JP5455431B2 - インバータ冷却装置およびインバータ冷却方法ならびに冷凍機 - Google Patents

インバータ冷却装置およびインバータ冷却方法ならびに冷凍機 Download PDF

Info

Publication number
JP5455431B2
JP5455431B2 JP2009118215A JP2009118215A JP5455431B2 JP 5455431 B2 JP5455431 B2 JP 5455431B2 JP 2009118215 A JP2009118215 A JP 2009118215A JP 2009118215 A JP2009118215 A JP 2009118215A JP 5455431 B2 JP5455431 B2 JP 5455431B2
Authority
JP
Japan
Prior art keywords
inverter
refrigerant
casing
temperature
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009118215A
Other languages
English (en)
Other versions
JP2010266132A (ja
Inventor
泰士 長谷川
憲治 上田
一馬 田井東
誠一 奥田
雅晴 仁田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009118215A priority Critical patent/JP5455431B2/ja
Publication of JP2010266132A publication Critical patent/JP2010266132A/ja
Application granted granted Critical
Publication of JP5455431B2 publication Critical patent/JP5455431B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、圧縮機を駆動制御するインバータを冷却するインバータ冷却装置およびインバータ冷却方法、ならびに前記インバータ冷却装置を適用する冷凍機に関する。
ターボ冷凍機のような冷凍機は、建物の空調設備や製氷装置や冷蔵装置に用いられ、圧縮機を駆動制御するインバータを備えている。インバータは、IGBT(Insulated Gate Bipolar Transistor)などの半導体素子の温度上昇を防止するため、排熱を空気へ排出するために比較的大型のファンおよび放熱部材を必要としている。このため、インバータが大型化し、このインバータを含む冷凍機の大型化が懸念されている。
従来、例えば特許文献1に示す冷凍機(車両用空調装置)では、小型で、かつ簡単な構成でインバータを冷却するため、インバータの筐体内に、コンデンサから吐出した冷媒を流通させている。
特開2003−276426号公報
しかし、上述した特許文献1の冷凍機のように、冷媒をインバータの筐体内に流通させると、インバータの筐体外との温度差により半導体素子に結露が発生するおそれがあり、この結露が半導体素子の機能を損なわせる原因となり得る。
本発明は上述した課題を解決するものであり、冷凍機の小型化を図ると共に、インバータの半導体素子への結露の発生を防ぐことのできるインバータ冷却装置およびインバータ冷却方法ならびに冷凍機を提供することを目的とする。
上述の目的を達成するために、本発明のインバータ冷却装置では、冷媒を圧縮する圧縮機と、前記圧縮機により圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器により凝縮された冷媒を蒸発させる蒸発器と、前記圧縮機を駆動制御するインバータとを備えた冷凍機に係り、前記インバータを冷却するインバータ冷却装置において、前記凝縮器と前記蒸発器とを連通する冷媒配管の途中で迂回し、かつ前記インバータの筐体内に配置されたバイパス管と、前記バイパス管に設けられて前記バイパス管に流通する冷媒の流量を可変する調整弁と、を備えたことを特徴とする。
このインバータ冷却装置によれば、バイパス管に流通する冷媒により、インバータの半導体素子を冷却するため、半導体素子冷却用のファンおよび放熱部材の小型化を図ることができ、インバータを小型化できる。このため、冷凍機を構成する圧縮機、凝縮器、蒸発器、または中間冷却器にインバータを一体に設けることができ、インバータを含む冷凍機を小型化できる。しかも、バイパス管に流通する冷媒の流量を調整することで、半導体素子の冷却量が調整できるので、半導体素子を所望の温度に冷却でき、半導体素子への結露の発生を防止できる。
また、本発明のインバータ冷却装置では、前記インバータの筐体内の温度、または前記インバータの筐体内に配置された半導体素子の温度を検出する筐体内温度検出手段と、前記筐体内温度検出手段が検出した温度に基づいて、前記調整弁を制御する制御手段と、を備えたことを特徴とする。
このインバータ冷却装置によれば、インバータの筐体内の温度、またはインバータの筐体内に配置された半導体素子の温度に基づいて、調整弁を制御し、バイパス管に流通する液相の冷媒の流量を調整することで、結露を生じない所望の温度に半導体素子を冷却できる。
また、本発明のインバータ冷却装置では、前記インバータの筐体内の温度、または前記インバータの筐体内に配置された半導体素子の温度を検出する筐体内温度検出手段と、前記インバータの筐体外の温度を検出する筐体外温度検出手段と、前記インバータの筐体外の湿度を検出する筐体外湿度検出手段と、前記筐体内温度検出手段が検出した温度、前記筐体外温度検出手段が検出した温度、および前記筐体外湿度検出手段が検出した湿度に基づいて、冷却する半導体素子への結露を防止するように前記調整弁を制御する制御手段と、を備えたことを特徴とする。
このインバータ冷却装置によれば、インバータの筐体内の温度、またはインバータの筐体内に配置された半導体素子の温度と、筐体外の温度と、筐体外の湿度とに基づいて、調整弁を制御し、バイパス管に流通する液相の冷媒の流量を調整することで、結露を生じない露点以上の温度に半導体素子を冷却できる。
また、本発明のインバータ冷却装置では、前記圧縮機を駆動制御する前記インバータの出力電力・電流などに基づいて、前記調整弁を制御する制御手段を備えたことを特徴とする。
このインバータ冷却装置によれば、圧縮機を駆動制御するインバータの出力情報から、インバータ(半導体素子)の発熱量を算出し、この発熱量に基づいて、調整弁を制御し、バイパス管に流通する液相の冷媒の流量を調整することで、結露を生じない所望の温度に半導体素子を冷却できる。
また、本発明のインバータ冷却装置では、前記半導体素子に熱伝達性を有した放熱部材が設けられ、前記放熱部材に前記バイパス管を配置したことを特徴とする。
このインバータ冷却装置によれば、バイパス管に流通する液相の冷媒により、半導体素子の放熱部材を直接冷却することで、冷却効率が向上するので、冷却用のファンを不用にでき、インバータをさらに小型化できる。
上述の目的を達成するために、本発明のインバータ冷却方法では、冷媒を圧縮する圧縮機と、前記圧縮機により圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器により凝縮された冷媒を蒸発させる蒸発器と、前記圧縮機を駆動制御するインバータとを備えた冷却装置に係り、前記インバータを冷却するインバータ冷却方法において、前記凝縮器から前記蒸発器に流通する冷媒の一部を、バイパス管を介して前記インバータの筐体内に導入させつつ、前記バイパス管に流通する冷媒の流量を調整することを特徴とする。
このインバータ冷却方法によれば、インバータの半導体素子を冷却するため、半導体素子冷却用のファンおよび放熱部材の小型化を図ることができ、インバータを小型化できる。このため、冷凍機を構成する圧縮機、凝縮器、蒸発器、または中間冷却器にインバータを一体に設けることができ、インバータを含む冷凍機を小型化できる。しかも、バイパス管に流通する冷媒の流量を調整することで、半導体素子の冷却量が調整できるので、半導体素子を所望の温度に冷却でき、半導体素子への結露の発生を防止できる。
上述の目的を達成するために、本発明の冷凍機では、冷媒を圧縮する圧縮機と、前記圧縮機により圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器により凝縮された冷媒を蒸発させる蒸発器と、前記圧縮機を駆動制御するインバータとを備えた冷凍機において、前記インバータを冷却する態様で、上記の何れか一つに記載のインバータ冷却装置を適用したことを特徴とする。
この冷凍機によれば、上記のインバータ冷却装置を適用したことにより、インバータを含む冷凍機を小型化しつつ、半導体素子への結露の発生を防止できる。この結果、インバータの機能を損なわせる事態を防ぎ、安定した冷凍性能が得られる。
本発明によれば、冷凍機の小型化を図ると共に、インバータの半導体素子への結露の発生を防ぐことができる。
図1は、本発明の実施の形態1に係る冷凍機の概略構成図である。 図2は、本発明の実施の形態1に係るインバータ冷却装置の概略構成図である。 図3は、本発明の実施の形態1に係るインバータ冷却装置のバイパス管の配置を示す概略構成図である。 図4は、本発明の実施の形態2に係る冷凍機の概略構成図である。 図5は、本発明の実施の形態3に係る冷凍機の概略構成図である。 図6は、バイパス管の他の構成を示す概略構成図である。 図7は、バイパス管の他の構成を示す概略構成図である。
以下に、本発明に係る実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
[実施の形態1]
図1に示すように、冷凍機は、主に、圧縮機1と、凝縮器2と、蒸発器3と、中間冷却器4と、インバータ5とにより構成されている。圧縮機1と凝縮器2とは、冷媒が流通される冷媒配管6aにより連通されている。また、凝縮器2と蒸発器3とは、冷媒が流通される冷媒配管6bにより連通されている。中間冷却器4は、冷媒配管6bに介在されている。また、蒸発器3と圧縮機1とは、冷媒が流通される冷媒配管6cにより連通されている。すなわち、圧縮機1、凝縮器2、蒸発器3、および中間冷却器4は、冷媒配管6a,6b,6cを介して冷媒を循環させる循環経路6に設けられている。
圧縮機1は、羽根車の回転運動によって冷媒を圧縮するターボ圧縮機として構成されている。すなわち、本実施の形態の冷凍機は、いわゆるターボ冷凍機である。ターボ圧縮機としての圧縮機1は、電動機11によって駆動される圧縮部12を有している。圧縮部12には、電動機11により回転駆動される羽根車を同軸上に2つ備えた2段圧縮や、電動機11により回転駆動される羽根車を1つ備えた単段圧縮の方式がある。圧縮部12が2段圧縮の場合、蒸発器3から圧縮機1へ送られる気相の冷媒は、1段目の圧縮部で圧縮された後、2段目の圧縮部でさらに圧縮され、圧力と温度とが上昇しつつ冷媒配管6aを介して凝縮器2へ送られる。一方、圧縮部12が単段圧縮の場合、蒸発器3から圧縮機1へ送られる気相の冷媒は、圧縮部12にて圧縮され、圧力と温度とが上昇しつつ冷媒配管6aを介して凝縮器2へ送られる。
凝縮器2は、冷媒冷却流体(例えば、水)が供給される冷却水配管21が接続されている。圧縮機1から凝縮器2に送られる気相の冷媒は、冷却水配管21により供給される冷媒冷却流体と熱交換して凝縮し、すなわち、冷媒冷却流体に熱を捨てて液化し、冷媒配管6bを介して蒸発器3へ送られる。
蒸発器3は、冷却媒体(例えば、水)が供給される冷却媒体配管31が接続されている。凝縮器2から蒸発器3に送られる液相の冷媒は、冷却媒体配管31により供給される冷却媒体と熱交換して蒸発する。この過程で、冷却媒体は、液相の冷媒に熱を捨てて温度が低下する。そして、冷却媒体と熱交換した液相の冷媒は、蒸発して気相の冷媒となり、冷媒配管6cを介して圧縮機1へ送られる。
中間冷却器4は、凝縮器2において液化された冷媒を液相とガス相とに分離するものである。さらに、中間冷却器4は、凝縮器2と蒸発器3との間に一定の圧力差を保持すると共に、液相の冷媒の一部を蒸発させて蒸発器3での潜熱の増大を図るものである。また、中間冷却器4は、凝縮器2にて凝縮し切れなかった気相の冷媒と、液相の冷媒とが気液二相流流体として導入され、この気相の冷媒と液相の冷媒とを分離する気液分離器として機能するものであり、分離された気相の冷媒は圧縮機1へ送られ、液相の冷媒は蒸発器3へ送られる。
インバータ5は、圧縮機1の電動機11に電気的に接続され、この電動機11を駆動制御するためのものである。インバータ5は、筐体51内に、IGBT(Insulated Gate Bipolar Transistor)などの半導体素子52が配置されている。
上述した冷凍機に係り、インバータ5では、半導体素子52が通電時に発熱する。このため、本実施の形態では、半導体素子52を冷却するためのインバータ冷却装置を備えている。
インバータ冷却装置は、図1に示すように、バイパス管71と、調整弁72と、筐体内温度検出手段73と、制御手段74とで構成されている。
バイパス管71は、凝縮器2と蒸発器3とを連通する冷媒配管6bの途中に迂回して設けられている。このバイパス管71は、インバータ5の筐体51内に配置されている。すなわち、バイパス管71は、凝縮器2と蒸発器3との差圧により凝縮器2から蒸発器3に至る液相の冷媒をインバータ5の筐体51内に流通させる。これにより、インバータ5の筐体51内では、液相の冷媒に熱を捨てて温度が低下し、半導体素子52が冷却され、液相の冷媒は蒸発して気相の冷媒となる。すなわち、インバータ5の筐体51内に流通する液相の冷媒の潜熱により半導体素子52が冷却されることになる。
また、バイパス管71を流通して半導体素子52の冷却に供された冷媒は、冷媒配管6bに戻され蒸発器3に送られる。このため、半導体素子52の冷却に供されても蒸発しきれない液相の冷媒が蒸発器3での冷却に利用することができると共に、蒸発しきれない液相の冷媒を蒸発器3にて蒸発させることができる。
ここで、インバータ5の筐体51内へのバイパス管71の具体的な配置を図2に示す。図2に示すように、筐体51内に配置された半導体素子52は、基板52aに実装されていると共に、熱伝導性を有した放熱部材52bが設けられた放熱構造とされている。放熱部材52bは、放熱性能を向上するために多数のフィン(図示せず)を有している。さらに、筐体51内には、ファン8が設けられている。ファン8は、筐体51に設けられた吸込口51cから筐体51内に空気を吸引しつつ、排気口51dから筐体51外に空気を排出するものである。バイパス管71は、このような構成において、筐体51内の吸込口51c近傍に配置されている。これにより、筐体51内に吸い込まれた空気が、放熱部材52bを通過する前に、バイパス管71を流通する液相の冷媒の潜熱により冷却されつつ、半導体素子52および放熱部材52bの周囲を通過することにより、半導体素子52が冷却される。なお、バイパス管71は、筐体51内の空気をより冷却するため、筐体51内で蛇行して配置されて、筐体51内で冷媒を流通させる経路を長く形成されていることが好ましい。
また、インバータ5の筐体51内へのバイパス管71の具体的な別の配置を図3に示す。図3に示すように、筐体51内に配置された半導体素子52は、基板52aに実装されていると共に、熱伝導性を有した放熱部材52bが設けられた放熱構造とされている。放熱部材52bは、放熱性能を向上するために多数のフィン(図示せず)を有している。バイパス管71は、このような構成において、放熱部材52bの内部に通して配置されている。これにより、放熱部材52bが、バイパス管71を流通する液相の冷媒の潜熱により冷却されることで半導体素子52が冷却される。なお、バイパス管71は、放熱部材52bをより冷却するため、放熱部材52b内で蛇行して配置されて、放熱部材52b内で冷媒を流通させる経路を長く形成されていることが好ましい。
調整弁72は、バイパス管71に設けられている。調整弁72は、アクチュエータ72aで弁72bの開度を変えることにより、バイパス管71に流通する冷媒の流量を可変するものである。
また、調整弁72にてバイパス管71に流通する冷媒の流量が調整されると、冷媒が減圧され、飽和温度が低下する。このため、冷却効率が向上するので、少量の冷媒で半導体素子52の冷却を行うことが可能である。
筐体内温度検出手段73は、インバータ5の筐体51内に配置され、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度を検出するものである。なお、図2に示すようにインバータ5がファン8を有する場合、筐体内温度検出手段73は、吸込口51c側と排気口51d側とに配置されていることが好ましい。
制御手段74は、マイコンなどで構成され、調整弁72のアクチュエータ72aを作動させ、バイパス管71に流通する冷媒の流量を制御するものである。制御手段74は、筐体内温度検出手段73に接続され、筐体内温度検出手段73にて検出された温度情報が入力される。この制御手段74には、半導体素子52の冷却に適した温度と、この温度に応じたアクチュエータ72aの作動量(調整弁72の弁72bの開度)の情報が予め記憶されている。そして、制御手段74は、筐体内温度検出手段73から入力した温度情報に基づき、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度が、半導体素子52の冷却に適した温度となるように、バイパス管71に流通する冷媒の流量を制御する。なお、図2に示すようにインバータ5がファン8を有し、筐体内温度検出手段73が吸込口51c側と排気口51d側とに配置されている場合、制御手段74は、吸込口51c側と排気口51d側との温度差に基づき、バイパス管71に流通する冷媒の流量を制御する。
このように、実施の形態1のインバータ冷却装置では、凝縮器2と蒸発器3とを連通する冷媒配管6bの途中で迂回し、かつインバータ5の筐体51内に配置されたバイパス管71と、バイパス管71に設けられてバイパス管71に流通する液相の冷媒の流量を可変する調整弁72とを備えている。そして、実施の形態1のインバータ冷却装置の作用としてのインバータ冷却方法では、凝縮器2から蒸発器3に流通する液相の冷媒の一部を、バイパス管71を介してインバータ5の筐体51内に導入させつつ、バイパス管71に流通する液相の冷媒の流量を調整する。
このインバータ冷却装置およびインバータ冷却方法によれば、バイパス管71に流通する液相の冷媒により、インバータ5の半導体素子52を冷却するため、ファンおよび放熱部材の小型化を図ることができ、インバータ5を小型化することが可能になる。このため、冷凍機を構成する圧縮機1、凝縮器2、蒸発器3、または中間冷却器4にインバータ5を一体に設けることができ、インバータ5を含む冷凍機を小型化することが可能になる。しかも、バイパス管71に流通する液相の冷媒の流量を調整することで、半導体素子52の冷却量が調整できるので、半導体素子52を所望の温度に冷却でき、半導体素子52への結露の発生を防止することが可能になる。
また、実施の形態1のインバータ冷却装置では、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度を検出する筐体内温度検出手段73と、筐体内温度検出手段73が検出した温度に基づいて調整弁72を制御する制御手段74とを備えている。
このインバータ冷却装置によれば、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度に基づいて、調整弁72を制御し、バイパス管71に流通する液相の冷媒の流量を調整することで、結露を生じない所望の温度に半導体素子52を冷却することが可能になる。
また、実施の形態1のインバータ冷却装置では、半導体素子52に熱伝達性を有した放熱部材52bが設けられ、この放熱部材52bにバイパス管71が配置されている(図3参照)。
このインバータ冷却装置によれば、バイパス管71に流通する液相の冷媒により、半導体素子52の放熱部材52bを直接冷却することで、冷却効率が向上するので、ファン8(図2参照)を不用にでき、インバータ5をさらに小型化することが可能になる。
また、実施の形態1の冷凍機では、上述のインバータ冷却装置を適用したことにより、インバータ5を含む冷凍機を小型化しつつ、半導体素子52への結露の発生を防止することが可能になる。この結果、インバータ5の機能を損なわせる事態を防ぎ、安定した冷凍性能を得ることが可能になる。
[実施の形態2]
実施の形態2は、冷凍機の構成が上述した実施の形態1と同じであり、インバータ冷却装置の構成が異なる。従って、実施の形態2では、インバータ冷却装置について説明し、その他同等部分には、同一符号を付してその説明を省略する。
インバータ冷却装置は、図4に示すように、バイパス管71’と、調整弁72’と、筐体内温度検出手段73’と、制御手段74’と、筐体外温度検出手段75’と、筐体外湿度検出手段76’で構成されている。
バイパス管71’、調整弁72’および筐体内温度検出手段73’は、上述した実施の形態1のバイパス管71、調整弁72および筐体内温度検出手段73と同様のものである。また、インバータ5の筐体51内へのバイパス管71’の具体的な配置も、上述した実施の形態1と同様である(図2および図3参照)。
筐体外温度検出手段75’は、インバータ5の筐体51外に配置され、インバータ5の筐体51外の周囲の温度を検出するものである。
筐体外湿度検出手段76’は、インバータ5の筐体51外に配置され、インバータ5の筐体51外の周囲の湿度を検出するものである。
制御手段74’は、マイコンなどで構成され、調整弁72’のアクチュエータ72a’を作動させ、バイパス管71’に流通する冷媒の流量を制御するものである。制御手段74’は、筐体内温度検出手段73’に接続され、筐体内温度検出手段73’にて検出された温度情報が入力される。また、制御手段74’は、筐体外温度検出手段75’に接続され、筐体外温度検出手段75’にて検出された温度情報が入力される。また、制御手段74’は、筐体外湿度検出手段76’に接続され、筐体外湿度検出手段76’にて検出された湿度情報が入力される。この制御手段74’には、露点温度に基づく半導体素子52の冷却に適した温度と、この温度に応じたアクチュエータ72a’の作動量(調整弁72’の弁72b’の開度)の情報が予め記憶されている。そして、制御手段74’は、筐体内温度検出手段73’から入力した温度情報、筐体外温度検出手段75’から入力した温度情報、および筐体外湿度検出手段76’から入力した湿度情報から露点温度に基づき、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度が、露点温度に応じて半導体素子52の冷却に適した温度(露点温度以上の温度)となるように、バイパス管71に流通する冷媒の流量を制御する。
このように、実施の形態2のインバータ冷却装置では、凝縮器2と蒸発器3とを連通する冷媒配管6bの途中で迂回し、かつインバータ5の筐体51内に配置されたバイパス管71’と、バイパス管71’に設けられてバイパス管71’に流通する液相の冷媒の流量を可変する調整弁72’とを備えている。そして、実施の形態2のインバータ冷却装置の作用としてのインバータ冷却方法では、凝縮器2から蒸発器3に流通する液相の冷媒の一部を、バイパス管71’を介してインバータ5の筐体51内に導入させつつ、バイパス管71’に流通する液相の冷媒の流量を調整する。
このインバータ冷却装置およびインバータ冷却方法によれば、バイパス管71’に流通する液相の冷媒により、インバータ5の半導体素子52を冷却するため、ファンおよび放熱部材の小型化を図ることができ、インバータ5を小型化することが可能になる。このため、冷凍機を構成する圧縮機1、凝縮器2、蒸発器3、または中間冷却器4にインバータ5を一体に設けることができ、インバータ5を含む冷凍機を小型化することが可能になる。しかも、バイパス管71’に流通する液相の冷媒の流量を調整することで、半導体素子52の冷却量が調整できるので、半導体素子52を所望の温度に冷却でき、半導体素子52への結露の発生を防止することが可能になる。
また、実施の形態2のインバータ冷却装置では、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度を検出する筐体内温度検出手段73’と、インバータ5の筐体51外の温度を検出する筐体外温度検出手段75’と、インバータ5の筐体51外の湿度を検出する筐体外湿度検出手段76’と、筐体内温度検出手段73’が検出した温度、筐体外温度検出手段75’が検出した温度、および筐体外湿度検出手段76’が検出した湿度に基づいて、冷却する半導体素子52への結露を防止するように調整弁72’を制御する制御手段74’とを備えている。
このインバータ冷却装置によれば、インバータ5の筐体51内の温度、またはインバータ5の筐体51内に配置された半導体素子52の温度と、筐体51外の温度と、筐体51外の湿度とに基づいて、調整弁72’を制御し、バイパス管71’に流通する液相の冷媒の流量を調整することで、結露を生じない露点以上の温度に半導体素子52を冷却することが可能になる。
また、実施の形態2のインバータ冷却装置では、半導体素子52に熱伝達性を有した放熱部材52bが設けられ、この放熱部材52bにバイパス管71’が配置されている(図3参照)。
このインバータ冷却装置によれば、バイパス管71’に流通する液相の冷媒により、半導体素子52の放熱部材52bを直接冷却することで、冷却効率が向上するので、ファン8(図2参照)を不用にでき、インバータ5をさらに小型化することが可能になる。
また、実施の形態2の冷凍機では、上述のインバータ冷却装置を適用したことにより、インバータ5を含む冷凍機を小型化しつつ、半導体素子52への結露の発生を防止することが可能になる。この結果、インバータ5の機能を損なわせる事態を防ぎ、安定した冷凍性能を得ることが可能になる。
[実施の形態3]
実施の形態3は、冷凍機の構成が上述した実施の形態1と同じであり、インバータ冷却装置の構成が異なる。従って、実施の形態3では、インバータ冷却装置について説明し、その他同等部分には、同一符号を付してその説明を省略する。
インバータ冷却装置は、図5に示すように、バイパス管71”と、調整弁72”と、制御手段74”とで構成されている。
バイパス管71”および調整弁72”は、上述した実施の形態1のバイパス管71および調整弁72と同様のものである。また、インバータ5の筐体51内へのバイパス管71”の具体的な配置も、上述した実施の形態1と同様である(図2および図3参照)。
制御手段74”は、マイコンなどで構成され、調整弁72”のアクチュエータ72a”を作動させ、バイパス管71”に流通する冷媒の流量を制御するものである。制御手段74”は、圧縮機1を駆動制御するインバータ5の出力情報が入力される。この制御手段74”には、インバータ5の発熱量に基づく半導体素子52の冷却に適した温度と、この温度に応じたアクチュエータ72a”の作動量(調整弁72”の弁72b”の開度)の情報が予め記憶されている。そして、制御手段74”は、インバータ5の出力情報から圧縮機1を制御する際のインバータ5(半導体素子52)の発熱量を算出し、この発熱量に基づいて、半導体素子52の冷却に適した温度となるように、バイパス管71”に流通する冷媒の流量を制御する。
このように、実施の形態3のインバータ冷却装置では、凝縮器2と蒸発器3とを連通する冷媒配管6bの途中で迂回し、かつインバータ5の筐体51内に配置されたバイパス管71”と、バイパス管71”に設けられてバイパス管71”に流通する液相の冷媒の流量を可変する調整弁72”とを備えている。そして、実施の形態3のインバータ冷却装置の作用としてのインバータ冷却方法では、凝縮器2から蒸発器3に流通する液相の冷媒の一部を、バイパス管71”を介してインバータ5の筐体51内に導入させつつ、バイパス管71”に流通する液相の冷媒の流量を調整する。
このインバータ冷却装置およびインバータ冷却方法によれば、バイパス管71”に流通する液相の冷媒により、インバータ5の半導体素子52を冷却するため、ファンおよび放熱部材の小型化を図ることができ、インバータ5を小型化することが可能になる。このため、冷凍機を構成する圧縮機1、凝縮器2、蒸発器3、または中間冷却器4にインバータ5を一体に設けることができ、インバータ5を含む冷凍機を小型化することが可能になる。しかも、バイパス管71”に流通する液相の冷媒の流量を調整することで、半導体素子52の冷却量が調整できるので、半導体素子52を所望の温度に冷却でき、半導体素子52への結露の発生を防止することが可能になる。
また、実施の形態3のインバータ冷却装置では、圧縮機1を駆動制御するインバータ5の出力電力・電流などに基づいて、調整弁72”を制御する制御手段74”を備えている。
このインバータ冷却装置によれば、圧縮機1を駆動制御するインバータ5の出力情報から、インバータ5(半導体素子52)の発熱量を算出し、この発熱量に基づいて、調整弁72”を制御し、バイパス管71”に流通する液相の冷媒の流量を調整することで、結露を生じない所望の温度に半導体素子52を冷却することが可能になる。
また、実施の形態3のインバータ冷却装置では、半導体素子52に熱伝達性を有した放熱部材52bが設けられ、この放熱部材52bにバイパス管71”が配置されている(図3参照)。
このインバータ冷却装置によれば、バイパス管71”に流通する液相の冷媒により、半導体素子52の放熱部材52bを直接冷却することで、冷却効率が向上するので、ファン8(図2参照)を不用にでき、インバータ5をさらに小型化することが可能になる。
また、実施の形態3の冷凍機では、上述のインバータ冷却装置を適用したことにより、インバータ5を含む冷凍機を小型化しつつ、半導体素子52への結露の発生を防止することが可能になる。この結果、インバータ5の機能を損なわせる事態を防ぎ、安定した冷凍性能を得ることが可能になる。
ところで、上述した実施の形態1〜実施の形態3では、バイパス管71,71’,71”により、凝縮器2から蒸発器3に至る液相の冷媒をインバータ5の筐体51内に流通させ、蒸発器3に送っている。その他、図6に示すように、バイパス管71,71’,71”により、凝縮器2から蒸発器3に至る液相の冷媒をインバータ5の筐体51内に流通させた後、中間冷却器4に送ってもよい。すなわち、インバータ5の筐体51内に流通させた冷媒は、中間冷却器4に送られることで、減圧され、さらに一定の圧力差を保持されると共に、一部蒸発されて蒸発器3での潜熱が増大され、さらにまた気液分離されて気相の冷媒は圧縮機1へ送られ、液相の冷媒は蒸発器3へ送られることになる。
また、その他、図7に示すように、バイパス管71,71’,71”により、中間冷却器4から蒸発器3に至る液相の冷媒をインバータ5の筐体51内に流通させた後、蒸発器3に送ってもよい。すなわち、インバータ5の筐体51内に流通される冷媒は、それ以前に中間冷却器4に送られることで、減圧され、さらに一定の圧力差を保持されると共に、一部蒸発されて蒸発器3での潜熱が増大されることになる。
以上のように、本発明に係るインバータ冷却装置およびインバータ冷却方法ならびに冷凍機は、冷凍機の小型化を図ると共に、インバータの半導体素子への結露の発生を防ぐことに適している。
1 圧縮機
11 電動機
12 圧縮部
2 凝縮器
21 冷却水配管
3 蒸発器
31 冷却媒体配管
4 中間冷却器
5 インバータ
51 筐体
51c 吸込口
51d 排気口
52 半導体素子
52a 基板
52b 放熱部材
6 循環経路
6a,6b,6c 冷媒配管
71,71’,71” バイパス管
72,72’,72” 調整弁
72a,72a’,72a” アクチュエータ
72b,72b’,72b” 弁
73,73’ 筐体内温度検出手段
74,74’,74” 制御手段
75’ 筐体外温度検出手段
76’ 筐体外湿度検出手段
8 ファン

Claims (7)

  1. 冷媒を圧縮する圧縮機と、前記圧縮機により圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器により凝縮された冷媒を蒸発させる蒸発器と、前記圧縮機を駆動制御するインバータとを備えた冷凍機に係り、前記インバータを冷却するインバータ冷却装置において、
    前記凝縮器において液化された冷媒を液相と気相に分離し、分離した液相の冷媒を前記蒸発器に送り、分離した気相の冷媒を前記圧縮機に送る中間冷却器と、
    前記凝縮器と前記中間冷却器とを連通する冷媒配管の途中で迂回し、かつ前記インバータの筐体内に配置され、前記中間冷却器に接続されたバイパス管と、
    前記バイパス管に設けられて前記バイパス管に流通する冷媒の流量を可変する調整弁と、
    を備えたことを特徴とするインバータ冷却装置。
  2. 前記インバータの筐体内の温度、または前記インバータの筐体内に配置された半導体素子の温度を検出する筐体内温度検出手段と、
    前記筐体内温度検出手段が検出した温度に基づいて、前記調整弁を制御する制御手段と、
    を備えたことを特徴とする請求項1に記載のインバータ冷却装置。
  3. 前記インバータの筐体内の温度、または前記インバータの筐体内に配置された半導体素子の温度を検出する筐体内温度検出手段と、
    前記インバータの筐体外の温度を検出する筐体外温度検出手段と、
    前記インバータの筐体外の湿度を検出する筐体外湿度検出手段と、
    前記筐体内温度検出手段が検出した温度、前記筐体外温度検出手段が検出した温度、および前記筐体外湿度検出手段が検出した湿度に基づいて、前記調整弁を制御する制御手段と、
    を備えたことを特徴とする請求項1に記載のインバータ冷却装置。
  4. 前記圧縮機を駆動制御する前記インバータの出力に基づいて、前記調整弁を制御する制御手段を備えたことを特徴とする請求項1に記載のインバータ冷却装置。
  5. 前記半導体素子に熱伝達性を有した放熱部材が設けられ、前記放熱部材に前記バイパス管を配置したことを特徴とする請求項1〜4の何れか一つに記載のインバータ冷却装置。
  6. 冷媒を圧縮する圧縮機と、前記圧縮機により圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器により凝縮された冷媒を蒸発させる蒸発器と、前記圧縮機を駆動制御するインバータとを備えた冷却装置に係り、前記インバータを冷却するインバータ冷却方法において、
    前記冷却装置は、前記凝縮器において液化された冷媒を液相と気相に分離し、分離した液相の冷媒を前記蒸発器に送り、分離した気相の冷媒を前記圧縮機に送る中間冷却器をさらに備え、
    前記凝縮器から前記中間冷却器に流通する冷媒の一部を、バイパス管を介して前記インバータの筐体内に導入させて前記中間冷却器に送りつつ、前記バイパス管に流通する冷媒の流量を調整することを特徴とする冷却装置のインバータ冷却方法。
  7. 冷媒を圧縮する圧縮機と、前記圧縮機により圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器により凝縮された冷媒を蒸発させる蒸発器と、前記圧縮機を駆動制御するインバータとを備えた冷凍機において、
    前記インバータを冷却する態様で、請求項1〜5の何れか一つに記載のインバータ冷却装置を適用したことを特徴とする冷凍機。
JP2009118215A 2009-05-15 2009-05-15 インバータ冷却装置およびインバータ冷却方法ならびに冷凍機 Active JP5455431B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009118215A JP5455431B2 (ja) 2009-05-15 2009-05-15 インバータ冷却装置およびインバータ冷却方法ならびに冷凍機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118215A JP5455431B2 (ja) 2009-05-15 2009-05-15 インバータ冷却装置およびインバータ冷却方法ならびに冷凍機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013148759A Division JP5611423B2 (ja) 2013-07-17 2013-07-17 インバータ冷却装置およびインバータ冷却方法ならびに冷凍機

Publications (2)

Publication Number Publication Date
JP2010266132A JP2010266132A (ja) 2010-11-25
JP5455431B2 true JP5455431B2 (ja) 2014-03-26

Family

ID=43363258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118215A Active JP5455431B2 (ja) 2009-05-15 2009-05-15 インバータ冷却装置およびインバータ冷却方法ならびに冷凍機

Country Status (1)

Country Link
JP (1) JP5455431B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018076734A1 (zh) * 2016-10-27 2018-05-03 重庆美的通用制冷设备有限公司 空调系统

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8950206B2 (en) 2007-10-05 2015-02-10 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US7895003B2 (en) 2007-10-05 2011-02-22 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US8459053B2 (en) 2007-10-08 2013-06-11 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US8418483B2 (en) 2007-10-08 2013-04-16 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US9541907B2 (en) 2007-10-08 2017-01-10 Emerson Climate Technologies, Inc. System and method for calibrating parameters for a refrigeration system with a variable speed compressor
KR20130138082A (ko) * 2010-12-16 2013-12-18 파나소닉 주식회사 냉각 장치 및 그것을 구비한 공기 조화기
US20130255932A1 (en) * 2012-03-30 2013-10-03 Emerson Climate Technologies, Inc. Heat sink for a condensing unit and method of using same
JP6029852B2 (ja) * 2012-05-10 2016-11-24 シャープ株式会社 ヒートポンプ式加熱装置
JP6300393B2 (ja) * 2012-11-20 2018-03-28 三星電子株式会社Samsung Electronics Co.,Ltd. 空気調和機
KR102173373B1 (ko) * 2013-07-05 2020-11-03 엘지전자 주식회사 공기조화기
JP6331278B2 (ja) * 2013-07-18 2018-05-30 ダイキン工業株式会社 冷凍装置
CN104457006A (zh) * 2013-09-17 2015-03-25 珠海格力电器股份有限公司 发热功率器件冷却系统
CN103486752A (zh) * 2013-09-25 2014-01-01 珠海格力电器股份有限公司 电力电子器件冷却系统及分布式发电系统
JP6484930B2 (ja) * 2014-05-08 2019-03-20 ダイキン工業株式会社 冷凍装置
CN105241051A (zh) * 2015-09-24 2016-01-13 广东美的制冷设备有限公司 空调器
CN106637871B (zh) * 2015-10-30 2020-01-10 浙江三花智能控制股份有限公司 一种热泵干衣机及其热泵系统
CN105423657A (zh) * 2015-12-18 2016-03-23 珠海格力电器股份有限公司 一种冷媒冷却装置、空调系统和控制方法
JP2017141987A (ja) * 2016-02-08 2017-08-17 三菱重工業株式会社 冷凍サイクル装置
DE102017204526A1 (de) 2017-03-17 2018-09-20 Robert Bosch Gmbh Verfahren zum Kühlen eines Umrichters, insbesondere eines Frequenzumrichters in einem Wärmepumpenkreislauf
CN107152817B (zh) * 2017-05-23 2019-01-29 珠海格力电器股份有限公司 空调器、空调器的冷却系统及控制方法
US11280524B2 (en) * 2017-10-10 2022-03-22 Johnson Controls Technology Company Systems for a chiller electrical enclosure
KR102022966B1 (ko) * 2018-01-30 2019-09-19 엘지전자 주식회사 사용 수명을 증가시킨 압축기 제어유닛 및 이를 이용한 냉동 장치
CN109883086B (zh) * 2019-02-20 2020-04-28 珠海格力电器股份有限公司 空调器的冷却系统、空调器及控制方法
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element
DE102020211295A1 (de) 2020-09-09 2022-03-10 Robert Bosch Gesellschaft mit beschränkter Haftung Wärmepumpensystem und Verfahren zum Betrieb eines Wärmepumpensystems
JP7265193B2 (ja) * 2021-09-30 2023-04-26 ダイキン工業株式会社 カスケードユニットおよび冷凍サイクル装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725484B2 (ja) * 1991-07-12 1998-03-11 三菱電機株式会社 空気調和機の制御装置
JPH07103578A (ja) * 1993-09-30 1995-04-18 Toshiba Corp 冷蔵庫のコンプレッサの保護装置
US6116040A (en) * 1999-03-15 2000-09-12 Carrier Corporation Apparatus for cooling the power electronics of a refrigeration compressor drive
JP2003276426A (ja) * 2002-03-22 2003-09-30 Mitsubishi Heavy Ind Ltd 車両用空調装置
JP5446064B2 (ja) * 2006-11-13 2014-03-19 ダイキン工業株式会社 熱交換システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018076734A1 (zh) * 2016-10-27 2018-05-03 重庆美的通用制冷设备有限公司 空调系统

Also Published As

Publication number Publication date
JP2010266132A (ja) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5455431B2 (ja) インバータ冷却装置およびインバータ冷却方法ならびに冷凍機
JP5611423B2 (ja) インバータ冷却装置およびインバータ冷却方法ならびに冷凍機
JP2007139269A (ja) 超臨界冷凍サイクル
US8590327B2 (en) Refrigerating apparatus
JP4731806B2 (ja) 冷凍サイクル装置およびその制御方法
WO2016121385A1 (ja) 空調装置
JP6854892B2 (ja) 熱交換ユニット及び空気調和装置
US10775086B2 (en) Method for controlling a vapour compression system in ejector mode for a prolonged time
CN106662364A (zh) 用于变速驱动器的制冷剂冷却
JP2008014563A (ja) 蓄冷熱式空調システム
WO2017006452A1 (ja) 空気調和装置
US10260783B2 (en) Chiller compressor oil conditioning
JP4258944B2 (ja) 超臨界蒸気圧縮機式冷凍サイクル
JP2010101621A (ja) 冷凍サイクル装置およびその制御方法
JP2009210213A (ja) 鉄道車両用空調装置
JP2009299945A (ja) 電動コンプレッサの駆動装置、電動コンプレッサ、冷凍サイクル装置、および空調装置
JP2008082637A (ja) 超臨界冷凍サイクル
JP2001251078A (ja) 発熱体冷却装置
US10508841B2 (en) Cooling circuit for a variable frequency drive
JP2017137012A (ja) 車両用空調装置、それを備える車両及び車両用空調装置の制御方法
CN115866973A (zh) 机柜空调、机柜空调散热系统及控制方法
JP2016223743A (ja) 空気調和装置
JP2018124017A (ja) 冷却システム
JP6275015B2 (ja) 鉄道車両用空調装置
JP6733625B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R151 Written notification of patent or utility model registration

Ref document number: 5455431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350