JP5459595B2 - アンバランス測定方法 - Google Patents

アンバランス測定方法 Download PDF

Info

Publication number
JP5459595B2
JP5459595B2 JP2009223001A JP2009223001A JP5459595B2 JP 5459595 B2 JP5459595 B2 JP 5459595B2 JP 2009223001 A JP2009223001 A JP 2009223001A JP 2009223001 A JP2009223001 A JP 2009223001A JP 5459595 B2 JP5459595 B2 JP 5459595B2
Authority
JP
Japan
Prior art keywords
rotating body
vibration
compressed gas
unbalance
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009223001A
Other languages
English (en)
Other versions
JP2011069787A (ja
Inventor
真 山口
強 寺内
雄一 高濱
久之 本井
淑久 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009223001A priority Critical patent/JP5459595B2/ja
Publication of JP2011069787A publication Critical patent/JP2011069787A/ja
Application granted granted Critical
Publication of JP5459595B2 publication Critical patent/JP5459595B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Balance (AREA)

Description

本発明は、回転体のアンバランスを測定するアンバランス測定方法に関する。
回転体は、回転機械に設けられ、その軸を中心として回転する。本発明の対象となる回転機械は、流体と力を及ぼし合う回転翼が回転体に設けられた流体機械である。この回転機械には、原動機と被動機がある。原動機は、流体が回転翼に作用させる圧力により回転体が回転駆動されることで、流体の持つエネルギーを回転運動エネルギーに変換する。原動機としては、例えば、ガスタービン(軸流タービン、ラジアルタービン)がある。被動機は、回転駆動されている回転翼が流体に圧力を作用させることで、回転運動エネルギーを流体に与える。被動機としては、例えば、圧縮機(遠心圧縮機、航空エンジンなどに設けられる軸流圧縮機、斜流圧縮機、横流圧縮機、ポンプ)がある。また、本発明の対象となる回転機械には、原動機と被動機の両方の機能を持つ過給機もある。
図1は、特許文献1に記載されている回転体のアンバランスデータの測定装置を示す。図1では、回転体47は、過給機の回転体である。過給機の回転体47は、タービン翼47aとコンプレッサ47b翼を有する。タービン翼47aは、エンジンの排ガスにより回転駆動され、コンプレッサ翼47bは、タービン翼47aと一体的に回転してエンジンへ圧縮空気を送る。
図1に示すように、アンバランス測定装置は、振動センサ41、角度センサ43、およびデータ生成部45を備える。振動センサ41は、回転体47を回転可能に支持する支持体49の振動(加速度または速度または変位または荷重)を検出し、角度センサ43は、所定の基準角度からの回転体47の回転角を検出する。データ生成部45は、検出回転角と検出振動からアンバランスデータを生成する。即ち、回転体47が回転している状態で、角度センサ43が回転角を検出しつつ、振動センサ41が振動を検出し、データ生成部45が、これら検出回転角と検出振動とに基づいてアンバランスデータを生成する。
また、図1では、アンバランス測定のために回転体47を回転駆動するのに、圧縮ガスを使用する。圧縮ガス源からタービン翼47aへ圧縮ガス(エンジンの排ガスに相当)を供給することで、タービン翼47aを回転駆動させる。これにより、回転体47の回転速度を所望の回転速度まで上昇させる。
上述のようなアンバランス測定装置は、例えば下記の特許文献1に記載されている。
特開2002−39904号公報
しかし、従来では、回転体の回転速度が上昇している時に、上述の振動と回転角を検出していたので、測定データにバラツキがあった。
例えば、圧縮ガス源が、工場内の各タービンに供給される工場エアが流れる工場ガス管である場合には、工場ガス管からの供給ガス圧は変動するので、この変動による外乱が振動検出に影響を及ぼす可能性がある。
また、回転体の回転速度を所望の回転速度に制御する場合、制御により、回転駆動力(例えば、タービン翼へ供給する圧縮ガスの流量)が変動するので、この変動による外乱が振動検出に影響を及ぼす可能性がある。
従って、検出振動にバラツキが生じ、その結果、再現性の良いアンバランスデータが得られない可能性があった。
そこで、本発明の目的は、外乱が振動検出に影響を及ぼすことを抑制して再現性の良いアンバランスデータを生成できるようにすることにある。
上記目的を達成するため、本発明によると、回転体のアンバランス測定方法であって、
回転可能に支持体に支持された回転体を回転駆動する駆動ステップと、
回転体の回転駆動を停止する停止ステップと、
回転体の回転駆動が停止され、かつ、回転体が惰性で回転している状態で、回転体の回転角を検出しつつ、支持体の振動を検出する検出ステップと、
検出ステップで得た検出回転角と検出振動に基づいて、回転体のアンバランスデータを生成するデータ生成ステップと、を有する、ことを特徴とするアンバランス測定方法が提供される。
好ましくは、駆動ステップでは、回転体の回転速度が測定対象回転速度を超えるまで、回転体を回転駆動し、
検出ステップでは、停止ステップにより、回転体の回転速度が測定対象回転速度に低下した時に、回転体の回転角と支持体の振動を検出する。
本発明の好ましい実施形態によると、駆動ステップでは、回転体に設けられたタービン翼を流体により回転駆動させ、
停止ステップでは、タービン翼に対する前記流体の供給を停止する。
好ましくは、前記タービン翼に対して流体を供給する配管が設けられ、該配管には、弁が設けられ、
停止ステップでは、前記弁を閉じることで、タービン翼の上流側を下流側よりも低圧にする。
上述した本発明によると、回転体の回転駆動力を停止した状態で、回転体の回転角を検出しつつ、支持体の振動を検出するので、回転駆動力の変動による外乱が振動検出に影響を及ぼすことが防止される。その結果、再現性の良いアンバランスデータを生成できる。なお、本発明の実施形態による他の効果については、以下の実施形態の説明で明らかにする。
特許文献1のアンバランス測定装置を示す。 本発明の第1実施形態によるアンバランス測定方法が使用可能なアンバランス測定装置の構成例を示す。 振動データを示すグラフである。 振動データを複素平面上で表した場合を示す。 本発明の第1実施形態によるアンバランス測定方法を示すフローチャートである。 本発明の第2実施形態によるアンバランス測定方法が使用可能なアンバランス測定装置の構成例を示す。
本発明を実施するための最良の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
[第1実施形態]
図2は、回転機械としての過給機と、過給機のアンバランスを測定するためのアンバランス測定装置10の構成例を示す。
過給機20の回転体11は、図2に示すように、エンジンの排ガスにより回転駆動されるタービン翼15と、タービン翼15と一体的に回転することで圧縮空気をエンジンに供給するコンプレッサ翼17と、一端部にタービン翼15が結合され他端部にコンプレッサ翼17が結合される回転軸19と、を有する。また、過給機20は、回転体11を回転可能に支持する静止側部材21を有する。図2の例では、静止側部材21は、回転体11(回転軸19)を回転可能に支持する軸受23a,23bが内部に組み込まれる軸受ハウジングである。また、過給機20は、タービン翼15を内部に収容するタービンハウジング25と、コンプレッサ翼17を内部に収容するコンプレッサハウジング(図2では取り外されている)と、を備える。
図2において、タービンハウジング25には、タービン翼15を回転駆動する流体を流す流路25a(スクロール)が形成されている。タービンハウジング25は、支持体3の内部に取り付けられる。流路25aには、圧縮ガス源27から配管29を通して圧縮ガスが供給される。このような圧縮ガスの供給ができるように支持体3が形成されている。流路25aに供給された圧縮ガスは、タービン翼15を回転駆動して、タービンハウジング25に形成されている排気口25bから外部へ排出される。配管29には、弁29aが設けられており、弁29aを開くと圧縮ガスが、圧縮ガス源27から配管29へ流れ込む。圧縮ガス源27は、例えば、工場内の各タービンに供給される工場エア(圧縮ガス)が流れる配管である。
なお、タービンハウジング25は、図2の左側から支持体3の開口3aを通して、支持体3の内部に取り付けることができ、支持体3の内部から取り外せる。例えば、タービンハウジング25を支持体3に取り付ける場合には、タービンハウジング25を支持体3の内部に取り付けた後、タービンハウジング25に結合部材33をボルト31で結合し、支持体3に結合部材33をボルト31で結合することで、タービンハウジング25が支持体3に結合される。タービンハウジング25を支持体3から取り外す場合には、逆の手順を行う。
アンバランス測定装置10は、図2に示すように、支持体3、振動センサ5、角度センサ7、およびデータ生成部9を備える。
支持体3は、回転機械の回転体11を支持する。回転体11は、支持体3に支持された状態で、回転体11の軸Cを中心に回転可能である。なお、支持体3の一部は、回転機械の静止側部材21により構成されてもよいし、支持体3は、タービンハウジング25を介して静止側部材21を支持してもよいし、静止側部材21を直接支持してもよい。これにより、支持体3は、静止側部材21の軸受23a,23bを介して回転体11を支持する。
振動センサ5は、支持体3に取り付けられる。振動センサ5は、回転体11が回転している状態で、支持体3の振動(加速度または速度または変位または荷重)を検出し、検出した振動をデータ生成部9に出力する。
角度センサ7は、所定の基準位置(基準姿勢)からの回転体11の回転角を検出し、検出した回転角をデータ生成部9に出力する。この回転角は、回転体11が1回転することでゼロ度〜360度まで変化する。角度センサ7は、例えば磁気センサであってよい。
データ生成部9は、振動センサ5が検出した前記振動と角度センサ7が検出した前記回転角との関係を表す振動データを生成し、さらに、この振動データから、影響係数を用いて、アンバランスデータ(後で詳しく述べる)を生成する。なお、影響係数は、予め取得しておく。影響係数は、後で詳しく述べるが、例えば、回転体11に試し錘を取り付けること等により回転体11にバランス変化を与え、このバランス変化による振動データ(前記と同様の振動データ)の変化に基づいて算出される。
(振動データ)
データ生成部9は、アンバランスデータまたは影響係数を生成するために、振動センサ5が検出した振動(加速度)と角度センサ7が検出した回転角に基づいて振動データを生成する。振動データは、振動の振幅と位相θからなる。図3は、振動の振幅と位相θを示す。図3において、横軸は、角度センサ7により検出した回転角を示し、縦軸は、振動センサ5により検出された振動のうち1次振動を示す。1次振動は、回転角の検出時における回転体11の回転速度と同じ周波数成分の振動である。即ち、1次振動は、振動センサ5による振動検出時における回転体11の回転速度(1秒間での回転数)と同じ周波数[Hz]の成分を、振動センサ5が検出した振動(即ち、振動センサ5の出力電圧)から抽出した振動(即ち、図3の縦軸に相当する振動電圧)である。図3において、位相θは、基準位相(図3の例では、ゼロ度)に対する1次振動のずれを示す。即ち、位相θは、基準位相に対する、1次振動の周期の始点となる位相のずれを示す。
振動データ(即ち、後述の振動データX、X、X)を、複素数で表す。図4は、複素数で表した振動データを示す。図4のように、1次振動の振幅を大きさ(絶対値)Rとし、上述の位相θを偏角として、振動データを複素数で表す(以下、同様)。データ生成部9は、このような振動データを生成する。
(影響係数)
影響係数Fは、次式(1)で表される。

F=(X−X)/M(cosθ+jsinθ) ・・・(1)

ここで、Xは、回転体11にバランス変化を与える前に検出した上述の振動と回転角から生成したものであり、Xは、回転体11にバランス変化を与えた状態で(例えば、回転体11に試し錘を取り付けた状態で)検出した上述の振動と回転角から生成したものである。M(cosθ+jsinθ)は、回転体11に与えた前記回転バランス変化を表す。具体的には、試し錘を使用した場合には、Mは、試し錘の質量と、回転体11の回転中心から回転体11に取り付けた試し錘の重心までの距離との積であり、θは、回転体11に取り付けた試し錘の回転方向位置(即ち、前記回転中心周りの位置)を示す。この回転方向位置は、所定の基準回転方向位置に対する位相であってよい。また、上式(1)において、jは虚数単位である。なお、影響係数は、後述のアンバランス測定方法の対象となる回転体11について取得してもよいし、後述のアンバランス測定方法の対象となる回転体11を持つ回転機械とは別であるが、該回転機械と同機種の回転機械の回転体について上述と同様の方法で取得しでもよい。
次に、上述のアンバランス測定装置10を用いた、本発明の第1実施形態によるアンバランス測定方法を説明する。図5は、第1実施形態によるアンバランス測定方法のフローチャートである。このアンバランス測定方法は、駆動ステップS1、停止ステップS2、検出ステップS3、およびデータ生成ステップS4を有する。
駆動ステップS1では、回転可能に支持体3に支持された回転体11を回転駆動する。好ましくは、駆動ステップS1では、回転体11の回転速度が、測定対象回転速度(例えば、8万rpm〜12万rpmの間の値)を超える回転速度(例えば、13万rpm)になるまで、回転体11を回転駆動する。
第1実施形態では、駆動ステップS1において、回転体11に設けられたタービン翼15を流体により回転駆動させる。図2の例では、弁29aを全閉状態から開くことで、圧縮ガス源27から圧縮ガスが配管29へ流れ込み、さらに、この圧縮ガスが、流路25aを通ってタービン翼15を通過する。これにより、タービン翼15が回転駆動されて、回転体11も回転駆動される。
停止ステップS2では、回転体11の回転駆動を停止する。第1実施形態では、停止ステップS2において、タービン翼15に対する前記流体の供給を停止する。図2の例では、前記弁29aを閉じることで、タービン翼15への流体供給が停止されることで、回転体11の回転駆動が停止する。停止ステップS2において、前記弁29aを全閉してよい。図2の例では、弁29aを閉じることで、タービン翼15の上流側(即ち、流路25a)が下流側(即ち、排気口25b)よりも低圧になる。この下流側の負圧により、タービン翼15の回転にブレーキがかかるので、回転体11の回転速度を測定対象回転速度まで速やかに低下させることができる。
検出ステップS3では、回転体11の回転駆動が停止されている状態であり、かつ、回転体11が惰性で回転している状態で、角度センサ7により回転体11の回転角を検出しつつ、振動センサ5により支持体3の振動を検出する。好ましくは、検出ステップS3では、停止ステップS2により、回転体11の回転速度が測定対象回転速度に低下した時に、回転体11の回転角と支持体3の振動を検出する。このように回転体11の速度低下中に、振動を検出する。
データ生成ステップS4では、検出ステップS3で検出した回転角と振動に基づいて、次のように回転体11のアンバランスデータを生成する。
まず、データ生成部9は、検出ステップS3で振動センサ5が検出した振動と、検出ステップS3で角度センサ7が検出した回転角とに基づいて、振動データを生成する。この振動データXを次式(2)で表す。

X=A+jB ・・・(2)

ここで、Aは実部であり、Bは虚部であり、jは虚数単位である。
さらに、データ生成ステップS4では、データ生成部9は、この振動データXと影響係数FからアンバランスデータUを算出する。アンバランスデータUは、データ生成部9により次式(3)で算出される。

U=X/F ・・・(3)

Uを次式(4)の複素数で表す。

U=m(cosθ+jsinθ) ・・・(4)

ここで、mは絶対値であり、θは偏角であり、jは虚数単位である。
なお、上述のように求めたアンバランスデータUに基づいて、図2に示す切削装置13により、回転体11のバランスを修正する。切削装置13は、アンバランス測定装置10に備えられてよく、回転体11の切削対象部11aを切削する切削工具13a(例えば、エンドミル)と、該切削工具13aを3次元的(例えば、図2の互いに直交するX軸方向、Y軸方向、Z軸方向)に移動させる駆動機構13bと、該駆動機構13bの動作を制御することで切削工具13aの位置を制御する位置制御部13cとを有する。例えば、位置制御部13cにより、回転している切削工具13aが、アンバランスデータが示す回転方向位置θにおいてX軸方向に移動することで、アンバランスデータが示すアンバランス量mに相当する体積だけ切削対象部11aを切削する。
[第2実施形態]
図6は、本発明の第2実施形態によるアンバランス方法で使用するアンバランス測定装置10を示す。第2実施形態において第1実施形態と異なる点を以下で説明するが、他の点は上述の第1実施形態と同じであってよい。
第2実施形態では、流体により回転体11を回転駆動するのに代えて、電動機35により回転体11を回転駆動する。図6の例では、電動機35は、支持体3に固定される固定子35aと、回転体11に固定される回転子35bとを有する。固定子35aは、例えば鉄心36と鉄心36に巻かれたコイル37とからなり、回転体11の回転方向に複数設けられる。複数のコイル37に電源38から電力が供給されることで、複数のコイル37により、回転磁界を発生する。この回転磁界の磁力が回転子35bに作用することで、回転体11が回転駆動される。第2実施形態で使用するアンバランス測定装置10の他の構成は、第1実施形態の場合と同じであってよい。なお、図6の構成において、図2の構成から変更を要する点は、適宜変更してもよい。
第2実施形態によるアンバランス測定方法は、次のように行う。
駆動ステップS1では、電源38から電動機35(この例では、複数のコイル37)に電力を供給することで、電動機35が回転体11を回転駆動する。
停止ステップS2では、電源38から電動機35(この例では、複数のコイル37)への電力供給を停止することで、回転体11の回転駆動を停止する。この電力供給の停止は、スイッチなど適宜の手段を用いて行ってよい。
第2実施形態によるアンバランス測定方法の他の点は、第1実施形態の場合と同じであってよい。
[実施形態による効果]
上述した第1実施形態と第2実施形態では、回転体11の回転駆動を停止した状態で、回転体11の回転角を検出しつつ、支持体3の振動を検出するので、回転駆動力の変動による外乱が振動検出に影響を及ぼすことが防止される。その結果、再現性の良いアンバランスデータを生成できる。
また、第1実施形態では、停止ステップS2において、タービン翼15の下流側を負圧にすることにより、タービン翼15の回転にブレーキを掛けるので、回転体11の回転速度を測定対象回転速度まで速やかに低下させることができる。
本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。
3 支持体、3a 開口,5 振動センサ、
7 角度センサ、9 データ生成部、10 アンバランス測定装置、
11 回転体、13 切削装置、13a 切削工具、
13b 駆動機構、13c 位置制御部、15 タービン翼、
17 コンプレッサ翼、19 回転軸、20 過給機、
21 静止側部材、25 タービンハウジング、25a 流路(スクロール)、
25b 排気口、27 圧縮ガス源、29 配管、
29a 弁、31 ボルト,33 結合部材、35 電動機

Claims (3)

  1. 回転体のアンバランス測定方法であって、
    前記回転体を回転可能に支持体で支持した状態で、前記回転体に設けられたタービン翼を圧縮ガスで回転駆動することにより、前記回転体を回転駆動する駆動ステップと、
    前記駆動ステップの後、前記タービン翼に対する圧縮ガスの供給を停止することにより、前記回転体の回転駆動を停止する停止ステップと、
    前記停止ステップにより、前記回転体の回転駆動が停止され、かつ、前記回転体が惰性で回転している状態で、前記回転体の回転角を検出しつつ、支持体の振動を検出する検出ステップと、
    検出ステップで得た検出回転角と検出振動に基づいて、前記回転体のアンバランスデータを生成するデータ生成ステップと、を有し、
    前記タービン翼に対して圧縮ガスを供給する配管が設けられ、該配管には、弁が設けられ、
    前記駆動ステップでは、前記弁を開くことで、ガス圧が変動する圧縮ガスが圧縮ガス源から前記配管へ流れ込み、該圧縮ガスが前記タービン翼を通過することにより、前記回転体を回転駆動し、
    前記停止ステップでは、前記弁を閉じることで、前記回転体の回転駆動を停止し、
    前記圧縮ガス源は、工場内の各タービンに供給される圧縮ガスが流れる配管である、ことを特徴とするアンバランス測定方法。
  2. 駆動ステップでは、前記回転体の回転速度が測定対象回転速度を超えるまで、前記回転体を回転駆動し、
    検出ステップでは、停止ステップにより、前記回転体の回転速度が測定対象回転速度に低下した時に、前記回転体の回転角と支持体の振動を検出する、ことを特徴とする請求項1に記載のアンバランス測定方法。
  3. 前記停止ステップでは、前記弁を閉じることで、タービン翼の上流側を下流側よりも低圧にする、ことを特徴とする請求項1または2に記載のアンバランス測定方法。
JP2009223001A 2009-09-28 2009-09-28 アンバランス測定方法 Active JP5459595B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009223001A JP5459595B2 (ja) 2009-09-28 2009-09-28 アンバランス測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009223001A JP5459595B2 (ja) 2009-09-28 2009-09-28 アンバランス測定方法

Publications (2)

Publication Number Publication Date
JP2011069787A JP2011069787A (ja) 2011-04-07
JP5459595B2 true JP5459595B2 (ja) 2014-04-02

Family

ID=44015185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223001A Active JP5459595B2 (ja) 2009-09-28 2009-09-28 アンバランス測定方法

Country Status (1)

Country Link
JP (1) JP5459595B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153256A (zh) * 2016-07-07 2016-11-23 北京航空航天大学 一种磁悬浮转子高精度现场动平衡方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105275790B (zh) * 2015-11-06 2017-03-22 大亚湾核电运营管理有限责任公司 一种核电站一回路冷却剂泵的调整方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438333B2 (ja) * 1994-07-04 2003-08-18 株式会社デンソー 動釣合試験機およびその測定方法
JP2002039904A (ja) * 2000-07-26 2002-02-06 Ishikawajima Harima Heavy Ind Co Ltd 過給機の高速バランス修正装置とその方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153256A (zh) * 2016-07-07 2016-11-23 北京航空航天大学 一种磁悬浮转子高精度现场动平衡方法
CN106153256B (zh) * 2016-07-07 2017-10-27 北京航空航天大学 一种磁悬浮转子高精度现场动平衡方法

Also Published As

Publication number Publication date
JP2011069787A (ja) 2011-04-07

Similar Documents

Publication Publication Date Title
JP5595928B2 (ja) タービンロータ組立体をバランスさせるための方法及びシステム
JP6818506B2 (ja) 高速において回転機械のロータのバランスを取るためのバランス方法
EP3480938A1 (en) Resonance vibration control method and system
JP5928827B2 (ja) 遠心圧縮機の動的スラストバランス調整
JP2011112514A (ja) バランス修正装置と方法
CN102425561A (zh) 一种磁悬浮分子泵动平衡方法
JP5459595B2 (ja) アンバランス測定方法
JP5621970B2 (ja) 影響係数取得方法と装置
US8261616B2 (en) Method for testing rotors
JP5428550B2 (ja) 影響係数取得方法
US9588524B2 (en) Vibration control device and control method therefor
JP5586562B2 (ja) 遠心式電動送風機
JP5622178B2 (ja) 影響係数取得方法
JP5459533B2 (ja) アンバランス計測方法と装置
JP5418830B2 (ja) 試し錘取付方位算出装置と方法
JP5605686B2 (ja) 圧力調整機構と圧力調整方法
JP2011128111A (ja) アンバランス測定装置と方法
JP2009191638A (ja) ターボ機械
JP5553217B2 (ja) バランサー
JP5645066B2 (ja) 影響係数取得方法と装置
JP4710736B2 (ja) 電動過給機のバランス修正装置およびバランス修正方法
JP2011202598A (ja) 電動過給装置
EP3472930B1 (en) Systems and methods for reduction of oscillations in turbomachinery systems
JP2012073121A (ja) 影響係数補正方法及び補正機能付き単体バランス装置
RU2282763C2 (ru) Способ и устройство уравновешивания вибрационных нагрузок в роторных машинах

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140102

R151 Written notification of patent or utility model registration

Ref document number: 5459595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250