JP5453459B2 - Grinding method of lens spherical surface using dish-shaped grinding wheel - Google Patents

Grinding method of lens spherical surface using dish-shaped grinding wheel Download PDF

Info

Publication number
JP5453459B2
JP5453459B2 JP2011551589A JP2011551589A JP5453459B2 JP 5453459 B2 JP5453459 B2 JP 5453459B2 JP 2011551589 A JP2011551589 A JP 2011551589A JP 2011551589 A JP2011551589 A JP 2011551589A JP 5453459 B2 JP5453459 B2 JP 5453459B2
Authority
JP
Japan
Prior art keywords
grinding
dish
rotational speed
lens
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011551589A
Other languages
Japanese (ja)
Other versions
JPWO2011092748A1 (en
Inventor
秀夫 小嶋
浩 福沢
善之 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojima Engineering Co Ltd
Original Assignee
Kojima Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojima Engineering Co Ltd filed Critical Kojima Engineering Co Ltd
Publication of JPWO2011092748A1 publication Critical patent/JPWO2011092748A1/en
Application granted granted Critical
Publication of JP5453459B2 publication Critical patent/JP5453459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/02Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor by means of tools with abrading surfaces corresponding in shape with the lenses to be made

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

本発明は球芯式レンズ研削加工装置を用いた球面レンズの研削加工方法に関する。更に詳しくは、粗研削工程と精研削工程を一元化し、精研削用の皿形砥石のみを用いてレンズ素材の粗研削および精研削を連続して行うことのできるレンズ球面の研削加工方法に関する。   The present invention relates to a spherical lens grinding method using a spherical core type lens grinding apparatus. More specifically, the present invention relates to a method for grinding a lens spherical surface, in which the rough grinding process and the fine grinding process are unified, and the rough grinding and the fine grinding of the lens material can be continuously performed using only the dish-shaped grindstone for fine grinding.

球面レンズの研削加工においては、プレス成形品からなるレンズ素材、あるいは、丸棒状のレンズ素材をカットすることにより得られた円柱状のレンズ素材に対して粗研削を施して(粗研削工程)、大凡の球状レンズ面を備えた粗研削レンズを得るようにしている。次に、粗研削レンズの球状レンズ面に精研削を施して(精研削工程)、所定の形状精度の球状レンズ面を備えた精研削レンズを得るようにしている。研削加工によって得られた球状レンズ面には研磨加工が施されて、目標とする最終形状精度のレンズ球面を備えたレンズが得られる。   In the spherical lens grinding process, rough grinding is performed on the lens material made of press-molded products or the cylindrical lens material obtained by cutting the round rod-shaped lens material (rough grinding process) A rough grinding lens having a roughly spherical lens surface is obtained. Next, fine grinding is performed on the spherical lens surface of the rough grinding lens (fine grinding step) to obtain a fine grinding lens having a spherical lens surface with a predetermined shape accuracy. The spherical lens surface obtained by the grinding process is polished to obtain a lens having a lens spherical surface with a target final shape accuracy.

このように、従来における球面レンズの研削加工は粗研削工程と精研削工程を含んでいる。粗研削工程ではカップ型砥石を用いた研削盤により粗研削加工が行われ、精研削工程では皿形砥石を用いた研削装置により精研削加工が行われる。このような球面レンズの研削加工方法は特許文献1、2、3に開示されている。特許文献1、2には、同一の研削装置においてカップ型砥石と皿形砥石を交換することにより、別個の装置を用いることなく、粗研削および精研削を行うようにしている。特許文献3には、粗研削に用いたカップ型砥石を用いて精研削を行う方法が開示されている。   Thus, the conventional grinding process of the spherical lens includes a rough grinding process and a fine grinding process. In the rough grinding process, rough grinding is performed by a grinder using a cup-type grindstone, and in the fine grinding process, fine grinding is performed by a grinding apparatus using a dish-shaped grindstone. Such spherical lens grinding methods are disclosed in Patent Documents 1, 2, and 3. In Patent Documents 1 and 2, rough grinding and fine grinding are performed without using separate devices by exchanging the cup-type grindstone and the dish-shaped grindstone in the same grinding device. Patent Document 3 discloses a method of performing fine grinding using a cup-type grindstone used for rough grinding.

特開2006−297520号公報JP 2006-297520 A 特開2009−66724号公報JP 2009-66724 A 特開2009−90414号公報JP 2009-90414 A

粗研削工程と精研削工程からなる球面レンズの研削加工方法においては次のような解決すべき課題がある。まず、粗研削の加工精度の維持が困難な為、精研削工程において、レンズ素材の形状ばらつきに起因して皿形砥石の摩耗が激しく、精研削の精度を維持することが困難な場合がある。また、粗研削と精研削ではそれぞれ異なる加工技術が必要であり、それぞれの加工技術に熟練した技術者が必要とされている。   The spherical lens grinding method composed of the rough grinding process and the fine grinding process has the following problems to be solved. First, because it is difficult to maintain the processing accuracy of rough grinding, in the fine grinding process, there is a case where it is difficult to maintain the precision of precision grinding due to severe wear of the dish-shaped grindstone due to variations in the shape of the lens material. . In addition, rough grinding and fine grinding require different processing techniques, and engineers skilled in each processing technique are required.

本発明の課題は、このような点に鑑みて、粗研削工程と精研削工程を一元化し、精研削に用いる皿形工具のみを用いてレンズ素材の表面に研削加工を施して、研磨工程に移すことのできる精研削状態のレンズ球面を得ることのできる球面レンズの研削加工方法を提案することにある。   In view of these points, the object of the present invention is to unify the rough grinding process and the fine grinding process, and to grind the surface of the lens material using only the dish-shaped tool used for fine grinding, and to the polishing process. The object of the present invention is to propose a spherical lens grinding method capable of obtaining a precisely ground lens spherical surface that can be transferred.

上記の課題を解決するために、本発明は、
ダイヤモンド砥粒を備えた球状砥石面を有する皿形砥石を、研削対象のレンズ素材の被研削面に所定の加工圧力で押しつけ、この状態で、前記皿形砥石を所定の回転数で回転させると共に揺動させながら前記被研削面を球面に研削する皿形砥石を用いたレンズ球面の研削加工方法であって、
前記加工圧力が第1加工圧力、前記回転数が第1回転数で研削を行う初期研削工程と、
前記加工圧力が第2加工圧力、前記回転数が第2回転数で研削を行う中期研削工程と、
前記加工圧力が第3加工圧力、前記回転数が第3回転数で研削を行う後期研削工程とを有し、
前記第2加工圧力は前記球状砥石面が前記レンズ素材に食い込み可能な圧力であり、前記レンズ素材の硬さ、および、前記レンズ素材の前記被研削面と前記皿形砥石の前記球状砥石面との接触面積から、前記皿形砥石の食い込み量を求め、当該食い込み量に基づき前記第2加工圧力を算出し、
前記第2回転数を、前記加工圧力を前記第2加工圧力に設定した場合において前記皿形砥石の前記ダイヤモンド砥粒が前記レンズ素材に食い込み可能な回転数に設定し、
前記第1加工圧力を前記第2加工圧力よりも低い値に設定し、前記第1回転数を前記第2回転数よりも低い値に設定し、
前記第3加工圧力を前記第1加工圧力よりも低い値に設定し、前記第3回転数を前記第2回転数よりも低く前記第1回転数よりも高い値に設定することを特徴としている。
In order to solve the above problems, the present invention provides:
A dish-shaped grindstone having a spherical grindstone surface provided with diamond abrasive grains is pressed against a surface to be ground of a lens material to be ground with a predetermined processing pressure, and in this state, the dish-shaped grindstone is rotated at a predetermined rotation speed. A method of grinding a lens spherical surface using a dish-shaped grindstone that grinds the surface to be ground into a spherical surface while rocking,
An initial grinding step in which the machining pressure is a first machining pressure, and the rotational speed is ground at a first rotational speed;
A medium-term grinding process in which the machining pressure is a second machining pressure, and the rotational speed is ground at a second rotational speed;
A second grinding step in which the machining pressure is a third machining pressure, and the rotational speed is ground at a third rotational speed;
The second processing pressure is a pressure at which the spherical grindstone surface can bite into the lens material, the hardness of the lens material, and the surface to be ground of the lens material and the spherical grindstone surface of the dish-shaped grindstone From the contact area, the amount of biting of the dish-shaped grindstone is obtained, and the second processing pressure is calculated based on the amount of biting,
The second rotational speed is set to a rotational speed at which the diamond abrasive grains of the dish-shaped grindstone can bite into the lens material when the processing pressure is set to the second processing pressure,
Setting the first processing pressure to a value lower than the second processing pressure, and setting the first rotational speed to a value lower than the second rotational speed;
The third processing pressure is set to a value lower than the first processing pressure, and the third rotational speed is set to a value lower than the second rotational speed and higher than the first rotational speed. .

上記の「レンズ素材に食い込み可能な回転数」とは、前記加工圧力を前記第2加工圧力に設定して皿形砥石の回転数を変化させた場合に、加工時間の変化がほぼ無くなる最大回転数以下の回転数を意味している。すなわち、この最大回転数よりも高い回転数では、加工時間が短縮されなくなり、皿形砥石の球状砥石面とレンズ素材の被研削面の間に滑りが発生し、砥粒がレンズ素材の表面に食い込めない状況になる。   The above “number of revolutions that can bite into the lens material” is the maximum number of revolutions that substantially eliminates the change in machining time when the machining pressure is set to the second machining pressure and the revolution speed of the dish-shaped grindstone is changed. The number of rotations is less than the number. That is, when the rotational speed is higher than the maximum rotational speed, the processing time is not shortened, slip occurs between the spherical grinding wheel surface of the dish-shaped grinding wheel and the surface to be ground of the lens material, and the abrasive grains are formed on the surface of the lens material. It becomes a situation that can not be eaten.

ここで、前記初期研削工程は、前記レンズ素材の前記被研削面が前記球状砥石面に全体として接触した状態が形成されるまで行い、前記中期研削工程は、前記レンズ素材の中心肉厚が目標値よりも予め設定した寸法だけ厚い状態が形成されるまで行うようにすればよい。   Here, the initial grinding step is performed until a state in which the surface to be ground of the lens material is in contact with the spherical grindstone surface as a whole is formed. The process may be performed until a state thicker than the value by a preset dimension is formed.

また、少なくとも前記中期研削工程においては、前記レンズ素材の前記被研削面が前記皿形砥石の前記球状砥石面を摺動する領域を定期的に変化させることが望ましい。   Further, at least in the medium-term grinding step, it is desirable to periodically change the region in which the surface to be ground of the lens material slides on the spherical grinding wheel surface of the dish-shaped grinding stone.

本発明において、前記レンズ素材の硬さがヌープ硬度630の場合には、前記第2加工圧力を10kg/平方cm、前記第2回転数を1500rpmとし、前記第1加工圧力を2kg/平方cm、前記第1回転数を400〜600rpmとし、前記第3加工圧力を1.5kg/平方cm、前記第3回転数を1000rpmに設定することができる。   In the present invention, when the hardness of the lens material is Knoop hardness 630, the second processing pressure is 10 kg / square cm, the second rotational speed is 1500 rpm, the first processing pressure is 2 kg / square cm, The first rotation speed can be set to 400 to 600 rpm, the third processing pressure can be set to 1.5 kg / square cm, and the third rotation speed can be set to 1000 rpm.

次に、本発明の球芯式レンズ研削加工装置は、
前記レンズ素材を保持するレンズ保持具と、
前記レンズ保持具に保持された前記レンズ素材の前記被研削面が押し付けられる球状砥石面を備えた皿形砥石と、
前記球状砥石面に前記レンズ素材を押し付けるための加工圧力として、第1加工圧力、第2加工圧力および第3加工圧力を選択的に加えることのできる加圧機構と、
前記皿形砥石を回転させる回転機構と、
前記皿形砥石を揺動させる揺動機構と、
前記加圧機構、前記回転機構および前記揺動機構の駆動を制御して、上記の研削加工方法を実行させるコントローラとを有していることを特徴としている。
Next, the spherical core type lens grinding apparatus of the present invention,
A lens holder for holding the lens material;
A dish-shaped grindstone having a spherical grindstone surface against which the ground surface of the lens material held by the lens holder is pressed;
A pressurizing mechanism capable of selectively applying a first processing pressure, a second processing pressure and a third processing pressure as a processing pressure for pressing the lens material against the spherical grinding wheel surface;
A rotating mechanism for rotating the dish-shaped grindstone;
A swing mechanism for swinging the dish-shaped grindstone;
And a controller for controlling the driving of the pressurizing mechanism, the rotating mechanism, and the swinging mechanism to execute the above grinding method.

本発明によれば、レンズの精研削加工の技術のみで加工することで、加工技術の簡略化、設備の一元化、管理の一元化を図ることができ、これにより、レンズ球面の研削加工の精度、品質を向上させることができる。   According to the present invention, it is possible to simplify the processing technology, unify equipment, and unify management by processing only with the precision grinding processing technology of the lens. Quality can be improved.

本発明の方法によりレンズ球面の研削加工を行う球芯式レンズ研削加工装置の機構図である。It is a mechanism figure of the spherical-core-type lens grinding processing apparatus which grinds a lens spherical surface by the method of this invention. 図1の装置の研削動作を示す概略フローチャートである。It is a schematic flowchart which shows the grinding operation of the apparatus of FIG. レンズ研削加工における加工圧力と加工時間の関係を示すグラフである。It is a graph which shows the relationship between the processing pressure and processing time in lens grinding. レンズ研削加工における研削工具の回転数と加工時間の関係を示すグラフである。It is a graph which shows the relationship between the rotation speed of a grinding tool in lens grinding, and processing time.

以下に、図面を参照して本発明を適用したレンズ球面の研削加工方法の実施の形態を説明する。   Embodiments of a method for grinding a lens spherical surface to which the present invention is applied will be described below with reference to the drawings.

(球芯式レンズ研削加工装置)
図1は、本発明の方法により球面レンズの研削加工を行う球芯式レンズ研削加工装置の一例を示す機構図である。球芯式レンズ研削加工装置1は上ユニット2および下ユニット3を備えている。上ユニット2は下向き状態のレンズ保持具4を備えており、レンズ保持具4はレンズ加圧軸5の下端に取り付けられており、加圧シリンダ6によって下向きにユニット中心軸線2aの方向に加圧可能となっている。レンズ保持具4の下向きのレンズ保持面4aにはユニット中心軸線2aの回りに回転可能な状態で加工対象のレンズ素材7を保持可能である。また、上ユニット2は下ユニット3に対して接近および離れる方向に相対的に移動可能となっている。
(Spherical core lens grinding machine)
FIG. 1 is a mechanism diagram showing an example of a spherical core type lens grinding apparatus for grinding a spherical lens by the method of the present invention. The spherical core type lens grinding apparatus 1 includes an upper unit 2 and a lower unit 3. The upper unit 2 includes a lens holder 4 in a downward state. The lens holder 4 is attached to the lower end of the lens pressing shaft 5 and is pressed downward by the pressing cylinder 6 in the direction of the unit center axis 2a. It is possible. A lens material 7 to be processed can be held on the downward lens holding surface 4a of the lens holder 4 while being rotatable about the unit central axis 2a. Further, the upper unit 2 can move relative to the lower unit 3 in a direction approaching and leaving.

下ユニット3は上向き状態の皿形砥石8を備えており、この皿形砥石8はダイヤモンド砥粒を備えた凹状の球状砥石面8aを有しており、この球状砥石面8aに、上ユニット2の側に保持されるレンズ素材7の被研削面7aが押し付けられる。皿型砥石8は同軸状態にスピンドル軸9の上端に固定されており、スピンドル軸9はスピンドルモーター10によってその中心軸線9aの回りに回転駆動される。また、皿形砥石8およびその回転機構(スピンドル軸9、スピンドルモーター10)は揺動機構11によって支持されており、揺動機構11は、皿形砥石8を、その球状砥石面8aが中心軸線2a上に位置する揺動中心Oを中心として、設定した揺動角度θで、設定した加工半径Rで、設定した揺動方向に揺動させることが可能となっている。   The lower unit 3 includes a dish-shaped grindstone 8 in an upward state. The dish-shaped grindstone 8 has a concave spherical grindstone surface 8a including diamond abrasive grains. The upper unit 2 is provided on the spherical grindstone surface 8a. The to-be-ground surface 7a of the lens material 7 held on the side is pressed. The dish-type grindstone 8 is coaxially fixed to the upper end of the spindle shaft 9, and the spindle shaft 9 is rotationally driven around its central axis 9 a by a spindle motor 10. The dish-shaped grindstone 8 and its rotation mechanism (spindle shaft 9, spindle motor 10) are supported by a swing mechanism 11, which swings the dish-shaped grindstone 8 with its spherical grindstone surface 8a being the central axis. It is possible to oscillate in the set oscillating direction at the set oscillating angle R with the set oscillating angle θ around the oscillating center O located on 2a.

ここで、加圧シリンダ6による加圧力は、第1レギュレータ12、第2レギュレータ13および第3レギュレータ14によって三段階に切替可能となっている。これらの第1〜第3レギュレータ12、13、14によって圧力が設定される作動流体は、それぞれ、オンオフ切替可能な第1〜第3切替弁15、16、17を介して加圧シリンダ6に供給されるようになっている。この構成の加圧機構(レンズ加圧軸5、加圧シリンダ6、第1〜第3レギュレータ12〜14、第1〜第3切替弁15〜17)による加圧力の切替制御は、第1〜第3切替弁15〜17を切り替えることによって行うことができる。   Here, the pressure applied by the pressure cylinder 6 can be switched in three stages by the first regulator 12, the second regulator 13, and the third regulator 14. The working fluids whose pressures are set by the first to third regulators 12, 13, and 14 are supplied to the pressurizing cylinder 6 via first to third switching valves 15, 16, and 17 that can be switched on and off, respectively. It has come to be. The switching control of the applied pressure by the pressurizing mechanism (the lens pressurizing shaft 5, the pressurizing cylinder 6, the first to third regulators 12 to 14, the first to third switching valves 15 to 17) having this configuration is the first to the first. This can be done by switching the third switching valves 15-17.

次に、コントローラ18は各部の駆動制御を行うものであり、加圧機構の第1〜第3切替弁15〜17の切替制御はコントローラ18によって行われる。また、コントローラ18は、測長器19による測定結果に基づき、レンズ素材7の研削加工量を監視しており、この研削加工量に応じて切替弁15〜17の切替制御を行い、レンズ素材7の被研削面7aを皿形砥石8の球状砥石面8aに押し付けるための加工圧力を切り替える。さらに、コントローラ18はインバータ20を介してスピンドルモーター10を駆動制御して、皿形砥石8の回転数を制御する。さらには、コントローラ18はドライバ21を介して揺動機構11を駆動制御して、皿形砥石8の揺動方向、揺動角度θの切替制御、その揺動位置の変更などを行う。   Next, the controller 18 performs drive control of each part, and the controller 18 performs switching control of the first to third switching valves 15 to 17 of the pressurizing mechanism. Further, the controller 18 monitors the grinding amount of the lens material 7 based on the measurement result by the length measuring device 19, and performs switching control of the switching valves 15 to 17 according to the grinding amount, so that the lens material 7 The processing pressure for pressing the surface to be ground 7a against the spherical grindstone surface 8a of the dish-shaped grindstone 8 is switched. Further, the controller 18 drives and controls the spindle motor 10 via the inverter 20 to control the rotational speed of the dish-shaped grindstone 8. Further, the controller 18 drives and controls the rocking mechanism 11 via the driver 21 to perform switching control of the rocking direction and rocking angle θ of the dish-shaped grindstone 8, change of the rocking position, and the like.

(研削加工動作の例)
図2は球芯式レンズ研削加工装置1による球面レンズの研削加工動作を示す概略フローチャートである。図1、図2を参照して説明すると、まず、レンズ素材7をレンズ保持具4のレンズ保持面4aに取り付け、レンズ素材7の被研削面7aを皿形砥石8の球状砥石面8aに押し当てた状態を形成する(レンズ素材供給工程ST1)。
(Example of grinding operation)
FIG. 2 is a schematic flowchart showing the spherical lens grinding operation by the spherical core type lens grinding apparatus 1. 1 and 2, first, the lens material 7 is attached to the lens holding surface 4 a of the lens holder 4, and the surface 7 a to be ground of the lens material 7 is pushed against the spherical grinding wheel surface 8 a of the dish-shaped grindstone 8. The contact state is formed (lens material supply step ST1).

この状態で皿形砥石8の回転、揺動を開始して、レンズ素材7の被研削面7aの研削加工を開始する。研削加工の開始時点から所定時間が経過するまでの初期研削工程ST2では、第1レギュレータ12に設定された加工圧力でレンズ素材7を皿形砥石8に押し付けた状態で研削加工を行う。加工圧力は、レンズ素材7が皿形砥石8に接触している面積が小さいので、レンズ素材7がレンズ保持具4および皿形砥石8の間から脱落しない最小限のものに留めることが望ましく、次工程である中期研削工程における加工圧力よりも小さい。また、初期研削工程における皿形砥石8の回転数は低い回転数であることが望ましいが、加工時間との兼ね合いから、400〜600rpmであることが望ましい。この回転数も、次工程の中期研削工程における回転数よりも小さい。   In this state, rotation and swinging of the dish-shaped grindstone 8 is started, and grinding of the surface 7a to be ground of the lens material 7 is started. In the initial grinding step ST2 from when the grinding process starts until a predetermined time elapses, the grinding process is performed with the lens material 7 pressed against the dish-shaped grindstone 8 with the processing pressure set in the first regulator 12. Since the area where the lens material 7 is in contact with the dish-shaped grindstone 8 is small, it is desirable that the processing pressure be kept to a minimum so that the lens material 7 does not fall out between the lens holder 4 and the dish-shaped grindstone 8. It is smaller than the processing pressure in the next-stage medium-term grinding process. In addition, the rotational speed of the dish-shaped grindstone 8 in the initial grinding process is desirably a low rotational speed, but is preferably 400 to 600 rpm in consideration of the processing time. This number of rotations is also smaller than the number of rotations in the next medium-term grinding process.

初期研削工程ST2において、レンズ素材7の被研削面7aの研削が進み、当該被研削面7aがほぼ皿形砥石8の球状砥石面8aに接触した状態が形成されると、加工圧力を第2レギュレータ13に設定された加工圧力に切り替える。これにより、研削加工が中期研削工程S3に移行する。   In the initial grinding step ST2, when the grinding of the grinding surface 7a of the lens material 7 proceeds and the grinding surface 7a is substantially in contact with the spherical grinding wheel surface 8a of the dish-shaped grinding stone 8, the processing pressure is set to the second. The machining pressure set in the regulator 13 is switched to. As a result, the grinding process shifts to the medium-term grinding step S3.

中期研削工程ST3における加工圧力は皿形砥石8の砥粒(ダイヤモンドバイト)がレンズ素材7に食い込み可能な圧力とする。加工圧力はレンズ素材7に食い込み可能な圧力の最小値あるいはその近傍の値に設定することが望ましい。球面レンズ研削において通常求められる表面粗さは4μm程度である。したがって、レンズ素材7に加える加工圧力は、当該レンズ素材7の硬さ、および、レンズ素材の被研削面7aと皿形砥石8の球状砥石面8aの接触面積から、皿形砥石8の食い込み量を求め、これに基づき、中期研削工程における加工圧力を算出することができる。   The processing pressure in the medium-term grinding process ST3 is set to a pressure at which the abrasive grains (diamond bite) of the dish-shaped grindstone 8 can bite into the lens material 7. It is desirable to set the processing pressure to the minimum value of the pressure that can bite into the lens material 7 or a value in the vicinity thereof. The surface roughness usually required in spherical lens grinding is about 4 μm. Therefore, the processing pressure applied to the lens material 7 depends on the hardness of the lens material 7 and the contact area between the surface 7a to be ground of the lens material and the spherical grindstone surface 8a of the dish-shaped grindstone 8. Based on this, the processing pressure in the medium-term grinding process can be calculated.

また、中期研削工程における皿形砥石8の回転数は、皿形砥石8の砥粒(ダイヤモンドバイト)がレンズ素材7に食い込み可能な回転数に設定する。レンズ素材7に食い込み可能な回転数とは、上記のように設定した加工圧力において、皿形砥石の回転数を変化させた場合に、加工時間の変化がほぼ無くなる最大回転数以下の回転数を意味している。すなわち、この最大回転数よりも高い回転数では、加工時間が短縮されなくなり、皿形砥石の球状砥石面とレンズ素材の被研削面の間に滑りが発生し、砥粒がレンズ素材の表面に食い込めない状況になる。回転数は、レンズ素材7に食い込み可能な回転数の最大値あるいはその近傍の値に設定することが望ましい。   Further, the rotational speed of the dish-shaped grindstone 8 in the medium-term grinding process is set to a rotational speed at which the abrasive grains (diamond bite) of the dish-shaped grindstone 8 can bite into the lens material 7. The number of rotations that can bite into the lens material 7 is the number of rotations equal to or less than the maximum number of rotations at which the change in processing time is substantially eliminated when the number of rotations of the dish-shaped grindstone is changed at the processing pressure set as described above. I mean. That is, when the rotational speed is higher than the maximum rotational speed, the processing time is not shortened, slip occurs between the spherical grinding wheel surface of the dish-shaped grinding wheel and the surface to be ground of the lens material, and the abrasive grains are formed on the surface of the lens material. It becomes a situation that can not be eaten. The rotational speed is preferably set to the maximum value of the rotational speed that can bite into the lens material 7 or a value in the vicinity thereof.

中期研削工程における研削が進み、レンズ素材7の中心肉厚が目標肉厚の手前の値になった段階で、加工圧力を第3レギュレータ14に設定された加工圧力に切り替える。これにより研削加工が後期研削工程ST4に移行する。   When the grinding in the medium-term grinding process proceeds and the center thickness of the lens material 7 reaches a value before the target thickness, the processing pressure is switched to the processing pressure set in the third regulator 14. As a result, the grinding process shifts to the late grinding step ST4.

後期研削工程では、研削加工の進行速度を遅くして(皿形砥石8の回転数を小さくして)、レンズ素材7の中心肉厚にばらつきが生じない状態で、被研削面7aの表面粗さを目標とする表面粗さになるように研削する。後期研削工程では、その加工圧力が初期研削工程における加工圧力よりも更に低い圧力に設定され、その皿形砥石8の回転数が中期研削工程における回転数よりも低く、初期研削工程における回転数よりも高い値に設定される。   In the latter grinding step, the surface roughness of the surface to be ground 7a is reduced in a state where the center wall thickness of the lens material 7 does not vary by slowing the progress of the grinding process (by reducing the rotational speed of the dish-shaped grindstone 8). Grind to achieve the desired surface roughness. In the late grinding process, the working pressure is set to a pressure lower than the working pressure in the initial grinding process, and the rotational speed of the dish-shaped grindstone 8 is lower than the rotational speed in the medium grinding process, and more than the rotational speed in the initial grinding process. Is also set to a high value.

ここで、皿形砥石を用いた球面研削は複数の刃先を持つダイヤモンドバイトによる切削加工である。したがって、研削加工条件としての加工圧力および皿形砥石の回転数はレンズ素材の硬さに応じて設定することができる。すなわち、加工圧力はレンズ素材の硬さに比例させ、回転速度はそれに反比例させるようにすればよい。レンズ素材の硬さデータは素材カタログ等で簡単に入手できるので、これに基づき、最適な加工圧力、回転数を求めることができる。   Here, spherical grinding using a dish-shaped grindstone is a cutting process using a diamond cutting tool having a plurality of cutting edges. Therefore, the processing pressure as the grinding processing condition and the rotational speed of the dish-shaped grindstone can be set according to the hardness of the lens material. That is, the processing pressure may be proportional to the hardness of the lens material, and the rotation speed may be inversely proportional thereto. Since the hardness data of the lens material can be easily obtained from a material catalog or the like, the optimum processing pressure and rotation speed can be obtained based on this data.

次に、レンズ素材7の被研削面7aを研削する皿形砥石8の球状砥石面8aの部分が常に同一であると、砥石面に偏摩耗が生じ研削形状が変化してしまう。したがって、定期的に、レンズ素材7の被研削面7aが当たる球状砥石面8aの位置(球状砥石面8a上における被研削面7aの摺動領域)を変化させ、球状砥石面8aの偏摩耗を防止して、その全体が均一に摩耗するようにして、研削精度を一定に保持することが望ましい。少なくとも中期研削工程においては変化させることが望ましい。   Next, if the portion of the spherical grinding wheel surface 8a of the dish-shaped grinding wheel 8 that grinds the surface 7a to be ground of the lens material 7 is always the same, uneven wear occurs on the grinding wheel surface and the grinding shape changes. Therefore, periodically, the position of the spherical grindstone surface 8a (the sliding area of the grindstone surface 7a on the spherical grindstone surface 8a) on which the ground surface 7a of the lens material 7 abuts is changed, and uneven wear of the spherical grindstone surface 8a is caused. It is desirable to keep the grinding accuracy constant so that the whole is worn uniformly. It is desirable to change at least in the medium-term grinding process.

以上説明したように、本実施の形態においては、球面研削において、加工初期の加工圧力を低圧、回転数を低速とすることで、加工対象のレンズ素材のカケ、割れを防止することができる。加工中期においては、加工初期に比べて加工圧力を高圧、回転数を高速に切り替えることにより、加工時間を短縮できる。加工終期においては、加工初期に比べて加工圧力を低圧にし、回転数を加工初期よりも速く、加工中期よりも遅い中程度の速度となるようにすることにより、レンズ素材の中心肉厚の精度を確保できる。このように、研削の進行に合わせて研削条件を多段階に変化させることにより、皿形砥石のみを用いて、レンズ素材に高精度の精研削面を形成することができる。   As described above, in the present embodiment, in spherical grinding, it is possible to prevent chipping and cracking of the lens material to be processed by setting the processing pressure at the initial stage of processing to a low pressure and the rotational speed to a low speed. In the middle of machining, the machining time can be shortened by switching the machining pressure to a higher pressure and the rotation speed faster than in the early stage of machining. At the end of processing, the center pressure of the lens material is accurate by lowering the processing pressure compared to the beginning of processing and setting the rotation speed to a medium speed that is faster than the initial processing and slower than the middle processing. Can be secured. In this way, by changing the grinding conditions in multiple stages in accordance with the progress of grinding, it is possible to form a highly accurate precision grinding surface on the lens material using only a dish-shaped grindstone.

(実験例)
本発明者等は、本発明の研削方法を用いて次のように加工を行った。
本実施例の加工データは次の通りである。
レンズ素材の材質 TAFD25
レンズ素材の摩耗度 90
レンズ素材のヌープ硬さ 630
加工球面半径R 108mm
レンズ外径 37.5mm
皿形砥石 ダイヤモンドペレット SP60B #800
(Experimental example)
The present inventors performed processing as follows using the grinding method of the present invention.
The processing data of this example is as follows.
Lens Material TAFD25
Degree of wear of lens material 90
Knoop hardness of lens material 630
Processing spherical radius R 108mm
Lens outer diameter 37.5mm
Plate-shaped whetstone diamond pellet SP60B # 800

まず、加工圧力を決定するための試験を行った。試験条件は次の通りであり、試験結果を図3の表およびグラフに示してある。   First, a test for determining the processing pressure was performed. The test conditions are as follows, and the test results are shown in the table and graph of FIG.

球芯式レンズ研削加工装置 NC研磨機 PM50型
(製造元:有限会社コジマエンジニアリング)
皿形砥石の回転数 1000rpm
皿形砥石のレンズ接触面積 4.52平方cm
加工量 0.1mm
Sphere type lens grinding machine NC polisher PM50 type
(Manufacturer: Kojima Engineering Co., Ltd.)
Number of revolutions of dish-shaped grinding wheel 1000rpm
Lens contact area of dish-shaped grinding wheel 4.52 square cm
Processing amount 0.1mm

この試験結果から、加工圧力が10kg/平方cm以上では、レンズ素材の摩耗量がほとんど変化しないことから、この圧力が研削加工効率の最大の点であることが分かる。   From this test result, it is understood that when the processing pressure is 10 kg / square cm or more, the wear amount of the lens material hardly changes, and this pressure is the maximum point of the grinding processing efficiency.

次に、同一の球芯式レンズ研削加工装置を用いて、皿形砥石の回転数を決定するための試験を行い、加工圧力1(15kg/平方cm)および加工圧力2(10kg/平方cm)の場合において、回転数を変化させた場合の加工時間を調べた。試験条件は加工圧力以外は上記の場合と同一である。試験結果を図4のグラフに示してある。   Next, using the same spherical core type lens grinding apparatus, a test for determining the number of revolutions of the dish-shaped grindstone was performed. Processing pressure 1 (15 kg / square cm) and processing pressure 2 (10 kg / square cm) In this case, the processing time when the rotation speed was changed was examined. The test conditions are the same as in the above case except for the processing pressure. The test results are shown in the graph of FIG.

この試験結果から、回転数が1500rpm付近より摩耗量が殆ど変化しないことから、この点が加工効率最大の点であることが分かる。すなわち、加工圧力を一定とて、回転数を上げた場合に加工時間の変化が殆ど無くなる回転数が「食い込み可能な回転数」の最大値であり、これよりも回転数を上げると、レンズ素材と皿形砥石に滑りが発生し、皿形砥石の砥粒がレンズ素材の表面に食い込めない状況になる。この「食い込み可能な回転数」の最大値が加工効率最大の点である。この最大値は、レンズ素材の硬度、皿形砥石の砥粒の粒度、切削液の性能などによって変動するので、試験を行うことにより設定すればよい。   From this test result, it can be seen that this point is the maximum processing efficiency since the wear amount hardly changes from about 1500 rpm. That is, when the processing pressure is kept constant and the rotational speed is increased, the rotational speed at which the machining time hardly changes is the maximum value of the “rotating speed that can bite in”. As a result, slipping occurs on the dish-shaped grindstone, and the abrasive grains of the dish-shaped grindstone cannot penetrate the surface of the lens material. The maximum value of the “number of revolutions that can be bite in” is the maximum processing efficiency. This maximum value varies depending on the hardness of the lens material, the grain size of the dish-shaped grindstone, the performance of the cutting fluid, and the like, and may be set by performing a test.

これらの試験結果に基づけば、中期研削工程ST3における加工条件としては、加工圧力が10kg/平方cm、皿形砥石の回転数が1500rpmが最適であることが分かる。これを基準として、初期研削工程ST2および後期研削工程ST4における加工条件をそれぞれ設定する。   Based on these test results, it is understood that the processing pressure in the medium-term grinding step ST3 is optimal when the processing pressure is 10 kg / square cm and the rotational speed of the dish-shaped grindstone is 1500 rpm. Based on this, the processing conditions in the initial grinding step ST2 and the late grinding step ST4 are set.

本発明者等の実験では、初期研削工程においては、加工圧力を2kg/平方cm、回転数を500rpmとし、10秒間の研削加工を行った。次に、中期研削工程に移行して、加工圧力を10kg/平方cmとし、回転数を1500rpmとして、レンズ素材が目標厚さの0.1mm手前の厚さとなるまで研削加工を行った、次に、後期研削工程に移行し、加工圧力を1.5kg/平方cmとし、回転数を1000rpmとし、レンズ素材が目標厚さとなるまで研削加工を行った。   In the experiments by the present inventors, in the initial grinding step, the grinding pressure was 2 kg / square cm, the rotation speed was 500 rpm, and grinding was performed for 10 seconds. Next, a transition to the medium-term grinding process was performed, the grinding pressure was set to 10 kg / square cm, the rotational speed was set to 1500 rpm, and the lens material was ground until the target thickness became 0.1 mm before the target thickness. Then, the process was shifted to the late grinding step, the working pressure was 1.5 kg / square cm, the rotational speed was 1000 rpm, and grinding was performed until the lens material reached the target thickness.

この結果、厚さ精度が±0.005μm以内に収まることが確認された。また、研削加工面の曲率を測定したところ、150回加工すると、ΔHが−0.001μm変化した。揺動位置を10%シフトさせて更に150回加工すると、ΔHが基準値に戻ったので、揺動位置を元に戻した。これらの継続により、研削加工面の曲率がΔHで0〜0.001μmの範囲内に収まることが確認できた。   As a result, it was confirmed that the thickness accuracy was within ± 0.005 μm. Further, when the curvature of the ground surface was measured, ΔH changed by −0.001 μm after 150 times of machining. When the rocking position was shifted by 10% and further machining was performed 150 times, ΔH returned to the reference value, so the rocking position was restored. With these continuations, it was confirmed that the curvature of the ground surface was within a range of 0 to 0.001 μm in ΔH.

1 球芯式レンズ研削加工装置
2 上ユニット
2a 中心軸線
3 下ユニット
4 レンズ保持具
4a レンズ保持面
5 レンズ加圧軸
6 加圧シリンダ
7 レンズ素材
7a 被研削面
8 皿形砥石
8a 球状砥石面
9 スピンドル軸
9a 中心軸線
10 スピンドルモーター
11 揺動機構
12、13、14 レギュレータ
15、16、17 切替弁
18 コントローラ
19 測長器
20 インバータ
21 ドライバ
O 揺動中心
θ 揺動角度
R 加工球面半径
DESCRIPTION OF SYMBOLS 1 Sphere-core type lens grinding apparatus 2 Upper unit 2a Center axis 3 Lower unit 4 Lens holder 4a Lens holding surface 5 Lens pressing shaft 6 Pressing cylinder 7 Lens material 7a Surface to be ground 8 Plate-shaped grindstone 8a Spherical grinding wheel surface 9 Spindle shaft 9a Center axis 10 Spindle motor 11 Swing mechanism 12, 13, 14 Regulator 15, 16, 17 Switching valve 18 Controller 19 Measuring device 20 Inverter 21 Driver O Swing center θ Swing angle R Machining spherical radius

Claims (5)

ダイヤモンド砥粒を備えた球状砥石面を備えた皿形砥石を、研削対象のレンズ素材の被研削面に所定の加工圧力で押しつけ、この状態で、前記皿形砥石を所定の回転数で回転させると共に揺動させながら前記被研削面を球面に研削する皿形砥石を用いたレンズ球面の研削加工方法であって、
前記加工圧力が第1加工圧力、前記回転数が第1回転数で研削を行う初期研削工程と、
前記加工圧力が第2加工圧力、前記回転数が第2回転数で研削を行う中期研削工程と、
前記加工圧力が第3加工圧力、前記回転数が第3回転数で研削を行う後期研削工程とを有し、
前記第2加工圧力は前記球状砥石面が前記レンズ素材に食い込み可能な圧力であり、前記レンズ素材の硬さ、および、前記レンズ素材の前記被研削面と前記皿形砥石の前記球状砥石面との接触面積から、前記皿形砥石の食い込み量を求め、当該食い込み量に基づき前記第2加工圧力を算出し、
前記第2回転数を、前記皿形砥石の前記ダイヤモンド砥粒が前記レンズ素材に食い込み可能な回転数に設定し、
前記第1加工圧力を前記第2加工圧力よりも低い値に設定し、前記第1回転数を前記第2回転数よりも低い値に設定し、
前記第3加工圧力を前記第1加工圧力よりも低い値に設定し、前記第3回転数を前記第2回転数よりも低く前記第1回転数よりも高い値に設定することを特徴とする皿形砥石を用いたレンズ球面の研削加工方法。
A dish-shaped grindstone having a spherical grindstone surface with diamond abrasive grains is pressed against a surface to be ground of a lens material to be ground with a predetermined processing pressure, and in this state, the dish-shaped grindstone is rotated at a predetermined rotation speed. A method of grinding a spherical surface of a lens using a dish-shaped grindstone that grinds the surface to be ground into a spherical surface while rocking with
An initial grinding step in which the machining pressure is a first machining pressure, and the rotational speed is ground at a first rotational speed;
A medium-term grinding process in which the machining pressure is a second machining pressure, and the rotational speed is ground at a second rotational speed;
A second grinding step in which the machining pressure is a third machining pressure, and the rotational speed is ground at a third rotational speed;
The second processing pressure is a pressure at which the spherical grindstone surface can bite into the lens material, the hardness of the lens material, and the surface to be ground of the lens material and the spherical grindstone surface of the dish-shaped grindstone From the contact area, the amount of biting of the dish-shaped grindstone is obtained, and the second processing pressure is calculated based on the amount of biting,
The second rotational speed is set to a rotational speed at which the diamond abrasive grains of the dish-shaped grindstone can bite into the lens material,
Setting the first processing pressure to a value lower than the second processing pressure, and setting the first rotational speed to a value lower than the second rotational speed;
The third processing pressure is set to a value lower than the first processing pressure, and the third rotational speed is set to a value lower than the second rotational speed and higher than the first rotational speed. A method of grinding a lens spherical surface using a dish-shaped grindstone.
請求項1において、
前記第2加工圧力を、前記皿形砥石の前記ダイヤモンド砥粒が前記レンズ素材に食い込み可能な最小値に設定し、
前記第2回転数を、前記皿形砥石の前記ダイヤモンド砥粒が前記レンズ素材に食い込み可能な最大値に設定することを特徴とする皿形砥石を用いたレンズ球面の研削加工方法。
In claim 1,
The second processing pressure is set to a minimum value at which the diamond abrasive grains of the dish-shaped grindstone can bite into the lens material,
A method of grinding a lens spherical surface using a dish-shaped grindstone, wherein the second rotational speed is set to a maximum value at which the diamond abrasive grains of the dish-shaped grindstone can bite into the lens material.
請求項1または2において、
前記初期研削工程は、前記レンズ素材の前記被研削面が前記球状砥石面に全体として接触した状態が形成されるまで行い、
前記中期研削工程は、前記レンズ素材の中心肉厚が目標値よりも予め設定した寸法だけ厚い状態が形成されるまで行うことを特徴とする皿形砥石を用いたレンズ球面の研削加工方法。
In claim 1 or 2,
The initial grinding step is performed until the surface of the lens material to be ground is in contact with the spherical grinding wheel surface as a whole,
The intermediate grinding step is carried out until a state in which the center thickness of the lens material is thicker than a target value by a preset dimension is formed.
請求項1ないし3のうちのいずれかの項において、
少なくとも前記中期研削工程においては、前記レンズ素材の前記被研削面が前記皿形砥石の前記球状砥石面を摺動する領域を定期的に変化させることを特徴とする皿形砥石を用いたレンズ球面の研削加工方法。
In any one of claims 1 to 3,
At least in the medium-term grinding step, the lens spherical surface using the dish-shaped grindstone is characterized by periodically changing a region in which the ground surface of the lens material slides on the spherical grindstone surface of the dish-shaped grindstone. Grinding method.
請求項1ないし4のうちのいずれかの項において、
前記レンズ素材の硬さがヌープ硬度630であり、
前記第2加工圧力が10kg/平方cm、前記第2回転数が1500rpmであり、
前記第1加工圧力が2kg/平方cm、前記第1回転数が400〜600rpmであり、
前記第3加工圧力が1.5kg/平方cm、前記第3回転数が1000rpmであることを特徴とする皿形砥石を用いたレンズ球面の研削加工方法。
In any one of claims 1 to 4,
The lens material has a Knoop hardness of 630,
The second processing pressure is 10 kg / square cm, and the second rotational speed is 1500 rpm,
The first processing pressure is 2 kg / square cm, and the first rotational speed is 400 to 600 rpm,
A lens spherical grinding method using a dish-shaped grindstone, wherein the third machining pressure is 1.5 kg / square cm and the third rotation speed is 1000 rpm.
JP2011551589A 2010-01-29 2010-01-29 Grinding method of lens spherical surface using dish-shaped grinding wheel Active JP5453459B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000563 WO2011092748A1 (en) 2010-01-29 2010-01-29 Lens spherical surface grinding method using dish-shaped grindstone

Publications (2)

Publication Number Publication Date
JPWO2011092748A1 JPWO2011092748A1 (en) 2013-05-23
JP5453459B2 true JP5453459B2 (en) 2014-03-26

Family

ID=44318767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011551589A Active JP5453459B2 (en) 2010-01-29 2010-01-29 Grinding method of lens spherical surface using dish-shaped grinding wheel

Country Status (8)

Country Link
US (1) US20120289127A1 (en)
EP (1) EP2529886B1 (en)
JP (1) JP5453459B2 (en)
KR (1) KR101584265B1 (en)
CN (1) CN102725104B (en)
HK (1) HK1174871A1 (en)
TW (1) TWI415709B (en)
WO (1) WO2011092748A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160147748A (en) 2014-04-25 2016-12-23 가부시키가이샤 고지마 엔지니어링 Lens-centering method for spherical center-type processing machine, lens-processing method, and spherical center-type processing machine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8751031B2 (en) * 2004-02-06 2014-06-10 Zircore, Llc System and method for mass custom manufacturing of dental crowns and crown components
JP5797986B2 (en) * 2011-09-09 2015-10-21 株式会社春近精密 Lens polishing method and lens polishing apparatus
WO2014146620A1 (en) * 2013-03-19 2014-09-25 西安交通大学 Optical element polishing device and method
TWI584914B (en) * 2013-07-22 2017-06-01 佳能股份有限公司 Component manufacturing method and polishing apparatus
KR101594795B1 (en) * 2013-07-23 2016-02-17 카부시키가이샤하루치카세이미쯔 Swing mechanism and spherical center swing grinding machine
WO2015068500A1 (en) * 2013-11-11 2015-05-14 オリンパス株式会社 Polishing tool, polishing method, and polishing device
KR101558548B1 (en) 2014-04-22 2015-10-13 한국지질자원연구원 Automatic sample preparation apparatus
CN106695494B (en) * 2017-03-07 2019-07-23 徐工集团工程机械有限公司 Spherical surface match grinding device and method
CN107214584A (en) * 2017-07-06 2017-09-29 衡东县湘峰陶瓷有限公司 Full-automatic stable type saggar outer surface sanding apparatus
CN107322383A (en) * 2017-07-06 2017-11-07 衡东县湘峰陶瓷有限公司 Full-automatic saggar outer surface sanding apparatus
CN107443183A (en) * 2017-07-06 2017-12-08 衡东县湘峰陶瓷有限公司 Saggar outer surface sanding apparatus
CN107443184A (en) * 2017-07-06 2017-12-08 衡东县湘峰陶瓷有限公司 Universal saggar outer surface sanding apparatus
CN108422286B (en) * 2018-03-30 2023-11-03 马鞍山市江南光学有限公司 Machining method of Stent roof prism and positioning tool thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125558U (en) * 1991-04-25 1992-11-16 キヤノン株式会社 Spherical grinding equipment
JPH07205006A (en) * 1993-12-30 1995-08-08 Olympus Optical Co Ltd Lens grinding method
JPH08197425A (en) * 1995-01-27 1996-08-06 Olympus Optical Co Ltd Grinding method and grinding device
JP2004338028A (en) * 2003-05-15 2004-12-02 Nikon Corp Grinding wheel for grinding, and grinding device equipped with the grinding wheel
JP2008260091A (en) * 2007-04-12 2008-10-30 Olympus Corp Polishing device

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893264A (en) * 1973-11-23 1975-07-08 Textron Inc Lens surfacing apparatus and method
US4085549A (en) * 1976-11-26 1978-04-25 Hodges Lee R Lens polishing machine
US4662119A (en) * 1984-07-25 1987-05-05 Haruchika Precision Company, Ltd. Automatic lens grinding apparatus
JPH0659613B2 (en) * 1988-10-20 1994-08-10 オリンパス光学工業株式会社 Grinding and polishing device and grinding and polishing method
US4947715A (en) * 1988-11-22 1990-08-14 Citycrown, Inc. Method and apparatus for cutting an aspheric surface on a workpiece
JPH04125558A (en) * 1990-09-17 1992-04-27 Fuji Photo Film Co Ltd Processing method for silver halide color photographic sensitive material
WO1994002286A1 (en) * 1992-07-17 1994-02-03 Minnesota Mining And Manufacturing Company Method of processing a lens and means for use in the method
US5577950A (en) * 1993-11-29 1996-11-26 Coburn Optical Industries, Inc. Conformal tool operating apparatus and process for an ophthalmic lens finer/polisher
JP2600063B2 (en) * 1994-06-24 1997-04-16 リズム時計工業株式会社 Revolving door device for mechanism clock
US5498200A (en) * 1994-08-12 1996-03-12 Wernicke & Co. Gmbh Device for parallex-free centering of a blank for a glass lens for spectacles and for providing markings and/or attaching a holder before inserting the blank into a grinding machine for blanks for glass lenses
DE19616536C2 (en) * 1996-04-25 2000-01-27 Wernicke & Co Gmbh Process and eyeglass lens grinding machine for shaping the peripheral edge of eyeglass lenses and possibly for subsequent facet grinding
JP3688449B2 (en) * 1997-09-24 2005-08-31 株式会社ニデック Eyeglass lens grinding apparatus and eyeglass lens grinding method
DE19750428B4 (en) * 1997-11-14 2007-06-21 Optotech Optikmaschinen Gmbh Method and device for processing lenses
US6080044A (en) * 1998-03-26 2000-06-27 Gerber Coburn Optical, Inc. Fining/polishing machine
US6123610A (en) * 1999-03-17 2000-09-26 Larsen; Eric A. Polisher for spherical and non-spherical surfaces
JP2001038595A (en) * 1999-07-30 2001-02-13 Canon Inc Grinding and polishing method and grinding and polishing device
AU776015B2 (en) * 1999-08-06 2004-08-26 Hoya Corporation Lens processing device, lens processing method, and lens measuring method
US6110017A (en) * 1999-09-08 2000-08-29 Savoie; Marc Y. Method and apparatus for polishing ophthalmic lenses
ATE302092T1 (en) * 2000-04-28 2005-09-15 3M Innovative Properties Co ABRASIVES AND METHOD FOR GRINDING GLASS
JP4346835B2 (en) * 2001-05-11 2009-10-21 Hoya株式会社 Scanning optical system
US7303600B2 (en) * 2002-04-25 2007-12-04 Advanced Minerals Corporation Unexpanded perlite ore polishing composition and methods
US6733369B1 (en) * 2002-09-30 2004-05-11 Carl Zeiss Semiconductor Manufacturing Technologies, Ag Method and apparatus for polishing or lapping an aspherical surface of a work piece
JP2004261954A (en) * 2003-02-14 2004-09-24 Seiko Epson Corp Grinding method
DE10314625B3 (en) * 2003-04-01 2004-10-14 Optotech Optikmaschinen Gmbh Process for post-processing precision surfaces on random workpieces comprises using a rotating polishing tool for fine grinding an polishing having a polishing element which is longitudinally guided in a guiding chamber of a housing
US20040229553A1 (en) * 2003-05-16 2004-11-18 Bechtold Michael J. Method, apparatus, and tools for precision polishing of lenses and lens molds
JP4105622B2 (en) * 2003-11-05 2008-06-25 株式会社永田製作所 Polishing apparatus and method for determining thickness of material to be polished
DE102004047563A1 (en) * 2004-09-30 2006-04-06 Asphericon Gmbh Method of polishing
EP1777035A3 (en) * 2004-11-09 2007-05-16 Seiko Epson Corporation Elastic polishing tool and lens polishing method using this tool
JP4456520B2 (en) 2005-04-19 2010-04-28 中村留精密工業株式会社 Multi-axis spherical grinding apparatus and grinding method
EP1724055B1 (en) * 2005-05-06 2011-11-30 Satisloh GmbH Method for auto-calibration of tool(s) in a single point turning machine used for manufacturing in particular ophthalmic lenses
JP2007253280A (en) * 2006-03-23 2007-10-04 Haruchika Seimitsu:Kk Grinding method for optical spherical lens
US7662024B2 (en) * 2006-05-03 2010-02-16 V.I. Mfg. Inc. Method and apparatus for precision polishing of optical components
WO2008053712A1 (en) * 2006-10-31 2008-05-08 Nikon-Essilor Co., Ltd. Eyeglass lens and method for production thereof
JP2009066724A (en) 2007-09-14 2009-04-02 Nakamura Tome Precision Ind Co Ltd Lens spherical face grinding method and device
JP5154884B2 (en) 2007-10-09 2013-02-27 中村留精密工業株式会社 Continuous lens processing method
JP5123677B2 (en) * 2008-01-25 2013-01-23 有限会社コジマエンジニアリング Lens processing equipment
JP5080300B2 (en) * 2008-02-01 2012-11-21 有限会社コジマエンジニアリング Lens processing equipment
JP4633815B2 (en) * 2008-03-17 2011-02-16 ニシコ光機株式会社 Spherical polishing machine
KR101593900B1 (en) * 2009-06-11 2016-02-15 유겐가이샤 코지마 엔지니어링 Lens processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125558U (en) * 1991-04-25 1992-11-16 キヤノン株式会社 Spherical grinding equipment
JPH07205006A (en) * 1993-12-30 1995-08-08 Olympus Optical Co Ltd Lens grinding method
JPH08197425A (en) * 1995-01-27 1996-08-06 Olympus Optical Co Ltd Grinding method and grinding device
JP2004338028A (en) * 2003-05-15 2004-12-02 Nikon Corp Grinding wheel for grinding, and grinding device equipped with the grinding wheel
JP2008260091A (en) * 2007-04-12 2008-10-30 Olympus Corp Polishing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160147748A (en) 2014-04-25 2016-12-23 가부시키가이샤 고지마 엔지니어링 Lens-centering method for spherical center-type processing machine, lens-processing method, and spherical center-type processing machine
JPWO2015162789A1 (en) * 2014-04-25 2017-04-13 株式会社コジマエンジニアリング Lens centering method, lens processing method, and spherical core processing machine for spherical core processing machine
US10124459B2 (en) 2014-04-25 2018-11-13 Kojima Engineering Co., Ltd. Lens-centering method for spherical center-type processing machine, lens-processing method, and spherical center-type processing machine
KR102125392B1 (en) * 2014-04-25 2020-06-22 가부시키가이샤 고지마 엔지니어링 Lens-centering method for spherical center-type processing machine, lens-processing method, and spherical center-type processing machine

Also Published As

Publication number Publication date
EP2529886A4 (en) 2015-08-05
WO2011092748A1 (en) 2011-08-04
EP2529886A1 (en) 2012-12-05
EP2529886B1 (en) 2016-04-20
TWI415709B (en) 2013-11-21
CN102725104A (en) 2012-10-10
HK1174871A1 (en) 2013-06-21
TW201125680A (en) 2011-08-01
CN102725104B (en) 2015-07-01
KR101584265B1 (en) 2016-01-11
US20120289127A1 (en) 2012-11-15
KR20120123082A (en) 2012-11-07
JPWO2011092748A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP5453459B2 (en) Grinding method of lens spherical surface using dish-shaped grinding wheel
US11833704B2 (en) Dynamic regulation of contact pressures in a blade sharpening system
JP4252093B2 (en) Disc-shaped substrate grinding method and grinding apparatus
JP6300968B2 (en) Finish grinding apparatus and finish grinding method
KR20120026460A (en) Method of polishing object to be polished and polishing pad
US9149906B2 (en) Apparatus for CMP pad conditioning
JP2007210074A (en) Grinding device, polishing device, grinding method and polishing method
JP2016203342A (en) Method for manufacturing truer and method for manufacturing semiconductor wafer, and chamfering device for semiconductor wafer
WO2007077964A1 (en) Truing device and truing method for grinding wheel
JP2010076013A (en) Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone
JP5206194B2 (en) Truing method and truing device for grinding wheel
JP5589717B2 (en) Grinding method and grinding machine
JP3630950B2 (en) Manufacturing method of spherical lens
KR100876990B1 (en) A method and apparatus for conditioning a polishing pad
JP7104909B1 (en) Semiconductor crystal wafer manufacturing method and manufacturing apparatus
JPH068140A (en) Circular arc shaping method for grinding wheel
WO2023119703A1 (en) Method and apparatus for producing semiconductor crystal wafer
JP2003109923A (en) Device for polishing semiconductor wafer
CN114762946A (en) Machining unit and method for machining a component
TWI529032B (en) End surface grinding tool for substrate
JP2013123763A (en) Polishing method for object to be polished
JP2007210054A (en) Cup type grinding wheel, double-end grinder and double-end grinding method
JPH05277922A (en) Spherical machining of ring part

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5453459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250