JP5459125B2 - 光電変換素子、光電変換素子の製造方法および電子機器 - Google Patents
光電変換素子、光電変換素子の製造方法および電子機器 Download PDFInfo
- Publication number
- JP5459125B2 JP5459125B2 JP2010161991A JP2010161991A JP5459125B2 JP 5459125 B2 JP5459125 B2 JP 5459125B2 JP 2010161991 A JP2010161991 A JP 2010161991A JP 2010161991 A JP2010161991 A JP 2010161991A JP 5459125 B2 JP5459125 B2 JP 5459125B2
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- electrode
- conversion element
- carrier
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Description
しかしながら、これらのシリコンを用いた太陽電池は、いずれも、製造コストが高く、また、製造に多大なエネルギーを必要とするため、必ずしも省エネルギーな電源とは言えなかった。
しかしながら、この太陽電池では、色素を半導体層に単に吸着させた構成であるため、発生した電子(キャリア)を半導体層に効率よく伝達し、外部回路に取り出すことができないという問題がある。
本発明に係る光電変換素子は、第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間に設けられた光電変換層と、を有し、前記光電変換層は、ポリマーを含み、前記ポリマーは、前記第1の電極の前記第2の電極側の面に化学的または静電的に結合した第1の化合物を含む接続部と、前記接続部に結合した光電変換部と、吸収体で発生したキャリアを前記吸収体から前記第1の電極側に移動するのを媒介する機能を有するキャリア媒介部とを含み、前記光電変換部は、光を吸収して少なくとも1種類のキャリアを発生させる光吸収体を有する第2の化合物を前記接続部を基点としてリビング重合させ形成したことを特徴とする。
上記の光電変換素子においては、前記第1の電極に前記光吸収体を有する前記ポリマーが結合していることから、前記光吸収体で生成したキャリアが速やかに前記第1の電極に移動することが可能となり、これにより、高い光電変換効率が得られる光電変換素子となる。
前記側鎖に前記光吸収体を有するポリマーは比較的重合の制御が容易であり、前記ポリマーに含まれる前記光吸収体の数をある程度制御できる。このため、光電変換効率を容易に所望のものとすることができる。
上記の光電変換素子において、前記光吸収体はクマリン骨格を含むものであってもよい。
クマリン骨格を含む化合物は一般に堅牢であり、化学的にも比較的安定であるため、耐用回数等に優れた光電変換素子となる。
前記キャリア媒介部として前記ポリマーの主鎖の一部を利用することにより、キャリア移動に対した結合を介した相互作用(スルーボンド相互作用)も利用することが可能となり、より迅速かつ確実にキャリアを前記第1の電極に移動させることができる。
フラーレン骨格は、電子受容性に優れているため、前記ポリマーはカスケード型電子移動系として機能し、キャリアは、光吸収体から前記第1の電極へと迅速に移動することができるとともに前記第1の電極からの逆電子移動を抑制することが可能となり、電荷分離状態の長寿命化が期待できる。
なお、前記キャリア媒介部に含まれるフラーレン骨格が直接光を吸収し、キャリアを発生させることも可能である。
これにより、光電変換素子を素子毎の特性のバラツキを抑えつつ、簡易な工程で光電変換素子を製造し得る。
リビング重合によれば、ポリマーの生長過程において、生長末端が再生されモノマーの重合活性部と結合するため、モノマーが消費され、重合反応が停止した後、新たにモノマーを加えると重合反応がさらに進行する。したがって、反応系に供給するモノマーの量を変化させることによって、合成されるポリマーの重合度を精密に制御することができ、これにより、ポリマーが有する光吸収体等の数を適宜調整することができる。また、重合度の均一なポリマーを得ることができるので、形成される光電変換層において、ポリマーが有する光吸収体等の数を、面内および素子毎にある程度均一なものとすることができる。このようなことから、所望の光電変換効率を有する光電変換層を、素子毎のバラツキを抑えつつ、簡易な工程で形成することができる。
本発明の電子機器は、本発明の光電変換素子を有することを特徴とする。
これにより、信頼性の高い電子機器が得られる。
<第1実施形態>
まず、本発明に係る光電変換素子の一例について説明する。
図1は、本発明に係る光電変換素子の一例を模式的に示す断面図、図2は、図1に示す光電変換素子が有する光電変換層の模式図、図3は、図2に示す光電変換層の一例を示す模式図、図4および図5は、それぞれ、図1に示す光電変換素子を製造する方法を説明するための模式図である。
このため、第1の基板20および第1の電極30は、それぞれ、入射される光あるいは光電変換に利用される光に対して十分な透過率を有すること、すなわち、入射される光あるいは光電変換に利用される光に対して実質的に透明であることが好ましい。これにより、光を光電変換層40に効率よく到達させることができる。
第1の基板20の平均厚さは、その構成材料、光電変換素子10の用途等により適宜設定され、特に限定されないが、硬質材料で構成する場合、好ましくは0.1〜1.5mm程度、より好ましくは0.8〜1.2mm程度とされ、可撓性材料で構成する場合、好ましくは0.5〜150μm程度、より好ましくは10〜75μm程度とされる。
第1の電極30の構成材料(導電性材料)としては、例えば、インジウムティンオキサイド(ITO)、フッ素原子を含有する酸化錫(FTO)、酸化インジウム(IO)、酸化錫(SnO2)のような酸化物系材料、白金、銀、金、銅またはこれらを含む合金のような金属材料等が挙げられ、これらのうちの1種または2種以上を組み合わせて(例えば、複数層の積層体等として)用いることができる。
この場合、半導体材料としては、例えば、TiO2、ZrO2、ZnO、Al2O3、SnO2、ScVO4、YVO4、LaVO4、NdVO4、EuVO4、GdVO4、ScNbO4、ScTaO4、YNbO4、YTaO4、ScPO4、ScAsO4、ScSbO4、ScBiO4、YPO4、YSbO4、BVO4、AlVO4、GaVO4、InVO4、TlVO4、InNbO4、InTaO4のような酸化物半導体、ZnS、CdSのような硫化物半導体、CdSeのようなセレン化物半導体、TiC、SiCのような炭化物半導体、BN、B4Nのような窒化物半導体等が挙げられる。
図2(a)に示すように、光電変換層40は、各々が複数の構造単位3を含んだ複数のポリマー分子1から構成されている。このポリマー分子1は、光吸収体2が光を吸収して(光照射による光学的刺激を受けて)、電子あるいは正孔等のキャリアを発生させる光エネルギーを電気エネルギーに変換(光電変換)する上で重要な役割を担う。そして、発生した電キャリアは、第1の電極30あるいは電解質層50を介して第2の電極60に移動して電流が発生することになる。
なお、図2(b)示した点線は、ある1つの構造単位3に含まれる光吸収体2と当該1つの構造単位3に隣接する構造単位3に含まれる光吸収体2との間に介在する結合基の一部を便宜的に示しているものであり、この点線と光吸収体2とが図2(b)に示した構造単位3を有するポリマー分子1の主鎖の少なくとも一部を構成することになる。
一方、図2(c)に示した点線は、ある1つの構造単位3に含まれる分岐部6と当該1つの構造単位3に隣接する構造単位3に含まれる分岐部6との間に介在する結合基を便宜的に示しているものであり、この点線と分岐部6とが図2(c)に示した構造単位3を有するポリマー分子1の主鎖の少なくとも一部を構成することになる。
また、図2(b)に示したポリマー分子1が十分な剛直性を有すれば、光吸収体2の基底状態における多量化や光吸収体2同士の励起錯体の形成等を抑制することができるため、良好な電子移動効率が達成できる場合がある。
また、図2(c)に示したポリマー分子1の主鎖は、一般にメチレン鎖等の柔軟な有機基を含むため、比較的溶解性が高く、溶媒中での重合反応により合成する場合は、後述する原子移動ラジカル重合、リビングアニオン重合やリビングカチオン重合等のリビング重合を用いることにより、分子量の揃った高分子量のポリマーが比較的容易に得られる。
ポリマー分子1に含まれる光吸収体2の数を増加させることにより、光の捕集効果が向上するが、一方で上述のように多量化や励起錯体の形成等の一般にキャリア移動効率の低下の原因となる現象も生じることになるので、所望の光電変換効率等を考慮して、ポリマー分子1に含まれる光吸収体2の数は適宜選択される。例えば、クマリン系色素やポルフィリン系化合物等の多環式π電子化合物では、光吸収体2の数が5〜20であることが好ましい。つまり、ポリマー分子1として5〜20個程度の構造単位3を有すること(図2(a)中mの数を示す)が望ましい。
また、ポリマー分子1は、光吸収体2を有する構造単位3の繰り返し部分(以下、「光電変換部5」と言う。)が直接、第1の電極30の内面に結合してもよいし、図2に示すように、接続部(接続構造)4を介して、第1の電極30の内面に結合してもよい。
なお、この第1の化合物の種類、接続部4の形成方法は、後述する光電変換素子10の製造方法において説明する。
また、このポリマー分子1は、さらに各種の置換基を含む構造を有していてもよい。この置換基としては、特に限定されないが、例えば、飽和鎖状炭化水素基、飽和環状炭化水素基等が挙げられる。
また、電解質組成物の調製に用いる溶媒としては、例えば、各種水、アセトニトリル、プロピオニトリル、ベンゾニトリルのようなニトリル類、エチレンカーボネート、プロピレンカーボネートのようなカーボネート類、ポリエチレングリコール、ポリプロピレングリコール、グリセリンのような多価アルコール類、炭酸プロピレン等が挙げられ、これらを単独または混合溶媒として用いることができる。これらの溶媒を用いることにより、イオン伝導性に優れた電解質層50が得られる。
電解質組成物中の電解質全体の濃度は、特に限定されないが、0.1〜25wt%程度であるのが好ましく、0.5〜15wt%程度であるのがより好ましい。
また、電解質層50は、液状またはゲル状のいずれでもよい。前記電解質組成物にゲル化剤を添加することにより、電解質層50をゲル状とすることができる。
第2の電極60の構成材料としては、例えば、アルミニウム、ニッケル、コバルト、白金、銀、金、銅、モリブデン、チタン、タンタルのような金属またはこれらを含む合金、あるいは、黒鉛のような各種炭素材料等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
第2の基板70の構成材料としては、前記第1の基板20で挙げた材料と同様のものを用いることができる。
第1の電極30と第2の電極60との間には、光電変換層40および電解質層50の外周部を囲むように封止部80が設けられている。これにより、電解質層50が液状の場合、光電変換素子10内からの電解質層50の流出や、揮発を防止したり、光電変換素子10内への水分等の浸入を防止したりすることができる。
このような光電変換素子10に光が入射すると、光電変換層40(光吸収体2)において正孔および電子が発生し、光電変換層40から電子(e−)が第1の電極30側へ移動し、正孔が第2の電極60側に移動し、第1の電極30と第2の電極60との間に、電位差(光起電力)が生じる。これにより、外部回路90に、電流(光励起電流)が流れる。
[1A] まず、第1の基板20および第2の基板70を用意し、これらの第1の基板20および第2の基板70の表面に、それぞれ、第1の電極30および第2の電極60を形成する。
第1の電極30および第2の電極60は、それぞれ、例えば、蒸着法、スパッタリング法等を用いた気相プロセス、印刷法等を用いた液相プロセスにより形成することができる。
ここでは、図2に示すようなポリマー分子1で構成される光電変換層40を形成する場合を例にする。
[2A−1] 第1の電極30に、第1の電極30の表面と反応して結合する第1の官能基と、光電変換部5の原料となるモノマー分子やポリマー分子と結合する第2の官能基とを有する第1の化合物を含む溶液を接触させることにより接続部4を形成する(第1の工程)。
例えば、第1の電極30へのキャリア移動あるいは第1の電極30からの逆キャリア移動等の速度は、接続部4を構成する炭素数によっても調整可能であるので、接続部4を構成する炭素数を適宜調整することによって、適切なキャリア移動または逆キャリア移動の速度に設定できる。典型的には、接続部4の炭素数は、おおよそ2〜25であるのが好ましく、4〜15であるのがより好ましい。
もちろん、第1の官能基としては、例えば、第1の電極30の表面に静電的に結合するものや、水素結合するもの等であってもよい。
例えば、前記第1の官能基としてチオール基と、第2の官能基として臭素基とを有する化学式(1)に示した化合物を第1の電極30に作用させることにより、第1の電極30の表面に、図4に示すような接続部4を形成する。
また、浸漬法を用いる場合、第1の化合物の溶液に対して、必要に応じて、超音波を所定時間照射してもよい。これにより、第1の電極30の表面に、第1の化合物を速やかに吸着させることができる。
このリビング重合は、接続部4を結合させた第1の電極30の表面に、光吸収体2を有するモノマーと触媒とを含む溶液を接触させること等により行うことができる。
以上のようなモノマーの具体例には、下記化学式(2)で表されるものが挙げられる。
前記化学式(2)で表されるモノマーは、例えば、以下に示すような合成経路によって合成することができる。
具体的には、サリチルアルデヒドに、モル等量のマロン酸ジメチルエステルと、所定量のメタノールおよびピペリジンとを加え、室温下に放置した後、溶媒を除去し、シリカゲルクロマトグラフィーにより精製する。
具体的には、3−カルボメトキシ−クマリンとアミノアルコールとを、所定量のベンゼンに加え、攪拌しながら還流する。そして、還流終了後、冷却して種結晶を添加することにより結晶化し、さらに、所定の溶媒を用いて再結晶を繰り返す。
具体的には、N−ヒドロキシアルキル−クマリン−3−カルボキサミドに、4−ジエチルアミノピリジン、4−メトキシフェノールおよびメチレンジクロライドを加えて溶解する。そして、この溶液に、メタクリル酸のメチレンジクロライド溶液と、ジシクロヘキシルカルボジイミドのメチレンジクロライド溶液とを加えて、室温下に放置した後、生成したジシクロヘキシル尿素を濾別等により除去する。そして、濾液から溶媒を除去した後、所定量のベンゼンおよびシクロヘキサンに溶解して放置し、セライトを添加して攪拌した後、セライトを濾別等により除去する。この濾液を冷却した後、上清を除去し、得られた残渣を所定の溶媒に懸濁させ、この懸濁物を室温下に放置する。この間に生成した結晶を回収して、所定の溶媒を用いて再結晶する。
以上のようにして、前記化学式(2)で表されるモノマーが得られる。
例えば、モノマーとして化学式(2)で表される化合物を用い、触媒としてCuBrを用いることにより、図5に示すように、第1の電極30と反対側の端部に活性な生長末端7を有する光電変換部5を形成することができる。
したがって、反応系に供給するモノマーの量を変化させることによって、合成されるポリマー分子1の重合度を精密に制御することができ、これにより、ポリマー分子1が有する光吸収体2の数を適宜調整することができる。
また、重合度の均一なポリマー分子1を得ることができるので、形成される光電変換層40において、ポリマー分子1が有する光吸収体2の数を、面内および素子毎にある程度均一なものとすることができる。
また、前記溶液(反応液)は、重合反応を開始する前に、脱酸素処理を行っておくのが好ましい。脱酸素処理としては、例えば、アルゴンガス、窒素ガス等の不活性ガスによる真空脱気後の置換やパージ処理等が挙げられる。
この加熱の温度は、触媒の種類等によっても若干異なり、特に限定されないが、30〜100℃程度であるのが好ましい。また、加熱の時間(反応時間)は、加熱の温度を前記範囲とする場合、10〜20時間程度であるのが好ましい。
具体的には、冷却管、アルゴンガス供給手段および攪拌翼が装着された反応容器を用意し、反応容器の底に接続部4を結合させた第1の電極30を配置する。反応容器内を真空した後、アルゴンガスを供給する工程を数回行った後、アルゴンガスが反応容器内を流れるようにした状態で、この反応容器内に化学式(2)で表されるモノマーのメタノール溶液を収納し、メタノール溶液にCuBr(触媒)を添加する。そして、所定温度に加熱し、攪拌しながら所定時間、この温度を維持する。なお、攪拌翼が第1の電極30を破損しないように、攪拌翼は、第1の電極30から十分離れた上方で回転するようにしておくがことが好ましい。
以上のようにして、第1の電極30の表面に、光吸収体2を有し、一端部が結合したポリマー分子1が生成して、光電変換層40が得られる。
この乾燥には、例えば、凍結乾燥、通気乾燥、表面乾燥、流動乾燥、気流乾燥、噴霧乾燥、真空乾燥、赤外線乾燥、高周波乾燥および超音波乾燥等の各種乾燥方法を用いることができるが、凍結乾燥により行うのが好ましい。
凍結乾燥では、溶媒を固体から気体へ昇華させることにより乾燥させるため、光電変換層40の形状や機能等にほとんど影響を与えることなく、乾燥を行うことができる。
なお、このとき、封止部80には、電解質組成物を充填空間に充填するための供給口を形成しておく。
なお、電解質組成物には、必要に応じて、ゲル化処理がなされる。このゲル化処理としては、例えば、加熱、紫外線の照射等が挙げられる。
[5A] 次に、第1の電極30および第2の電極60に、それぞれ外部回路90が備える配線の端部を接続する。
このような光電変換素子10の製造方法は、各層を比較的低温で形成することができるので、特に、第1の基板20および第2の基板70として、樹脂材料を主材料とする可撓性基板を用いた光電変換素子10の製造への適用に適している。
なお、光電変換層40は、予め、前述したようなポリマー分子1の一端部にチオール基が導入された化合物を合成しておき、かかる化合物を、前述した方法(例えば浸漬法)等により、第1の電極30の表面に結合(担持)させて得ることもできる。
次に、本発明に係る光電変換素子の他の一例について説明する。
図6は、本発明に係る光電変換素子の他の一例が有する光電変換層の模式図、図7は、図6に示す光電変換層の一例を示す模式図、図8および図9は、それぞれ、他の一例の光電変換素子を製造する方法(光電変換層の形成方法)を説明するための模式図である。
第2実施形態では、光電変換層40の構成(ポリマー分子1の構成)が異なり、それ以外は、基本的に上述の第1実施形態と同様である。
第2実施形態において、ポリマー分子1は、図6に示すように、接続部4と光電変換部5との間、すなわち、第1の電極30に最も近い光吸収体2よりも第1の電極30側に、さらに、光吸収体2で発生した電子(キャリア)の第1の電極30への移動を媒介するキャリア媒介部8を含むキャリア輸送部9を有するブロック共重合体である。
また、キャリア輸送部9は、キャリア媒介部8を1つ有するものであればよいが、複数有するものが好ましい。これにより、逆電子移動がより確実に防止することができる。
このようなキャリア媒介部8としては、特に限定されないが、光電変換部5で発生した電子の第1の電極30への移動に介在する場合は、電子受容体としての性質を有する場合は、フラーレン(C60)骨格を含むもの、多環式芳香環を含むもの等が挙げられるが、これらの中でも、特に、フラーレン(C60)骨格を含むものが好ましい。
また、芳香族環の間の相互作用等により比較的スタック構造をとりやすいので、キャリア輸送部9の主鎖の配座を制御できるという点でも有利な場合がある。
このような光電変換層40を有する光電変換素子10は、例えば、次のようにして製造することができる。以下、光電変換層40の形成方法を中心に説明する。
[2B−2] 次に、接続部4の第1の電極30と反対側に、キャリア輸送部9を形成する(第1の工程)。
ここでは、図6に示すように、キャリア輸送部9として、キャリア媒介部8を分子鎖とともに導入して構成する場合を例にする。
このリビング重合は、接続部4を結合させた第1の電極30の表面に、前記前駆物質と第2のモノマーと触媒とを含む溶液を接触させること等により行うことができる。
例えば、キャリア媒介部8となる前駆物質としてフラーレンを用い、分子鎖となる第2のモノマーとしてスチレンを用い、触媒としてCuBrを用いることにより、前駆物質を取り込みつつ第2のモノマーの重合反応が進行し、図8に示すように、第1の電極30と反対側の端部に活性な生長末端7’を有するキャリア輸送部9を形成することができる。
また、重合反応に際して、上記の溶液の温度を所定の温度(第2のモノマーおよび触媒が活性化する温度)まで加熱(加温)することにより、第2のモノマーの重合反応をより迅速かつ確実に行うことができる。
この加熱の温度は、触媒の種類等によっても若干異なり、特に限定されないが、60〜90℃程度であるのが好ましい。また、加熱の時間(反応時間)は、加熱の温度を前記範囲とする場合、20〜50時間程度であるのが好ましい。
具体的には、冷却管、窒素ガス供給手段および攪拌翼が装着された反応容器を用意し、反応容器の底に接続部4を結合させた第1の電極30を配置する。反応容器内を真空した後、窒素ガスを供給する工程を数回行った後、窒素ガスが反応容器内を流れるようにした状態で、この反応容器内に、スチレン(第2のモノマー)と、フラーレン(C60)のo−ジクロロベンゼン溶液とを収納して混合し、混合液にCuBr(触媒)を添加する。そして、所定温度に加熱し、攪拌しながら所定時間、この温度を維持する。なお、攪拌翼が第1の電極30を破損しないように、攪拌翼は、第1の電極30から十分離れた上方で回転するようにしておくがことが好ましい。
例えば、モノマーとして化学式(2)で表される化合物を用い、触媒としてCuBrを用いることにより、図9に示すように、第1の電極30と反対側の端部に活性な生長末端7を有する光電変換部5が形成される。これにより、ポリマー分子1が得られる(合成される)。
[2B−4]〜[5B] 前記工程[2A−3]〜[5A]と同様の工程を行う。
なお、第2実施形態におけるポリマー分子1において、キャリア輸送部9に、それ自体が光を吸収してキャリアを発生し得る光電変換部としての機能を付与することもできる。
次に、図10および図11に基づいて、本発明の電子機器について説明する。
図10は、本発明の電子機器を適用した電卓を示す平面図、図11は、本発明の電子機器を適用した携帯電話機(PHSも含む)を示す斜視図である。
図10に示す電卓100は、本体部101と、本体部101の上面(前面)に設けられた表示部102、複数の操作ボタン103および光電変換素子設置部104とを備えている。
図10に示す構成では、光電変換素子設置部104には、光電変換素子10が5つ直列に接続されて配置されている。
図11に示す構成では、光電変換素子設置部206が、表示部202の周囲を囲むようにして、光電変換素子10が複数、直列に接続されて配置されている。
例えば、光電変換素子および電子機器を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。
また、本発明の光電変換素子は、太陽電池のみならず、例えば、光センサー、光スイッチのような、光を受光して電気エネルギーに変換する各種素子(受光素子)に適用することができるものである。
また、本発明の光電変換素子では、光の入射方向は、図示のものとは異なり、逆方向からであってもよい。すなわち、光の入射方向は、任意である。
Claims (9)
- 第1の電極と、
第2の電極と、
前記第1の電極と前記第2の電極との間に設けられた光電変換層と、を有し、
前記光電変換層は、ポリマーを含み、
前記ポリマーは、前記第1の電極の前記第2の電極側の面に化学的または静電的に結合した第1の化合物を含む接続部と、前記接続部に結合した光電変換部と、吸収体で発生したキャリアを前記吸収体から前記第1の電極側に移動するのを媒介する機能を有するキャリア媒介部とを含み、前記光電変換部は、光を吸収して少なくとも1種類のキャリアを発生させる光吸収体を有する第2の化合物を前記接続部を基点としてリビング重合させ形成したことを特徴とする光電変換素子。 - 前記ポリマーは、前記光吸収体を主鎖から分枝した側鎖に有する請求項1に記載の光電変換素子。
- 前記光吸収体は、クマリン骨格を含むものである請求項1または2に記載の光電変換素子。
- 前記ポリマーの主鎖の一部が前記キャリア媒介部として機能する請求項1ないし3のいずれかに記載の光電変換素子。
- 前記キャリア媒介部は、フラーレン骨格を含むものである請求項4に記載の光電変換素子。
- 第1の電極と、
第2の電極と、
前記第1の電極と前記第2の電極との間に配置された光電変換層とを有する光電変換素子の製造方法であって、
前記第1の電極に、接続部を、第1の化合物を化学的または静電的に結合させることにより形成する第1の工程と、
前記接続部を基点として、吸収体で発生したキャリアを前記吸収体から前記第1の電極側に移動するのを媒介する機能を有するキャリア媒介部を備える第3の化合物と、光を吸収して少なくとも1種類のキャリアを発生させる光吸収体を有する第2の化合物とを、リビング重合により重合させることにより、キャリア媒介部と光電変換部とを形成する第2の工程と、を含むことを特徴とする光電変換素子の製造方法。 - 前記第2の化合物は、重合基を有するモノマーである請求項6に記載の光電変換素子の製造方法。
- 前記第2の工程において、前記リビング重合を行っている期間には、前記モノマーと反応する生長末端が再生し、
前記生長末端には、前記第1の工程により得られた前記接続部に含まれる置換基が結合している請求項7に記載の光電変換素子の製造方法。 - 請求項1ないし5のいずれかに記載の光電変換素子を有することを特徴とする電子機器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010161991A JP5459125B2 (ja) | 2010-07-16 | 2010-07-16 | 光電変換素子、光電変換素子の製造方法および電子機器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010161991A JP5459125B2 (ja) | 2010-07-16 | 2010-07-16 | 光電変換素子、光電変換素子の製造方法および電子機器 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006034548A Division JP4857799B2 (ja) | 2006-02-10 | 2006-02-10 | 光電変換素子、光電変換素子の製造方法および電子機器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010287577A JP2010287577A (ja) | 2010-12-24 |
JP5459125B2 true JP5459125B2 (ja) | 2014-04-02 |
Family
ID=43543103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010161991A Expired - Fee Related JP5459125B2 (ja) | 2010-07-16 | 2010-07-16 | 光電変換素子、光電変換素子の製造方法および電子機器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5459125B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015103735A (ja) * | 2013-11-27 | 2015-06-04 | ソニー株式会社 | 固体撮像素子および電子機器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4326167B2 (ja) * | 2001-07-19 | 2009-09-02 | 独立行政法人科学技術振興機構 | ポルフィリン・フラーレン連結分子により化学修飾されたito電極を用いた光エネルギー・電気エネルギー変換素子 |
JP2005135656A (ja) * | 2003-10-28 | 2005-05-26 | Shozo Yanagida | 光電変換素子 |
JP4748956B2 (ja) * | 2004-07-02 | 2011-08-17 | トヨタ自動車株式会社 | 光応答電極及びこれを備える有機太陽電池 |
-
2010
- 2010-07-16 JP JP2010161991A patent/JP5459125B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010287577A (ja) | 2010-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4857799B2 (ja) | 光電変換素子、光電変換素子の製造方法および電子機器 | |
Li et al. | Multifunctional fullerene derivative for interface engineering in perovskite solar cells | |
KR101254519B1 (ko) | 광전기 소자 | |
JP6031656B2 (ja) | ペロブスカイト化合物を用いた光電変換素子およびその製造方法 | |
Bose et al. | Recent advances and future prospects for dye sensitized solar cells: A review | |
EP2253030A2 (en) | Organic sensitizers | |
JP5443001B2 (ja) | 増感錯体、その製造方法、それを備えた無機/有機ハイブリッド型半導性材料、及び、該材料を備えた太陽電池 | |
KR101587746B1 (ko) | 색소 증감 태양 전지 | |
WO2010100930A1 (ja) | 光電変換素子およびその製造方法、光センサならびに太陽電池 | |
WO2006120939A1 (ja) | 新規アミノ基含有複素環誘導体および該複素環誘導体を含有する光電変換用増感色素 | |
JP5649716B2 (ja) | 光電気素子 | |
CN108164546B (zh) | 吲哚啉-二噻吩并喹喔啉-二苯并[a,c]吩嗪染料及其在染料敏化太阳电池中的应用 | |
JP2014500581A (ja) | 染料感応太陽電池およびその製造方法 | |
KR20100136931A (ko) | 신규한 유기염료 및 이의 제조방법 | |
US20130167932A1 (en) | Indole compound, and photoelectric conversion dye using same, semiconductor electrode, photoelectric conversion element, and photoelectrochemical cell | |
JP5459125B2 (ja) | 光電変換素子、光電変換素子の製造方法および電子機器 | |
JPWO2013099689A1 (ja) | 光電気素子 | |
WO2008056567A1 (fr) | Nouveau composé aromatique contenant un groupe amino, et colorant de sensibilisation pour conversion photoélectrique, contenant le composé aromatique | |
KR101760492B1 (ko) | 신규한 화합물, 이의 제조방법 및 이를 포함하는 유기 태양전지 | |
Ji et al. | Molecular Interlayer with Large Cations Supports Efficient, Stable Perovskite Solar Cells | |
JP2008041320A (ja) | 色素増感太陽電池のための電解質組成物 | |
KR101465454B1 (ko) | 염료감응 태양전지용 유기염료 및 이를 포함하는 염료감응 태양전지 | |
JP5533722B2 (ja) | タンデム型色素増感太陽電池及びその製造方法 | |
KR101833125B1 (ko) | 페로센을 포함하는 신규한 화합물 및 이를 포함하는 태양전지 | |
TW201202271A (en) | Electrolyte composition and dye-sensitized solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130702 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130924 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131230 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |