JP6135991B2 - Epoxy resin inorganic composite sheet for sealing - Google Patents

Epoxy resin inorganic composite sheet for sealing Download PDF

Info

Publication number
JP6135991B2
JP6135991B2 JP2013047885A JP2013047885A JP6135991B2 JP 6135991 B2 JP6135991 B2 JP 6135991B2 JP 2013047885 A JP2013047885 A JP 2013047885A JP 2013047885 A JP2013047885 A JP 2013047885A JP 6135991 B2 JP6135991 B2 JP 6135991B2
Authority
JP
Japan
Prior art keywords
epoxy resin
sealing
composite sheet
inorganic composite
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013047885A
Other languages
Japanese (ja)
Other versions
JP2014095063A (en
Inventor
山本 剛之
剛之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013047885A priority Critical patent/JP6135991B2/en
Publication of JP2014095063A publication Critical patent/JP2014095063A/en
Application granted granted Critical
Publication of JP6135991B2 publication Critical patent/JP6135991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、封止用エポキシ樹脂無機複合シートに関する。   The present invention relates to an epoxy resin inorganic composite sheet for sealing.

従来より、電子部品や半導体装置を構成する半導体チップや基板等の部材を、電気絶縁性を有する封止材で封止することが行われている。   Conventionally, a member such as a semiconductor chip or a substrate constituting an electronic component or a semiconductor device is sealed with a sealing material having electrical insulation.

このような封止材としてはエポキシ樹脂を配合した液状エポキシ樹脂組成物が汎用されており、封止材を上記部材の表面に塗布した後、加熱硬化させることにより部材を封止して封止物品としている。   As such a sealing material, a liquid epoxy resin composition containing an epoxy resin is widely used. After the sealing material is applied to the surface of the member, the member is sealed by heat curing. It is an article.

このような液状エポキシ樹脂組成物を封止材として用いる封止では、封止材の硬化後に封止物品に反りが発生する場合があり、この反り低減のために硬化後の封止材の線膨張率を低く抑える低線膨張率化の試みや、硬化後の封止材の曲げ弾性率を低く抑える低曲げ弾性率化の試みが行われてきた。   In sealing using such a liquid epoxy resin composition as a sealing material, warping may occur in the sealing article after the sealing material is cured, and the cured sealing material line is used to reduce this warpage. Attempts have been made to reduce the coefficient of linear expansion, which suppresses the expansion coefficient, and attempts to reduce the elastic modulus of elasticity, which suppresses the bending elastic modulus of the cured sealing material.

通常、封止される部材には、シリコンチップやセラミックス等の硬化後の封止材よりも小さい線膨張率を持つものが含まれることが多いため、低線膨張率化は、硬化後の封止材の線膨張率をできるだけ封止される部材の線膨張率に近づけるために重要となる。   Usually, the member to be sealed often includes a material having a smaller linear expansion coefficient than the cured sealing material such as silicon chip or ceramics. This is important in order to make the linear expansion coefficient of the stopper material as close as possible to the linear expansion coefficient of the member to be sealed.

そして、この硬化後の封止材の低線膨張率化の具体的な方法としては、シリカやアルミナ等の無機充填材の配合量をできるだけ多くするのが有効な方法であるが、この方法では硬化後の封止材の曲げ弾性率が高くなるため、結果的に封止物品の反りを小さくすることが困難となる。   And as a specific method for reducing the linear expansion coefficient of the sealing material after curing, it is effective to increase the blending amount of inorganic fillers such as silica and alumina as much as possible. Since the bending elastic modulus of the encapsulant after curing increases, it becomes difficult to reduce the warpage of the encapsulated article as a result.

そのため、これまでに、室温での曲げ弾性率を低減させるために、ガラス転移温度(Tg)をできるだけ室温に近づける方法が提案されている(例えば、特許文献1を参照)。   For this reason, in order to reduce the flexural modulus at room temperature, a method for bringing the glass transition temperature (Tg) as close to room temperature as possible has been proposed (see, for example, Patent Document 1).

この方法は、通常100〜170℃である硬化温度から室温までの温度範囲において、硬化後の封止材がガラス状領域であって、曲げ弾性率が高くなる温度の範囲を狭くすることで封止物品の反りを小さくするものである。   In this method, in a temperature range from 100 to 170 ° C. from a curing temperature to room temperature, the sealing material after curing is a glassy region, and sealing is performed by narrowing the temperature range in which the flexural modulus increases. The warpage of the stop article is reduced.

特開2004−27005号公報JP 2004-27005 A

しかしながら、硬化前の樹脂組成物の形態が液状であると、封止後の樹脂厚を均一に保持することが困難な場合があり、平滑性を出すために硬化後に樹脂を研削する工程を取り入れる必要があった。   However, if the form of the resin composition before curing is liquid, it may be difficult to maintain a uniform resin thickness after sealing, and a step of grinding the resin after curing is taken in order to obtain smoothness. There was a need.

また、液状の形態を保ったまま無機充填材の配合量をできるだけ多くするためには、使用できる無機充填材の粒径範囲に限度があった。   Further, in order to increase the blending amount of the inorganic filler as much as possible while maintaining the liquid form, there is a limit to the particle size range of the usable inorganic filler.

本発明は以上の通りの事情に鑑みてなされたものであり、作業性が良好であり、硬化後の低線膨張率化と低曲げ弾性率化を両立して反りを抑制し、優れたレーザー加工性を有し、かつ高い封止信頼性を有する封止用エポキシ樹脂無機複合シートを提供することを課題としている。   The present invention has been made in view of the circumstances as described above, has good workability, suppresses warpage while achieving both low linear expansion coefficient and low bending elastic modulus after curing, and an excellent laser. It is an object to provide an epoxy resin inorganic composite sheet for sealing that has processability and high sealing reliability.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

即ち、本発明の封止用エポキシ樹脂無機複合シートは、ポリアルキレングリコールジグリシジルエーテルをエポキシ当量比で全エポキシ樹脂の30〜80%含有するエポキシ樹脂、硬化剤及び平均粒径が0.5〜5μmの範囲である無機充填材を必須の成分とし、前記無機充填材の配合量が、有機溶剤を除く全量に対して80〜95質量%の範囲であるエポキシ樹脂組成物を、キャリア材の表面に塗布し、加熱乾燥させて半硬化状態に形成させた封止用エポキシ樹脂無機複合シートであって、前記封止用エポキシ樹脂無機複合シートの硬化物のガラス転移温度が50℃未満であり、前記ガラス転移温度より低い温度における前記封止用エポキシ樹脂無機複合シートの硬化物の線膨張係数が5ppm/℃以上、20ppm/℃未満であることを特徴とする。 That is, the epoxy resin inorganic composite sheet for sealing of the present invention is an epoxy resin containing 30 to 80% of the total epoxy resin with an epoxy equivalent ratio of polyalkylene glycol diglycidyl ether , a curing agent, and an average particle size of 0.5 to An inorganic filler in the range of 5 μm is an essential component, and an epoxy resin composition in which the blending amount of the inorganic filler is in the range of 80 to 95% by mass with respect to the total amount excluding the organic solvent is used as a carrier material. An epoxy resin inorganic composite sheet for sealing, which is applied to the surface and dried in a heat-cured state, wherein the glass transition temperature of the cured epoxy resin inorganic composite sheet is less than 50 ° C. The linear expansion coefficient of the cured epoxy resin inorganic composite sheet for sealing at a temperature lower than the glass transition temperature is 5 ppm / ° C. or more and less than 20 ppm / ° C. And butterflies.

また、この封止用エポキシ樹脂無機複合シートにおいて、有機溶剤を除く前記エポキシ樹脂組成物の全量に対して0.5〜3質量%のシリコーン複合パウダーを含有することが好ましい。   Moreover, it is preferable that this sealing epoxy resin inorganic composite sheet contains 0.5-3 mass% silicone composite powder with respect to the whole quantity of the said epoxy resin composition except an organic solvent.

また、この封止用エポキシ樹脂無機複合シートにおいて、有機溶剤を除く前記エポキシ樹脂組成物の全量に対して0.5〜3質量%のアクリル系ゴムパウダーを含有することが好ましい。   Moreover, it is preferable that this sealing epoxy resin inorganic composite sheet contains 0.5-3 mass% acrylic rubber powder with respect to the whole quantity of the said epoxy resin composition except an organic solvent.

本発明の封止用エポキシ樹脂無機複合シートによれば、作業性が良好であり、硬化後の低線膨張率化と低曲げ弾性率化を両立して反りを抑制し、優れたレーザー加工性を有し、かつ高い封止信頼性を有する封止用エポキシ樹脂無機複合シートを提供することができる。   According to the epoxy resin inorganic composite sheet for sealing of the present invention, the workability is good, and both the low linear expansion coefficient and the low bending elastic modulus after curing are suppressed, and the warp is suppressed, and the excellent laser processability And an epoxy resin inorganic composite sheet for sealing having high sealing reliability.

以下、本発明の封止用エポキシ樹脂無機複合シートを詳細に説明する。   Hereinafter, the epoxy resin inorganic composite sheet for sealing of the present invention will be described in detail.

本発明の封止用エポキシ樹脂無機複合シートは、エポキシ樹脂、硬化剤、無機充填材を必須の成分とするエポキシ樹脂組成物からなるものである。   The epoxy resin inorganic composite sheet for sealing of the present invention comprises an epoxy resin composition containing an epoxy resin, a curing agent, and an inorganic filler as essential components.

本発明で用いられるエポキシ樹脂は、一般に公知のエポキシ樹脂であれば特に制限なく用いることができ、その具体例としては、以下のようなものが例示される。   The epoxy resin used in the present invention can be used without particular limitation as long as it is a generally known epoxy resin, and specific examples thereof include the following.

ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂等。   Bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, alkylphenol novolac type epoxy resin, aralkyl type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy Resins, biphenyl type epoxy resins, anthracene type epoxy resins, epoxidized products of condensation products of phenols and aromatic aldehydes having a phenolic hydroxyl group, triglycidyl isocyanurate, alicyclic epoxy resins, and the like.

これらは1種単独で用いてもよく、2種以上を併用してもよい。   These may be used alone or in combination of two or more.

また、本発明では、エポキシ樹脂としてポリアルキレングリコールジグリシジルエーテルを、エポキシ当量比で全エポキシ樹脂中の30〜80%含有させることが好ましく、30〜60%含有させることがより好ましい。   Moreover, in this invention, it is preferable to make polyalkylene glycol diglycidyl ether contain 30-80% in all epoxy resins by an epoxy equivalent ratio as an epoxy resin, and it is more preferable to contain 30-60%.

ここで、本発明で含有させるポリアルキレングリコールジグリシジルエーテルとは、ポリエチレングリコールやプロピレングリコール等のポリアルキレングリコールとエピクロルヒドリンの反応により得られる構造を持つものである。   Here, the polyalkylene glycol diglycidyl ether contained in the present invention has a structure obtained by the reaction of polyalkylene glycol such as polyethylene glycol or propylene glycol and epichlorohydrin.

また、ポリアルキレングリコールからなるユニットの繰り返し数は20以下であり、好ましくは6〜10である。この範囲のものであれば液体粘度が高すぎず、かつ気化し難いため好ましい。   Moreover, the repeating number of the unit which consists of polyalkylene glycol is 20 or less, Preferably it is 6-10. If it is the thing of this range, since a liquid viscosity is not too high and it is hard to vaporize, it is preferable.

ポリアルキレングリコールジグリシジルエーテルを上記の条件で含有させることにより、得られた封止用エポキシ樹脂無機複合シートに可とう性を付与することができ、さらに硬化物のガラス転移温度を50℃未満、好ましくは40℃未満とすることができる。   By containing polyalkylene glycol diglycidyl ether under the above conditions, flexibility can be imparted to the obtained epoxy resin inorganic composite sheet for sealing, and the glass transition temperature of the cured product is less than 50 ° C., Preferably, it can be set to less than 40 ° C.

そして、硬化物のガラス転移温度を上記の範囲とすることにより、硬化物の吸湿性を抑制することができ、耐湿信頼性を付与することが可能となる。   And by making the glass transition temperature of hardened | cured material into said range, it becomes possible to suppress the hygroscopic property of hardened | cured material and to provide moisture resistance reliability.

本発明で用いられる硬化剤は、通常、エポキシ樹脂の硬化剤として用いられるものであれば特に制限なく用いることができ、その具体例としては以下のようなものが例示される。   The curing agent used in the present invention can be used without particular limitation as long as it is usually used as a curing agent for epoxy resins, and specific examples thereof include the following.

ジシアンジアミド、酸無水物、フェノールノボラック、クレゾールノボラック、フェノールアラルキル、ナフトールアラルキル等、各種多価フェノール化合物あるいは、ナフトール化合物等。   Dicyandiamide, acid anhydride, phenol novolak, cresol novolak, phenol aralkyl, naphthol aralkyl, and other polyhydric phenol compounds or naphthol compounds.

これらは1種単独で用いてもよく、2種以上を併用してもよい。   These may be used alone or in combination of two or more.

硬化剤の配合量は、硬化剤のエポキシ樹脂に対する化学量論上の当量比(硬化剤当量/エポキシ基当量)が0.6〜1.4となる量であり、より好ましくは当量比が0.75〜1.2となる量である。   The blending amount of the curing agent is such that the stoichiometric equivalent ratio of the curing agent to the epoxy resin (curing agent equivalent / epoxy group equivalent) is 0.6 to 1.4, and more preferably the equivalent ratio is 0. .75 to 1.2.

当量比がこの範囲内であると、エポキシ樹脂に対する硬化剤の適正な配合量とすることができ、硬化不足、硬化物の耐熱性低下、硬化物の強度低下、硬化物の吸湿量の増加等を生じることがないため好ましい。   When the equivalence ratio is within this range, it is possible to obtain an appropriate blending amount of the curing agent for the epoxy resin, insufficient curing, reduced heat resistance of the cured product, reduced strength of the cured product, increased moisture absorption of the cured product, etc. This is preferable because it does not occur.

本発明で用いられる無機充填材としては、通常、エポキシ樹脂組成物の無機充填材として用いられるものであれば特に制限なく用いることができ、その具体例としては以下のようなものを例示することができる。   The inorganic filler used in the present invention can be used without particular limitation as long as it is usually used as an inorganic filler of an epoxy resin composition, and specific examples thereof include the following. Can do.

溶融シリカ、球状溶融シリカ、結晶シリカ等のシリカ、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、高誘電率性チタン酸バリウムや酸化チタン等の高誘電率フィラー、ハードフェライト等の磁性フィラー、水酸化マグネシウム、水酸化アルミニウム、三酸化アンチモン、五酸化アンチモン、グアニジン塩、ホウ酸亜鉛、モリブデン化合物、スズ酸亜鉛等の無機系難燃剤、タルク、硫酸バリウム、炭酸カルシウム、雲母粉等。   Silica such as fused silica, spherical fused silica, crystalline silica, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, high dielectric constant filler such as high dielectric constant barium titanate and titanium oxide, magnetic filler such as hard ferrite, water Inorganic flame retardants such as magnesium oxide, aluminum hydroxide, antimony trioxide, antimony pentoxide, guanidine salt, zinc borate, molybdenum compound, zinc stannate, talc, barium sulfate, calcium carbonate, mica powder, etc.

これらの無機充填材は1種単独で用いてもよく、2種以上を併用してもよい。また、これらの中でも球状溶融シリカを用いることが、高充填性及び高流動性の観点から特に好ましい。   These inorganic fillers may be used alone or in combination of two or more. Of these, the use of spherical fused silica is particularly preferred from the viewpoints of high filling properties and high fluidity.

また、本発明で用いられる無機充填材の粒径は、平均粒径が0.5〜5μm、好ましくは0.5〜3μmの範囲である。   The average particle size of the inorganic filler used in the present invention is 0.5 to 5 μm, preferably 0.5 to 3 μm.

無機充填材の平均粒径をこの範囲とすることにより、流動性及び、ビア形成時のレーザー加工プロセスにおける作業性を良好なものとすることができる。なお、ここで平均粒径は、市販のレーザー回折・散乱式粒度分布測定装置を用いて、レーザー回折・散乱法による粒度分布の測定値から、累積分布によるメディアン径(d50、体積基準)として求めることができる。   By setting the average particle size of the inorganic filler within this range, the fluidity and workability in the laser processing process during via formation can be improved. Here, the average particle size is obtained as a median diameter (d50, volume basis) by cumulative distribution from a measured value of particle size distribution by a laser diffraction / scattering method using a commercially available laser diffraction / scattering type particle size distribution measuring device. be able to.

また、無機充填材の配合量は、エポキシ樹脂組成物全量に対して80〜95質量%、好ましくは80〜90質量%の範囲である。   Moreover, the compounding quantity of an inorganic filler is 80-95 mass% with respect to the epoxy resin composition whole quantity, Preferably it is the range of 80-90 mass%.

無機充填材の配合量をこの範囲内とすることにより、封止用エポキシ樹脂無機複合シートの硬化物のガラス転移温度より低い温度における線膨張係数を、5ppm/℃以上、20ppm/℃未満、好ましくは10ppm/℃以上、18ppm/℃未満の範囲とすることができる。   By setting the blending amount of the inorganic filler within this range, the linear expansion coefficient at a temperature lower than the glass transition temperature of the cured epoxy resin inorganic composite sheet for sealing is 5 ppm / ° C. or more, preferably less than 20 ppm / ° C. Can be in the range of 10 ppm / ° C. or more and less than 18 ppm / ° C.

また、本発明では上記の必須成分のほか、必要に応じて硬化促進剤を配合することができる。硬化促進剤としては、エポキシ樹脂と硬化剤との反応を促進させるものであれば特に制限なく用いることができ、その具体例としては以下のようなものを例示することができる。   Moreover, in this invention, a hardening accelerator can be mix | blended as needed other than said essential component. Any curing accelerator can be used without particular limitation as long as it promotes the reaction between the epoxy resin and the curing agent. Specific examples thereof include the following.

トリフエニルフォスフィン、ジフェニルフォスフィン等の有機フォスフィン系硬化促進剤、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリエタノールアミン、ベンジルジメチルアミン等の3級アミン系硬化促進剤及びその有機酸塩類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・ブロマイド等の有機酸塩類、1−ベンジル−2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類、イミダゾールを核とするマイクロカプセル等。   Organic phosphine curing accelerators such as triphenylphosphine and diphenylphosphine, tertiary amine curing accelerators such as 1,8-diazabicyclo (5,4,0) undecene-7, triethanolamine and benzyldimethylamine; Its organic acid salts, organic acid salts such as tetraphenylphosphonium / tetraphenylborate and tetraphenylphosphonium / bromide, imidazoles such as 1-benzyl-2-phenylimidazole and 2-ethyl-4-methylimidazole, and imidazole as a nucleus Microcapsules and so on.

これらは1種単独で用いてもよく、2種以上を併用してもよい。   These may be used alone or in combination of two or more.

硬化促進剤の配合量は、エポキシ樹脂組成物全量に対して0.01〜5質量%、好ましくは0.5〜1質量%である。硬化促進剤の配合量がこの範囲内であると、設定した加熱条件下で、適正な硬化を行うことができるため好ましい。   The compounding quantity of a hardening accelerator is 0.01-5 mass% with respect to the epoxy resin composition whole quantity, Preferably it is 0.5-1 mass%. It is preferable for the blending amount of the curing accelerator to be within this range because proper curing can be performed under the set heating conditions.

また、本発明では、エポキシ樹脂組成物中における無機充填材の分散性を向上させるために、必要に応じてカップリング剤や分散剤を配合することができ、その具体例としては以下のようなものを例示することができる。   Further, in the present invention, in order to improve the dispersibility of the inorganic filler in the epoxy resin composition, a coupling agent or a dispersant can be blended as necessary. Specific examples thereof are as follows. Things can be illustrated.

エポキシシラン系、メルカプトシラン系、アミノシラン系、ビニルシラン系、スチリルシラン系、メタクリロキシシラン系、アクリロキシシラン系、チタネート系等のカップリング剤、アルキルエテル系、ソルビタンエステル系、アルキルポリエテルアミン系、高分子系等の分散剤。   Coupling agents such as epoxy silane, mercapto silane, amino silane, vinyl silane, styryl silane, methacryloxy silane, acryloxy silane, titanate, alkyl ether, sorbitan ester, alkyl polyetheramine, Polymer-based dispersants.

また、本発明では、シリコーン複合パウダーまたはアクリル系ゴムパウダーを配合することが好ましい。これらを配合することで、反りをさらに低減することができる。   Moreover, in this invention, it is preferable to mix | blend silicone composite powder or acrylic rubber powder. By blending these, warpage can be further reduced.

シリコーン複合パウダーは、球状シリコーンゴムパウダーの表面をシリコーンレジンで被覆した球状粉末であり、ゴムパウダーとレジンパウダーの両方の特性により、優れた衝撃吸収性に加えて分散性の向上も実現する。   The silicone composite powder is a spherical powder in which the surface of the spherical silicone rubber powder is coated with a silicone resin, and the dispersibility is improved in addition to the excellent impact absorption by the characteristics of both the rubber powder and the resin powder.

シリコーンゴムパウダーは、例えば、直鎖状のオルガノポリシロキサンを三次元架橋させてなるシリコーンゴムパウダー(特開昭63−77942号公報、特開平3−93834号公報、特開平04−198324号公報参照)、およびシリコーンゴムを粉末化したもの(米国特許第3843601号明細書、特開昭62−270660号公報、特開昭59−96,122号公報参照)などを用いることができる。   The silicone rubber powder is, for example, a silicone rubber powder obtained by three-dimensionally cross-linking a linear organopolysiloxane (see JP-A 63-77942, JP-A-3-99344, JP-A 04-198324). ), And powdered silicone rubber (see U.S. Pat. No. 3,843,601, JP-A-62-270660, JP-A-59-96,122) and the like can be used.

このようなシリコーンゴムパウダーの表面を(R’SiO3/2n(R’は置換または非置換の一価炭化水素基を示す。)で表される三次元網目状に架橋した構造を持つポリオルガノシルセスキオキサン硬化物などのシリコーンレジンで被覆したシリコーン複合パウダーを用いることができる。 Such a silicone rubber powder has a structure in which the surface of the silicone rubber powder is crosslinked in a three-dimensional network represented by (R′SiO 3/2 ) n (R ′ represents a substituted or unsubstituted monovalent hydrocarbon group). A silicone composite powder coated with a silicone resin such as a cured polyorganosilsesquioxane can be used.

シリコーン複合パウダーの平均粒径は、低弾性化や分散性などの点から0.05〜30μmが好ましい。なお、ここで平均粒径は、レーザー回折・散乱法により前述と同様の方法によって測定することができる。   The average particle size of the silicone composite powder is preferably 0.05 to 30 μm from the viewpoint of low elasticity and dispersibility. Here, the average particle diameter can be measured by the same method as described above by a laser diffraction / scattering method.

シリコーン複合パウダーの含有量は、有機溶剤を除くエポキシ樹脂組成物の全量に対して0.5〜3質量%である。この範囲内であると、反りが抑制され、作業性も良好で、優れたレーザー加工性を有し、かつ高い封止信頼性を有する封止用エポキシ樹脂無機複合シートが得られる。   Content of silicone composite powder is 0.5-3 mass% with respect to the whole quantity of the epoxy resin composition except an organic solvent. Within this range, it is possible to obtain an epoxy resin-inorganic composite sheet for sealing that suppresses warping, has good workability, has excellent laser processability, and has high sealing reliability.

アクリル系ゴムパウダーは、シード乳化重合や多段懸濁重合などで合成されるゴム状樹脂のコア層と、ガラス状樹脂のシェル層とを有するゴム粒子であり、例えば、外層のシェル層がガラス状樹脂で構成され、内層のコア層がゴム状樹脂で構成される2層構造、または外層のシェル層がガラス状樹脂で構成され、中間層がゴム状樹脂で構成され、コア層がガラス状樹脂で構成される3層構造のものなどが挙げられる。   Acrylic rubber powder is rubber particles having a core layer of rubbery resin synthesized by seed emulsion polymerization or multistage suspension polymerization and a shell layer of glassy resin. For example, the outer shell layer is glassy. 2-layer structure made of resin, inner core layer made of rubber-like resin, or outer shell layer made of glass-like resin, intermediate layer made of rubber-like resin, core layer made of glass-like resin The thing of the 3 layer structure comprised by these, etc. are mentioned.

ここで、コア層のゴム状樹脂としては、アクリル酸エステル系樹脂、メタクリル酸エステル系樹脂などが挙げられる。コア層が応力の集中点として働き、樹脂組成物の応力緩和の効果を示すためには、ガラス転移温度が0℃以下の樹脂が好ましい。   Here, examples of the rubber-like resin of the core layer include acrylic ester resins and methacrylic ester resins. A resin having a glass transition temperature of 0 ° C. or lower is preferred in order for the core layer to function as a stress concentration point and to exhibit the stress relaxation effect of the resin composition.

シェル層のガラス状樹脂としては、アクリル酸エステル系樹脂、メタクリル酸エステル系樹脂、芳香族ビニル系樹脂、シアン化ビニル系樹脂などが挙げられるが、コアシェル型樹脂粒子同士の融着を防ぐためにガラス転移温度が60℃以上であり、かつ、エポキシ樹脂組成物中での高分散化のために、エポキシ樹脂に対して親和性のある樹脂が好ましい。   Examples of the glassy resin for the shell layer include acrylic ester resins, methacrylic ester resins, aromatic vinyl resins, vinyl cyanide resins, etc., but glass is used to prevent fusion of core-shell resin particles. A resin having a transition temperature of 60 ° C. or higher and having an affinity for the epoxy resin is preferred for high dispersion in the epoxy resin composition.

アクリル系ゴムパウダーの平均粒径は、低弾性化や分散性などの点から0.1〜0.8μmが好ましい。なお、ここで平均粒径は、レーザー回折・散乱法により前述と同様の方法によって測定することができる。   The average particle size of the acrylic rubber powder is preferably 0.1 to 0.8 μm from the viewpoint of low elasticity and dispersibility. Here, the average particle diameter can be measured by the same method as described above by a laser diffraction / scattering method.

アクリル系ゴムパウダーの含有量は、有機溶剤を除くエポキシ樹脂組成物の全量に対して0.5〜3質量%である。この範囲内であると、反りが抑制され、作業性も良好で、優れたレーザー加工性を有し、かつ高い封止信頼性を有する封止用エポキシ樹脂無機複合シートが得られる。   Content of acrylic rubber powder is 0.5-3 mass% with respect to the whole quantity of the epoxy resin composition except an organic solvent. Within this range, it is possible to obtain an epoxy resin-inorganic composite sheet for sealing that suppresses warping, has good workability, has excellent laser processability, and has high sealing reliability.

本発明では、本発明の効果を損なわない範囲内において、さらに他の成分を配合することができる。このような他の成分の具体例としては、難燃剤、低弾性化剤、着色剤、希釈剤、消泡剤等を挙げることができる。   In the present invention, other components can be further blended within the range not impairing the effects of the present invention. Specific examples of such other components include flame retardants, low elasticity agents, colorants, diluents, antifoaming agents, and the like.

本発明の封止用エポキシ樹脂無機複合シートは、具体的には、以下のようにして製造することができる。   Specifically, the sealing epoxy resin inorganic composite sheet of the present invention can be produced as follows.

まず、エポキシ樹脂、硬化剤、無機充填材、その他の添加剤を、有機溶剤と配合し、撹拌、溶解、混合、分散を行い、樹脂ワニスを調製する。   First, an epoxy resin, a curing agent, an inorganic filler, and other additives are mixed with an organic solvent, and stirred, dissolved, mixed, and dispersed to prepare a resin varnish.

有機溶剤としては、一般にエポキシ樹脂組成物の有機溶剤として用いられるもの、例えばアセトン、ジエチルケトン、トルエン、酢酸エチル、メチルエチルケトン、N,N−ジメチルホルムアミド等を用いることができる。   As an organic solvent, what is generally used as an organic solvent of an epoxy resin composition, for example, acetone, diethyl ketone, toluene, ethyl acetate, methyl ethyl ketone, N, N-dimethylformamide, etc. can be used.

このようにして調整した樹脂ワニスを、ベースとなるキャリア材の片面あるいは両面に塗布した後、熱風吹き付け等によって加熱乾燥させ、半硬化状態の封止用エポキシ樹脂無機複合シートに成形する。   The resin varnish thus adjusted is applied to one or both sides of a carrier material serving as a base, and then heated and dried by hot air blowing or the like to form a semi-cured sealing epoxy resin inorganic composite sheet.

すなわち、上記加熱乾燥は、キャリア材の表面に塗布されたエポキシ樹脂組成物からなる樹脂ワニスの有機溶剤を揮発させるとともに、封止用エポキシ樹脂無機複合シートの反応を一部行わせてBステージ化させるものでる。   That is, the above-mentioned heat drying volatilizes the organic solvent of the resin varnish made of the epoxy resin composition applied to the surface of the carrier material, and also partially performs the reaction of the sealing epoxy resin inorganic composite sheet to form a B stage. It is something to let

従って、本発明に係る封止用エポキシ樹脂無機複合シートは、プリプレグと同様に、積層成形の加熱加圧によって一旦溶融した後に硬化する性質を備えているものである。   Therefore, the epoxy resin inorganic composite sheet for sealing according to the present invention has the property of being cured after being once melted by heating and pressurization in the same manner as the prepreg.

封止用エポキシ樹脂無機複合シートのベースとなるキャリア材としては、高分子フィルム、金属シート、離型紙等を用いることができる。   As a carrier material serving as a base of the epoxy resin inorganic composite sheet for sealing, a polymer film, a metal sheet, a release paper or the like can be used.

高分子フィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム、ポリ塩化ビニルフィルム等のポリオレフィンフィルム、ポリエチレンテレフタレートフィルム等のポリエステルフィルム、ポリカーボネートフィルム、アセチルセルロースフィルム、テトラフルオロエチレンフィルム等を例示することができる。   Examples of the polymer film include polyolefin films such as polyethylene films, polypropylene films, and polyvinyl chloride films, polyester films such as polyethylene terephthalate films, polycarbonate films, acetylcellulose films, and tetrafluoroethylene films.

また、金属シートとしては、銅箔、アルミニウム箔、ニッケル箔等の金属箔を例示することができる。   Moreover, metal foils, such as copper foil, aluminum foil, nickel foil, can be illustrated as a metal sheet.

これらの中でも、本発明に用いるキャリア材としては、価格や耐熱性の観点からポリエチレンテレフタレートフィルムを用いるのが好ましい。   Among these, as a carrier material used in the present invention, it is preferable to use a polyethylene terephthalate film from the viewpoint of cost and heat resistance.

また、キャリア材の厚みは、特に限定されるものではないが、作業性の観点から10〜200μmが好ましい。   The thickness of the carrier material is not particularly limited, but is preferably 10 to 200 μm from the viewpoint of workability.

また、キャリア材の表面に形成させる封止用エポキシ樹脂無機複合シートの厚みは、特に制限されるものではないが、20〜300μmの範囲内が好ましい。   The thickness of the sealing epoxy resin inorganic composite sheet formed on the surface of the carrier material is not particularly limited, but is preferably in the range of 20 to 300 μm.

この厚みの範囲とすることにより、最適な成形性、作業性、樹脂流動性、封止信頼性を兼ね備えた封止用エポキシ樹脂無機複合シートとすることができる。本発明の封止用エポキシ樹脂無機複合シートは、各種の封止方法に用いることができるが、例えば、ウエハレベルパッケージ(WLP)に用いることができる。ウエハレベルパッケージでは、例えば、実装のためのバンプをシリコンウエハの状態で形成し、シリコンウエハの表面を本発明の封止用エポキシ樹脂無機複合シートで封止し、バンプにはんだ付けを行った後、シリコンウエハを個々の素子に切断して半導体装置が製造される。   By setting it as the range of this thickness, it can be set as the epoxy resin inorganic composite sheet for sealing which has the optimal moldability, workability | operativity, resin fluidity | liquidity, and sealing reliability. The sealing epoxy resin inorganic composite sheet of the present invention can be used for various sealing methods, and for example, can be used for a wafer level package (WLP). In the wafer level package, for example, after forming bumps for mounting in the state of a silicon wafer, sealing the surface of the silicon wafer with the epoxy resin inorganic composite sheet for sealing of the present invention, and soldering the bumps The semiconductor device is manufactured by cutting the silicon wafer into individual elements.

以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(封止用エポキシ樹脂無機複合シートの作成)
表1に示す各成分の所定量(質量%)をメチルエチルケトンに溶解、分散させ、実施例1〜3、比較例1、2及び参考例1のそれぞれの樹脂ワニスを調整した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(Creation of epoxy resin inorganic composite sheet for sealing)
The predetermined amount (mass%) of each component shown in Table 1 was melt | dissolved and disperse | distributed to methyl ethyl ketone, and each resin varnish of Examples 1-3, Comparative Examples 1, 2, and Reference Example 1 was adjusted.

この樹脂ワニスをポリエチレンテレフタレートフィルムの片面に塗布して、乾燥炉にて10分間加熱乾燥し、半硬化状態の封止用エポキシ樹脂無機複合シートを作成した。なお、表1に示す各配合成分としては以下のものを用いた。
(エポキシ樹脂)
エポキシ樹脂A:ビスフェノールA型エポキシ樹脂(DIC株式会社製、エピクロン840S、エポキシ当量190)
エポキシ樹脂B:ビスフェノールA型エポキシ樹脂(三菱化学株式会社製、エピコート1001、エポキシ当量500)
エポキシ樹脂C:フェノールビフェニルアラルキルエポキシ樹脂(日本化薬株式会社製、NC3000、エポキシ当量270)
エポキシ樹脂D:ポリアルキレングリコールジグリシジルエーテル(東都化成株式会社製、PG−207、エポキシ当量318)
(硬化剤)
硬化剤A:ノボラック型フェノール樹脂(明和化成株式会社製、DL−75、水酸基当量105)
硬化剤B:アリル化フェノールノボラック(明和化成株式会社製、MEH8000H、水酸基当量141)
(無機充填材)
充填材A:球状溶融シリカ(アドマテックス株式会社製:SO−25H、平均粒径0.5μm)
充填材B:球状溶融シリカ(電気化学工業株式会社製:FB1SDX、平均粒径1μm)
充填材C:球状溶融シリカ(三菱レイヨン株式会社製:QS−9、平均粒径9μm)
(硬化促進剤)
硬化促進剤A:2−エチル−4−メチルイミダゾール(四国化成株式会社製、2E4MZ)
硬化促進剤B:イミダゾール類を核とするマイクロカプセル(旭化成工業株式会社製、ノバキュアHX3088)
(カップリング剤)
カップリング剤:メルカプトシラン系カップリング剤(信越化学工業株式会社製、KBM803)
(添加材)
添加材A:シリコーン複合パウダー(信越化学工業株式会社製、KMP−600)
添加材B:アクリル系ゴムパウダー(ガンツ化成株式会社製、AC−3355)
上記の条件にて作成した封止用エポキシ樹脂無機複合シートについて次の測定及び評価を行った。
1.樹脂流動性
6cmφの円形に加工した封止用エポキシ樹脂無機複合シートを135℃2MPaの条件でプレス成形し、もとの6cmφの円形からはみ出した樹脂分の面積を測定し、下記式により樹脂流動性を算出した。
This resin varnish was applied to one side of a polyethylene terephthalate film and heated and dried for 10 minutes in a drying furnace to prepare a semi-cured epoxy resin inorganic composite sheet for sealing. In addition, the following were used as each compounding component shown in Table 1.
(Epoxy resin)
Epoxy resin A: bisphenol A type epoxy resin (manufactured by DIC Corporation, Epicron 840S, epoxy equivalent 190)
Epoxy resin B: bisphenol A type epoxy resin (Mitsubishi Chemical Corporation, Epicoat 1001, Epoxy equivalent 500)
Epoxy resin C: phenol biphenyl aralkyl epoxy resin (Nippon Kayaku Co., Ltd., NC3000, epoxy equivalent 270)
Epoxy resin D: polyalkylene glycol diglycidyl ether (Toto Kasei Co., Ltd., PG-207, epoxy equivalent 318)
(Curing agent)
Curing agent A: Novolac type phenol resin (Maywa Kasei Co., Ltd., DL-75, hydroxyl equivalent 105)
Curing agent B: Allylated phenol novolak (Maywa Kasei Co., Ltd., MEH8000H, hydroxyl group equivalent 141)
(Inorganic filler)
Filler A: Spherical fused silica (manufactured by Admatechs Co., Ltd .: SO-25H, average particle size 0.5 μm)
Filler B: Spherical fused silica (manufactured by Denki Kagaku Kogyo Co., Ltd .: FB1SDX, average particle size 1 μm)
Filler C: Spherical fused silica (Mitsubishi Rayon Co., Ltd .: QS-9, average particle size 9 μm)
(Curing accelerator)
Curing accelerator A: 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., 2E4MZ)
Curing accelerator B: Microcapsule with imidazole as the core (manufactured by Asahi Kasei Kogyo Co., Ltd., NovaCure HX3088)
(Coupling agent)
Coupling agent: Mercaptosilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM803)
(Additives)
Additive A: Silicone composite powder (Shin-Etsu Chemical Co., Ltd., KMP-600)
Additive B: Acrylic rubber powder (manufactured by Ganz Kasei Co., Ltd., AC-3355)
The following measurement and evaluation were performed about the epoxy resin inorganic composite sheet for sealing created on said conditions.
1. Resin fluidity 6cmφ circular epoxy resin inorganic composite sheet for sealing is press-molded under the condition of 135 ° C and 2MPa, the area of the resin protruding from the original 6cmφ circular shape is measured, Sex was calculated.

樹脂流動性(%)=(1−9π/A)×100
(式中、Aは成型後のサンプルの面積(cm)を表す)
(硬化物の作製)
以下の評価において、硬化物の作製は、封止用エポキシ樹脂無機複合シートを複数枚重ね、18μm厚の銅箔を両側に配置し、真空中で加熱温度175℃、加圧力2.9MPaで120分間、加熱加圧成形して行った。
2.ガラス転移温度
粘弾性スペクトルメーター(DMA)の曲げモードにて評価した。
Resin fluidity (%) = (1-9π / A) × 100
(In the formula, A represents the area (cm 2 ) of the sample after molding)
(Production of cured product)
In the following evaluation, the cured product was prepared by stacking a plurality of sealing epoxy resin inorganic composite sheets, placing 18 μm-thick copper foils on both sides, heating in a vacuum at 175 ° C., and a pressure of 2.9 MPa. This was performed by heating and pressing for 30 minutes.
2. Glass transition temperature It evaluated in the bending mode of the viscoelastic spectrum meter (DMA).

硬化物を5mm幅×50mm長×0.5mm厚に試験片に形成し、この試験片を用いて昇温2℃/min.により−60〜260℃まで測定した。
3.線膨張係数
ガラス転移温度熱分析計TMAにより評価した。
A cured product was formed on a test piece in a width of 5 mm × 50 mm length × 0.5 mm, and the temperature was raised to 2 ° C./min. Was measured from -60 to 260 ° C.
3. Linear expansion coefficient It evaluated by the glass transition temperature thermal analyzer TMA.

硬化物を3mm×3mm×15mm長の試験片を形成し、この試験片を用いて昇温速度5℃/min.により−60〜260℃まで測定した。
4.曲げ弾性率
10mm幅×80mm長×3mm厚の試験片を形成し、引張圧縮試験機による3点曲げ試験により室温で評価した。試験速度2mm/min.、支点間距離48mmとし、試験片が折れるまで荷重を加えた。
5.反り
4インチ、200μm厚のウエハーの表面に、120℃3分、0.5MPaの条件で、真空ラミネーターを用いて、シート状エポキシ樹脂組成物を貼り付け、175℃120分加熱して硬化させた。
A test piece having a length of 3 mm × 3 mm × 15 mm was formed from the cured product, and the temperature elevation rate was 5 ° C./min. Was measured from -60 to 260 ° C.
4). Test specimens having a flexural modulus of 10 mm width × 80 mm length × 3 mm thickness were formed and evaluated at room temperature by a three-point bending test using a tensile / compression tester. Test speed 2 mm / min. The distance between the fulcrums was 48 mm, and the load was applied until the test piece was broken.
5. Warp A sheet-like epoxy resin composition was attached to the surface of a 4 inch, 200 μm thick wafer at 120 ° C. for 3 minutes and 0.5 MPa using a vacuum laminator, and cured by heating at 175 ° C. for 120 minutes. .

硬化後、円周端部の一点を押さえ垂直方向(Z軸方向)に反り上がった最大値を測定して反り量とした。
6.レーザー加工性
日立製UVレーザーESLを使用し、照射エネルギー0.60W/shot、照射回数13shotにて35μmφのvia径を形成後、断面のvia形状をSEM写真にて以下の基準で評価した。
○:樹脂が完全に除去されている。
×:樹脂が残っている。
After curing, one point at the circumferential edge was pressed and the maximum value of warping in the vertical direction (Z-axis direction) was measured to obtain the amount of warpage.
6). Laser Workability Using a UV laser ESL manufactured by Hitachi, a via diameter of 35 μmφ was formed at an irradiation energy of 0.60 W / shot and an irradiation frequency of 13 shots, and then the via shape of the cross section was evaluated by an SEM photograph according to the following criteria.
○: The resin is completely removed.
X: Resin remains.

上記の測定及び評価の結果を表1に示す。   The results of the above measurement and evaluation are shown in Table 1.

Figure 0006135991
Figure 0006135991

表1より、本発明の条件とした実施例1〜3は、全ての試験項目について良好な結果を示した。これに対してポリアルキレングリコールジグリシジルエーテルを含有させなかった比較例1は、ガラス転移温度が非常に高い値を示し、反りが大きく発生した。   From Table 1, Examples 1 to 3 as the conditions of the present invention showed good results for all the test items. On the other hand, the comparative example 1 which did not contain polyalkylene glycol diglycidyl ether showed a very high glass transition temperature, and a large amount of warpage occurred.

また、無機充填材の配合量を本発明の規定より少なくした比較例2では、線膨張係数が著しく高い値を示し、反りが大きく発生した。   Further, in Comparative Example 2 in which the blending amount of the inorganic filler was less than that of the present invention, the linear expansion coefficient showed a remarkably high value, and a large amount of warpage occurred.

なお、無機充填材の平均粒径が大き過ぎる場合、参考例1のようにレーザー加工性が劣るようになる。   When the average particle size of the inorganic filler is too large, the laser processability becomes inferior as in Reference Example 1.

また、実施例4、5に示すように、シリコーン複合パウダーまたはアクリル系ゴムパウダーを含有することで、反りを特に低減することができた。   Moreover, as shown in Examples 4 and 5, warpage could be particularly reduced by containing silicone composite powder or acrylic rubber powder.

これらのことから、本発明の封止用エポキシ樹脂無機複合シートは、作業性が良好であり、硬化後の低線膨張率化と低曲げ弾性率化を両立して反りが抑制され、優れたレーザー加工性を有するバランスのとれた封止用エポキシ樹脂無機複合シートであることが確認された。   From these facts, the epoxy resin inorganic composite sheet for sealing of the present invention has good workability, and is excellent in suppressing warpage while achieving both low linear expansion coefficient and low bending elastic modulus after curing. It was confirmed that this was a well-balanced epoxy resin inorganic composite sheet for sealing having laser processability.

Claims (3)

ポリアルキレングリコールジグリシジルエーテルをエポキシ当量比で全エポキシ樹脂の30〜80%含有するエポキシ樹脂、硬化剤及び平均粒径が0.5〜5μmの範囲である無機充填材を必須の成分とし、前記無機充填材の配合量が、有機溶剤を除く全量に対して80〜95質量%の範囲であるエポキシ樹脂組成物を、キャリア材の表面に塗布し、加熱乾燥させて半硬化状態に形成させた封止用エポキシ樹脂無機複合シートであって、前記封止用エポキシ樹脂無機複合シートの硬化物のガラス転移温度が50℃未満であり、前記ガラス転移温度より低い温度における前記封止用エポキシ樹脂無機複合シートの硬化物の線膨張係数が5ppm/℃以上、20ppm/℃未満であることを特徴とする封止用エポキシ樹脂無機複合シート。 An epoxy resin containing polyalkylene glycol diglycidyl ether in an epoxy equivalent ratio of 30 to 80% of the total epoxy resin, a curing agent, and an inorganic filler having an average particle size in the range of 0.5 to 5 μm as essential components , An epoxy resin composition in which the blending amount of the inorganic filler is in the range of 80 to 95% by mass with respect to the total amount excluding the organic solvent is applied to the surface of the carrier material, and is heated and dried to form a semi-cured state. The sealing epoxy resin inorganic composite sheet, wherein the glass transition temperature of the cured product of the sealing epoxy resin inorganic composite sheet is less than 50 ° C. and lower than the glass transition temperature An epoxy resin inorganic composite sheet for sealing, wherein a linear expansion coefficient of a cured product of the inorganic composite sheet is 5 ppm / ° C. or more and less than 20 ppm / ° C. 有機溶剤を除く前記エポキシ樹脂組成物の全量に対して0.5〜3質量%のシリコーン複合パウダーを含有することを特徴とする請求項1に記載の封止用エポキシ樹脂無機複合シート。2. The epoxy resin inorganic composite sheet for sealing according to claim 1, comprising 0.5 to 3 mass% of a silicone composite powder based on the total amount of the epoxy resin composition excluding an organic solvent. 有機溶剤を除く前記エポキシ樹脂組成物の全量に対して0.5〜3質量%のアクリル系ゴムパウダーを含有することを特徴とする請求項1または2に記載の封止用エポキシ樹脂無機複合シート。3. The epoxy resin inorganic composite sheet for sealing according to claim 1, comprising 0.5 to 3% by mass of an acrylic rubber powder based on the total amount of the epoxy resin composition excluding an organic solvent. .
JP2013047885A 2012-10-11 2013-03-11 Epoxy resin inorganic composite sheet for sealing Active JP6135991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013047885A JP6135991B2 (en) 2012-10-11 2013-03-11 Epoxy resin inorganic composite sheet for sealing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012226252 2012-10-11
JP2012226252 2012-10-11
JP2013047885A JP6135991B2 (en) 2012-10-11 2013-03-11 Epoxy resin inorganic composite sheet for sealing

Publications (2)

Publication Number Publication Date
JP2014095063A JP2014095063A (en) 2014-05-22
JP6135991B2 true JP6135991B2 (en) 2017-05-31

Family

ID=50938403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013047885A Active JP6135991B2 (en) 2012-10-11 2013-03-11 Epoxy resin inorganic composite sheet for sealing

Country Status (1)

Country Link
JP (1) JP6135991B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048182A (en) * 2018-01-15 2019-07-23 丰田自动车株式会社 Heat transfer member, battery pack and vehicle

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133054B (en) * 2014-03-25 2017-07-28 松下知识产权经营株式会社 Liquid resin composition, solidfied material, wiring structural body and the assembly using the wiring structural body
JP6307352B2 (en) * 2014-05-30 2018-04-04 京セラ株式会社 Resin composition for optical semiconductor encapsulation and optical semiconductor device
WO2016136741A1 (en) * 2015-02-26 2016-09-01 日立化成株式会社 Sealing film and electronic component device using same
JP6721855B2 (en) * 2015-06-11 2020-07-15 Dic株式会社 Epoxy resin composition and adhesive
WO2017022721A1 (en) * 2015-08-03 2017-02-09 日立化成株式会社 Epoxy resin composition, film-shaped epoxy resin composition, and electronic device
JP2017041633A (en) * 2015-08-17 2017-02-23 積水化学工業株式会社 Semiconductor device and semiconductor element protective material
JP2017115132A (en) 2015-12-22 2017-06-29 信越化学工業株式会社 Liquid epoxy resin composition
JP6880567B2 (en) * 2016-04-26 2021-06-02 住友ベークライト株式会社 Manufacturing method of epoxy resin composition for semiconductor encapsulation and semiconductor device
TW201809128A (en) 2016-06-16 2018-03-16 信越化學工業股份有限公司 Epoxy resin composition
US11827789B2 (en) 2016-07-20 2023-11-28 Resonac Corporation Thermosetting resin composition, interlayer insulation resin film, composite film, printed wiring board, and production method thereof
JP6801280B2 (en) * 2016-07-20 2020-12-16 昭和電工マテリアルズ株式会社 Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and its manufacturing method
JP2018070668A (en) 2016-10-24 2018-05-10 信越化学工業株式会社 Liquid epoxy resin composition
KR102441766B1 (en) * 2017-04-28 2022-09-07 쇼와덴코머티리얼즈가부시끼가이샤 Encapsulation film and encapsulation structure, and manufacturing method thereof
KR20210090183A (en) * 2018-11-14 2021-07-19 나가세케무텍쿠스가부시키가이샤 Curable resin composition and curable sheet
JP6986507B2 (en) * 2018-12-13 2021-12-22 サンスター技研株式会社 Curable resin composition
JP7224984B2 (en) * 2019-03-19 2023-02-20 日東電工株式会社 Sealing sheet
JP2021063146A (en) * 2019-10-10 2021-04-22 住友ベークライト株式会社 Resin composition for sealing, semiconductor device and power device
CN114591598B (en) * 2022-03-13 2023-06-02 连云港华海诚科电子材料有限公司 Liquid plastic package material for wafer level package and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3794349B2 (en) * 2002-06-25 2006-07-05 松下電工株式会社 Liquid epoxy resin composition for sealing and semiconductor device
JP4225162B2 (en) * 2003-08-18 2009-02-18 日立化成工業株式会社 Sealing film
EP1557880A1 (en) * 2004-01-21 2005-07-27 Nitto Denko Corporation Resin composition for encapsulating semiconductor
JP4417122B2 (en) * 2004-01-21 2010-02-17 日東電工株式会社 Resin composition for sheet-like semiconductor encapsulation
JP2006232950A (en) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd Sealing liquid epoxy resin composition, semiconductor device, and method for producing the same
JP4379387B2 (en) * 2005-06-27 2009-12-09 パナソニック電工株式会社 Epoxy resin inorganic composite sheet and molded product
JP5342221B2 (en) * 2008-12-05 2013-11-13 パナソニック株式会社 Epoxy resin inorganic composite sheet for semiconductor encapsulation and molded product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048182A (en) * 2018-01-15 2019-07-23 丰田自动车株式会社 Heat transfer member, battery pack and vehicle

Also Published As

Publication number Publication date
JP2014095063A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP6135991B2 (en) Epoxy resin inorganic composite sheet for sealing
JP7147680B2 (en) Thermosetting maleimide resin composition for semiconductor encapsulation and semiconductor device
JP2013001807A (en) Resin composition for electronic circuit board material, prepreg and laminated plate
WO2013111697A1 (en) Resin composition and semiconductor mounting substrate obtained by molding same
JP6558671B2 (en) Epoxy resin composition for sealing and semiconductor device
JP2009060146A (en) Epoxy resin inorganic composite sheet for sealing semiconductor, and molded product
US9673120B2 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor package encapsulated using the same
JP2011246596A (en) Sheet-like resin composition and circuit component sealed by using the same
JP2016040383A (en) Epoxy resin composition for encapsulating electronic component and electronic component device using the same
JP2006233016A (en) Epoxy resin composition and semiconductor device
JP2012067252A (en) Sealing epoxy resin composition and semiconductor device
JP2020026450A (en) Thermosetting resin composition for sealing semiconductor and semiconductor device
JP5691833B2 (en) Thermosetting resin composition, prepreg and laminate
JP5144583B2 (en) Sheet material and printed wiring board
JP6307352B2 (en) Resin composition for optical semiconductor encapsulation and optical semiconductor device
JP4714970B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP2017197698A (en) Particle having core-shell structure and method for producing the same
JP2016065250A (en) Prepreg, laminate sheet and metal laminate sheet
JP2002003577A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP5938741B2 (en) Epoxy resin composition for sealing, method for producing the same, and semiconductor device
JP6136058B2 (en) Resin composition for electronic circuit board material, prepreg, laminate and metal-clad laminate
JP2005290111A (en) Resin composition for encapsulation and semiconductor device
JP2019196473A (en) Printed circuit board and resin composition for ic package, and product using the same
JP2012188598A (en) Thermosetting resin composition for semiconductor adhesion, and semiconductor device
JP6839114B2 (en) Thermosetting epoxy resin sheet for semiconductor encapsulation, semiconductor device, and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170413

R151 Written notification of patent or utility model registration

Ref document number: 6135991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151