbon, boron nitride, and alumina.
JP2011247183A 2011-11-11 2011-11-11 Polymer structure material Pending JP2015018829A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011247183A JP2015018829A (en) 2011-11-11 2011-11-11 Polymer structure material
PCT/JP2012/007134 WO2013069271A1 (en) 2011-11-11 2012-11-07 Polymer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247183A JP2015018829A (en) 2011-11-11 2011-11-11 Polymer structure material

Publications (1)

Publication Number Publication Date
JP2015018829A true JP2015018829A (en) 2015-01-29

Family

ID=48289478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247183A Pending JP2015018829A (en) 2011-11-11 2011-11-11 Polymer structure material

Country Status (2)

Country Link
JP (1) JP2015018829A (en)
WO (1) WO2013069271A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876565A (en) * 2017-03-01 2017-06-20 盐城东紫光电科技有限公司 It is exclusively used in the encapsulating structure of UV LED chip
CN106920871A (en) * 2017-03-01 2017-07-04 盐城东紫光电科技有限公司 A kind of encapsulating structure for being exclusively used in UV LED chip
CN106992242A (en) * 2017-03-01 2017-07-28 盐城东紫光电科技有限公司 The encapsulating structure of UV LED chip
WO2021220628A1 (en) * 2020-04-28 2021-11-04 ウシオ電機株式会社 Carbon-fiber-reinforced plastic structure and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105308110A (en) * 2013-06-05 2016-02-03 索尔维特殊聚合物美国有限责任公司 Filled polymer compositions for mobile electronic devices
CN109913185B (en) * 2019-03-11 2021-05-04 中国科学院合肥物质科学研究院 Multilayer structure heat-conducting composite material containing heat-conducting film and preparation method thereof
JPWO2022138382A1 (en) * 2020-12-23 2022-06-30

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143226A (en) * 2002-10-22 2004-05-20 Toyobo Co Ltd Compression molding material
JP2004339352A (en) * 2003-05-15 2004-12-02 Nsk Ltd Phenolic resin molding compound and pulley
JP2006022130A (en) * 2004-07-06 2006-01-26 Idemitsu Kosan Co Ltd Thermoconductive resin composition and method for producing the same
JP4681382B2 (en) * 2005-07-28 2011-05-11 帝人化成株式会社 Thermoplastic resin composition
JP2007077325A (en) * 2005-09-15 2007-03-29 Asahi Organic Chem Ind Co Ltd Thermosetting resin molding material for board made of resin for electronic/electric part and board made of resin for electronic/electric part molded from said molding material
DE102007037316A1 (en) * 2007-08-08 2009-02-12 Lanxess Deutschland Gmbh Thermally conductive and electrically insulating thermoplastic compounds
JP2011016936A (en) * 2009-07-09 2011-01-27 Mitsubishi Engineering Plastics Corp High thermal conduction insulating resin composition and molding
JP5479055B2 (en) * 2009-12-02 2014-04-23 Ntn株式会社 Thermally conductive resin composition and molded article using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876565A (en) * 2017-03-01 2017-06-20 盐城东紫光电科技有限公司 It is exclusively used in the encapsulating structure of UV LED chip
CN106920871A (en) * 2017-03-01 2017-07-04 盐城东紫光电科技有限公司 A kind of encapsulating structure for being exclusively used in UV LED chip
CN106992242A (en) * 2017-03-01 2017-07-28 盐城东紫光电科技有限公司 The encapsulating structure of UV LED chip
WO2021220628A1 (en) * 2020-04-28 2021-11-04 ウシオ電機株式会社 Carbon-fiber-reinforced plastic structure and method for producing same

Also Published As

Publication number Publication date
WO2013069271A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP2015018829A (en) Polymer structure material
CN101568599B (en) Heat-conductive resin composition and plastic article
JP5607928B2 (en) Mixed boron nitride composition and method for producing the same
JP5330910B2 (en) Resin composition and use thereof
JP6515030B2 (en) Composition comprising exfoliated boron nitride and method of forming the composition
Wang et al. Efficient thermal transport highway construction within epoxy matrix via hybrid carbon fibers and alumina particles
WO2014051295A1 (en) Radiation paint composition and radiation structure
KR101784196B1 (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
Nayak et al. Mechanical properties and thermal conductivity of epoxy composites enhanced by h-BN/RGO and mh-BN/GO hybrid filler for microelectronics packaging application
CN104559183A (en) Preparation method of magnetic micro/nano composite filler/silicon rubber heat-conducting composite material
CN1813314A (en) Electrically conductive compositions comprising carbon nanotubes and method of manufacture thereof
JP2006328352A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
JP6527904B2 (en) Resin composition, article produced therefrom, and method of producing the same
JPWO2020090796A1 (en) Boron Nitride Nanomaterials and Resin Compositions
JP2012238819A (en) Thermally conductive sheet, insulating sheet and heat dissipating member
JP2013091783A (en) Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
CN105924952A (en) Heat conductive and insulating composite material for LED and preparation method thereof
JP5340595B2 (en) Insulating thermally conductive resin composition, molded article, and method for producing the same
JP2020132827A (en) Filler and production method of the same, and high heat-conducting insulation material and production method of the same
JP2014159494A (en) Thermal conductor
JP5082304B2 (en) Thermally conductive resin material and molded body thereof
Yang et al. The fabrication and thermal conductivity of epoxy composites with 3D nanofillers of AgNWs@ SiO 2 &GNPs
JP6786047B2 (en) Method of manufacturing heat conductive sheet
Ji et al. Mussel inspired interfacial modification of boron nitride/carbon nanotubes hybrid fillers for epoxy composites with improved thermal conductivity and electrical insulation properties