JP2016203342A - Method for manufacturing truer and method for manufacturing semiconductor wafer, and chamfering device for semiconductor wafer - Google Patents

Method for manufacturing truer and method for manufacturing semiconductor wafer, and chamfering device for semiconductor wafer Download PDF

Info

Publication number
JP2016203342A
JP2016203342A JP2015090588A JP2015090588A JP2016203342A JP 2016203342 A JP2016203342 A JP 2016203342A JP 2015090588 A JP2015090588 A JP 2015090588A JP 2015090588 A JP2015090588 A JP 2015090588A JP 2016203342 A JP2016203342 A JP 2016203342A
Authority
JP
Japan
Prior art keywords
plate
grindstone
semiconductor wafer
truer
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015090588A
Other languages
Japanese (ja)
Other versions
JP6528527B2 (en
Inventor
好一 井村
Yoshikazu Imura
好一 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2015090588A priority Critical patent/JP6528527B2/en
Publication of JP2016203342A publication Critical patent/JP2016203342A/en
Application granted granted Critical
Publication of JP6528527B2 publication Critical patent/JP6528527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a truer having a shape controlled with a high accuracy.SOLUTION: A method for manufacturing a truer which grinds and forms a peripheral edge part of a disk-like plate 10 in which abrasive grains are hardened by use of a cylindrical grind stone 20. The method is characterized that the disk-like plate 10 and the grind stone 20 are rotated in respective circumferential directions and one or both of the plate 10 and the grind stone 20 is moved so as to bring peripheral surfaces of the plate 10 and the grind stone 20 into contact with each other thereby grinding and forming the peripheral edge part of the plate 10 into a target shape.SELECTED DRAWING: Figure 4

Description

本発明は、ツルーアーの製造方法に関する。また、本発明は、このツルーアーの製造方法により得られたツルーアーを利用した半導体ウェーハの製造方法に関し、また、このツルーアーを用いる半導体ウェーハの面取り加工装置に関する。   The present invention relates to a method for producing a truer. The present invention also relates to a semiconductor wafer manufacturing method using the truer obtained by the truer manufacturing method, and also relates to a semiconductor wafer chamfering processing apparatus using the truer.

半導体デバイスの基板として、シリコンウェーハなどの半導体ウェーハが広く用いられている。例えばシリコンウェーハは、単結晶シリコンインゴットをスライスして得られるウェーハに対してラップ加工を施し、さらに研磨加工を施して製品とする。特に、搬送時等におけるウェーハ周縁部の割れや欠け等を防止するために、周縁部に面取り加工が施される。   Semiconductor wafers such as silicon wafers are widely used as semiconductor device substrates. For example, for a silicon wafer, lapping is performed on a wafer obtained by slicing a single crystal silicon ingot, and polishing is further performed to obtain a product. In particular, the peripheral edge is chamfered in order to prevent cracking or chipping at the peripheral edge of the wafer during conveyance or the like.

ここで、半導体ウェーハの周縁部の3つの代表的な面取り形状を、図1(A)〜(C)に示す。便宜上、図1(A)〜(C)をそれぞれ第1形状、第2形状、第3形状と称する。周縁部は、ウェーハの周面である端面と、上面取り部と、下面取り部とから構成される。図中、tはウェーハ周縁部のウェーハ厚さであり、θ1は上面取り角度であり、θ2は、下面取り角度であり、A1は上面取り幅であり、A2は下面取り幅であり、B1は上面取り厚さであり、B2は下面取り厚さであり、Rは端面の先端曲率半径であり、r1は上面取り部の曲率半径であり、r2は下面取り部の曲率半径であり、BCは端面の長さである。半導体ウェーハの周縁部の目標形状は、上記パラメータの各々を定めることにより決定される。   Here, three typical chamfered shapes of the peripheral portion of the semiconductor wafer are shown in FIGS. For convenience, FIGS. 1A to 1C are referred to as a first shape, a second shape, and a third shape, respectively. The peripheral portion is composed of an end surface that is a peripheral surface of the wafer, an upper surface chamfered portion, and a lower surface chamfered portion. In the figure, t is the wafer thickness at the peripheral edge of the wafer, θ1 is the top chamfering angle, θ2 is the bottom chamfering angle, A1 is the top chamfering width, A2 is the bottom chamfering width, and B1 is B2 is the bottom surface thickness, R is the tip radius of curvature of the end surface, r1 is the radius of curvature of the top surface, r2 is the radius of curvature of the bottom surface, and BC is It is the length of the end face. The target shape of the peripheral edge of the semiconductor wafer is determined by determining each of the above parameters.

かかる形状に半導体ウェーハの周縁部を面取り加工するための処理手順について図2(A)〜(E)を用いて説明する。まず、砥粒を固めた円盤状の板1と(図2(A))、板1に溝を予め形成したメタルボンドの粗研砥石2(図2(B))と、半導体ウェーハの周縁部を研磨するための精研砥石3(図2(D))とを用意する。なお、精研砥石3は、レジンボンド砥石であり、図示のとおり丸みを帯びた初期溝が予め形成されていることが通常である。これは、レジンボンド砥石は、軟質で磨耗が激しいため、形状精度良く製作しても、使用すると、すぐに形状が崩れてしまうからである。粗研砥石2を用いて、板1に粗研砥石2の溝形状を板1の周縁部を面取して形状転写すると、板1は、精研砥石3をツルーイングするためのツルーアー1Aとなる(図2(A)〜図2(C))。ツルーアー1Aを用いて精研砥石3の新規の溝や使用によって形状が崩れた溝の形状のをツルーイングすることにより、精研砥石の溝を成形する(図2(D)〜図2(E))。この精研砥石3を用いて、半導体ウェーハの周縁部を研磨することで、半導体ウェーハ周縁部の形状が精研砥石3の溝に合致した形状に加工され、半導体ウェーハの周縁部が面取りされることとなる。なお、粗研砥石2の転写用の溝は複数設けられて、それぞれ異なる形状のツルーアーを作製可能にするのが通常である。   A processing procedure for chamfering the peripheral edge of the semiconductor wafer into such a shape will be described with reference to FIGS. First, a disk-shaped plate 1 with hardened abrasive grains (FIG. 2 (A)), a metal bond roughing grindstone 2 (FIG. 2 (B)) in which grooves are formed in the plate 1 in advance, and a peripheral portion of a semiconductor wafer A polishing wheel 3 (FIG. 2 (D)) for polishing is prepared. The fine grinding stone 3 is a resin bond grindstone, and it is usual that a rounded initial groove is formed in advance as shown in the figure. This is because the resin-bonded grindstone is soft and intensively worn, so even if it is manufactured with good shape accuracy, the shape will quickly collapse when used. When the groove shape of the rough grinding stone 2 is chamfered to the plate 1 by chamfering the peripheral edge portion of the plate 1 using the rough grinding stone 2, the plate 1 becomes a truer 1A for truing the fine grinding stone 3. (FIGS. 2A to 2C). The groove of the fine grinding wheel is formed by truing the new groove of the fine grinding stone 3 using the truer 1A or the shape of the groove whose shape has been destroyed by use (FIGS. 2D to 2E). ). By polishing this peripheral edge of the semiconductor wafer using this fine grinding wheel 3, the shape of the peripheral edge of the semiconductor wafer is processed into a shape that matches the groove of the fine grinding stone 3, and the peripheral edge of the semiconductor wafer is chamfered. It will be. In general, a plurality of transfer grooves for the rough grinding stone 2 are provided so that different shapes of truers can be produced.

このような従来技術よるツルーイング方法の一例が、特許文献1に記載されている。すなわち、ウェーハを保持して回転するウェーハテーブルと、前記ウェーハの外周部を面取りする砥石と、前記ウェーハテーブルを前記砥石に対して相対的に移動させる移動手段と、前記砥石に対して前記ウェーハの外周部を面取りするための溝を形成するツルーイング砥石とを備えたウェーハ面取り装置を用い、前記ツルーイング砥石を前記ウェーハテーブルの回転軸上に取付け、前記ツルーイング砥石を回転させながら、前記ツルーイング砥石の端部を前記ウェーハ外周部の面取り形状に相当する軌道上に沿って前記移動手段により前記砥石に対して相対的に移動させて、前記溝の形成を行なうウェーハ面取り砥石のツルーイング方法である。特許文献1では、このツルーイング方法により得られた砥石を用いて、ウェーハの面取りを行う。   An example of such a conventional truing method is described in Patent Document 1. That is, a wafer table that holds and rotates a wafer, a grindstone that chamfers the outer periphery of the wafer, a moving means that moves the wafer table relative to the grindstone, and a wafer that moves relative to the grindstone. Using a wafer chamfering device having a truing grindstone for forming a groove for chamfering the outer peripheral portion, the truing grindstone is mounted on a rotating shaft of the wafer table, and the end of the truing grindstone is rotated while rotating the truing grindstone. This is a truing method for a wafer chamfering grindstone in which the groove is formed by moving a portion relative to the grindstone by the moving means along a track corresponding to a chamfered shape of the outer peripheral portion of the wafer. In Patent Document 1, a wafer is chamfered using a grindstone obtained by this truing method.

一方、ツルーアーを用いてツルーイングした精研砥石を用いずに、半導体ウェーハ周縁部をコンタリング加工して面取りするウェーハ面取り加工方法が、特許文献2に記載されている。すなわち、回転テーブル上にウェーハを芯出しして載置、そして回転して、この回転するウェーハを加工する2個の溝なし砥石をウェーハ周端部の同一箇所に近接下に、相対峙させて配置するとともに、回転する両溝なし砥石の加工面によりウェーハ周端部の同一箇所に近接した位置を同時に加工して成形する加工方法であって、前記ウェーハ外径を研削して縮径する方向に加工する周端縮径加工では、前記2個の溝なし砥石をそれぞれ一定の高さに保持したままで前記ウェーハに接触させて加工し、また前記ウェーハ周端部の断面を所望の形状に形成するコンタリング加工では、前記ウェーハ周端部の各面に前記2個の溝なし砥石をそれぞれ個別に移動させ、前記ウェーハ周端部の径方向の同一箇所を上下から挟み込んでそれぞれの面を同時に加工する、ウェーハ面取り加工方法である。   On the other hand, Patent Document 2 discloses a wafer chamfering method in which a peripheral edge portion of a semiconductor wafer is chamfered by chamfering without using a precision grinding wheel trued with a truer. That is, the wafer is centered and placed on a rotary table, and then rotated, and two grooveless grindstones for processing the rotating wafer are relatively close to each other at the same location on the peripheral edge of the wafer. A processing method for simultaneously forming and forming a position adjacent to the same portion of the peripheral edge of the wafer by the processing surface of the rotating grooveless grindstone, wherein the wafer outer diameter is ground and reduced in diameter. In the peripheral edge diameter reduction processing, the two groove-free grindstones are processed by bringing them into contact with the wafer while being held at a certain height, and the cross section of the peripheral edge of the wafer is formed into a desired shape. In the contouring process to be formed, each of the two grooveless grindstones is individually moved to each surface of the wafer peripheral end portion, and the same portion in the radial direction of the wafer peripheral end portion is sandwiched from above and below to each surface. same Processed into a wafer chamfering method.

特開2007−61978号公報JP 2007-61978 A 特開2008−177348号公報JP 2008-177348 A

半導体デバイスの微細化が益々進む近年、例えば前述の長さA1、A2の規格幅や前述の面取り角度θ1、θ2の規格幅が縮小するなど、ウェーハ周縁部の面取り部分の加工精度向上が求められるようになってきた。図2を用いて説明した従来型の精研砥石によるウェーハ周縁部の面取りでは、ツルーアーへの転写形状精度が粗研砥石の溝形状精度に依存するため、精研砥石の溝の形状も粗研砥石の溝形状精度に依存することとなる。半導体ウェーハ周縁部の形状には、数μmオーダーの高精度が求められる一方、メタルボンド砥石である粗研砥石は、通常、放電加工により成形されるため加工精度の向上には限界がある。そのため、半導体ウェーハ周縁部の面取り形状の加工精度の更なる精度向上が今後求められた場合、要求を満たせなくなるものと予想される。   In recent years when semiconductor devices are increasingly miniaturized, for example, the standard widths of the above-described lengths A1 and A2 and the standard widths of the above-mentioned chamfering angles θ1 and θ2 are reduced. It has become like this. In the chamfering of the peripheral edge of the wafer with the conventional fine grinding wheel described with reference to FIG. 2, the shape of the groove of the fine grinding stone is also rough because the transfer shape accuracy to the truer depends on the groove shape precision of the rough grinding stone. It depends on the groove shape accuracy of the grindstone. The shape of the peripheral edge of the semiconductor wafer is required to have a high accuracy on the order of several μm. On the other hand, a rough grinding stone which is a metal bond grinding stone is usually formed by electric discharge machining, so there is a limit to improvement in machining accuracy. Therefore, when further improvement in the processing accuracy of the chamfered shape of the peripheral edge of the semiconductor wafer is required in the future, it is expected that the requirement cannot be satisfied.

そこで本発明は、上記課題に鑑み、半導体ウェーハ周縁部の面取加工を高精度に行うことのできるツルーアーの製造方法および半導体ウェーハの製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a truer manufacturing method and a semiconductor wafer manufacturing method capable of chamfering a peripheral portion of a semiconductor wafer with high accuracy.

本発明者は、特許文献2と同様のコンタリング加工によるウェーハ面取り加工を検討したところ、半導体ウェーハ周縁部の面取り形状の加工精度を従来技術に比べて向上できることは確認できた。しかしながら、当該技術を適用して数百枚単位以上の量産化を本発明者が試みたところ、面取り加工を進めるにつれて、半導体ウェーハ周縁部の形状が目標形状からずれてしまい、加工精度が発散的に悪化することが確認された。これは、ウェーハを保持、回転させるためのステージの軸が、研磨中の過熱によりわずかに膨張することが原因であると本発明者は考えている。したがって、コンタリング加工によるウェーハ面取り加工は量産化には適さない。   The inventor examined wafer chamfering by contouring similar to that of Patent Document 2, and was able to confirm that the processing accuracy of the chamfered shape at the periphery of the semiconductor wafer can be improved as compared with the prior art. However, when the present inventors tried to mass-produce several hundred units or more by applying the technology, the shape of the peripheral edge of the semiconductor wafer deviated from the target shape as the chamfering process was advanced, and the processing accuracy was divergent. It was confirmed that it worsened. The inventor believes that this is because the axis of the stage for holding and rotating the wafer slightly expands due to overheating during polishing. Therefore, wafer chamfering by contouring is not suitable for mass production.

本発明者は、量産化に適用可能なウェーハ面取り加工を検討したところ、従来技術による粗研砥石によるツルーアーへの形状転写に代えて、砥粒を固めた円盤状の板の周縁部の輪郭を直接研磨成形してツルーアーとすることを着想した。該ツルーアーを用いて精研砥石をツルーイングすれば、精研砥石の溝形状を高精度に制御でき、その結果ウェーハ周縁部の面取り加工を高精度に実現できることを知見し、本発明を完成するに至った。
すなわち、本発明の要旨構成は以下のとおりである。
The present inventor examined wafer chamfering applicable to mass production, and instead of transferring the shape to the truer with a rough grinding wheel according to the prior art, the contour of the peripheral edge of a disk-shaped plate with hardened abrasive grains was used. The idea was to directly polish and form a truer. In order to complete the present invention, it is found that if the precision grinding wheel is trued using the truer, the groove shape of the precision grinding wheel can be controlled with high precision, and as a result, chamfering processing of the wafer peripheral edge can be realized with high precision. It came.
That is, the gist configuration of the present invention is as follows.

本発明は、砥粒を固めた円盤状の板の周縁部を、砥石を用いて研磨成形するツルーアーの製造方法であって、前記砥石は円筒状であり、前記円盤状の板および前記砥石をそれぞれの周方向に回転させ、かつ、前記板および前記砥石のいずれか一方または両方を移動し、前記板の周縁部および前記砥石の周面を互いに接触させて、前記板の周縁部の輪郭を目標形状に研磨成形することを特徴とする、   The present invention relates to a truer manufacturing method in which a peripheral edge of a disc-shaped plate in which abrasive grains are hardened is polished using a grindstone, wherein the grindstone is cylindrical, and the disc-shaped plate and the grindstone are Rotate each circumferential direction, move one or both of the plate and the grindstone, bring the peripheral edge of the plate and the peripheral surface of the grindstone into contact with each other, and define the contour of the peripheral edge of the plate Abrasive molding to the target shape,

この場合、前記研磨成形に先立ち、前記円盤状の板の周縁部を、粗研砥石を用いて粗研磨することが好ましい。   In this case, prior to the polishing molding, it is preferable that the peripheral edge of the disk-shaped plate is coarsely polished using a rough grindstone.

また、前記移動をNC制御することがより好ましい。   More preferably, the movement is NC controlled.

また、本発明の半導体ウェーハの製造方法は、上記のいずれかの製造方法により得られたツルーアーを用いて、精研砥石をツルーイングし、前記精研砥石を用いて、半導体ウェーハの周縁部を面取りすることを特徴とする。   Further, the method for producing a semiconductor wafer of the present invention uses a truer obtained by any of the above production methods to true a fine grinding wheel, and uses the fine grinding stone to chamfer the peripheral edge of the semiconductor wafer. It is characterized by doing.

ここで、半導体ウェーハはシリコンウェーハであることが好ましい。   Here, the semiconductor wafer is preferably a silicon wafer.

また、本発明による半導体ウェーハの面取り加工装置は、砥粒を固めた円盤状の板と、前記板を載置するテーブルと、前記テーブルの昇降、水平方向移動および、前記板の周方向への回転を行う駆動機構と、前記板を研磨成形する円筒状の砥石と、前記砥石を周方向に回転させ、かつ、前記砥石を移動する移動機構と、前記円盤状の板によりツルーイングされる精研砥石と、前記精研砥石を回転させる回転機構と、前記円盤状の板を半導体ウェーハと交換する交換機構と、前記駆動機構、前記移動機構、前記回転機構および前記交換機構を制御する制御部と、を有し、
前記制御部は、前記駆動機構および前記移動機構を制御して、前記円盤状の板および前記砥石をそれぞれの周方向に回転させ、かつ、前記板および前記砥石のいずれか一方または両方を移動し、前記板の周縁部および前記砥石の周面を互いに接触させて、前記板の周縁部の輪郭を目標形状に研磨成形し、前記駆動機構および前記回転機構を制御して、前記板および前記精研砥石を周方向に回転させながら接触させて前記ツルーイングを行い、前記交換機構を制御して前記板と前記半導体ウェーハを交換し、前記駆動機構および前記回転機構を制御して、前記半導体ウェーハおよび前記精研砥石を周方向に回転させながら接触させて前記半導体ウェーハの周縁部を研磨することを特徴とする。
Further, a semiconductor wafer chamfering apparatus according to the present invention includes a disk-shaped plate in which abrasive grains are hardened, a table on which the plate is placed, lifting and lowering of the table, horizontal movement, and circumferential direction of the plate. A driving mechanism that rotates, a cylindrical grindstone that polishes and forms the plate, a moving mechanism that rotates the grindstone in the circumferential direction and moves the grindstone, and a precision truing that is trued by the disc-shaped plate A grindstone, a rotation mechanism for rotating the precision grinding wheel, an exchange mechanism for exchanging the disk-shaped plate with a semiconductor wafer, a control unit for controlling the drive mechanism, the moving mechanism, the rotation mechanism, and the exchange mechanism; Have
The control unit controls the drive mechanism and the moving mechanism to rotate the disk-shaped plate and the grindstone in respective circumferential directions, and moves either or both of the plate and the grindstone. The peripheral edge of the plate and the peripheral surface of the grindstone are brought into contact with each other, the contour of the peripheral edge of the plate is polished and formed into a target shape, and the drive mechanism and the rotating mechanism are controlled to control the plate and the precision The polishing wheel is contacted while rotating in the circumferential direction to perform the truing, the exchange mechanism is controlled to exchange the plate and the semiconductor wafer, the drive mechanism and the rotation mechanism are controlled, and the semiconductor wafer and The peripheral edge of the semiconductor wafer is polished by contacting the fine grinding wheel while rotating it in the circumferential direction.

本発明によれば、砥粒を固めた円盤状の板の周縁部の輪郭を直接研磨成形してツルーアーとするので、形状を高精度に制御したツルーアーを製造することができる。また、このツルーアーを用いることで、半導体ウェーハ周縁部の面取加工を高精度に制御した半導体ウェーハを製造することができる。   According to the present invention, the contour of the peripheral portion of the disk-shaped plate in which the abrasive grains are hardened is directly polished and formed into a truer, so that a truer whose shape is controlled with high accuracy can be manufactured. Further, by using this truer, it is possible to manufacture a semiconductor wafer in which chamfering processing of the peripheral portion of the semiconductor wafer is controlled with high accuracy.

一般的な半導体ウェーハ周縁部の代表的な面取り形状を示す模式断面図であり、(A)は第1形状を示し、(B)は第2形状を示し、(C)は第3形状を示す。It is a schematic cross section which shows the typical chamfering shape of a general semiconductor wafer peripheral part, (A) shows a 1st shape, (B) shows a 2nd shape, (C) shows a 3rd shape. . 従来技術による半導体ウェーハの周縁部の面取り加工方法を説明するための、精研砥石の溝成形までを説明するフローチャートである。It is a flowchart explaining to the groove forming of the fine grinding wheel for demonstrating the chamfering processing method of the peripheral part of the semiconductor wafer by a prior art. 本発明の一実施形態によるツルーアーの製造方法を説明する摸式断面図である。It is a model type sectional view explaining a manufacturing method of a truer by one embodiment of the present invention. 本発明の一実施形態における円盤状の板と砥石の動作を説明する摸式断面図である。FIG. 5 is a schematic cross-sectional view for explaining the operation of a disk-shaped plate and a grindstone in an embodiment of the present invention. 本発明の一実施形態において用いる砥石の模式斜視図である。It is a model perspective view of the grindstone used in one embodiment of the present invention. 実施例におけるシリコンウェーハの周縁部の目標形状を説明する模式断面図である。It is a schematic cross section explaining the target shape of the peripheral part of the silicon wafer in an example. 本発明の一実施形態に従う半導体ウェーハの面取り加工装置を説明する模式図である。It is a schematic diagram explaining the chamfering processing apparatus of the semiconductor wafer according to one Embodiment of this invention. 実施例におけるシリコンウェーハの周縁部の形状パラメータを説明するグラフであり、(A)はA1を示し、(B)はA2を示し、(C)はBCを示す。It is a graph explaining the shape parameter of the peripheral part of the silicon wafer in an example, (A) shows A1, (B) shows A2, and (C) shows BC. 実施例におけるシリコンウェーハの周縁部の形状パラメータを説明するグラフであり、(A)はθ1を示し、(B)はθ2を示す。It is a graph explaining the shape parameter of the peripheral part of the silicon wafer in an Example, (A) shows (theta) 1 and (B) shows (theta) 2.

以下、図面を参照しつつ本発明の実施形態を詳細に説明する。なお、同一の構成要素には原則として同一の参照番号を付して、説明を省略する。また、図面では説明の便宜上、円盤状の板10および砥石20等の形状を、実際の縦横比の割合と異なり誇張して示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In principle, the same components are denoted by the same reference numerals, and description thereof is omitted. Further, in the drawings, the shapes of the disk-shaped plate 10, the grindstone 20, and the like are exaggerated and shown differently from the actual aspect ratio for convenience of explanation.

(ツルーアーの製造方法)
図3〜5を用いて、本発明の一実施形態による、砥粒を固めた円盤状の板10の周縁部を、砥石20を用いて研磨成形するツルーアー10Aの製造方法を説明する。詳細を後述するが、砥石20は円筒状であり、円盤状の板10および砥石20をそれぞれの周方向に回転させ、かつ、板10および砥石20のいずれか一方または両方を移動し、板10の周縁部および砥石20の周面を互いに接触させて、板10の周縁部の輪郭を目標形状に研磨成形することが、本実施形態の特徴である。説明の便宜上、図4において紙面に沿う右方向を+y方向とし、その反対方向を−y方向とする。同様に、紙面に沿う上方向を+z方向とし、その反対方向を−z方向とする。以下、各構成の詳細を順に説明する。
(Manufacturing method of truer)
The manufacturing method of the truer 10A which grind-molds the peripheral part of the disk-shaped board 10 which hardened the abrasive grain using the grindstone 20 by one Embodiment of this invention is demonstrated using FIGS. Although the details will be described later, the grindstone 20 has a cylindrical shape, the disc-shaped plate 10 and the grindstone 20 are rotated in the respective circumferential directions, and one or both of the plate 10 and the grindstone 20 are moved. It is a feature of the present embodiment that the peripheral edge portion of the plate 10 and the peripheral surface of the grindstone 20 are brought into contact with each other, and the contour of the peripheral edge portion of the plate 10 is polished to a target shape. For convenience of explanation, the right direction along the paper surface in FIG. 4 is defined as + y direction, and the opposite direction is defined as −y direction. Similarly, the upward direction along the paper surface is defined as the + z direction, and the opposite direction is defined as the -z direction. Hereinafter, details of each component will be described in order.

まず、円盤状の板10の周縁部を粗研砥石(図示せず)を用いて粗研磨する(図3(A)〜図3(B))。図4を用いて後述する板10と砥石20の動作により板10は研磨成型されて、ツルーアー10Aとなる(図3(C))。図3に、板10の粗研磨後の輪郭10bおよびツルーアー10Aの輪郭10a(すなわち、板10を研磨成型する際の目標形状の輪郭10a)を示す。なお、研磨成型後の目標形状の輪郭10aは、所望の形状に応じて任意に定めればよい。例えば、図1に前述の第1形状〜第3形状を任意に選択し、各パラメータを適宜決定し、輪郭10aを定める。また、輪郭10aと輪郭10bに囲まれた領域が、図4に示す板10と砥石20の動作により研磨成形されたときの研磨取り代に相当することとなる。   First, the periphery of the disc-shaped plate 10 is roughly polished using a rough grinding wheel (not shown) (FIGS. 3A to 3B). The plate 10 is polished and molded by the operation of the plate 10 and the grindstone 20, which will be described later with reference to FIG. 4, to become a truer 10A (FIG. 3C). FIG. 3 shows a contour 10b after rough polishing of the plate 10 and a contour 10a of the truer 10A (that is, a contour 10a having a target shape when the plate 10 is polished and molded). In addition, what is necessary is just to determine arbitrarily the outline 10a of the target shape after grinding | polishing shaping | molding according to a desired shape. For example, the first shape to the third shape described above in FIG. 1 are arbitrarily selected, each parameter is appropriately determined, and the contour 10a is defined. Moreover, the area | region enclosed by the outline 10a and the outline 10b will correspond to the grinding | polishing allowance when it shape | molds by the operation | movement of the board 10 and the grindstone 20 shown in FIG.

板10と砥石20の動作を説明する。円盤状の板10および砥石20をそれぞれの周方向に回転させながら、板10を+y方向に移動させる。砥石20を±z方向に当接移動し、板10の端面を−y方向へ均一に研磨する(図4(A))。次に、板10のz方向の位置を基準位置に保ったまま、砥石20を+z方向に移動しながら、板10を+y方向に移動し、板10の周縁部の上面側(+z方向)に当接させながら移動させ、当該部分の面取りを行う。(図4(B))。さらに、砥石20を板10の周縁部の下面側(−z方向)に当接させながら移動し、当該部分の面取りを行う。(図4(C))。以上のようにして、板10の周縁部の輪郭を目標形状の輪郭10aに研磨成形することができ、形状を高精度に制御したツルーアー10Aを製造することができる。   The operation of the plate 10 and the grindstone 20 will be described. While rotating the disk-shaped plate 10 and the grindstone 20 in the respective circumferential directions, the plate 10 is moved in the + y direction. The grindstone 20 is abutted and moved in the ± z direction, and the end surface of the plate 10 is uniformly polished in the −y direction (FIG. 4A). Next, the plate 10 is moved in the + y direction while moving the grindstone 20 in the + z direction while keeping the position in the z direction of the plate 10 at the reference position, and is moved to the upper surface side (+ z direction) of the peripheral portion of the plate 10. Move while abutting to chamfer the part. (FIG. 4B). Further, the grindstone 20 is moved while being brought into contact with the lower surface side (−z direction) of the peripheral edge of the plate 10 to chamfer the portion. (FIG. 4C). As described above, the contour of the peripheral edge of the plate 10 can be polished and formed into the contour 10a of the target shape, and the truer 10A whose shape is controlled with high accuracy can be manufactured.

なお、上記実施形態では板10のz方向の位置を固定し、砥石20のz方向の位置を制御して当接移動しながら研磨成型するすると説明したが、板10および砥石20のいずれか一方または両方を移動し、板10の周縁部および砥石20の周面を互いに接触させる限りはどのように両者を移動させてもよい。さらに、板10周縁部の上面および下面の面取りの順序は問われず、先に下面側から研磨してもよい。また、図4に図示のように、板10の端面と砥石20の周面が直角に接触する必要はなく、適宜接触面に角度を設けてもよい。   In the above embodiment, the position of the plate 10 in the z direction is fixed, and the grinding stone 20 is controlled to be moved in the z direction while being abutted and moved. However, either the plate 10 or the grindstone 20 is used. Alternatively, both may be moved as long as both are moved and the peripheral edge of the plate 10 and the peripheral surface of the grindstone 20 are brought into contact with each other. Further, the order of chamfering of the upper surface and the lower surface of the peripheral portion of the plate 10 is not limited, and the surface may be first polished from the lower surface side. Further, as shown in FIG. 4, the end surface of the plate 10 and the peripheral surface of the grindstone 20 do not need to contact at a right angle, and an angle may be appropriately provided on the contact surface.

板10および砥石20の回転速度および移動量は任意に定めることができる。限定を意図するものではないが、板10の回転速度は100rpm〜1200rpm程度であり、移動量は10μm〜200μm程度である。また、限定を意図しないが、砥石20の回転速度は100rpm〜800rpm程度であり、移動量は10μm〜200μm程度である。板10および砥石20の回転速度および移動量を適宜制御して、両者の荷重を制御することができる。   The rotation speed and movement amount of the plate 10 and the grindstone 20 can be arbitrarily determined. Although not intended to be limited, the rotation speed of the plate 10 is about 100 rpm to 1200 rpm, and the moving amount is about 10 μm to 200 μm. Although not intended to be limited, the rotational speed of the grindstone 20 is about 100 rpm to 800 rpm, and the moving amount is about 10 μm to 200 μm. By appropriately controlling the rotational speed and the amount of movement of the plate 10 and the grindstone 20, the load on both can be controlled.

板10を構成する砥粒は、例えばSiC、ダイヤモンド砥粒などであり、常法を用いて円盤状に固めたものである。板10は、後述の半導体ウェーハと同程度の直径とし、例えば直径200mm〜450mmの範囲で任意に設定することができ、例えば300mmとすることができる。   The abrasive grains constituting the plate 10 are, for example, SiC, diamond abrasive grains, etc., which are hardened into a disk shape using a conventional method. The plate 10 has a diameter approximately the same as that of a semiconductor wafer described later, and can be arbitrarily set within a range of, for example, a diameter of 200 mm to 450 mm, for example, 300 mm.

砥石20はダイヤモンド砥粒のメタルボンド砥石などから構成することができ、番手としては#400〜#8000の範囲で任意に設定することができ、例えば#1000とすることもできる。砥石20の直径は30mm〜100mmの範囲で任意に設定することができ、厚みは3mm〜15mmの範囲で任意に設定することができる。   The grindstone 20 can be composed of a diamond-bonded metal bond grindstone or the like, and the count can be arbitrarily set in the range of # 400 to # 8000, for example, # 1000. The diameter of the grindstone 20 can be arbitrarily set in the range of 30 mm to 100 mm, and the thickness can be arbitrarily set in the range of 3 mm to 15 mm.

なお、図示しないが、例えば円盤状の板10を回転および移動可能なステージに載置すれば板10の回転およびy方向の移動を任意に制御することができる。また、z軸方向に昇降自在な精密研削用モータなどを用いて、砥石20の回転および移動を任意に制御することができる。例えば、砥石20の中央部に、砥石20を回転させるための軸部21を設けることで、砥石20の回転移動の制御が可能となる(図5)。円盤状の板10および砥石20の回転および移動にあたっては、研磨技術における一般的な制御方法が適用可能である。   Although not shown, for example, if the disk-shaped plate 10 is placed on a rotatable and movable stage, the rotation of the plate 10 and the movement in the y direction can be arbitrarily controlled. Further, the rotation and movement of the grindstone 20 can be arbitrarily controlled using a precision grinding motor that can be moved up and down in the z-axis direction. For example, the rotational movement of the grindstone 20 can be controlled by providing the shaft portion 21 for rotating the grindstone 20 at the center of the grindstone 20 (FIG. 5). In the rotation and movement of the disk-shaped plate 10 and the grindstone 20, a general control method in the polishing technique can be applied.

なお、上記実施形態では、円盤状の板10を粗研磨すると説明したが、円盤状の板10の形状または目標研磨形状によっては、円盤状の板10の周縁部の粗研砥石による粗研磨を省略して、図4を用いて既述の動作による研磨成型を直接行ってもよい。砥石20による研磨取り代が例えば5μm以下の場合などである。また、円盤状の板10および砥石20の移動をNC制御(数値制御;numerical control)することがより好ましい。ツルーアー10Aの形状をより精度良く研磨成形することができる。   In the above embodiment, the disk-shaped plate 10 is roughly polished. However, depending on the shape of the disk-shaped plate 10 or the target polishing shape, rough polishing with a rough grindstone on the peripheral edge of the disk-shaped plate 10 is performed. Omitted and polishing molding by the above-described operation may be directly performed using FIG. This is the case, for example, when the grinding allowance by the grindstone 20 is 5 μm or less. Moreover, it is more preferable to perform NC control (numerical control) of the movement of the disk-shaped plate 10 and the grindstone 20. The shape of the truer 10A can be polished and molded with higher accuracy.

次に、上記製造方法により得られたたツルーアーを用いて得られる半導体ウェーハについて説明する。本実施形態に従う半導体ウェーハの製造方法は、前述の製造方法により得られたツルーアーを用いて精研砥石をツルーイングし、該精研砥石を用いて、半導体ウェーハの周縁部を面取りすることを特徴とする。   Next, a semiconductor wafer obtained using the truer obtained by the above manufacturing method will be described. A method for manufacturing a semiconductor wafer according to the present embodiment is characterized in that a fine grinding stone is trued using the truer obtained by the above-described production method, and the peripheral edge of the semiconductor wafer is chamfered using the fine grinding stone. To do.

精研砥石のツルーイングおよび半導体ウェーハの周縁部の面取りにあたっては、従来技術を適用すればよい。例えば、エッジグラインディングマシン(W−GM−5200;東精エンジニアリング社製)を用いて半導体ウェーハの面取りを行うことができる。砥粒を固めた円盤状の板の周縁部の輪郭を直接研磨成形するので、ツルーアーの周縁部形状が高精度に制御される。そのため、このツルーアーを用いてツルーイングされた精研砥石の溝形状も高精度に成形される。したがって、かかる精研砥石を用いて半導体ウェーハの周縁部を面取りすることにより、半導体ウェーハ周縁部の面取り加工を高精度に制御した半導体ウェーハを製造することができる。   Conventional techniques may be applied to truing the fine grinding wheel and chamfering the peripheral edge of the semiconductor wafer. For example, a semiconductor wafer can be chamfered using an edge grinding machine (W-GM-5200; manufactured by Tosei Engineering Co., Ltd.). Since the contour of the peripheral portion of the disc-shaped plate with hardened abrasive grains is directly polished and molded, the peripheral shape of the truer is controlled with high accuracy. Therefore, the groove shape of the precision grinding wheel trued with this truer is also formed with high accuracy. Therefore, by chamfering the peripheral portion of the semiconductor wafer using such a fine grinding wheel, a semiconductor wafer in which chamfering processing of the peripheral portion of the semiconductor wafer is controlled with high accuracy can be manufactured.

なお、半導体ウェーハ10としては、チョクラルスキ法(CZ法)や浮遊帯域溶融法(FZ法)により育成された単結晶シリコンインゴットをワイヤーソー等でスライスしたシリコンウェーハを使用することが好ましい。なお、半導体ウェーハ10に任意のドーパントを所定濃度添加して、いわゆるn+型もしくはp+型、またはn−型もしくはp−型の基板としてもよい。他にも、半導体ウェーハ10としては、化合物半導体(GaAs、GaN、SiC)などのバルクの単結晶ウェーハを用いてもよい。また、半導体ウェーハ10にノッチまたはオリフラが設けられていてもよい。   As the semiconductor wafer 10, it is preferable to use a silicon wafer obtained by slicing a single crystal silicon ingot grown by the Czochralski method (CZ method) or the floating zone melting method (FZ method) with a wire saw or the like. An arbitrary dopant may be added to the semiconductor wafer 10 at a predetermined concentration to form a so-called n + type or p + type, or n− type or p− type substrate. In addition, a bulk single crystal wafer such as a compound semiconductor (GaAs, GaN, SiC) may be used as the semiconductor wafer 10. Further, the semiconductor wafer 10 may be provided with a notch or an orientation flat.

ここで、装置構成の要部を示す図7を用いて、本発明の一実施形態に従う半導体ウェーハの面取り加工装置を説明する。   Here, a semiconductor wafer chamfering apparatus according to an embodiment of the present invention will be described with reference to FIG. 7 showing a main part of the apparatus configuration.

本発明による半導体ウェーハの面取り加工装置100は、砥粒を固めた円盤状の板(後述の研磨成形後にツルーアー10Aとなる)と、前記板を載置するテーブル41と、テーブル41の昇降、水平方向移動および、前記板の周方向への回転を行う駆動機構51と、前記板を研磨成形する円筒状の砥石20と、砥石20を周方向に回転させ、かつ、砥石20を移動する移動機構52と、前記板によりツルーイングされる精研砥石30と、精研砥石30を回転させる回転機構53と、円盤状の板10Aを半導体ウェーハ(図示せず)と交換する交換機構54と、駆動機構51、移動機構52、回転機構53および交換機構54を制御する制御部50と、を有する。   A chamfering apparatus 100 for a semiconductor wafer according to the present invention includes a disk-shaped plate (which becomes a truer 10A after polishing molding described later) with abrasive grains hardened, a table 41 on which the plate is placed, and an elevation and horizontal movement of the table 41. Drive mechanism 51 for moving the direction and rotating the plate in the circumferential direction, a cylindrical grindstone 20 for polishing the plate, and a moving mechanism for rotating the grindstone 20 in the circumferential direction and moving the grindstone 20 52, a fine grinding wheel 30 that is trued by the plate, a rotating mechanism 53 that rotates the fine grinding stone 30, an exchange mechanism 54 that replaces the disk-shaped plate 10A with a semiconductor wafer (not shown), and a drive mechanism 51, a moving mechanism 52, a rotating mechanism 53, and a control unit 50 that controls the exchanging mechanism 54.

ここで制御部50は、駆動機構51および移動機構52を制御して、円盤状の板を前述のツルーアー10Aに研磨成形する。すなわち、前記円盤状の板および砥石20をそれぞれの周方向に回転させ、かつ、前記板および前記砥石20のいずれか一方または両方を移動し、前記板の周縁部および前記砥石20の周面を互いに接触させて、前記板の周縁部の輪郭を目標形状に研磨成形する。詳細についてはツルーアーの製造方法の実施形態に既述のとおりであり、重複する説明を省略する。   Here, the control unit 50 controls the driving mechanism 51 and the moving mechanism 52 to polish and form a disk-shaped plate on the above-described truer 10A. That is, the disk-shaped plate and the grindstone 20 are rotated in the respective circumferential directions, and one or both of the plate and the grindstone 20 are moved, and the peripheral portion of the plate and the circumferential surface of the grindstone 20 are moved. By bringing them into contact with each other, the contour of the peripheral edge of the plate is polished and formed into a target shape. The details are as described in the embodiment of the truer manufacturing method, and a duplicate description is omitted.

また、制御部50は駆動機構51および回転機構53を制御して、ツルーアー10Aとなった前記板(以下、単にツルーアー10Aとする。)および精研砥石30を周方向に回転させながら接触させてツルーイングを行う。これにより、目標形状の溝が精研砥石30に形成される。   Further, the control unit 50 controls the drive mechanism 51 and the rotation mechanism 53 so that the plate that has become the truer 10A (hereinafter simply referred to as the truer 10A) and the fine grinding wheel 30 are brought into contact with each other while rotating in the circumferential direction. Do truing. As a result, a groove having a target shape is formed in the fine grinding stone 30.

さらに、制御部50は、半導体ウェーハを研磨するに際しては、交換機構54を制御してツルーアー10Aと半導体ウェーハを交換する。その後、制御部50は駆動機構51および回転機構53を制御して、前記半導体ウェーハおよび精研砥石30を周方向に回転させながら接触させて、前記半導体ウェーハの周縁部を研磨することができる。   Further, when polishing the semiconductor wafer, the control unit 50 controls the exchange mechanism 54 to exchange the truer 10A and the semiconductor wafer. Thereafter, the control unit 50 can control the driving mechanism 51 and the rotation mechanism 53 to bring the semiconductor wafer and the fine grinding stone 30 into contact with each other while rotating in the circumferential direction, thereby polishing the peripheral portion of the semiconductor wafer.

以上説明した加工装置により、ツルーアー10Aの形状が精度良く形成されるため、半導体ウェーハの周縁部も精度良く面取りして研磨加工することができる。なお、面取り加工装置100は粗研砥石およびノッチまたはオリフラ形成用の砥石をさらに有していてもよく、さらに半導体ウェーハの周縁部の面取り加工装置として一般的な構成を有していてもよい。   Since the shape of the truer 10A is accurately formed by the processing apparatus described above, the peripheral portion of the semiconductor wafer can also be chamfered and polished with high accuracy. The chamfering apparatus 100 may further include a rough grinding stone and a notch or orientation flat forming grindstone, and may have a general configuration as a chamfering apparatus for a peripheral portion of a semiconductor wafer.

なお、駆動機構51、移動機構52、回転機構53、交換機構54および制御部50は、面取り加工装置において一般的に用いられる部材を適用可能であり、モータ、ギヤ、ベアリング、センサー、CPU等を適宜組み合わせて用いることができる。   The driving mechanism 51, the moving mechanism 52, the rotating mechanism 53, the exchanging mechanism 54, and the control unit 50 can be members commonly used in a chamfering apparatus, and include a motor, a gear, a bearing, a sensor, a CPU, and the like. They can be used in appropriate combinations.

(発明例)
SiCの砥粒を固めた円盤状の板(直径:304mm、厚み:1200μm)を用意し、周縁部を粗研磨した。シリコンウェーハの面取り後の周縁部の形状を、形状パラメータA1=430μm、A2=430μm、BC=500μmm、θ1=21.5度、θ2=21.5度とする端面が平坦な略円錐台形型(図6)とし、その狙い値に従ってツルーアーの周縁部形状を設定してツルーアーの目標形状とした。メタルボンド(直径:50mm、厚み:5mm、番手#1000)の砥石を用いて、ツルーアーの周縁部の形状がこの目標形状となるように、EMTEK社製CVP310Rを用いて、図4に示した板10と砥石20の動作をNC制御して研磨加工を施し、円盤状の板の周縁部の輪郭を研磨成形し、ツルーアーを作製した。同一条件下で研磨加工を行い、合計5つのツルーアーを作製した。
(Invention example)
A disc-shaped plate (diameter: 304 mm, thickness: 1200 μm) in which SiC abrasive grains were hardened was prepared, and the peripheral edge portion was coarsely polished. The shape of the peripheral edge of the silicon wafer after chamfering is a substantially frustoconical shape with a flat end face with shape parameters A1 = 430 μm, A2 = 430 μm, BC = 500 μmm, θ1 = 21.5 degrees, and θ2 = 21.5 degrees. Fig. 6), and the peripheral shape of the truer was set according to the target value to obtain the true shape of the truer. Using a metal bond (diameter: 50 mm, thickness: 5 mm, count # 1000) grindstone, the plate shown in FIG. 4 using an EMTEK CVP310R so that the shape of the peripheral part of the truer becomes this target shape. The operations of the grinding wheel 10 and the grinding stone 20 were controlled by NC to perform polishing, and the contour of the peripheral edge of the disk-shaped plate was polished and molded to produce a truer. Polishing was performed under the same conditions to produce a total of five truers.

かかるツルーアーを用いて、レジンボンドの精研砥石(番手:#2000)に精研磨用の溝を5つ形成した。ついで、エッジグラインディングマシン(W−GM−5200;東精エンジニアリング社製)に設置し、それぞれの溝を用いてシリコンウェーハ(直径:300mm、厚み:840μm)の周縁部の面取り加工を行った。合計5つのシリコンウェーハの面取り形状を、EdgeProfiler LEP-2200(コベルコ科研社製)を用いて測定した、形状パラメータA1,A2,BC,θ1、θ2を図8(A)〜(C)および図9(A)、(B)にそれぞれ示す。   Using this truer, five fine polishing grooves were formed on a resin bond precision grinding wheel (count: # 2000). Next, it was installed in an edge grinding machine (W-GM-5200; manufactured by Tosei Engineering Co., Ltd.), and a chamfering process was performed on the peripheral portion of the silicon wafer (diameter: 300 mm, thickness: 840 μm) using each groove. The shape parameters A1, A2, BC, θ1, and θ2 measured by using EdgeProfiler LEP-2200 (manufactured by Kobelco Kaken) are shown in FIGS. 8A to 8C and FIG. Shown in (A) and (B), respectively.

(従来例)
ツルーアーの目標形状を発明例と同一に設定して設けた溝を、メタルボンドの粗研砥石(番手:#600)に8個設け、それぞれの溝を用いて8個のツルーアーを作製した。これらのツルーアーを用いて8個の溝を発明例で用いた精研砥石に設けた以外は、発明例と同様にして、精研砥石に設けたそれぞれの溝を用いて、シリコンウェーハの周縁部の面取り加工を行った。合計8つのシリコンウェーハの面取り形状の形状パラメータA1,A2,BC,θ1、θ2を、上記発明例とともに、図8(A)〜(C)および図9(A)、(B)にそれぞれ示す。
(Conventional example)
Eight grooves were provided in a metal bond roughing grindstone (counter: # 600) provided with the same true shape of the truer as in the invention example, and eight truers were produced using each groove. The peripheral edge of the silicon wafer is formed using each groove provided in the fine grinding wheel in the same manner as in the inventive example, except that eight grooves are provided in the fine grinding stone used in the invention example using these truers. Chamfering was performed. The shape parameters A1, A2, BC, θ1, and θ2 of the chamfered shapes of a total of eight silicon wafers are shown in FIGS. 8A to 8C and FIGS. 9A and 9B, respectively, together with the above-described invention.

図8(A)〜(C)および図9(A)、(B)から、発明例と従来例とを比較すると、発明例によるツルーアーを用いて精研砥石をツルーイングし、かかる精研砥石を用いて面取したシリコンウェーハ周縁部の形状のばらつきが、従来例に比べて顕著に抑制できていることがわかった。すなわち、発明例ではA1,A2,BCを±5μm以内に抑制でき、θ1およびθ2を0.3度以内とすることができる。したがって、本発明例により、シリコンウェーハ周縁部の形状を高精度に制御できることがわかった。   8 (A) to 8 (C) and FIGS. 9 (A) and 9 (B), when the invention example is compared with the conventional example, the fine grinding stone is trued using the truer according to the invention example. It was found that the variation in the shape of the peripheral edge portion of the silicon wafer chamfered by use can be significantly suppressed as compared with the conventional example. That is, in the invention example, A1, A2, and BC can be suppressed within ± 5 μm, and θ1 and θ2 can be within 0.3 degrees. Therefore, it was found that the shape of the peripheral portion of the silicon wafer can be controlled with high accuracy by the example of the present invention.

本発明によれば、砥粒を固めた円盤状の板の周縁部の輪郭を直接研磨成形してツルーアーとするので、形状を高精度に制御したツルーアーを製造することができる。また、このツルーアーを用いることで、半導体ウェーハ周縁部の面取り加工を高精度に制御した半導体ウェーハを製造することができる。   According to the present invention, the contour of the peripheral portion of the disk-shaped plate in which the abrasive grains are hardened is directly polished and formed into a truer, so that a truer whose shape is controlled with high accuracy can be manufactured. Further, by using this truer, it is possible to manufacture a semiconductor wafer in which chamfering processing of the peripheral portion of the semiconductor wafer is controlled with high accuracy.

1 円盤状の板
1A ツルーアー
2 粗研砥石
3 精研砥石
10 円盤状の板
10A ツルーアー
20 砥石
21 軸部
30 精研砥石
41 テーブル
50 制御部
51 駆動機構
52 移動機構
53 回転機構
54 交換機構
100 面取り加工装置
DESCRIPTION OF SYMBOLS 1 Disc-shaped board 1A Truer 2 Coarse grinding wheel 3 Precision grinding wheel 10 Disc-shaped board 10A Truer 20 Grinding wheel 21 Shaft part 30 Precision grinding stone 41 Table 50 Control part 51 Drive mechanism 52 Movement mechanism 53 Rotation mechanism 54 Exchange mechanism 100 Chamfering Processing equipment

Claims (6)

砥粒を固めた円盤状の板の周縁部を、砥石を用いて研磨成形するツルーアーの製造方法であって、
前記砥石は円筒状であり、
前記円盤状の板および前記砥石をそれぞれの周方向に回転させ、かつ、前記板および前記砥石のいずれか一方または両方を移動し、前記板の周縁部および前記砥石の周面を互いに接触させて、前記板の周縁部の輪郭を目標形状に研磨成形することを特徴とする、ツルーアーの製造方法。
A method for producing a truer that polishes and forms the peripheral edge of a disk-shaped plate with hardened abrasive grains using a grindstone,
The grindstone is cylindrical,
The disk-shaped plate and the grindstone are rotated in the respective circumferential directions, and either one or both of the plate and the grindstone are moved so that the peripheral portion of the plate and the circumferential surface of the grindstone are in contact with each other. A method for producing a truer, wherein the contour of the peripheral edge of the plate is polished to a target shape.
前記研磨成形に先立ち、前記円盤状の板の周縁部を、粗研砥石を用いて粗研磨する、請求項1に記載のツルーアーの製造方法。   The method for producing a truer according to claim 1, wherein, prior to the polishing and molding, a peripheral portion of the disk-shaped plate is roughly polished using a rough grinding stone. 前記移動をNC制御する、請求項1または2に記載のツルーアーの製造方法。   The truer manufacturing method according to claim 1 or 2, wherein the movement is NC-controlled. 請求項1〜3のいずれか1項に記載の製造方法により得られたツルーアーを用いて、精研砥石をツルーイングし、
前記精研砥石を用いて、半導体ウェーハの周縁部を面取りすることを特徴とする、半導体ウェーハの製造方法。
Using the truer obtained by the manufacturing method according to any one of claims 1 to 3, truing a fine grinding wheel,
A method for producing a semiconductor wafer, comprising chamfering a peripheral portion of the semiconductor wafer using the fine grinding wheel.
前記半導体ウェーハはシリコンウェーハである、請求項4に記載の半導体ウェーハの製造方法。   The method of manufacturing a semiconductor wafer according to claim 4, wherein the semiconductor wafer is a silicon wafer. 砥粒を固めた円盤状の板と、
前記板を載置するテーブルと、
前記テーブルの昇降、水平方向移動および、前記板の周方向への回転を行う駆動機構と、
前記板を研磨成形する円筒状の砥石と、
前記砥石を周方向に回転させ、かつ、前記砥石を移動する移動機構と、
前記円盤状の板によりツルーイングされる精研砥石と、
前記精研砥石を回転させる回転機構と、
前記円盤状の板を半導体ウェーハと交換する交換機構と、
前記駆動機構、前記移動機構、前記回転機構および前記交換機構を制御する制御部と、を有し、
前記制御部は、前記駆動機構および前記移動機構を制御して、前記円盤状の板および前記砥石をそれぞれの周方向に回転させ、かつ、前記板および前記砥石のいずれか一方または両方を移動し、前記板の周縁部および前記砥石の周面を互いに接触させて、前記板の周縁部の輪郭を目標形状に研磨成形し、
前記駆動機構および前記回転機構を制御して、前記板および前記精研砥石を周方向に回転させながら接触させて前記ツルーイングを行い、
前記交換機構を制御して前記板と前記半導体ウェーハを交換し、
前記駆動機構および前記回転機構を制御して、前記半導体ウェーハおよび前記精研砥石を周方向に回転させながら接触させて前記半導体ウェーハの周縁部を研磨することを特徴とする半導体ウェーハの加工装置。
A disk-shaped plate with hardened abrasive grains;
A table on which the plate is placed;
A drive mechanism for moving the table up and down, moving in the horizontal direction, and rotating the plate in the circumferential direction;
A cylindrical grindstone for polishing and molding the plate;
A moving mechanism for rotating the grindstone in the circumferential direction and moving the grindstone;
A precision grinding wheel that is trued by the disk-shaped plate;
A rotation mechanism for rotating the precision grinding wheel;
An exchange mechanism for exchanging the disk-shaped plate with a semiconductor wafer;
A controller that controls the drive mechanism, the moving mechanism, the rotating mechanism, and the exchange mechanism;
The control unit controls the drive mechanism and the moving mechanism to rotate the disk-shaped plate and the grindstone in respective circumferential directions, and moves either or both of the plate and the grindstone. The peripheral edge of the plate and the peripheral surface of the grindstone are brought into contact with each other, and the contour of the peripheral edge of the plate is polished to a target shape,
Control the drive mechanism and the rotation mechanism, and perform the truing by contacting the plate and the fine grinding wheel while rotating in the circumferential direction,
Controlling the exchange mechanism to exchange the plate and the semiconductor wafer;
An apparatus for processing a semiconductor wafer, wherein the driving mechanism and the rotating mechanism are controlled so that the semiconductor wafer and the fine grinding wheel are brought into contact with each other while rotating in the circumferential direction to polish a peripheral portion of the semiconductor wafer.
JP2015090588A 2015-04-27 2015-04-27 Method of manufacturing truer, method of manufacturing semiconductor wafer, and chamfering apparatus for semiconductor wafer Active JP6528527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015090588A JP6528527B2 (en) 2015-04-27 2015-04-27 Method of manufacturing truer, method of manufacturing semiconductor wafer, and chamfering apparatus for semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015090588A JP6528527B2 (en) 2015-04-27 2015-04-27 Method of manufacturing truer, method of manufacturing semiconductor wafer, and chamfering apparatus for semiconductor wafer

Publications (2)

Publication Number Publication Date
JP2016203342A true JP2016203342A (en) 2016-12-08
JP6528527B2 JP6528527B2 (en) 2019-06-12

Family

ID=57488401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015090588A Active JP6528527B2 (en) 2015-04-27 2015-04-27 Method of manufacturing truer, method of manufacturing semiconductor wafer, and chamfering apparatus for semiconductor wafer

Country Status (1)

Country Link
JP (1) JP6528527B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017035740A (en) * 2015-08-06 2017-02-16 株式会社ノリタケカンパニーリミテド Chamfering wheel and chamfering method using the same
CN108527059A (en) * 2018-06-11 2018-09-14 苏州航泰蜂窝科技有限公司 Circular slab periphery grinding device and the polishing process for utilizing the grinding device
WO2019035336A1 (en) * 2017-08-15 2019-02-21 信越半導体株式会社 Evaluation method and evaluation device of edge shape of silicon wafer, silicon wafer, and selection method and manufacturing method thereof
JP2019036700A (en) * 2017-08-15 2019-03-07 信越半導体株式会社 Evaluation method and evaluation device for edge shape of silicon wafer, silicon wafer, and selection method and manufacturing method therefor
CN109571183A (en) * 2018-11-30 2019-04-05 温州市华晖汽摩配件厂(普通合伙) A kind of lens edge grinding machine water outlet multi-radian glass for lenses bevelling bistrique certainly
CN109623553A (en) * 2018-12-25 2019-04-16 西安奕斯伟硅片技术有限公司 A kind of chamfering grinding wheel, chamfer grinding device and grinding method
JP2019198899A (en) * 2018-05-14 2019-11-21 中村留精密工業株式会社 Chamfering grinding device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843971Y1 (en) * 1970-03-25 1973-12-18
JP2005153085A (en) * 2003-11-26 2005-06-16 Tokyo Seimitsu Co Ltd Truing method of chamfering grinding wheel and chamfering device
JP2012143831A (en) * 2011-01-11 2012-08-02 Jtekt Corp Grinding machine and truing method for grinding wheel
JP2012192510A (en) * 2011-03-18 2012-10-11 Asahi Glass Co Ltd Method for manufacturing total type grinding wheel
JP2014079852A (en) * 2012-10-17 2014-05-08 Jtekt Corp Cylindrical grinder
JP2014180739A (en) * 2013-03-21 2014-09-29 Disco Abrasive Syst Ltd Grinding device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843971Y1 (en) * 1970-03-25 1973-12-18
JP2005153085A (en) * 2003-11-26 2005-06-16 Tokyo Seimitsu Co Ltd Truing method of chamfering grinding wheel and chamfering device
JP2012143831A (en) * 2011-01-11 2012-08-02 Jtekt Corp Grinding machine and truing method for grinding wheel
JP2012192510A (en) * 2011-03-18 2012-10-11 Asahi Glass Co Ltd Method for manufacturing total type grinding wheel
JP2014079852A (en) * 2012-10-17 2014-05-08 Jtekt Corp Cylindrical grinder
JP2014180739A (en) * 2013-03-21 2014-09-29 Disco Abrasive Syst Ltd Grinding device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017035740A (en) * 2015-08-06 2017-02-16 株式会社ノリタケカンパニーリミテド Chamfering wheel and chamfering method using the same
CN111033707A (en) * 2017-08-15 2020-04-17 信越半导体株式会社 Method and apparatus for evaluating edge shape of silicon wafer, and method for screening and manufacturing same
CN111033707B (en) * 2017-08-15 2023-09-05 信越半导体株式会社 Method and device for evaluating edge shape of silicon wafer, screening method therefor, and manufacturing method therefor
WO2019035336A1 (en) * 2017-08-15 2019-02-21 信越半導体株式会社 Evaluation method and evaluation device of edge shape of silicon wafer, silicon wafer, and selection method and manufacturing method thereof
JP2019036700A (en) * 2017-08-15 2019-03-07 信越半導体株式会社 Evaluation method and evaluation device for edge shape of silicon wafer, silicon wafer, and selection method and manufacturing method therefor
KR102520902B1 (en) 2017-08-15 2023-04-13 신에쯔 한도타이 가부시키가이샤 Evaluation method and apparatus for edge shape of silicon wafer, silicon wafer, and screening method and manufacturing method thereof
US11486833B2 (en) 2017-08-15 2022-11-01 Shin-Etsu Handotai Co., Ltd. Method for evaluating edge shape of silicon wafer, apparatus for evaluating thereof, silicon wafer, method for selecting and method for manufacturing thereof
KR20200035407A (en) * 2017-08-15 2020-04-03 신에쯔 한도타이 가부시키가이샤 Evaluation method and evaluation device of edge shape of silicon wafer, silicon wafer, and selection method and manufacturing method thereof
JP2019198899A (en) * 2018-05-14 2019-11-21 中村留精密工業株式会社 Chamfering grinding device
JP7158702B2 (en) 2018-05-14 2022-10-24 中村留精密工業株式会社 chamfering grinder
CN108527059B (en) * 2018-06-11 2023-06-09 苏州航泰蜂窝科技有限公司 Circular plate periphery polishing device and polishing method using polishing device
CN108527059A (en) * 2018-06-11 2018-09-14 苏州航泰蜂窝科技有限公司 Circular slab periphery grinding device and the polishing process for utilizing the grinding device
CN109571183A (en) * 2018-11-30 2019-04-05 温州市华晖汽摩配件厂(普通合伙) A kind of lens edge grinding machine water outlet multi-radian glass for lenses bevelling bistrique certainly
CN109571183B (en) * 2018-11-30 2024-02-20 温州市华晖汽摩配件厂(普通合伙) Self-water-outlet multi-radian lens glass chamfering grinding head for lens edging machine
CN109623553A (en) * 2018-12-25 2019-04-16 西安奕斯伟硅片技术有限公司 A kind of chamfering grinding wheel, chamfer grinding device and grinding method

Also Published As

Publication number Publication date
JP6528527B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP6528527B2 (en) Method of manufacturing truer, method of manufacturing semiconductor wafer, and chamfering apparatus for semiconductor wafer
JP5352331B2 (en) Wafer chamfering method
JP5988765B2 (en) Wafer chamfering method, wafer chamfering apparatus, and jig for angle adjustment
US6334808B1 (en) Method for processing peripheral portion of thin plate and apparatus therefor
JP7234317B2 (en) Truing method and chamfering device
JP2008264941A (en) Device and method for polishing disc-shaped workpiece
JP6493253B2 (en) Silicon wafer manufacturing method and silicon wafer
JP2007030119A (en) Wafer chamfering device and wafer chamfering method
JP7158702B2 (en) chamfering grinder
WO2016047543A1 (en) Chamfering device and chamfering method
JP6725831B2 (en) Work processing device
JP2007044853A (en) Method and apparatus for chamfering wafer
JP2004243422A (en) Circumference grinding united wheel
JP2008142799A (en) Working method for diffraction groove
JP7324889B2 (en) chamfering system
JP2024001517A (en) Truer molding method
JP7046670B2 (en) Chamfering system and truing equipment used for it
JP5944581B2 (en) Semiconductor wafer grinding apparatus, semiconductor wafer manufacturing method, and semiconductor wafer grinding method
JP2010094758A (en) Method and apparatus for manufacturing glass substrate for information recording medium
KR20170087300A (en) Edge grinding apparatus
JP2013123763A (en) Polishing method for object to be polished
JP2019130655A (en) Method for manufacturing grinding stone tool and chamfering device
JP2004079977A (en) Device and method for processing single-crystal silicon ingot
JP2002321147A (en) Method for processing free curved face
JP2007250962A (en) Manufacturing method of wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190429

R150 Certificate of patent or registration of utility model

Ref document number: 6528527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250