JP5465595B2 - Non-contact transfer device - Google Patents

Non-contact transfer device Download PDF

Info

Publication number
JP5465595B2
JP5465595B2 JP2010108088A JP2010108088A JP5465595B2 JP 5465595 B2 JP5465595 B2 JP 5465595B2 JP 2010108088 A JP2010108088 A JP 2010108088A JP 2010108088 A JP2010108088 A JP 2010108088A JP 5465595 B2 JP5465595 B2 JP 5465595B2
Authority
JP
Japan
Prior art keywords
suction
fluid
hole
flow forming
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010108088A
Other languages
Japanese (ja)
Other versions
JP2011235999A (en
Inventor
秀夫 小澤
耕一 角田
貴裕 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2010108088A priority Critical patent/JP5465595B2/en
Publication of JP2011235999A publication Critical patent/JP2011235999A/en
Application granted granted Critical
Publication of JP5465595B2 publication Critical patent/JP5465595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、旋回流形成体及びこの旋回流形成体を用いた非接触搬送装置に関し、特に大型の液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)等のFPD(フラットパネルディスプレイ)や太陽電池パネル(ソーラーパネル)等の生産に用いられるレール状の非接触搬送装置に関する。   The present invention relates to a swirling flow forming body and a non-contact transfer device using the swirling flow forming body, and particularly to an FPD (flat panel display) such as a large liquid crystal display (LCD) or a plasma display (PDP) or a solar cell panel ( The present invention relates to a rail-shaped non-contact transfer device used in the production of solar panels).

従来、FPDや太陽電池パネル等の生産に際し、1枚のパネルを大型化することで生産効率を上げる方法が採用されている。例えば、液晶ガラスの場合には、第10世代で2850×3050×0.7mmの大きさとなる。そのため、従来のように、複数個並べられたローラの上に液晶ガラスを載せて転がり搬送すると、ローラを支持するシャフトの撓みやローラ高さのばらつきにより液晶ガラスに局部的に強い力が働き、液晶ガラスを傷つける虞がある。   Conventionally, in the production of FPDs, solar battery panels, etc., a method of increasing production efficiency by enlarging one panel has been adopted. For example, in the case of liquid crystal glass, the size is 2850 × 3050 × 0.7 mm in the tenth generation. Therefore, as in the past, when liquid crystal glass is placed on a plurality of rollers and rolled and conveyed, a strong force acts locally on the liquid crystal glass due to deflection of the shaft supporting the rollers and variations in roller height, There is a risk of damaging the liquid crystal glass.

上記ローラによる転がり搬送装置は、該装置とパネルとが非接触であることが要求される、例えばFPDのプロセス工程では採用することができず、近年においては、空気浮上の搬送装置が採用され始めている。非接触搬送装置として、板状のレールの一部に多孔質材料を用い、給気経路と連通させて給気することで、噴出空気によりFPDを浮上搬送する装置が存在する。しかし、この装置を用いると、FPDが上下方向に動きながら浮遊するような状態となるため、搬送工程に用いることは可能であるが、例えば30〜50μmの高精度の浮上高さが要求されるプロセス工程には採用することができない。   The above-described rolling conveyance device using rollers cannot be employed in, for example, an FPD process process in which the device and the panel are required to be in non-contact. In recent years, an air levitation conveyance device has begun to be employed. Yes. As a non-contact conveyance device, there is a device that floats and conveys an FPD by ejecting air by using a porous material for a part of a plate-shaped rail and supplying air in communication with an air supply path. However, if this device is used, the FPD floats while moving in the vertical direction, so that it can be used in the transport process. However, for example, a high flying height of 30 to 50 μm is required. It cannot be used in process steps.

また、上記多孔質材料を用いた板状のレールに真空引き用の孔を設けると、装置の構成が複雑になり、装置自体が高額になるとともに、浮上高さを高精度に維持するために給気圧を高くすると、高剛性空気の圧縮性に係わる自励振動が発生し、浮上高さを高精度に保つことができないという問題があった。   In addition, if a hole for vacuuming is provided in the plate-shaped rail using the porous material, the structure of the apparatus becomes complicated, the apparatus itself becomes expensive, and the flying height is maintained with high accuracy. When the supply air pressure is increased, self-excited vibration related to the compressibility of high-rigid air is generated, and there is a problem that the flying height cannot be maintained with high accuracy.

さらに、多孔質材料の代わりにオリフィス(小径の孔)を真空引き用の孔と交互に穿設した装置も存在するが、オリフィスからの強い噴出空気で静電気が発生したり、クリーンルームの環境を乱したり、消費流量が大きくなって運転コストが高騰するという問題があった。   In addition, there are devices in which orifices (small-diameter holes) are alternately drilled with evacuation holes instead of porous materials, but static electricity is generated by the strong blown air from the orifices, and the environment of the clean room is disturbed. However, there is a problem that the operation cost increases due to an increase in the consumption flow rate.

そこで、特許文献1には、流体流量及びエネルギー消費量が少なく、浮上高さを高精度に維持できる非接触搬送装置として、流体噴出口から流体を噴出させることにより、リング状部材の表面側から離れる方向へ向かう旋回流を生じさせるとともに、リング状部材の表面側の開口部近傍に裏面方向への流体流れを生じさせる旋回流形成体を、基体の搬送面に2個以上備える非接触搬送装置が提案されている。   Therefore, in Patent Document 1, as a non-contact conveyance device that has a small fluid flow rate and energy consumption and can maintain the flying height with high accuracy, by ejecting fluid from the fluid ejection port, the surface side of the ring-shaped member is used. A non-contact transfer device provided with two or more swirl flow forming bodies on the transfer surface of the substrate that generate a swirl flow toward the separating direction and generate a fluid flow in the back surface direction in the vicinity of the opening on the front side of the ring-shaped member Has been proposed.

国際公開第2009/119377号パンフレットInternational Publication No. 2009/119377 pamphlet

しかし、上記特許文献1に記載の非接触搬送装置を用いた場合でも、プロセス工程において大型のFPD等の浮上高さを高精度に維持することは容易ではなく、改善の余地があった。   However, even when the non-contact conveyance device described in Patent Document 1 is used, it is not easy to maintain the flying height of a large FPD or the like with high accuracy in the process step, and there is room for improvement.

また、上記特許文献1に記載の非接触搬送装置では、基体の搬送面に形成した凹部に旋回流形成体を収容し、この旋回流形成体の外周面を凹部の周囲に突設した盛上部によってかしめ接合するため、基体への旋回流形成体の装着に長時間を要して非接触搬送装置の製造コストの上昇に繋がるとともに、旋回流形成体を基体にかしめ接合する際に、旋回流形成体の取付角度にばらつきを生じたり、旋回流形成体や基体(レール)に反りが発生したりして被搬送物の浮上高さの精度が低下する虞があった。   Moreover, in the non-contact conveyance apparatus of the said patent document 1, the upper part which accommodated the swirling flow formation body in the recessed part formed in the conveyance surface of a base | substrate, and protruded the outer peripheral surface of this swirl flow formation body around the recessed part Therefore, it takes a long time to attach the swirling flow forming body to the substrate, which leads to an increase in the manufacturing cost of the non-contact conveyance device, and when swirling the swirling flow forming body to the substrate, There is a possibility that the accuracy of the flying height of the object to be transported may be reduced due to variations in the mounting angle of the formed body or warping of the swirl flow forming body or the base (rail).

そこで、本発明は、大型のFPD等であっても、その浮上高さを高精度に維持することが可能で、プロセス工程に使用して好適な非接触搬送装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a non-contact conveyance device suitable for use in a process step, which can maintain the flying height of a large FPD or the like with high accuracy. .

上記目的を達成するため、本発明は、流体噴出口を備え、該流体噴出口から流体を噴出することにより、表面側に該表面から離れる方向へ向かう上昇旋回流を生じさせる複数の旋回流形成体を基体の搬送面に備えた非接触搬送装置であって、流体吸い込み用の複数の吸引孔を前記基体の搬送面に備えるとともに、該吸引孔と前記旋回流形成体を該基体の幅方向及び長手方向に沿って交互に配置し、前記基体に、前記複数の旋回流形成体と連通する平面視菱形格子状の流体供給通路と、前記複数の吸引孔と連通する平面視菱形格子状の流体吸引通路とを設け、該流体供給通路及び流体吸引通路を異なる高さに配置するとともに、平面視で互い違いとなるように配置したことを特徴とする。   In order to achieve the above object, the present invention is provided with a fluid ejection port, and forms a plurality of swirling flows that generate an upward swirling flow toward the surface away from the surface by ejecting fluid from the fluid ejection port. A non-contact conveyance device having a body on a conveyance surface of a substrate, wherein a plurality of suction holes for sucking fluid are provided on the conveyance surface of the substrate, and the suction holes and the swirl flow forming body are arranged in the width direction of the substrate. And alternately arranged along the longitudinal direction, and the base has a rhombic lattice-like fluid supply passage in plan view that communicates with the plurality of swirl flow forming bodies, and a rhombic lattice shape in plan view that communicates with the plurality of suction holes. A fluid suction passage is provided, and the fluid supply passage and the fluid suction passage are arranged at different heights, and are arranged so as to be alternated in a plan view.

本発明によれば、流体吸い込み用の吸引孔を備えるとともに、該吸引孔と旋回流形成体を基体の幅方向及び長手方向に沿って交互に配置するため、旋回流形成体が生じる上昇旋回流によって被搬送物を浮上させつつ、吸引孔によって周囲の微量の流体を真空吸引することができる。そして、上昇旋回流により被搬送物の浮上量を大きくする作用と、真空吸引により被搬送物の浮上量を小さくする作用との両作用を制御することで、被搬送物の浮上高さを高精度に維持するとともに、被搬送物の浮上状態を高剛性に維持することができ、プロセス工程等に好適に適用することができる。   According to the present invention, the suction flow for sucking the fluid is provided, and the suction hole and the swirl flow forming body are alternately arranged along the width direction and the longitudinal direction of the base body. Thus, a small amount of the surrounding fluid can be sucked in vacuum by the suction hole while the object to be conveyed is levitated. By controlling both the action of increasing the floating amount of the conveyed object by the upward swirling flow and the action of decreasing the floating amount of the conveyed object by vacuum suction, the flying height of the conveyed object is increased. While maintaining the accuracy, the floating state of the conveyed object can be maintained with high rigidity, and can be suitably applied to a process step or the like.

また、流体供給通路及び流体吸引通路を平面視菱形格子状に形成し、これらを異なる高さに配置するとともに、平面視で互い違いとなるように配置するため、流体供給通路と流体吸引通路の干渉を回避しつつ、夫々の通路を単一の連続路で構成することができる。これにより、流体通路の設計が容易となるのに加え、基体の製造コストを低減することが可能になる。   In addition, the fluid supply passage and the fluid suction passage are formed in a rhombus lattice shape in plan view, and these are arranged at different heights, and are arranged to be staggered in plan view. Each passage can be constituted by a single continuous path. As a result, the fluid passage can be easily designed, and the manufacturing cost of the substrate can be reduced.

上記非接触搬送装置において、前記流体供給通路及び流体吸引通路を、平面視において、一方の通路の交差部が他方の通路の格子内に位置するように配置することができる。   In the non-contact transfer device, the fluid supply passage and the fluid suction passage may be arranged so that an intersection of one passage is located in a lattice of the other passage in a plan view.

上記非接触搬送装置において、前記基体が、前記複数の旋回流形成体を収容する複数の収容部と前記複数の吸引孔とが形成された上板と、前記流体供給通路及び流体吸引通路が形成された中板と、前記流体供給通路及び流体吸引通路に夫々連通する流体供給口及び真空吸引口が形成された下板とを備え、前記中板が、該中板の上面に前記流体供給通路として設けられ、前記上板の前記収容部と連通する供給溝と、該供給溝を前記下板の前記流体供給口と連結する第1の連通孔と、該中板の下面に前記流体吸引通路として設けられ、前記下板の前記真空吸引口と連通する吸引溝と、該吸引溝を前記上板の前記吸引孔に連結する第2の連通孔とを備えることができる。   In the non-contact conveyance device, the base body includes an upper plate on which a plurality of accommodating portions for accommodating the plurality of swirling flow forming bodies and the plurality of suction holes are formed, and the fluid supply passage and the fluid suction passage. And a lower plate formed with a fluid supply port and a vacuum suction port respectively communicating with the fluid supply passage and the fluid suction passage, and the intermediate plate is formed on the upper surface of the intermediate plate with the fluid supply passage. A supply groove that communicates with the housing portion of the upper plate, a first communication hole that connects the supply groove with the fluid supply port of the lower plate, and the fluid suction passage on the lower surface of the middle plate A suction groove that communicates with the vacuum suction port of the lower plate, and a second communication hole that connects the suction groove to the suction hole of the upper plate.

上記構成によれば、基体を多層化した上で、供給溝及び吸引溝を中板の上下面に設けるため、流体供給通路及び流体吸引通路の作製が容易となり、製造コストをより低減することが可能になる。   According to the above configuration, since the supply groove and the suction groove are provided on the upper and lower surfaces of the intermediate plate after the base is multi-layered, the production of the fluid supply passage and the fluid suction passage is facilitated, and the manufacturing cost can be further reduced. It becomes possible.

上記非接触搬送装置において、前記基体が、前記複数の旋回流形成体を収容する複数の収容部と前記複数の吸引孔とが形成された上板と、前記流体供給通路及び流体吸引通路が形成された中板と、前記流体供給通路及び流体吸引通路に夫々連通する流体供給口及び真空吸引口が形成された下板とを備え、前記中板が、該中板の下面に前記流体供給通路として設けられ、前記下板の前記流体供給口と連通する供給溝と、該供給溝を前記上板の前記収容部と連結する第1の連通孔と、該中板の上面に前記流体吸引通路として設けられ、前記上板の前記吸引孔と連通する吸引溝と、該吸引溝を前記下板の前記真空吸引口に連結する第2の連通孔とを備えることができる。   In the non-contact conveyance device, the base body includes an upper plate on which a plurality of accommodating portions for accommodating the plurality of swirling flow forming bodies and the plurality of suction holes are formed, and the fluid supply passage and the fluid suction passage. And a lower plate formed with a fluid supply port and a vacuum suction port respectively communicating with the fluid supply passage and the fluid suction passage, and the intermediate plate is formed on the lower surface of the middle plate with the fluid supply passage. A supply groove that communicates with the fluid supply port of the lower plate, a first communication hole that connects the supply groove with the housing portion of the upper plate, and the fluid suction passage on the upper surface of the middle plate A suction groove that communicates with the suction hole of the upper plate, and a second communication hole that connects the suction groove to the vacuum suction port of the lower plate.

上記構成によれば、基体を多層化した上で、供給溝及び吸引溝を中板の上下面に設けるため、流体供給通路及び流体吸引通路の作製が容易となり、製造コストをより低減することが可能になる。   According to the above configuration, since the supply groove and the suction groove are provided on the upper and lower surfaces of the intermediate plate after the base is multi-layered, the production of the fluid supply passage and the fluid suction passage is facilitated, and the manufacturing cost can be further reduced. It becomes possible.

上記非接触搬送装置において、前記第1の連通孔を、平面視において、前記吸引溝と重畳しない位置に配置し、前記第2の連通孔を、平面視において、前記供給溝と重畳しない位置に配置することができる。この構成によれば、第1及び第2の連通孔を中板の厚さ方向に直線的に形成することができるため、圧力分布を均一化することができ、また、第1及び第2の連通孔の穿設加工を容易化することが可能になる。   In the non-contact conveyance device, the first communication hole is arranged at a position not overlapping with the suction groove in a plan view, and the second communication hole is set at a position not overlapping with the supply groove in a plan view. Can be arranged. According to this configuration, since the first and second communication holes can be formed linearly in the thickness direction of the intermediate plate, the pressure distribution can be made uniform, and the first and second It is possible to facilitate the drilling process of the communication hole.

上記非接触搬送装置において、一方の向きの旋回流を発生させる第1の旋回流形成体と前記吸引孔とを前記基体の幅方向に沿って交互に配置した第1の列と、他方の向きの旋回流を発生させる第2の旋回流形成体と前記吸引孔とを該基体の幅方向に沿って交互に配置した第2の列とを、該基体の長手方向に沿って交互に配置されるとともに、相隣り合う前記第1の旋回流形成体同士の間、及び、相隣り合う前記第2の旋回流形成体同士の間に前記吸引孔が位置するように配列することができる。   In the non-contact conveyance device, the first row in which the first swirling flow forming bodies that generate the swirling flow in one direction and the suction holes are alternately arranged along the width direction of the base, and the other direction The second swirl flow forming bodies that generate the swirl flow and the second rows in which the suction holes are alternately disposed along the width direction of the substrate are alternately disposed along the longitudinal direction of the substrate. In addition, the suction holes can be arranged so that the suction holes are positioned between the adjacent first swirl flow forming bodies and between the adjacent second swirl flow forming bodies.

上記非接触搬送装置において、一方の向きの旋回流を発生させる第1の旋回流形成体と他方の向きの旋回流を発生させる第2の旋回流形成体とを、前記基体の幅方向及び長手方向に沿って交互に配置するとともに、相隣り合う前記第1の旋回流形成体と前記第2の旋回流形成体との間に前記吸引孔を配置することができる。   In the non-contact conveyance device, a first swirl flow forming body that generates a swirling flow in one direction and a second swirl flow forming body that generates a swirling flow in the other direction are arranged in the width direction and the longitudinal direction of the base body. The suction holes can be arranged alternately along the direction and between the first swirl flow forming body and the second swirl flow forming body which are adjacent to each other.

上記非接触搬送装置において、前記旋回流形成体が、椀状の本体と、該本体の内部に形成され、前記表面側に開口する平面視円形の穴部と、該穴部の開口部側の外周縁に形成された環状鍔部と、該環状鍔部の外周面から下方に向かって突出し、先端に係止突起を有する複数の突出部と、該穴部の円筒状内壁面に形成され、該穴部の中心を挟んで相対向する位置に設けられた凹部と、該凹部に形成され、該穴部を形成する内表面に開口する流体噴出口と、該流体噴出口に連通し、前記本体の外周面に開口する流体取入口とを備えることができる。   In the non-contact conveyance device, the swirl flow forming body includes a bowl-shaped main body, a hole formed in the main body and having a circular shape in a plan view that opens to the front surface side, and an opening side of the hole. An annular flange formed on the outer peripheral edge, a plurality of protrusions projecting downward from the outer peripheral surface of the annular collar, a locking projection at the tip, and a cylindrical inner wall surface of the hole, A recess provided at a position facing each other across the center of the hole, a fluid outlet formed in the recess and opening in an inner surface forming the hole, and communicating with the fluid outlet, And a fluid intake opening that opens to the outer peripheral surface of the main body.

上記構成によれば、旋回流形成体を基体の収容部に収容し、流体取入口から流体を取り入れることで、簡単に非接触搬送装置を構成することができ、製造コストを低く抑えることができる。   According to the above configuration, the non-contact transfer device can be easily configured by storing the swirl flow forming body in the housing portion of the base and taking in the fluid from the fluid intake port, and the manufacturing cost can be kept low. .

上記非接触搬送装置において、前記基体が、前記表面側に開口する平面視円形の収容部を備えるとともに、該収容部が、該収容部の上部に形成され、前記旋回流形成体の環状鍔部の外径に対応する内径を有する小径孔と、該収容部の下部に形成され、該小径孔よりも大径の円筒係止凹部とを備え、前記旋回流形成体が、前記環状鍔部が前記基体の収容部の小径孔に圧入嵌合されるとともに、前記突出部の係止突起が該基体の円筒係止凹部に係止されることにより、該基体の収容部に装着されるように構成することができる。   In the non-contact conveyance device, the base body includes a circular accommodating portion that is open on the front surface side, and the accommodating portion is formed on an upper portion of the accommodating portion, and the annular flange portion of the swirling flow forming body A small-diameter hole having an inner diameter corresponding to the outer diameter and a cylindrical locking recess formed in a lower portion of the housing portion and having a diameter larger than the small-diameter hole, wherein the swirling flow forming body includes the annular flange portion. It is press-fitted into the small-diameter hole of the housing portion of the base body, and the locking protrusion of the protruding portion is locked to the cylindrical locking recess portion of the base body so that the base body is mounted on the housing portion. Can be configured.

上記構成によれば、旋回流形成体を基体にワンタッチで装着することができ、旋回流形成体の取り付けが容易となるため、製造コストを低減することができる。また、旋回流形成体を基体に装着するに際し、従来のようなかしめ接合を用いないため、旋回流形成体の取付角度にばらつきを生じたり、旋回流形成体及び基体に反りが生じることがなく、被搬送物の浮上高さの精度を高く維持することができる。さらに、旋回流形成体の環状鍔部を基体の収容部の小径孔に圧入嵌合するため、環状鍔部と小径孔の間の流体漏れを生じさせることなく、旋回流形成体を基体に装着することができる。   According to the above configuration, the swirling flow forming body can be attached to the base body with a single touch, and the swirling flow forming body can be easily attached, so that the manufacturing cost can be reduced. Further, when the swirl flow forming body is mounted on the base body, since the conventional caulking is not used, the mounting angle of the swirl flow forming body does not vary, and the swirl flow forming body and the base body are not warped. The accuracy of the flying height of the conveyed object can be kept high. In addition, the swirling flow forming body is fitted to the base body without causing fluid leakage between the circular saddle section and the small diameter hole because the swivel flow forming body annular flange portion is press-fitted into the small diameter hole of the housing portion of the base body. can do.

以上のように、本発明によれば、旋回流形成体の浮上位置と吸引孔の真空吸着位置とを規則正しく交互に配列することで、旋回流形成体による浮上(押)と吸引孔による吸着(引)が均一化され、大型のFPD等であっても、浮上高さを高精度で維持するとともに、浮上状態を高剛性に維持することが可能で、プロセス工程に好ましく適用することができる非接触搬送装置を提供することができる。   As described above, according to the present invention, the levitation position of the swirling flow forming body and the vacuum suction position of the suction hole are regularly and alternately arranged, whereby the levitation (pushing) by the swirling flow forming body and the suction by the suction hole ( Even if it is a large FPD, etc., the flying height can be maintained with high accuracy and the flying state can be maintained with high rigidity, which can be preferably applied to process steps. A contact transfer device can be provided.

本発明にかかる非接触搬送装置の一実施の形態を示す図であって、搬送工程及びプロセス工程からなる全体構成を示す平面図である。It is a figure which shows one Embodiment of the non-contact conveying apparatus concerning this invention, Comprising: It is a top view which shows the whole structure which consists of a conveyance process and a process process. 図1のプロセス工程用の非接触搬送装置を示す図であって、(a)は平面図、(b)は(a)のA−A線断面図である。It is a figure which shows the non-contact conveying apparatus for process steps of FIG. 1, Comprising: (a) is a top view, (b) is the sectional view on the AA line of (a). 本発明の非接触搬送装置に使用される平面視右回り方向(時計回り方向)の旋回流を発生させる旋回流形成体を示す図であって、(a)は正面図、(b)は平面図、(c)は底面図、(d)は(b)のB−B線断面図、(e)は(c)のD部の拡大断面図、(f)は(d)のE部の拡大断面図である。It is a figure which shows the swirl | vortex flow formation body which generate | occur | produces the swirl | vortex flow of the clockwise view (clockwise direction) used for the non-contact conveyance apparatus of this invention, Comprising: (a) is a front view, (b) is a plane. (C) is a bottom view, (d) is a cross-sectional view taken along the line BB of (b), (e) is an enlarged cross-sectional view of a D portion of (c), and (f) is an E portion of (d). It is an expanded sectional view. 本発明の非接触搬送装置に使用される平面視左回り方向(反時計回り方向)の旋回流を発生させる旋回流形成体を示す図であって、(a)は正面図、(b)は平面図、(c)は底面図、(d)は(c)のG−G線断面図、(e)は(c)のH部の拡大断面図、(f)は(d)のJ部の拡大断面図である。It is a figure which shows the swirl | vortex flow formation body which generate | occur | produces the swirl | vortex flow of the plan view anticlockwise direction (counterclockwise direction) used for the non-contact conveying apparatus of this invention, Comprising: (a) is a front view, (b) is a front view. (C) is a bottom view, (d) is a cross-sectional view taken along the line GG of (c), (e) is an enlarged cross-sectional view of the H portion of (c), and (f) is a J portion of (d). FIG. 図2(b)の上板を示す図であって、(a)は旋回流形成体を装着していない状態の上板の断面図、(b)は旋回流形成体を装着した状態の上板の断面図である。It is a figure which shows the upper board of FIG.2 (b), Comprising: (a) is sectional drawing of the upper board in the state which is not mounting | wearing with a swirl flow formation body, (b) is a top view in the state where the swirl flow formation body was mounted | worn. It is sectional drawing of a board. 図2(b)の中板を示す図であって、(a)は図7のK−K線断面図、(b)は図8のL−L線断面図である。2B is a cross-sectional view taken along the line KK in FIG. 7, and FIG. 8B is a cross-sectional view taken along the line LL in FIG. 8. 図2(b)の中板の上面図である。FIG. 3 is a top view of the middle plate in FIG. 図2(b)の中板の下面図である。FIG. 3 is a bottom view of the middle plate in FIG. 図1の搬送工程用の非接触搬送装置を示す平面図である。It is a top view which shows the non-contact conveying apparatus for the conveyance process of FIG. 図9の搬送工程用の非接触搬送装置を示す図であって、(a)は旋回流形成体を装着していない状態の拡大平面図、(b)は(a)のN−N線断面図(図9のM−M線断面図)である。It is a figure which shows the non-contact conveying apparatus for conveyance processes of FIG. 9, Comprising: (a) is an enlarged plan view of the state which is not mounting | wearing with the swirl | flow flow formation body, (b) is the NN sectional view taken on the line It is a figure (MM sectional view taken on the line of FIG. 9). 搬送工程用の非接触搬送装置の他の構成例を示す図であって、(a)は旋回流形成体を装着していない状態の拡大平面図、(b)は(a)のP−P線断面図である。It is a figure which shows the other structural example of the non-contact conveying apparatus for conveyance processes, Comprising: (a) is an enlarged plan view of the state which is not mounting | wearing with the swirl | flow flow formation body, (b) is PP of (a). It is line sectional drawing. ガラスの浮上搬送を示す図であって、(a)は搬送工程でのガラスの浮上搬送、(b)はプロセス工程でのガラスの浮上搬送を示す図である。It is a figure which shows levitation conveyance of glass, Comprising: (a) is levitation conveyance of the glass in a conveyance process, (b) is a figure which shows levitation conveyance of the glass in a process process. プロセス工程用の非接触搬送装置の他の実施の形態を示す図であって、(a)は平面図、(b)は(a)のQ−Q線断面図である。It is a figure which shows other embodiment of the non-contact conveying apparatus for process processes, Comprising: (a) is a top view, (b) is the QQ sectional view taken on the line of (a). 図13(b)の中板の上面図である。FIG. 14 is a top view of the middle plate in FIG. 図13(b)の中板の下面図である。It is a bottom view of the middle board of Drawing 13 (b). 図14のR−R線断面図である。It is the RR sectional view taken on the line of FIG. 本発明にかかる搬送工程を含めた非接触搬送装置全体の他の実施の形態を示す平面図である。It is a top view which shows other embodiment of the whole non-contact conveying apparatus including the conveyance process concerning this invention.

次に、本発明の実施の形態について図面を参照しながら詳細に説明する。尚、以下の説明においては、搬送用流体として空気を用い、被搬送物として液晶ガラス(以下、「ガラス」という)を搬送する場合を例にとって説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, air is used as the transport fluid and liquid crystal glass (hereinafter referred to as “glass”) is transported as an object to be transported.

非接触搬送装置10は、図1に示すように、ガラスGを非接触で搬送するために使用され、2つの搬送工程11、13用の非接触搬送装置11a、13aと、これら搬送工程11、13に挟まれたプロセス工程12用の非接触搬送装置12aとから構成される。   As shown in FIG. 1, the non-contact conveyance device 10 is used to convey the glass G in a non-contact manner. The non-contact conveyance devices 11 a and 13 a for the two conveyance steps 11 and 13, the conveyance steps 11, 13 and a non-contact transfer device 12a for the process step 12 sandwiched between the two.

プロセス工程12の非接触搬送装置12aは、図2(a)に示すように、平面視右回り方向の上昇旋回流を発生させる旋回流形成体2と、微量の空気を吸い込む真空吸引用の直径1〜2mm程度の吸引孔5とを基体4の幅方向Xに沿って交互に配置した第1の列4aと、平面視左回り方向の上昇旋回流を発生させる旋回流形成体3と、微量の空気を吸い込む真空吸引用の直径1〜2mm程度の吸引孔5とを基体4の幅方向Xに沿って交互に配置した第2の列4bとを備える。尚、図を見易くするため、平面視左回り方向の旋回流を発生させる旋回流形成体3を黒塗りで示している。   As shown in FIG. 2A, the non-contact transfer device 12a of the process step 12 includes a swirling flow forming body 2 that generates an upward swirling flow in a clockwise direction in plan view, and a vacuum suction diameter for sucking in a small amount of air. 1st row | line | column 4a which alternately arrange | positioned the suction hole 5 of about 1-2 mm along the width direction X of the base | substrate 4, the swirl flow formation body 3 which generate | occur | produces the upward swirl | vortex flow of a plan view left-handed direction, And suction holes 5 having a diameter of about 1 to 2 mm for sucking the air are arranged along the width direction X of the base 4 and the second rows 4b are alternately arranged. In order to make the drawing easier to see, the swirling flow forming body 3 that generates a swirling flow in the counterclockwise direction in plan view is shown in black.

これら第1及び第2の列4a、4bは、右回り方向の上昇旋回流を発生させる旋回流形成体2と、左回り方向の上昇旋回流を発生させる旋回流形成体3とが互い違いに位置するように、基体4の長手方向Yに沿って交互に配置される。この際、吸引孔5は、基体4の幅方向X及び長手方向Yに隣り合う旋回流形成体2、2同士(同一方向の上昇旋回流を発生させる旋回流形成体同士)の間、及び、旋回流形成体3、3同士の間に位置する。   In these first and second rows 4a and 4b, the swirl flow forming bodies 2 that generate a clockwise swirl flow and the swirl flow formation bodies 3 that generate a counterclockwise swirl flow are alternately positioned. In this manner, the base members 4 are alternately arranged along the longitudinal direction Y. At this time, the suction hole 5 is between the swirl flow forming bodies 2 and 2 adjacent to each other in the width direction X and the longitudinal direction Y of the base body 4 (between swirl flow formation bodies that generate the rising swirl flow in the same direction), and It is located between the swirl flow forming bodies 3 and 3.

右回り方向の上昇旋回流を発生させる旋回流形成体2は、図3(a)乃至図3(f)に示すように、例えばポリアセタール樹脂等の熱可塑性合成樹脂で一体に形成された椀状の本体2aと、本体2aの内部に位置するとともに一方に開口する平面視円形の穴部2bと、本体2aに形成され、該穴部2bの開口部の外周縁に一体に形成された環状鍔部2cと、該環状鍔部2cの外周面2dから下方に向かって突出し、先端に係止突起2eを有して径方向に相対向して形成された4本の突出部2fと、本体2aの穴部2bの円筒状内壁面2gに該円筒状内壁面2gの接線方向であって該穴部2bの中心Oを挟んで対角線上の相対向する位置に形成された凹部2h、2hと、夫々の凹部2hに形成され、穴部2bの円筒状内壁面2g側に向かって夫々反対方向に開口する空気の噴出口2i、2iと、噴出口2i、2iに連通し、本体2aの外周面に開口する空気取入口2j、2jとを備える。   As shown in FIGS. 3 (a) to 3 (f), the swirling flow forming body 2 that generates the upward swirling flow in the clockwise direction is, for example, a bowl-shape formed integrally with a thermoplastic synthetic resin such as a polyacetal resin. A main body 2a, a circular hole 2b in a plan view that is located inside the main body 2a and is open to one side, and an annular bag formed in the main body 2a and integrally formed on the outer peripheral edge of the opening of the hole 2b. A projecting portion 2c, four projecting portions 2f that project downward from the outer peripheral surface 2d of the annular flange 2c, have a locking projection 2e at the tip, and are opposed to each other in the radial direction; and a main body 2a Concave portions 2h, 2h formed on the cylindrical inner wall surface 2g of the hole portion 2b in the tangential direction of the cylindrical inner wall surface 2g and opposite to each other on the diagonal line across the center O of the hole portion 2b; It is formed in each recess 2h, and toward the cylindrical inner wall surface 2g side of the hole 2b. Comprising air jets 2i which open in opposite directions, and 2i, spout 2i, communicates with the 2i, air inlet 2j opened to the outer peripheral surface of the main body 2a, and 2j.

上記旋回流形成体2は、空気取入口2j、2jを介して夫々噴出口2i、2iから噴出した空気が本体2aの穴部2bの円筒状内壁面2gに当接することにより、平面視右回り方向(図3(b)中の矢印C方向)の上昇旋回流を発生する。   The swirl flow forming body 2 is rotated clockwise in plan view when air ejected from the ejection ports 2i and 2i through the air intake ports 2j and 2j abuts against the cylindrical inner wall surface 2g of the hole 2b of the main body 2a. An upward swirling flow in the direction (the direction of arrow C in FIG. 3B) is generated.

また、平面視左回り方向の上昇旋回流を発生させる旋回流形成体3は、図4(a)乃至図4(f)に示すように、前記旋回流形成体2と同様、例えばポリアセタール樹脂等の熱可塑性合成樹脂から一体に形成された椀状の本体3aと、該本体3aの内部に位置するとともに一方に開口する平面視円形の穴部3bと、本体3aに形成され、該穴部3bの開口部の外周縁に一体に形成された環状鍔部3cと、該環状鍔部3cの外周面3dから下方に向かって突出し、先端に係止突起3eを有して径方向に相対向して形成された4本の突出部3fと、本体3aの穴部3bの円筒状内壁面3gに該円筒状内壁面3gの接線方向であって該穴部3bの中心Oを挟んで対角線上の相対向する位置に形成された凹部3h、3hと、夫々の凹部3hに形成され、該穴部3bの円筒状内壁面3g側に向かって夫々反対方向に開口する空気の噴出口3i、3iと、噴出口3i、3iに連通し、本体3aの外周面に開口する空気取入口3j、3jとを備える。   Further, as shown in FIGS. 4A to 4F, the swirling flow forming body 3 that generates the upward swirling flow in the counterclockwise direction in plan view is similar to the swirling flow forming body 2, for example, polyacetal resin or the like. A bowl-shaped main body 3a integrally formed from the thermoplastic synthetic resin, a hole 3b that is located inside the main body 3a and has a circular shape in a plan view that opens to one side, and a hole 3b that is formed in the main body 3a. An annular flange 3c integrally formed on the outer peripheral edge of the opening of the opening, and an outer peripheral surface 3d of the annular flange 3c that protrudes downward, and has a locking projection 3e at the tip so as to face each other in the radial direction. The four protrusions 3f formed in this way, and the cylindrical inner wall surface 3g of the hole 3b of the main body 3a are tangential to the cylindrical inner wall surface 3g and sandwich the center O of the hole 3b. Formed in the recesses 3h and 3h formed at opposite positions and the respective recesses 3h. Air outlets 3i and 3i that open in opposite directions toward the cylindrical inner wall surface 3g of the hole 3b, and an air inlet 3j that communicates with the outlets 3i and 3i and opens on the outer peripheral surface of the main body 3a. 3j.

上記旋回流形成体3は、空気取入口3j、3jを介して夫々噴出口3i、3iから噴出した空気が本体3aの穴部3bの円筒状内壁面3gに当接することにより、平面視左回り方向(図4(b)中の矢印F方向)の上昇旋回流を発生する。   The swirl flow forming body 3 is counterclockwise in plan view when the air ejected from the ejection ports 3i and 3i through the air intake ports 3j and 3j abuts against the cylindrical inner wall surface 3g of the hole 3b of the main body 3a. An upward swirling flow in the direction (the direction of arrow F in FIG. 4B) is generated.

図2に戻り、非接触搬送装置12aの基体4は、図2(b)に示すように、上板7、中板8及び下板9からなる三層構造を有する。   Returning to FIG. 2, the base 4 of the non-contact conveyance device 12 a has a three-layer structure including an upper plate 7, an intermediate plate 8 and a lower plate 9 as shown in FIG.

上板7には、図5(a)に示すように、上板7を貫通し、旋回流形成体2、3が収容される平面視円形の複数の収容部(孔部)7bと、上板7を貫通する複数の吸引孔5とが形成される。収容部7bは、収容部7bの上部に形成され、旋回流形成体2、3の環状鍔部2c、3c(図3(b)及び図4(b)参照)の外径と同径、又は環状鍔部2c、3cの外径よりも僅かに小さい内径を有する小径孔7cと、収容部7bの下部に形成され、小径孔7cよりも大径の円柱状係止孔7dとから構成される。   As shown in FIG. 5 (a), the upper plate 7 includes a plurality of accommodating portions (holes) 7b that pass through the upper plate 7 and have a circular shape in plan view in which the swirling flow forming bodies 2 and 3 are accommodated. A plurality of suction holes 5 penetrating the plate 7 are formed. The accommodating part 7b is formed on the upper part of the accommodating part 7b, and has the same diameter as the outer diameter of the annular flanges 2c and 3c (see FIGS. 3B and 4B) of the swirl flow forming bodies 2 and 3, or A small-diameter hole 7c having an inner diameter slightly smaller than the outer diameter of the annular flanges 2c and 3c, and a cylindrical locking hole 7d formed in the lower part of the housing part 7b and having a larger diameter than the small-diameter hole 7c. .

尚、旋回流形成体2の装着は、図5(b)に示すように、上板7の搬送面7a側から旋回流形成体2を収容部7bに挿入し、旋回流形成体2の係止突起2eを上板7の円柱状係止孔7dに係止することで行う。このとき、旋回流形成体2の本体2aの環状鍔部2cが、上板7の収容部7bの小径孔7cに圧入嵌合されているので、旋回流形成体2と収容部7bの間から空気が漏れることはない。尚、旋回流形成体3の装着も、上記と同様の方法で行う。   As shown in FIG. 5B, the swirling flow forming body 2 is attached by inserting the swirling flow forming body 2 into the accommodating portion 7b from the conveying surface 7a side of the upper plate 7 and engaging the swirling flow forming body 2. This is done by locking the stop protrusion 2e in the cylindrical locking hole 7d of the upper plate 7. At this time, since the annular flange 2c of the main body 2a of the swirling flow forming body 2 is press-fitted into the small diameter hole 7c of the housing portion 7b of the upper plate 7, from between the swirling flow forming body 2 and the housing portion 7b. Air does not leak. The swirling flow forming body 3 is also mounted by the same method as described above.

中板8は、図6(a)に示すように、中板8の上面8aに形成された横断面半円形の供給溝8bと、中板8の下面8cに形成された横断面半円形の吸引溝8fとを備える。   As shown in FIG. 6A, the intermediate plate 8 has a semicircular cross-sectional supply groove 8b formed on the upper surface 8a of the intermediate plate 8, and a semicircular cross section formed on the lower surface 8c of the intermediate plate 8. And a suction groove 8f.

供給溝8bは、図7に示すように、旋回流形成体2、3の配置(図2(a)参照)に合わせ、平面視菱形格子状に形成される。供給溝8bの底部には、図6(b)に示すように、中板8の下面8cに開口する第1の連通孔8dが連結され、この第1の連通孔8dは、図8に示すように、中板8の全体を通して1つのみが設けられる。供給溝8bは、図2(b)に示すように、上板7、中板8及び下板9を積層させた際に、上板7の収容部7bの夫々と連通する。   As shown in FIG. 7, the supply grooves 8b are formed in a rhombus lattice shape in plan view in accordance with the arrangement of the swirl flow forming bodies 2 and 3 (see FIG. 2A). As shown in FIG. 6B, the bottom of the supply groove 8b is connected to a first communication hole 8d that opens to the lower surface 8c of the intermediate plate 8, and the first communication hole 8d is shown in FIG. Thus, only one is provided throughout the intermediate plate 8. The supply groove 8b communicates with each of the accommodating portions 7b of the upper plate 7 when the upper plate 7, the middle plate 8 and the lower plate 9 are laminated as shown in FIG.

一方、吸引溝8fは、図8に示すように、吸引孔5の配置(図2(a)参照)に合わせ、平面視菱形格子状に形成される。尚、図8においては、吸引溝8fと供給溝8bの位置関係を分かり易くするため、実線で吸引溝8fを図示し、破線で供給溝8bを図示している。   On the other hand, as shown in FIG. 8, the suction grooves 8f are formed in a rhombic lattice shape in plan view in accordance with the arrangement of the suction holes 5 (see FIG. 2A). In FIG. 8, for easy understanding of the positional relationship between the suction groove 8f and the supply groove 8b, the suction groove 8f is shown by a solid line, and the supply groove 8b is shown by a broken line.

吸引溝8fの上部には、図6(a)に示すように、上板7の吸引孔5(図5(a)参照)と同径を有し、中板8の上面8aに開口する複数の第2の連通孔8eが連結される。これら第2の連通孔8eは、図2(b)に示すように、上板7、中板8及び下板9を積層させた際に、上板7の吸引孔5の夫々と連通する。尚、図8においては、吸引溝8fの第2の連通孔8eと、供給溝8bの第1の連通孔8dとの位置関係を分かり易くするため、前者を黒塗りで図示している。   As shown in FIG. 6A, a plurality of holes having the same diameter as the suction hole 5 (see FIG. 5A) of the upper plate 7 and opening on the upper surface 8a of the middle plate 8 are formed in the upper portion of the suction groove 8f. The second communication hole 8e is connected. As shown in FIG. 2B, these second communication holes 8e communicate with the suction holes 5 of the upper plate 7 when the upper plate 7, the middle plate 8 and the lower plate 9 are laminated. In FIG. 8, the former is shown in black for easy understanding of the positional relationship between the second communication hole 8e of the suction groove 8f and the first communication hole 8d of the supply groove 8b.

これら供給溝8b及び吸引溝8fは、図8に示すように、平面視で互い違いとなるように配置され、一方の溝の交差部が他方の溝の格子内に位置するように形成される(供給溝8bの交差部8gと吸引溝8fの格子8iとの関係、及び、吸引溝8fの交差部8hと供給溝8bの格子8jとの関係を参照)。そして、吸引溝8fに繋がる複数の第2の連通孔8eは、吸引溝8fの交差部8h及び角部8kに連結され、供給溝8bと重畳しない位置に配置される。また、供給溝8bに繋がる第1の連通孔8dも、供給溝8bの交差部8gに連結され、吸引溝8fと重畳しない位置に配置される。   As shown in FIG. 8, the supply grooves 8b and the suction grooves 8f are arranged so as to be alternated in plan view, and are formed so that the intersection of one groove is located in the lattice of the other groove ( (See the relationship between the intersecting portion 8g of the supply groove 8b and the lattice 8i of the suction groove 8f, and the relationship between the intersecting portion 8h of the suction groove 8f and the lattice 8j of the supply groove 8b). The plurality of second communication holes 8e connected to the suction groove 8f are connected to the intersecting portion 8h and the corner portion 8k of the suction groove 8f, and are disposed at positions that do not overlap with the supply groove 8b. In addition, the first communication hole 8d connected to the supply groove 8b is also connected to the intersecting portion 8g of the supply groove 8b and is disposed at a position not overlapping the suction groove 8f.

下板9には、図2(b)に示すように、下板9の上面に開口し、中板8の第1の連通孔8d(供給溝8bと連通する連通孔)と連通する空気給気口9aと、下板9の上面に開口し、中板8の吸引溝8fと連通する真空吸引口9bとが形成される。   As shown in FIG. 2B, the lower plate 9 has an air supply that opens on the upper surface of the lower plate 9 and communicates with the first communication hole 8d (communication hole communicating with the supply groove 8b) of the middle plate 8. An air opening 9 a and a vacuum suction port 9 b that opens to the upper surface of the lower plate 9 and communicates with the suction groove 8 f of the intermediate plate 8 are formed.

そして、図2(b)に示すように、上板7に形成された収容部7bを中板8の上面8aの供給溝8bに連通させ、吸引孔5を中板8の上面8aに開口する第2の連通孔8eに連通させて、上板7を中板8の上面8aに位置せしめ、中板8の下面8cに開口する第1の連通孔8dに下板9の空気給気口9aを結合させるとともに、中板8の下面8cの吸引溝8fに真空吸引口9bを結合させて、中板8を下板9の上面に位置させることにより、基体4が形成される。基体4は、上板7、中板8及び下板9をボルト等の固定手段により締結することにより形成される。   2B, the accommodating portion 7b formed on the upper plate 7 is communicated with the supply groove 8b on the upper surface 8a of the intermediate plate 8, and the suction hole 5 is opened on the upper surface 8a of the intermediate plate 8. The upper plate 7 is positioned on the upper surface 8a of the middle plate 8 so as to communicate with the second communication hole 8e, and the air supply port 9a of the lower plate 9 is connected to the first communication hole 8d opened on the lower surface 8c of the middle plate 8. And the vacuum suction port 9b is coupled to the suction groove 8f on the lower surface 8c of the middle plate 8 so that the middle plate 8 is positioned on the upper surface of the lower plate 9, whereby the base body 4 is formed. The base 4 is formed by fastening the upper plate 7, the middle plate 8 and the lower plate 9 with fixing means such as bolts.

このように、基体4において、供給溝8b及び吸引溝8fを平面視菱形格子状に形成し、これら供給溝8b及び吸引溝8fを異なる高さに配置するとともに、平面視で互い違いとなるように配置するため、供給溝8b及び吸引溝8fを複雑に引き回さずとも、供給溝8bと吸引溝8fの干渉を回避しつつ、夫々の溝8b、8fを単一の連続路で構成することができ、流体通路の設計が容易となる。また、供給溝8b及び吸引溝8fを連続路で構成し得ることから、供給溝8bと空気給気口9aの連結、及び吸引溝8fと真空吸引口9bの連結が、夫々一箇所で足りるようになり、基体4の製造コストを低減することが可能になる。   As described above, in the base 4, the supply grooves 8 b and the suction grooves 8 f are formed in a rhombus lattice shape in plan view, and the supply grooves 8 b and the suction grooves 8 f are arranged at different heights and are alternately arranged in plan view. In order to arrange, the grooves 8b and 8f are configured as a single continuous path while avoiding interference between the supply groove 8b and the suction groove 8f without complicatedly routing the supply groove 8b and the suction groove 8f. Therefore, the fluid passage can be easily designed. Further, since the supply groove 8b and the suction groove 8f can be configured as a continuous path, the connection between the supply groove 8b and the air supply port 9a and the connection between the suction groove 8f and the vacuum suction port 9b are sufficient at one place. Thus, the manufacturing cost of the substrate 4 can be reduced.

また、基体4を三層構造とし、供給溝8b及び吸引溝8fを中板8の上下面8a、8cに設けるため、供給溝8b及び吸引溝8fの作製が容易となり、製造コストをより低減することが可能になる。   Further, since the substrate 4 has a three-layer structure and the supply groove 8b and the suction groove 8f are provided on the upper and lower surfaces 8a and 8c of the intermediate plate 8, the supply groove 8b and the suction groove 8f can be easily manufactured, and the manufacturing cost is further reduced. It becomes possible.

さらに、供給溝8bを空気給気口9aに連結する第1の連通孔8dを、吸引溝8fと重畳しない位置に配置するとともに、吸引溝8fを吸引孔5に連結する第2の連通孔8eを、供給溝8bと重畳しない位置に配置するため、第1及び第2の連通孔8d、8eを中板8の厚さ方向に直線的に形成することができる。これにより、圧力分布を均一化し得るとともに、第1及び第2の連通孔8d、8eの穿設加工を容易化することが可能になる。   Further, the first communication hole 8d that connects the supply groove 8b to the air supply port 9a is disposed at a position that does not overlap with the suction groove 8f, and the second communication hole 8e that connects the suction groove 8f to the suction hole 5. Is disposed at a position that does not overlap with the supply groove 8 b, the first and second communication holes 8 d and 8 e can be formed linearly in the thickness direction of the intermediate plate 8. As a result, the pressure distribution can be made uniform and the drilling of the first and second communication holes 8d and 8e can be facilitated.

図1に戻り、2つの搬送工程11、13における非接触搬送装置11a、13aは、平面視右回り方向の上昇旋回流を発生させる旋回流形成体2と、平面視左回り方向の上昇旋回流を発生させる旋回流形成体3とを、基体15に2列にわたって図1の紙面上で上下方向に交互に配置して構成される。図1の搬送工程11、13では、非接触搬送装置11a、13aを並列に3基配置している。   Returning to FIG. 1, the non-contact conveying devices 11 a and 13 a in the two conveying steps 11 and 13 include the swirling flow forming body 2 that generates the ascending swirling flow in the clockwise direction in the plan view and the rising swirling flow in the counterclockwise direction in the plan view. The swirling flow forming bodies 3 that generate the above are alternately arranged in the vertical direction on the paper surface of FIG. In the transport steps 11 and 13 of FIG. 1, three non-contact transport devices 11a and 13a are arranged in parallel.

非接触搬送装置11a、13aの基体15には、図10(a)及び(b)に示すように、搬送面15aに穿設され、上面に開口する平面視円形の収容部(孔部)15bと、基体15の長手方向に沿って形成され、供給ポンプ(不図示)から空気が供給される空気通路15fと、該空気通路15fからの空気を収容部15bに供給する貫通孔15gとが設けられる。この基体15は、プロセス工程12の非接触搬送装置12aの基体4と異なり、単層構造を有する。   As shown in FIGS. 10 (a) and 10 (b), the base 15 of the non-contact transfer device 11a, 13a is formed in the transfer surface 15a and has a circular accommodating portion (hole) 15b that is open in the top view. And an air passage 15f formed along the longitudinal direction of the base body 15 and supplied with air from a supply pump (not shown), and a through hole 15g for supplying the air from the air passage 15f to the accommodating portion 15b. It is done. Unlike the substrate 4 of the non-contact transfer device 12a in the process step 12, the substrate 15 has a single layer structure.

収容部15bは、収容部15bの上部に形成され、旋回流形成体2、3の環状鍔部2c、3cの外径と同径の小径孔15hと、収容部15bの下部に形成され、小径孔15hよりも大径の円柱状係止凹部15iとから構成される。尚、旋回流形成体2、3の装着方法は、プロセス工程12の非接触搬送装置12aの場合と同様である。   The accommodating portion 15b is formed in the upper portion of the accommodating portion 15b, and is formed in the small diameter hole 15h having the same diameter as the outer diameter of the annular flange portions 2c and 3c of the swirling flow forming bodies 2 and 3, and in the lower portion of the accommodating portion 15b. The cylindrical locking recess 15i is larger in diameter than the hole 15h. In addition, the mounting method of the swirl | vortex flow formation bodies 2 and 3 is the same as that of the case of the non-contact conveying apparatus 12a of the process process 12. FIG.

図11(a)及び(b)は、基体15の他の構成例を示すもので、この基体16は、搬送面16aに穿設され、上面に開口する平面視円形の収容部16bと、基体16の長手方向に沿って形成され、一部が収容部16bに開口する空気通路16fとを備えている。この基体16では、前記図10(a)及び(b)に示した基体15における空気通路15fから収容部15bに空気を供給する貫通孔15gが不要となる。   11 (a) and 11 (b) show another configuration example of the base body 15. The base body 16 has a circular accommodating portion 16b that is formed in the transport surface 16a and opens on the upper surface, and a base body. And an air passage 16f that is formed along the longitudinal direction of 16 and partially opens to the housing portion 16b. The base body 16 does not require the through-hole 15g for supplying air from the air passage 15f in the base body 15 shown in FIGS. 10A and 10B to the accommodating portion 15b.

次に、上記構成を有する非接触搬送装置10の動作について、図1乃至図12を参照しながら説明する。   Next, the operation of the non-contact transport apparatus 10 having the above configuration will be described with reference to FIGS.

ガラスGを搬送するにあたっては、図1に示す搬送工程11、13の非接触搬送装置11a、13aにおいて、供給ポンプから空気通路15f(図10参照)に空気を供給し、また、プロセス工程12の非接触搬送装置12aにおいて、供給ポンプから空気給気口9a(図2(b)参照)に空気を供給しつつ、真空ポンプによって真空吸引口9b(図2(b)参照)から空気を吸引する。   In conveying the glass G, air is supplied from the supply pump to the air passage 15f (see FIG. 10) in the non-contact conveying devices 11a and 13a of the conveying steps 11 and 13 shown in FIG. In the non-contact transfer device 12a, air is sucked from the vacuum suction port 9b (see FIG. 2B) by the vacuum pump while supplying air from the supply pump to the air supply port 9a (see FIG. 2B). .

搬送工程11の非接触搬送装置11aでは、図12(a)に示すように、供給ポンプから基体15の空気通路15fに供給された空気が、該空気通路15fに連通する貫通孔15gを介して収容部15bに供給される。そして、収容部15bに供給された空気は、旋回流形成体2、3の空気取入口2j、3j(図3(e)、図4(e)参照)に進入し、噴出口2i、3iを通じて穴部2b、3b内に噴出する。噴出した空気は、穴部2b、3bの円筒状内壁面2g、3gに当接し、平面視右回り方向、平面視左回り方向の上昇旋回流を穴部2b、3bの上方に発生させる。   In the non-contact conveyance device 11a of the conveyance step 11, as shown in FIG. 12A, the air supplied from the supply pump to the air passage 15f of the base body 15 passes through the through hole 15g communicating with the air passage 15f. It is supplied to the accommodating part 15b. And the air supplied to the accommodating part 15b enters into the air inlets 2j and 3j (refer FIG.3 (e) and FIG.4 (e)) of the swirl | flow flow formation bodies 2 and 3, and passes through the jet outlets 2i and 3i. It ejects into the holes 2b and 3b. The jetted air abuts against the cylindrical inner wall surfaces 2g and 3g of the holes 2b and 3b, and generates an upward swirling flow in the clockwise direction in the plan view and the counterclockwise direction in the plan view above the holes 2b and 3b.

搬送工程11に持ち込まれたガラスGは、旋回流形成体2、3が発生する上昇旋回流によって浮上するとともに、別途設けた空気噴出装置(不図示)等により推進力が付与され、プロセス工程12に向けて搬送される。   The glass G brought into the conveying step 11 is floated by the upward swirling flow generated by the swirling flow forming bodies 2 and 3, and a propulsive force is applied by a separately provided air ejection device (not shown) or the like. It is conveyed toward.

プロセス工程12の非接触搬送装置12aでは、図12(b)に示すように、供給ポンプから基体4の空気給気口9aに供給された空気が、空気給気口9aに連通する第1の連通孔8dを介して、基体4の中板8に形成された供給溝8bに進入する。供給溝8bを流れる空気は、基体4の上板7に形成された収容部7bに進入し、旋回流形成体2、3の空気取入口2j、3j(図3(e)、図4(e)参照)を介して噴出口2i、3iから噴出する。   In the non-contact transfer device 12a of the process step 12, as shown in FIG. 12B, the air supplied from the supply pump to the air supply port 9a of the base body 4 communicates with the air supply port 9a. It enters the supply groove 8b formed in the middle plate 8 of the base 4 through the communication hole 8d. The air flowing through the supply groove 8b enters the accommodating portion 7b formed on the upper plate 7 of the base body 4, and the air intake ports 2j and 3j of the swirl flow forming bodies 2 and 3 (FIGS. 3E and 4E). ) From the jet outlets 2i and 3i.

これにより、搬送工程11の場合と同様、旋回流形成体2、3の穴部2b、3bの上方に平面視右回り方向、平面視左回り方向の上昇旋回流が発生する。この際、旋回流形成体2、3に供給する供給溝8bは、図8に示すように、単一の連続路によって構成されているので、噴出口2i、3iからの空気の噴出量が旋回流形成体2、3毎にばらつくのを抑制することができ、ガラスGの浮上高さを均一に制御することができる。   As a result, as in the case of the transport step 11, upward swirling flows in the clockwise direction in plan view and the counterclockwise direction in plan view are generated above the holes 2b and 3b of the swirling flow forming bodies 2 and 3. At this time, as shown in FIG. 8, the supply groove 8b to be supplied to the swirling flow forming bodies 2 and 3 is formed by a single continuous path, so that the amount of air ejected from the spouts 2i and 3i is swirled. Variations in the flow forming bodies 2 and 3 can be suppressed, and the flying height of the glass G can be controlled uniformly.

これと併行して、真空ポンプによって基体4の真空吸引口9bから空気を吸引し、基体4の中板8に形成された吸引溝8f及び第2の連通孔8eを通じて、吸引孔5の上方空間の空気を吸引する。この際、吸引孔5から空気を吸引する吸引溝8fは、図8に示すように、単一の連続路によって構成されているので、吸引孔5からの空気の吸引量が吸引孔5毎にばらつくのを抑制することができ、ガラスGの引き付け圧を均一に制御することができる。   At the same time, air is sucked from the vacuum suction port 9b of the base 4 by the vacuum pump, and the space above the suction hole 5 is passed through the suction groove 8f and the second communication hole 8e formed in the middle plate 8 of the base 4. Aspirate the air. At this time, as shown in FIG. 8, the suction groove 8 f that sucks air from the suction hole 5 is configured by a single continuous path, so that the suction amount of air from the suction hole 5 is different for each suction hole 5. The variation can be suppressed, and the attractive pressure of the glass G can be controlled uniformly.

そして、プロセス工程12に進入したガラスGは、旋回流形成体2、3に発生する上昇旋回流によって浮上するとともに、各旋回流形成体間に位置せしめられた吸引孔5で周囲の微量の空気を真空吸引することで、30〜50μmの浮上高さに高精度に制御される。プロセス工程12では、ガラスGに対する各種検査や加工が行われる。   Then, the glass G that has entered the process step 12 floats by the upward swirling flow generated in the swirling flow forming bodies 2 and 3, and a small amount of air around the suction holes 5 positioned between the swirling flow forming bodies. By vacuum suction, the flying height is controlled with high accuracy to 30 to 50 μm. In the process step 12, various inspections and processing on the glass G are performed.

ここで、プロセス工程12において、旋回流形成体の穴部の直径φ16mm、噴出口径0.35mm、給気圧50kPa、真空吸引圧10kPaとした状態で、被搬送物として0.7mmの厚さのガラスGを用いた場合に、ガラスGのうねりの振幅を30μm以下に抑えることができたという実験結果を得ている。   Here, in the process step 12, a glass having a thickness of 0.7 mm as the object to be conveyed in a state where the diameter of the hole of the swirl flow forming body is 16 mm, the diameter of the ejection port is 0.35 mm, the supply pressure is 50 kPa, and the vacuum suction pressure is 10 kPa. When G is used, an experimental result has been obtained that the amplitude of the swell of the glass G can be suppressed to 30 μm or less.

このように、プロセス工程12の非接触搬送装置12aにおいては、旋回流形成体2、3の噴出口2i、3i(図3(e)、図4(e)参照)への給気圧により浮上量を大きくする作用と、吸引孔5からの真空吸引圧により浮上量を小さくする作用との両作用を制御することで、ガラスGの浮上高さを高精度に維持するとともに、ガラスGの浮上状態を高剛性に維持することができる。   Thus, in the non-contact transfer device 12a of the process step 12, the flying height is generated by the supply air pressure to the jet outlets 2i and 3i (see FIGS. 3 (e) and 4 (e)) of the swirl flow forming bodies 2 and 3. By controlling both the action of increasing the height of the glass G and the action of reducing the flying height by the vacuum suction pressure from the suction hole 5, the flying height of the glass G is maintained with high accuracy and the floating state of the glass G Can be maintained with high rigidity.

検査や加工が終了したガラスGは、搬送工程13に搬送され、その後、搬送工程11の場合と同様、浮上した状態で次工程へと移送される。   The glass G that has been inspected and processed is transferred to the transfer step 13 and then transferred to the next step in a floating state, as in the transfer step 11.

図13乃至図16は、プロセス工程12の非接触搬送装置の他の実施の形態を示すものである。   FIG. 13 to FIG. 16 show another embodiment of the non-contact conveyance device in the process step 12.

非接触搬送装置17では、図13(a)に示すように、基体4の幅方向X及び長手方向Yの双方において、平面視右回り方向の旋回流を発生させる旋回流形成体2と、平面視左回り方向の旋回流を発生させる旋回流形成体3とが交互に配置され、旋回流形成体2及び旋回流形成体3の間に吸引孔5が配置される(図13(a)のS部参照)。尚、図を見易くするため、平面視左回り方向の旋回流を発生させる旋回流形成体3を黒塗りで示している。   In the non-contact conveyance device 17, as shown in FIG. 13A, the swirl flow forming body 2 that generates a swirl flow in the clockwise direction in plan view in both the width direction X and the longitudinal direction Y of the base 4, The swirling flow forming bodies 3 that generate the swirling flow in the counterclockwise direction are alternately arranged, and the suction holes 5 are disposed between the swirling flow forming bodies 2 and the swirling flow forming bodies 3 (see FIG. 13A). (See S section). In order to make the drawing easier to see, the swirling flow forming body 3 that generates a swirling flow in the counterclockwise direction in plan view is shown in black.

上記非接触搬送装置17の基体18は、図13(b)に示すように、前記図5乃至図8で説明した基体4と同様、上板7、中板8及び下板9からなる三層構造を有する。図14乃至図16に示すように、中板8の上面8aには、旋回流形成体2、3の配置(図13(a)参照)に合わせ、平面視菱形格子状に供給溝8bが設けられ、また、中板8の下面8cには、吸引孔5の配置(図13(a)参照)に合わせ、平面視菱形格子状に形成された吸引溝8fが設けられる。   As shown in FIG. 13B, the base 18 of the non-contact transfer device 17 is a three-layer structure composed of an upper plate 7, an intermediate plate 8, and a lower plate 9, similar to the base 4 described with reference to FIGS. It has a structure. As shown in FIGS. 14 to 16, the upper surface 8a of the intermediate plate 8 is provided with supply grooves 8b in a rhombic lattice shape in plan view in accordance with the arrangement of the swirl flow forming bodies 2 and 3 (see FIG. 13A). In addition, the lower surface 8c of the intermediate plate 8 is provided with suction grooves 8f formed in a rhombic lattice shape in plan view in accordance with the arrangement of the suction holes 5 (see FIG. 13A).

この態様の非接触搬送装置17であっても、旋回流形成体2、3への空気給気圧によりガラスGの浮上量を大きくする作用と、吸引孔5からの真空吸引圧によりガラスGの浮上量を小さくする作用との両作用を制御することにより、ガラスGの浮上高さを30〜50μmの微小高さに高精度で制御することができる。   Even in the non-contact transfer device 17 of this aspect, the glass G floats by the action of increasing the floating amount of the glass G by the air supply pressure to the swirl flow forming bodies 2 and 3 and the vacuum suction pressure from the suction hole 5. By controlling both the action and the action of reducing the amount, the flying height of the glass G can be controlled to a minute height of 30 to 50 μm with high accuracy.

また、基体18の中板8は、前記図6乃至図8で説明した基体4の中板8と同様の構成となるため、供給溝8bと吸引溝8fの干渉を回避しつつ、夫々の溝8b、8fを単一の連続路で構成することができ、流体通路の設計が容易となったり、製造コストの低減を図ることが可能になる。   Further, since the middle plate 8 of the base 18 has the same configuration as the middle plate 8 of the base 4 described with reference to FIGS. 6 to 8, each groove is avoided while avoiding interference between the supply groove 8b and the suction groove 8f. 8b and 8f can be configured by a single continuous path, which makes it easy to design the fluid path and reduce the manufacturing cost.

図17は、図1に示した非接触搬送装置10のプロセス工程12の他の実施の形態を示すもので、このプロセス工程12では、並列に3基配列した非接触搬送装置12aに該非接触搬送装置12aと隣接してもう3基の非接触搬送装置12aを配列したものである。この非接触搬送装置12aを2列配列したプロセス工程12においては、非接触搬送装置12aと12aの間で、例えばカメラ透過チェック等の作業が行われる。   FIG. 17 shows another embodiment of the process step 12 of the non-contact conveyance device 10 shown in FIG. 1, and in this process step 12, the non-contact conveyance device 12a is arranged in parallel in the non-contact conveyance device 12a. Three other non-contact conveying devices 12a are arranged adjacent to the device 12a. In the process step 12 in which the non-contact conveyance devices 12a are arranged in two rows, for example, a camera transmission check or the like is performed between the non-contact conveyance devices 12a and 12a.

尚、上記実施の形態では、図6乃至図8に示すように、プロセス工程12の非接触搬送装置12aの基体4において、中板8の上面8aに供給溝8bを形成し、中板8の下面8cに吸引溝8fを形成するが、中板8の上面8aに吸引溝8fを形成し、中板8の下面8cに供給溝8bを形成するようにしてもよい。この場合、供給溝8bは、下板9の空気給気口9aに連通(当接)するため、第1の連通孔8dは、供給溝8bを上板7の収容部7bに連結するように形成される。一方、吸引溝8fは、上板7の吸引孔5に連通(当接)するため、第2の連通孔8eは、吸引溝8fを下板9の真空吸引口9bに連結するように形成される。   In the above embodiment, as shown in FIGS. 6 to 8, in the base 4 of the non-contact transfer device 12a in the process step 12, the supply groove 8b is formed on the upper surface 8a of the intermediate plate 8, and the intermediate plate 8 Although the suction groove 8f is formed on the lower surface 8c, the suction groove 8f may be formed on the upper surface 8a of the intermediate plate 8, and the supply groove 8b may be formed on the lower surface 8c of the intermediate plate 8. In this case, since the supply groove 8b communicates (contacts) with the air supply port 9a of the lower plate 9, the first communication hole 8d connects the supply groove 8b to the accommodating portion 7b of the upper plate 7. It is formed. On the other hand, since the suction groove 8f communicates (contacts) with the suction hole 5 of the upper plate 7, the second communication hole 8e is formed so as to connect the suction groove 8f to the vacuum suction port 9b of the lower plate 9. The

また、図3及び図4に示すように、旋回流形成体2、3の本体2a、3aの環状鍔部2c、3cの外周面2d、3dに係止突起2e、3eを有する突出部2f、3fを径方向に相対向して4本延設したが、突出部2f、3fの本数は4本に限定されず、3本又は5本以上とすることができる。さらに、旋回流形成体2、3を基体4、15に装着するにあたって、係止突起2e、3eを有する突出部2f、3fを用いずに、他の係止構造を採用することもできる。   Further, as shown in FIGS. 3 and 4, protrusions 2 f having locking protrusions 2 e and 3 e on the outer peripheral surfaces 2 d and 3 d of the annular flanges 2 c and 3 c of the main bodies 2 a and 3 a of the swirl flow forming bodies 2 and 3, Although three 3f are extended in opposition to each other in the radial direction, the number of the projecting portions 2f and 3f is not limited to four, and can be three or five or more. Furthermore, when the swirl flow forming bodies 2 and 3 are mounted on the bases 4 and 15, other locking structures can be employed without using the protrusions 2f and 3f having the locking protrusions 2e and 3e.

また、上記各実施形態においては、流体として空気を用いる場合について説明したが、空気以外の窒素等のプロセスガスを使用することもできる。   Moreover, in each said embodiment, although the case where air was used as a fluid was demonstrated, process gas, such as nitrogen other than air, can also be used.

2、3 旋回流形成体
2a、3a 本体
2b、3b 穴部
2c、3c 環状鍔部
2d、3d 環状鍔部の外周面
2e、3e 係止突起
2f、3f 突出部
2g、3g 円筒状内壁面
2h、3h 凹部
2i、3i 噴出口
2j、3j 空気取入口
4 基体
4a 第1の列
4b 第2の列
5 吸引孔
7 上板
7a 搬送面(上面)
7b 収容部
7c 小径孔
7d 円柱状係止孔
8 中板
8a 上面
8b 供給溝
8c 下面
8d 第1の連通孔
8e 第2の連通孔
8f 吸引溝
8g、8h 交差部
8i、8j 格子
8k 角部
9 下板
9a 空気給気口
9b 真空吸引口
10 非接触搬送装置
11、13 搬送工程
12 プロセス工程
11a、12a、13a、17 非接触搬送装置
15、16 基体
15a、16a 搬送面(上面)
15b、16b 収容部
15f、16f 空気通路
15g 貫通孔
15h 小径孔
15i 円柱状係止凹部
18 基体
G ガラス
2, 3 Swirl flow forming body 2a, 3a Main body 2b, 3b Hole 2c, 3c Annular flange 2d, 3d Outer peripheral surface 2e, 3e Locking protrusion 2f, 3f Protruding part 2g, 3g Cylindrical inner wall surface 2h 3h Recess 2i, 3i Jet 2j, 3j Air intake 4 Base 4a First row 4b Second row 5 Suction hole 7 Upper plate 7a Conveying surface (upper surface)
7b Accommodating portion 7c Small-diameter hole 7d Columnar locking hole 8 Middle plate 8a Upper surface 8b Supply groove 8c Lower surface 8d First communication hole 8e Second communication hole 8f Suction groove 8g, 8h Intersections 8i, 8j Grid 8k Corner 9 Lower plate 9a Air supply port 9b Vacuum suction port 10 Non-contact transfer device 11, 13 Transfer process 12 Process steps 11a, 12a, 13a, 17 Non-contact transfer device 15, 16 Base 15a, 16a Transfer surface (upper surface)
15b, 16b accommodating portion 15f, 16f air passage 15g through hole 15h small diameter hole 15i cylindrical locking recess 18 base G glass

Claims (9)

流体噴出口を備え、該流体噴出口から流体を噴出することにより、表面側に該表面から離れる方向へ向かう上昇旋回流を生じさせる複数の旋回流形成体を基体の搬送面に備えた非接触搬送装置であって、
流体吸い込み用の複数の吸引孔を前記基体の搬送面に備えるとともに、該吸引孔と前記旋回流形成体を該基体の幅方向及び長手方向に沿って交互に配置し、
前記基体に、前記複数の旋回流形成体と連通する平面視菱形格子状の流体供給通路と、前記複数の吸引孔と連通する平面視菱形格子状の流体吸引通路とを設け、該流体供給通路及び流体吸引通路を異なる高さに配置するとともに、平面視で互い違いとなるように配置したことを特徴とする非接触搬送装置。
Non-contact provided with a plurality of swirling flow forming bodies on the transport surface of the base body, each having a fluid spout, and generating a swirling flow that is directed toward the surface away from the surface by ejecting fluid from the fluid spout A conveying device,
A plurality of suction holes for fluid suction are provided in the transport surface of the base body, and the suction holes and the swirl flow forming body are alternately arranged along the width direction and the longitudinal direction of the base body,
A fluid supply passage in a plan view rhombus lattice that communicates with the plurality of swirling flow forming bodies and a fluid suction passage in a plan view rhombus lattice that communicates with the plurality of suction holes are provided in the base body, and the fluid supply passage And the non-contact conveyance apparatus characterized by arrange | positioning so that it may be alternated by planar view while arrange | positioning a fluid suction passage at different height.
前記流体供給通路及び流体吸引通路は、平面視において、一方の通路の交差部が他方の通路の格子内に位置するように配置されることを特徴とする請求項1に記載の非接触搬送装置。   2. The non-contact transfer device according to claim 1, wherein the fluid supply passage and the fluid suction passage are arranged so that an intersection of one passage is located in a lattice of the other passage in a plan view. . 前記基体は、前記複数の旋回流形成体を収容する複数の収容部と前記複数の吸引孔とが形成された上板と、前記流体供給通路及び流体吸引通路が形成された中板と、前記流体供給通路及び流体吸引通路に夫々連通する流体供給口及び真空吸引口が形成された下板とを備え、
前記中板は、該中板の上面に前記流体供給通路として設けられ、前記上板の前記収容部と連通する供給溝と、該供給溝を前記下板の前記流体供給口と連結する第1の連通孔と、該中板の下面に前記流体吸引通路として設けられ、前記下板の前記真空吸引口と連通する吸引溝と、該吸引溝を前記上板の前記吸引孔に連結する第2の連通孔とを備えることを特徴とする請求項1又は2に記載の非接触搬送装置。
The base includes an upper plate in which a plurality of accommodating portions for accommodating the plurality of swirling flow forming bodies and the plurality of suction holes are formed, an intermediate plate in which the fluid supply passage and a fluid suction passage are formed, A fluid supply passage and a lower plate formed with a vacuum suction port respectively communicating with the fluid supply passage and the fluid suction passage;
The intermediate plate is provided on the upper surface of the intermediate plate as the fluid supply passage, and includes a supply groove that communicates with the housing portion of the upper plate, and a first that connects the supply groove to the fluid supply port of the lower plate. A communication groove, a suction groove provided in the lower surface of the middle plate as the fluid suction passage, communicating with the vacuum suction port of the lower plate, and a second connecting the suction groove to the suction hole of the upper plate. The non-contact transfer device according to claim 1, further comprising a communication hole.
前記基体は、前記複数の旋回流形成体を収容する複数の収容部と前記複数の吸引孔とが形成された上板と、前記流体供給通路及び流体吸引通路が形成された中板と、前記流体供給通路及び流体吸引通路に夫々連通する流体供給口及び真空吸引口が形成された下板とを備え、
前記中板は、該中板の下面に前記流体供給通路として設けられ、前記下板の前記流体供給口と連通する供給溝と、該供給溝を前記上板の前記収容部と連結する第1の連通孔と、該中板の上面に前記流体吸引通路として設けられ、前記上板の前記吸引孔と連通する吸引溝と、該吸引溝を前記下板の前記真空吸引口に連結する第2の連通孔とを備えることを特徴とする請求項1又は2に記載の非接触搬送装置。
The base includes an upper plate in which a plurality of accommodating portions for accommodating the plurality of swirling flow forming bodies and the plurality of suction holes are formed, an intermediate plate in which the fluid supply passage and a fluid suction passage are formed, A fluid supply passage and a lower plate formed with a vacuum suction port respectively communicating with the fluid supply passage and the fluid suction passage;
The intermediate plate is provided on the lower surface of the intermediate plate as the fluid supply passage, and includes a supply groove that communicates with the fluid supply port of the lower plate, and a first that connects the supply groove to the housing portion of the upper plate. A communication groove, a suction groove provided on the upper surface of the intermediate plate as the fluid suction passage, communicating with the suction hole of the upper plate, and a second connecting the suction groove to the vacuum suction port of the lower plate. The non-contact transfer device according to claim 1, further comprising a communication hole.
前記第1の連通孔が、平面視において、前記吸引溝と重畳しない位置に配置され、前記第2の連通孔が、平面視において、前記供給溝と重畳しない位置に配置されることを特徴とする請求項3又は4に記載の非接触搬送装置。   The first communication hole is arranged at a position not overlapping with the suction groove in a plan view, and the second communication hole is arranged at a position not overlapping with the supply groove in a plan view. The non-contact transfer device according to claim 3 or 4. 一方の向きの旋回流を発生させる第1の旋回流形成体と前記吸引孔とを前記基体の幅方向に沿って交互に配置した第1の列と、他方の向きの旋回流を発生させる第2の旋回流形成体と前記吸引孔とを該基体の幅方向に沿って交互に配置した第2の列とが、該基体の長手方向に沿って交互に配置されるとともに、相隣り合う前記第1の旋回流形成体同士の間、及び、相隣り合う前記第2の旋回流形成体同士の間に前記吸引孔が位置するように配列されたことを特徴とする請求項1乃至5のいずれかに記載の非接触搬送装置。   A first row in which first swirl flow forming bodies that generate a swirl flow in one direction and the suction holes are alternately arranged along the width direction of the base body, and a first row that generates a swirl flow in the other direction. Second swirl flow forming bodies and second rows in which the suction holes are alternately arranged along the width direction of the base body are alternately arranged along the longitudinal direction of the base body, and adjacent to each other. The arrangement according to claim 1, wherein the suction holes are arranged so as to be positioned between the first swirl flow forming bodies and between the second swirl flow forming bodies adjacent to each other. The non-contact conveyance apparatus in any one. 一方の向きの旋回流を発生させる第1の旋回流形成体と他方の向きの旋回流を発生させる第2の旋回流形成体とが、前記基体の幅方向及び長手方向に沿って交互に配置されるとともに、相隣り合う前記第1の旋回流形成体と前記第2の旋回流形成体との間に前記吸引孔が配置されたことを特徴とする請求項1乃至5のいずれかに記載の非接触搬送装置。   A first swirl flow forming body that generates a swirl flow in one direction and a second swirl flow formation body that generates a swirl flow in the other direction are alternately arranged along the width direction and the longitudinal direction of the base body. The suction hole is disposed between the first swirl flow forming body and the second swirl flow forming body, which are adjacent to each other. Non-contact transfer device. 前記旋回流形成体は、椀状の本体と、該本体の内部に形成され、前記表面側に開口する平面視円形の穴部と、該穴部の開口部側の外周縁に形成された環状鍔部と、該環状鍔部の外周面から下方に向かって突出し、先端に係止突起を有する複数の突出部と、該穴部の円筒状内壁面に形成され、該穴部の中心を挟んで相対向する位置に設けられた凹部と、該凹部に形成され、該穴部を形成する内表面に開口する流体噴出口と、該流体噴出口に連通し、前記本体の外周面に開口する流体取入口とを備えることを特徴とする請求項1乃至7のいずれかに記載の非接触搬送装置。   The swirl flow forming body includes a bowl-shaped main body, a circular hole formed in the main body and opened to the surface side, and a circular hole formed on the outer peripheral edge of the hole portion on the opening side. A flange, a plurality of protrusions protruding downward from the outer peripheral surface of the annular flange and having a locking protrusion at the tip, and a cylindrical inner wall surface of the hole, sandwiching the center of the hole A recess provided at a position facing each other, a fluid jet opening formed in the recess and opening in the inner surface forming the hole, and communicating with the fluid jet opening and opening in the outer peripheral surface of the main body The non-contact transfer device according to claim 1, further comprising a fluid intake port. 前記基体は、前記表面側に開口する平面視円形の収容部を備えるとともに、該収容部が、該収容部の上部に形成され、前記旋回流形成体の環状鍔部の外径に対応する内径を有する小径孔と、該収容部の下部に形成され、該小径孔よりも大径の円筒係止凹部とを備え、
前記旋回流形成体は、前記環状鍔部が前記基体の収容部の小径孔に圧入嵌合されるとともに、前記突出部の係止突起が該基体の円筒係止凹部に係止されることにより、該基体の収容部に装着されることを特徴とする請求項8に記載の非接触搬送装置。
The base body includes a housing portion having a circular shape in plan view that opens on the surface side, and the housing portion is formed at an upper portion of the housing portion, and has an inner diameter corresponding to the outer diameter of the annular flange portion of the swirling flow forming body A small-diameter hole having a small diameter hole, and a cylindrical locking recess formed in a lower portion of the accommodating portion and having a larger diameter than the small-diameter hole,
In the swirl flow forming body, the annular flange is press-fitted into a small-diameter hole of the housing portion of the base, and the locking protrusion of the protrusion is locked to the cylindrical locking recess of the base. The non-contact transfer device according to claim 8, wherein the non-contact transfer device is attached to a housing portion of the base.
JP2010108088A 2010-05-10 2010-05-10 Non-contact transfer device Active JP5465595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010108088A JP5465595B2 (en) 2010-05-10 2010-05-10 Non-contact transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010108088A JP5465595B2 (en) 2010-05-10 2010-05-10 Non-contact transfer device

Publications (2)

Publication Number Publication Date
JP2011235999A JP2011235999A (en) 2011-11-24
JP5465595B2 true JP5465595B2 (en) 2014-04-09

Family

ID=45324424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010108088A Active JP5465595B2 (en) 2010-05-10 2010-05-10 Non-contact transfer device

Country Status (1)

Country Link
JP (1) JP5465595B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998086B2 (en) * 2012-04-03 2016-09-28 オイレス工業株式会社 Air plate for levitation
KR102096947B1 (en) * 2012-12-28 2020-05-27 세메스 주식회사 Substrate treating apparatus
JP6219038B2 (en) * 2013-02-22 2017-10-25 オイレス工業株式会社 Non-contact support device and non-contact support method
JP2014218342A (en) * 2013-05-09 2014-11-20 オイレス工業株式会社 Supporting air plate and gas flow resistor thereof
JP2015020808A (en) * 2013-07-16 2015-02-02 オイレス工業株式会社 Non-contact conveyance apparatus, and non-contact conveyance method
JP2015034078A (en) * 2013-08-09 2015-02-19 オイレス工業株式会社 Supporting air plate, and gas flow resistor of the same
JP2015162487A (en) * 2014-02-26 2015-09-07 オイレス工業株式会社 Non-contact floating and carrying device
JP6288553B2 (en) * 2014-03-11 2018-03-07 オイレス工業株式会社 Non-contact type levitation transfer device, transfer direction switching method and transfer speed adjustment method thereof
JP6288554B2 (en) * 2014-03-11 2018-03-07 オイレス工業株式会社 Non-contact levitation transfer device
CN113428649B (en) * 2021-07-02 2023-04-14 东莞新友智能科技有限公司 Anti-collision method for execution tail end of liquid crystal display carrying manipulator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071985A (en) * 2002-08-08 2004-03-04 Jsr Corp Working method for grinding pad for semiconductor wafer and grinding pad for semiconductor wafer
JP2004273574A (en) * 2003-03-05 2004-09-30 Wakomu Denso:Kk Substrate levitation equipment and method therefor
JP2005166787A (en) * 2003-12-01 2005-06-23 Sharp Corp Conveying equipment and method
JP4310540B2 (en) * 2003-12-17 2009-08-12 Smc株式会社 Synthetic resin porous flow path plate and manufacturing method thereof
AU2005262191A1 (en) * 2004-07-09 2006-01-19 Oc Oerllikon Balzers Ag Gas bearing substrate-loading mechanism process
JP4553376B2 (en) * 2005-07-19 2010-09-29 東京エレクトロン株式会社 Floating substrate transfer processing apparatus and floating substrate transfer processing method
JP5312760B2 (en) * 2007-07-18 2013-10-09 住友重機械工業株式会社 Conveyed object levitating apparatus and stage apparatus using the same
WO2009119377A1 (en) * 2008-03-24 2009-10-01 オイレス工業株式会社 Non-contact carrier device
JP5425069B2 (en) * 2008-07-10 2014-02-26 オイレス工業株式会社 Swirl flow forming body for gas levitation conveyance and gas levitation conveyance apparatus

Also Published As

Publication number Publication date
JP2011235999A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5465595B2 (en) Non-contact transfer device
JP5237357B2 (en) Non-contact transfer device
JP5998086B2 (en) Air plate for levitation
JP5406852B2 (en) Non-contact transfer device
JP5425069B2 (en) Swirl flow forming body for gas levitation conveyance and gas levitation conveyance apparatus
JP5819859B2 (en) Non-contact transfer device
JP5740394B2 (en) Swirl flow forming body and non-contact transfer device
JP5645709B2 (en) Non-contact transfer device
JP5913131B2 (en) Upflow forming body and non-contact transfer device using this upflow forming body
JP5931873B2 (en) Non-contact transfer device
JP5536516B2 (en) Non-contact transfer device
TWI449653B (en) Non - contact delivery device
JP2014133655A (en) Non-contact conveyance apparatus
JP2015020808A (en) Non-contact conveyance apparatus, and non-contact conveyance method
JP2008056432A (en) Air floatation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140122

R150 Certificate of patent or registration of utility model

Ref document number: 5465595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250