JP2010076013A - Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone - Google Patents

Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone Download PDF

Info

Publication number
JP2010076013A
JP2010076013A JP2008244655A JP2008244655A JP2010076013A JP 2010076013 A JP2010076013 A JP 2010076013A JP 2008244655 A JP2008244655 A JP 2008244655A JP 2008244655 A JP2008244655 A JP 2008244655A JP 2010076013 A JP2010076013 A JP 2010076013A
Authority
JP
Japan
Prior art keywords
polishing
grindstone
rotating grindstone
quartz
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008244655A
Other languages
Japanese (ja)
Inventor
Shintaro Kimura
晋太郎 木村
Chuji Kirino
宙治 桐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRYSTAL KOGAKU KK
Fujifilm Corp
Crystal Optics Inc
Original Assignee
CRYSTAL KOGAKU KK
Fujifilm Corp
Crystal Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRYSTAL KOGAKU KK, Fujifilm Corp, Crystal Optics Inc filed Critical CRYSTAL KOGAKU KK
Priority to JP2008244655A priority Critical patent/JP2010076013A/en
Publication of JP2010076013A publication Critical patent/JP2010076013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable cutting processing of a few μm depth when mirror-finish-grinding a hard brittle material into a shape with a small diameter and a high tangential angle and to enable such stable grinding processing as to suppress wear of a tool during grinding processing. <P>SOLUTION: When a cutting blade is formed at abrasive grains of a surface of a rotary grindstone 11 having many abrasive grains, a quartz polishing surface 13a of a quartz polishing tool 13 and the rotary grindstone 11 are mutually pressed and slid and ultraviolet rays L are irradiated to a contact part between the quartz polishing surface 13a and the rotary grindstone 11, so that the chips of the diamond abrasive grains protruded from the surface of the rotary grindstone are smoothed to form the cutting blade. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転砥石の研磨方法および研磨装置、並びに研削砥石およびこれを用いた研削装置に関する。   The present invention relates to a method and apparatus for polishing a rotating grindstone, a grinding wheel and a grinding apparatus using the same.

高画素数の撮像素子が搭載された携帯端末の撮像レンズや、青色光を利用する光ピックアップレンズ用レンズは、ガラスレンズが用いられ、そのレンズ形状は、小径な円筒端面に高接線角(光軸と直交する面と、レンズ曲面とのなす角度)で接続される微小な凸面となっている。このような形状のレンズを量産するには、一般にガラスモールド技術が用いられる。ガラスモールドで使用される金型は硬脆材料であり、そのため、この硬脆材料の表面に小径で高接線角を有する凹曲面形状を鏡面加工する必要がある。   A glass lens is used for an imaging lens of a mobile terminal equipped with an imaging device with a high pixel count or an optical pickup lens that uses blue light, and the lens shape has a high tangent angle (light It is a minute convex surface connected at an angle formed by a surface orthogonal to the axis and the lens curved surface. In order to mass-produce lenses having such a shape, a glass mold technique is generally used. The mold used in the glass mold is a hard and brittle material, and therefore, it is necessary to mirror-process a concave curved surface shape having a small diameter and a high tangent angle on the surface of the hard and brittle material.

一般に、ワークがガラスなどの硬脆材料である場合は、深い切り込みを入れると工具やワークが割れてしまい、鏡面加工ができないことが知られている。また、微少すぎる切り込みは、工具とワークとの間に滑りが生じて加工ができない。そのバランスから、大凡100nm以下の微小な切り込み量に留めることで鏡面加工が可能とされている。一般にこれを「延性モード加工」と呼んでいる。   In general, when the work is a hard and brittle material such as glass, it is known that if a deep cut is made, the tool or the work is cracked and mirror finishing cannot be performed. Further, if the cut is too small, slippage occurs between the tool and the workpiece, and machining cannot be performed. Due to this balance, mirror finishing is possible by keeping the amount of cut as small as 100 nm or less. This is generally called “ductility mode machining”.

この延性モード加工を粒度の大きな砥粒を用いた場合には、砥粒の突き出し量にバラツキがある為、最も突き出した砥粒のみで加工することになり、研削加工の平均化効果を得ることができずに、加工面の平坦化が著しく困難となる。   In this ductile mode processing, when abrasive grains with a large grain size are used, there is variation in the protruding amount of the abrasive grains, so that only the most protruding abrasive grains will be processed, and an average effect of grinding can be obtained. This makes it difficult to flatten the processed surface.

そこで、砥粒のサイズを小さくして砥粒突き出し量のバラツキを軽減させることで、均一な面加工を行う研削方法がある。例えば、高メッシュの砥石を用いた大量の刃先を有する工具を用い、実切り込みを100nm以下の微小切り込みにすることで、延性モード加工で硬脆材料の鏡面加工が実現できる。しかし、延性モード加工となる最大切り込み厚さを保持するため、送り速度が遅く、しかも切り込みが小さい条件でしか加工が行えず、多大な加工時間を要し、さらに加工後の刃先のダメージが大きくなる。しかも、加工後に工具を再研磨する必要が生じ、コスト高となることが避けられない。   Therefore, there is a grinding method for performing uniform surface processing by reducing the size of the abrasive grains and reducing variations in the amount of protruding abrasive grains. For example, by using a tool having a large amount of cutting edge using a high-mesh grindstone and making the actual incision into a minute incision of 100 nm or less, mirror surface processing of a hard and brittle material can be realized by ductile mode processing. However, since the maximum depth of cut is maintained for ductile mode machining, machining can only be performed under conditions where the feed rate is slow and the depth of cut is small, requiring a lot of machining time and further damage to the cutting edge after machining. Become. In addition, it is necessary to re-polish the tool after processing, which inevitably increases the cost.

一般的に、この種の硬脆材料の加工には小径の砥石を用いる場合が多く、その場合、切れ刃として有効な砥粒の数も少なくなる。しかも、ワーク表面を円滑な面に仕上げるためには、前述したように高メッシュの砥粒を用いる必要があり、砥粒一個一個の体積も小さくなる。その結果、砥粒が摩耗、脱落しやすくなり、安定した加工が困難になっていた。   In general, a small-diameter grindstone is often used for processing this type of hard and brittle material, and in that case, the number of abrasive grains effective as a cutting edge is also reduced. Moreover, in order to finish the workpiece surface to a smooth surface, it is necessary to use high mesh abrasive grains as described above, and the volume of each abrasive grain is also reduced. As a result, the abrasive grains are easily worn and dropped, making it difficult to perform stable processing.

一方、特許文献1のように、硬脆材料を旋削用ダイヤモンドカッタで加工する例もあるが、これは高価な刃を摩耗させながら加工する方法であり、延性モード加工を行うためには、微小切り込み加工を余儀なくされ、加工効率が著しく低下する。例えば、高精度スピンドルにダイヤモンドカッタを搭載した単刃のエンドミルでの加工では、回転数が実質5万回転程度に制限されてしまうため、見かけ切り込みは数μmとなるが、工具の送り速度が数μm/分程度となって、日単位の加工が必要となる。この加工時間では、段取りにも影響を及ぼし、作業効率を大きく低下させることになる。また、単刃のエンドミルは、十分な輪郭精度を有する工具が市販されておらず、加工後のワーク形状の精度にも問題が残される。さらに、この場合も工具使用後に工具を再研磨する必要があり、工具費用の上に再研磨コストがかかり、実用的ではない。   On the other hand, there is an example of processing a hard and brittle material with a diamond cutter for turning as disclosed in Patent Document 1, but this is a method of processing while wearing an expensive blade, and in order to perform ductile mode processing, Cutting is forced, and the processing efficiency is significantly reduced. For example, in the processing with a single blade end mill with a diamond cutter mounted on a high-precision spindle, the number of revolutions is limited to about 50,000 revolutions, so the apparent depth of cut is several μm, but the feed rate of the tool is several It becomes about μm / min, and daily processing is required. This machining time also affects the setup and greatly reduces work efficiency. Moreover, the tool with sufficient outline accuracy is not marketed for the single blade end mill, and the problem also remains in the precision of the workpiece shape after a process. Furthermore, in this case as well, it is necessary to re-grind the tool after using the tool, and the re-polishing cost is added to the tool cost, which is not practical.

ところで、高精度にワークを研削加工するには、砥石の調整が不可欠となる。この砥石の調整には、砥石を研削盤に取り付ける際に生じる振れを除去して形状を修正するツルーイングと、砥石を目直しして切れ味を回復させるドレッシングとがある。これらは通常同時に行われるので、本明細書においては両者をあえて区別せず、ツルーイング・ドレッシングと呼ぶ。
従来、ダイヤモンド砥石のツルーイング・ドレッシングには、ダイヤモンド砥石よりもはるかに柔らかい酸化アルミニウム系の砥石や炭化珪素系の砥石を使用し、徐々にダイヤモンド砥石を削りながら行うのが一般的であった。また、酸化アルミニウム系の砥石や炭化珪素系の砥石のツルーイング・ドレッシングの場合は、工具の先端に1個のダイヤモンドを取り付けた単石ダイヤモンドドレッサ、あるいはダイヤモンド粒を焼結してメタルで結合したボンドドレッサを使用していた。ところが、高メッシュの砥粒を用いた砥石に対しては、上記のドレッサを使用すると砥石はかえって切れ味を失ってしまうことになる。つまり、長時間ツルーイング・ドレッシングしても砥石の切れ味は必ずしも向上せず、いたずらに工程を長引かせるのみの結果に終っていた。そのため、高能率でかつ有効なツルーイング・ドレッシング方法の実現が望まれていた。
By the way, adjustment of a grindstone is indispensable for grinding a workpiece with high accuracy. This grinding wheel adjustment includes truing that corrects the shape by removing runout that occurs when the grinding wheel is attached to the grinding machine, and dressing that restores the sharpness by correcting the grinding wheel. Since these are usually performed at the same time, in the present specification, the two are not distinguished and are called truing dressing.
Conventionally, truing and dressing of a diamond grindstone is generally performed by using an aluminum oxide grindstone or a silicon carbide grindstone that is much softer than the diamond grindstone and gradually shaving the diamond grindstone. Also, in the case of truing dressing of aluminum oxide-based grindstone or silicon carbide-based grindstone, a single stone diamond dresser with one diamond attached to the tip of the tool, or a bond in which diamond grains are sintered and bonded with metal I was using a dresser. However, for a grindstone using high mesh abrasive grains, if the above-mentioned dresser is used, the grindstone will lose its sharpness. In other words, the sharpness of the grindstone does not always improve even after truing and dressing for a long time, and the result is that the process is unnecessarily prolonged. Therefore, the realization of a highly efficient and effective truing dressing method has been desired.

また、特許文献2には、砥石表面をツルーイング・ドレッシングし、砥粒先端の高さのバラツキを矯正した後、砥石表面に導電性膜を形成し、放電加工により砥粒表面を粗面化することで、砥粒表面に微細な切刃を形成する技術が記載されている。これによれば、切れ味や研削効率を向上することはできるが、硬脆材料からなるワークを鏡面加工することはできない。   In Patent Document 2, the surface of the grindstone is truing and dressed to correct the height variation of the grindstone tip, and then a conductive film is formed on the grindstone surface, and the surface of the grindstone is roughened by electric discharge machining. Thus, a technique for forming a fine cutting edge on the surface of an abrasive grain is described. According to this, although sharpness and grinding efficiency can be improved, a workpiece made of a hard and brittle material cannot be mirror-finished.

上記のように、硬脆材料の研削加工において、所望の形状精度と平滑性を同時に満足させるためには、砥石の粒度を順次細かくし、かつ微小な切り込み量で加工することが必要になる。その結果、指数関数的に増大する加工時間を必要とし、しかも砥石の調整に対しては有効な術がなかった。
特に、ガラスモードプレス(GMP)用の小径で小曲率の光学面を有するレンズ成形用金型は、耐熱性の観点から、金型素材をバインダレス超硬質合金(タングステンカーバイト:WC等)とする必要があり、小径の砥石によって研削加工が行われている。しかし、レンズの光学機能面の要求は、より小径化、小曲率化に向かっており、その加工のためには、目的とする小径で小曲率のレンズ面よりも小さいサイズの砥石が必要となる。しかし、小径で小曲率の砥石を用いて加工する場合、例えば直径φ1.0mmの砥石では理論砥粒数は100個以下となり、刃先を有する砥粒の摩耗や脱落は深刻な問題となって、ワークの鏡面性が低下し、加工精度の再現性が得られない。
As described above, in the grinding of hard and brittle materials, in order to satisfy the desired shape accuracy and smoothness at the same time, it is necessary to make the grindstone finer in order and process with a fine cut amount. As a result, machining time which increases exponentially is required, and there is no effective technique for adjusting the grindstone.
In particular, a lens molding die having a small diameter and a small curvature optical surface for glass mode press (GMP) is made from a binderless superhard alloy (tungsten carbide: WC, etc.) from the viewpoint of heat resistance. It is necessary to grind with a small-diameter grindstone. However, the demands on the optical functional surface of the lens are toward smaller diameter and smaller curvature, and for the processing, a grindstone having a smaller diameter than the objective lens surface having a small diameter and a small curvature is required. . However, when processing using a grindstone with a small diameter and a small curvature, for example, with a grindstone having a diameter of φ1.0 mm, the number of theoretical abrasive grains is 100 or less, and wear and loss of abrasive grains having a cutting edge become a serious problem. The specularity of the workpiece is degraded, and reproducibility of machining accuracy cannot be obtained.

特開2004−223700号公報JP 2004-223700 A 特開平7−96461号公報Japanese Patent Laid-Open No. 7-96461

本発明は、硬脆材料を小径で且つ高接線角度を持つ形状に鏡面研削加工する際に、数μmの切り込み加工を可能とし、その研削加工時の工具の摩耗が抑制される安定した研削加工が可能な回転砥石の研磨方法および研磨装置、並びに研削砥石およびこれを用いた研削装置を提供することを目的とする。   The present invention makes it possible to perform a cutting process of several μm when a hard and brittle material is mirror-ground into a shape having a small diameter and a high tangential angle, and stable grinding that suppresses wear of the tool during the grinding. An object of the present invention is to provide a method and apparatus for polishing a rotating grindstone that can be used, a grinding wheel and a grinding apparatus using the same.

本発明は下記構成からなる。
(1) 多数のダイヤモンド砥粒を有する回転砥石に対して、回転砥石表面のダイヤモンド砥粒に切れ刃を形成する回転砥石の研磨方法であって、
石英研磨工具の石英研磨面と前記回転砥石とを相互に押し当てて摺動させるとともに、前記石英研磨面と前記回転砥石との接触部位に紫外線を照射することで、
前記回転砥石表面から突出したダイヤモンド砥粒の先端部を平滑化して切れ刃を形成する回転砥石の研磨方法。
The present invention has the following configuration.
(1) For a rotating grindstone having a large number of diamond abrasive grains, a method for polishing a rotating grindstone that forms a cutting edge on diamond abrasive grains on the surface of the rotating grindstone,
The quartz polishing surface of the quartz polishing tool and the rotating grindstone are pressed against each other and slid, and the contact portion between the quartz polishing surface and the rotating grindstone is irradiated with ultraviolet rays,
A method for polishing a rotating grindstone, wherein the tip of diamond abrasive grains protruding from the surface of the rotating grindstone is smoothed to form a cutting edge.

この回転砥石の研磨方法によれば、石英研磨工具の石英研磨面に回転砥石を押し当てて摺動するとともに、石英研磨面と回転砥石との接触部位に紫外線を照射することで、回転砥石の表面が研磨されて砥粒表面が平滑に削れていく。これは、紫外線を照射することで、活性酸素の作用など光化学反応が促進され、表面改質されたダイヤモンドが石英との機械摩擦によって除去されることで研磨が進むと推定される。これにより、回転砥石は各ダイヤモンド砥粒の最大高さが揃えられた状態となり、これらダイヤモンド砥粒の各研磨された面の周囲に切れ刃が形成される。その結果、切れ刃の高さが均一に揃えられた回転砥石が得られることになる。   According to this method of polishing a rotating grindstone, the rotating grindstone is pressed against the quartz polishing surface of the quartz polishing tool and slid, and the contact portion between the quartz polishing surface and the rotating grindstone is irradiated with ultraviolet rays, thereby The surface is polished, and the abrasive grain surface is shaved smoothly. It is presumed that the photochemical reaction such as the action of active oxygen is promoted by irradiating ultraviolet rays, and that the surface-modified diamond is removed by mechanical friction with quartz, so that polishing proceeds. Thereby, the rotating grindstone is in a state in which the maximum heights of the diamond abrasive grains are aligned, and a cutting edge is formed around each polished surface of the diamond abrasive grains. As a result, a rotating grindstone having a uniform cutting edge height can be obtained.

(2) (1)記載の回転砥石の研磨方法であって、
前記石英研磨工具と前記回転砥石の少なくともいずれかを回転駆動して研磨を行う回転砥石の研磨方法。
(2) The method for polishing a rotating grindstone according to (1),
A method for polishing a rotating grindstone, wherein polishing is performed by rotationally driving at least one of the quartz polishing tool and the rotating grindstone.

この回転砥石の研磨方法によれば、石英研磨工具と回転砥石の少なくともいずれかが回転することで、双方の接触部位が摺動して研磨が行われる。   According to this polishing method of a rotating grindstone, when at least one of the quartz polishing tool and the rotating grindstone rotates, both contact portions slide to perform polishing.

(3) (1)または(2)記載の回転砥石の研磨方法であって、
前記石英研磨工具と前記回転砥石とを一定の圧力で押し当てながら研磨する回転砥石の研磨方法。
(3) A method for polishing a rotating grindstone according to (1) or (2),
A method for polishing a rotating grindstone, in which the quartz polishing tool and the rotating grindstone are pressed against each other at a constant pressure.

この回転砥石の研磨方法によれば、石英研磨工具と回転砥石とを一定圧力で押し当てることで、高精度の研磨加工が安定して行える。   According to this polishing method for a rotating grindstone, high-precision polishing can be stably performed by pressing the quartz polishing tool and the rotating grindstone at a constant pressure.

(4) (1)〜(3)のいずれか1項記載の回転砥石の研磨方法であって、
前記石英研磨工具の石英研磨面と前記回転砥石との接触部位を酸素ガス雰囲気にして研磨する回転砥石の研磨方法。
(4) The method for polishing a rotating grindstone according to any one of (1) to (3),
A method for polishing a rotating grindstone, comprising polishing a contact portion between a quartz polishing surface of the quartz polishing tool and the rotating grindstone in an oxygen gas atmosphere.

この回転砥石の研磨方法によれば、接触部位に酸素ガス雰囲気にすることで、研磨がより促進されて、研磨加工速度が速められる。   According to this method for polishing a rotating grindstone, by making an oxygen gas atmosphere at the contact portion, polishing is further promoted and the polishing processing speed is increased.

(5) 多数のダイヤモンド砥粒を有する回転砥石に対して、回転砥石表面の砥粒に切れ刃を形成する回転砥石の研磨装置であって、
石英研磨面を有する石英研磨工具と、
前記石英研磨工具に対面して配置され、前記石英研磨工具の石英研磨面に対して前記回転砥石を押し当て可能に保持する保持台と、
前記石英研磨工具と前記回転砥石とを相互に摺動させる摺動手段と、
前記石英研磨工具と前記回転砥石との接触部位に紫外線を照射する光照射手段と、
を備え、
前記回転砥石表面から突出したダイヤモンド砥粒の先端部を平滑化して切れ刃を形成する回転砥石の研磨装置。
(5) For a rotating grindstone having a large number of diamond abrasive grains, a rotating grindstone polishing apparatus that forms cutting edges on the abrasive grains on the surface of the rotating grindstone,
A quartz polishing tool having a quartz polishing surface;
A holding stand that is arranged to face the quartz polishing tool and holds the rotating grindstone against the quartz polishing surface of the quartz polishing tool;
Sliding means for sliding the quartz polishing tool and the rotating grindstone against each other;
A light irradiating means for irradiating ultraviolet rays to a contact portion between the quartz polishing tool and the rotating grindstone;
With
A polishing apparatus for a rotating grindstone that forms a cutting edge by smoothing the tip of diamond abrasive grains protruding from the surface of the rotating grindstone.

この回転砥石の研磨装置によれば、石英研磨工具の研磨面に、回転砥石を押し当てて摺動させるとともに、石英研磨工具と回転砥石との接触部位に光照射手段により紫外線を照射することで、回転砥石表面が研磨されて各砥粒の表面が平滑状に削れていく。これにより、回転砥石は各ダイヤモンド砥粒の高さが揃えられた状態となり、これらダイヤモンド砥粒の各研磨された面の周囲に切れ刃が形成される。その結果、切れ刃の高さが均一に揃えられた回転砥石が得られることになる。   According to this rotating grindstone polishing apparatus, the rotating grindstone is pressed against the polishing surface of the quartz polishing tool and slid, and the contact portion between the quartz polishing tool and the rotating grindstone is irradiated with ultraviolet rays by the light irradiation means. The surface of the rotating grindstone is polished, and the surface of each abrasive grain is shaved smoothly. As a result, the rotating grindstone is in a state where the heights of the diamond abrasive grains are aligned, and a cutting edge is formed around each polished surface of the diamond abrasive grains. As a result, a rotating grindstone having a uniform cutting edge height can be obtained.

(6) (5)記載の回転砥石の研磨装置であって、
前記石英研磨工具と前記回転砥石との接触状態を、一定の圧力で当接するように維持する接触圧力制御手段を備えた回転砥石の研磨装置。
(6) The rotating grindstone polishing apparatus according to (5),
A polishing apparatus for a rotating grindstone, comprising contact pressure control means for maintaining a contact state between the quartz polishing tool and the rotating grindstone so as to abut at a constant pressure.

この回転砥石の研磨装置によれば、接触圧力制御手段により、石英研磨工具と回転砥石とを一定の圧力で当接させることで、高精度の研磨加工を安定して行える。   According to this polishing apparatus for a rotating grindstone, high-precision polishing can be stably performed by bringing the quartz polishing tool and the rotating grindstone into contact with each other with a constant pressure by the contact pressure control means.

(7) (5)または(6)記載の回転砥石の研磨装置であって、
前記摺動手段が、前記保持台に保持された回転砥石を、該回転砥石の回転軸を中心に回転駆動する砥石回転駆動部を備えた回転砥石の研磨装置。
(7) The polishing apparatus for a rotating grindstone according to (5) or (6),
An apparatus for polishing a rotating grindstone, wherein the sliding means includes a grindstone rotation driving unit that rotationally drives the rotating grindstone held on the holding table about a rotation axis of the rotating grindstone.

この回転砥石の研磨装置によれば、回転砥石を回転駆動して石英研磨工具と摺動させることで、回転砥石を回転対称形状に研磨加工できる。   According to this rotary grindstone polishing apparatus, the rotary grindstone can be polished into a rotationally symmetric shape by rotationally driving the rotary grindstone and sliding it with the quartz polishing tool.

(8) (5)〜(7)のいずれか1項記載の回転砥石の研磨装置であって、
前記摺動手段が、前記石英研磨工具を回転駆動する研磨工具回転駆動部を備えた回転砥石の研磨装置。
(8) The rotating grindstone polishing apparatus according to any one of (5) to (7),
A polishing apparatus for a rotating grindstone, wherein the sliding means includes a polishing tool rotation driving unit that rotationally drives the quartz polishing tool.

この回転砥石の研磨装置によれば、石英研磨工具を回転駆動して回転砥石との摺接位置を常に更新することで、石英研磨工具の研磨面の摩耗が抑えられ、高い寸法精度で回転砥石を研磨できる。   According to this rotating grindstone polishing apparatus, the quartz polishing tool is driven to rotate and the sliding contact position with the rotating grindstone is constantly updated, so that the abrasion of the polishing surface of the quartz polishing tool can be suppressed and the rotating grindstone can be obtained with high dimensional accuracy. Can be polished.

(9) (5)〜(8)のいずれか1項記載の回転砥石の研磨装置であって、
前記光照射手段が、紫外線を前記石英研磨工具の石英研磨面とは反対側の面から前記回転砥石との接触部位に向けて照射する回転砥石の研磨装置。
(9) The rotating grindstone polishing apparatus according to any one of (5) to (8),
The rotating grindstone polishing apparatus in which the light irradiating means irradiates ultraviolet rays from a surface opposite to the quartz polishing surface of the quartz polishing tool toward a contact portion with the rotating grindstone.

この回転砥石の研磨装置によれば、石英研磨工具の石英研磨面とは反対側から紫外線を導入して、石英研磨工具の回転砥石との接触部位に照射することで、接触部位全体を、影を生じさせることなく、また、回転砥石と干渉することなく紫外線の照射が行える。   According to this polishing apparatus for a rotating grindstone, ultraviolet rays are introduced from the opposite side of the quartz polishing surface of the quartz polishing tool and irradiated to the contacting portion of the quartz polishing tool with the rotating grindstone, so that the entire contact portion is affected. UV irradiation can be performed without causing interference with the rotating grindstone.

(10) ダイヤモンド砥粒を基材上に電着または蝋付けした回転砥石であって、
(1)〜(4)のいずれか1項記載の回転砥石の研磨方法により回転軸先端の外周面が研磨され、
該研磨により形成され前記回転軸を中心とする各円周上に存在する前記ダイヤモンド砥粒の切れ刃が、前記回転軸上の各位置で、それぞれ該回転軸からの半径距離の変動量が±100nm以内の範囲に収められている回転砥石。
(10) A rotating grindstone in which diamond abrasive grains are electrodeposited or brazed onto a substrate,
(1) to (4), the outer peripheral surface of the tip of the rotating shaft is polished by the method for polishing a rotating grindstone according to any one of
The cutting edge of the diamond abrasive grains formed by the polishing and existing on each circumference around the rotation axis has a variation amount of the radial distance from the rotation axis at each position on the rotation axis. A rotating grindstone that is within a range of 100 nm.

この回転砥石によれば、回転軸を中心とする円周上に存在する切れ刃が、回転軸上の各位置で、回転軸からの半径距離の変動量が±100nm以内の範囲に収められることにより、各ダイヤモンド砥粒の切れ刃の高さが均一に揃えられている。このため、硬脆材料に対して切り込み量や送り量を極端に落とすことなく延性モード加工を実現でき、高効率で鏡面研削加工が可能な工具にできる。しかも耐摩耗性を向上でき、工具寿命を向上できる。   According to this rotary grindstone, the cutting edge existing on the circumference centered on the rotation axis can be accommodated within a range of variation of ± 100 nm in the radial distance from the rotation axis at each position on the rotation axis. Thus, the heights of the cutting edges of the diamond abrasive grains are evenly aligned. For this reason, ductile mode processing can be realized without extremely reducing the cutting depth and feeding amount for hard and brittle materials, and a tool capable of high-efficiency mirror grinding can be achieved. Moreover, the wear resistance can be improved and the tool life can be improved.

(11) (10)記載の回転砥石であって、
前記回転砥石の回転軸を通る断面において、前記回転砥石が前記回転軸を中心に回転したときの切れ刃の出現領域を表す、前記回転軸先端の外周面に沿った研磨加工帯が、回転砥石表面の法線方向の厚みの変動量で±100nm以下にされた回転砥石。
(11) The rotating grindstone according to (10),
In a cross section passing through the rotation axis of the rotary grindstone, a polishing band along the outer peripheral surface of the tip of the rotary shaft, which represents an appearance region of a cutting edge when the rotary grindstone rotates around the rotary shaft, is a rotary grindstone A rotating whetstone whose surface normal direction thickness variation is ± 100 nm or less.

この回転砥石によれば、厚みの変動量が±100nm以下の研磨加工帯内に切れ刃が出現するように各砥粒の切れ刃を形成してあるので、硬脆材料に対して回転砥石の外形に沿った領域で高効率な鏡面研削加工を実現できる。   According to this rotary grindstone, since the cutting edge of each abrasive grain is formed so that the cutting edge appears in a polishing band having a thickness variation of ± 100 nm or less, High-efficiency mirror grinding can be realized in the area along the outline.

(12) (10)または(11)記載の回転砥石であって、
前記ダイヤモンド砥粒の切れ刃が、丸棒状のシャンクの一端側に形成された細径部の先端外周に形成された回転砥石。
(12) The rotating grindstone according to (10) or (11),
A rotating grindstone in which the cutting edge of the diamond abrasive grains is formed on the outer periphery of the tip of a small diameter portion formed on one end of a round bar-shaped shank.

この回転砥石によれば、シャンクの一端側の細径部に砥粒を設けることで、ワークとシャンクが干渉しにくい構造にでき、より微細な研削加工が可能となる。   According to this rotary grindstone, by providing abrasive grains on the narrow diameter portion on one end side of the shank, a structure in which the workpiece and the shank do not easily interfere with each other can be obtained, and finer grinding can be performed.

(13) (12)記載の回転砥石であって、
前記細径部の先端が、回転軸を中心に逆すり鉢状の凸状面を有する回転砥石。
(13) The rotating grindstone according to (12),
A rotating grindstone in which the tip of the small-diameter portion has an inverted mortar-shaped convex surface about a rotation axis.

この回転砥石によれば、逆すり鉢状の凸状面に砥粒が設けられることで、微小な曲面の研削加工が容易に行え、微細研削加工に適した工具にできる。   According to this rotating grindstone, by providing the abrasive grains on the inverted mortar-shaped convex surface, it is possible to easily grind a fine curved surface and to make a tool suitable for the fine grinding.

(14) (10)〜(13)のいずれか1項記載の回転砥石であって、
前記ダイヤモンド砥粒のサイズを表す粒度が、#20〜#1000の範囲である回転砥石。
(14) The rotating grindstone according to any one of (10) to (13),
A rotating grindstone having a particle size representing a size of the diamond abrasive grains in a range of # 20 to # 1000.

この回転砥石によれば、ダイヤモンド砥粒のサイズを、砥粒の脱落を招く程に小さすぎず、かつ研削に寄与する砥粒数が不足する程に大きすぎず、必要十分な砥粒数となるように設定することで、安定した研削加工が可能となる。   According to this rotating grindstone, the size of the diamond abrasive grains is not so small that the abrasive grains fall off, and is not so large that the number of abrasive grains contributing to grinding is insufficient. By setting so as to be, stable grinding can be performed.

(15) (10)〜(14)のいずれか1項記載の回転砥石を用いて研削加工を行う研削装置。 (15) A grinding apparatus that performs grinding using the rotating grindstone according to any one of (10) to (14).

この研削装置によれば、上記回転砥石を用いることで、高精度で安定した研削加工を行うことができ、しかも工具寿命が長い経済的な研削加工が行える。   According to this grinding apparatus, by using the rotary grindstone, it is possible to perform highly accurate and stable grinding and to perform economical grinding with a long tool life.

本発明の回転砥石の研磨方法および装置によれば、硬脆材料を鏡面研削加工する際に、数μmの切り込み加工を可能とし、その研削加工時の工具の摩耗が抑制された安定した研削加工が可能となる研削砥石を得ることができる。また、これにより得られた研削砥石により、硬脆材料からなるワークを小径で且つ高接線角度を持つ形状に高効率で研削加工することができる。   According to the polishing method and apparatus for a rotating grindstone of the present invention, when mirror-grinding a hard and brittle material, it is possible to perform a cutting process of several μm, and a stable grinding process in which tool wear during the grinding process is suppressed. Can be obtained. In addition, with the grinding wheel thus obtained, a work made of a hard and brittle material can be ground efficiently into a shape having a small diameter and a high tangential angle.

以下に回転砥石の研磨方法および研磨装置、並びに研削砥石およびこれを用いた研削装置の好適な実施の形態について、図面を参照して詳細に説明する。
本明細書においては、ダイヤモンド砥粒の研磨を行う加工を「研磨加工」、このダイヤモンド砥粒を有するツールにより金型等の被加工品を研削する加工を「研削加工」と区別して記載する。
まず、ダイヤモンド砥粒の研磨方法について説明する。
一般にダイヤモンド砥粒の研磨方法としては種々の方法があるが、砥粒の摩耗として考えると、化学摩耗と物理摩耗とがある。
化学摩耗は、砥粒であるダイヤモンドとFe・Co・Si・SiO2等が化学反応を起こして除去されるものである。反応には熱が必要であり、ダイヤモンドは熱伝導率が高く、周りの物体の熱伝導率が低い。したがって、ダイヤモンドの周囲は熱抵抗となって、ダイヤモンド全体が反応する。このダイヤモンドの化学反応(摩耗)の速度は、ダイヤモンドの径の三乗に比例して大きくなる(重量(体積)に比例する)ので、大きいダイヤモンドほど摩耗し難いことになる。化学研磨は、通常、SiO2を擦り合わせることで化学的作用により行なわれる。しかし、逆に砥粒のエッジから反応する傾向があり、このため、ダイヤモンドにエッジが形成されにくく、工具の研磨加工方法としては不適切な場合が多いことが知られている。
DESCRIPTION OF EMBODIMENTS Preferred embodiments of a method and apparatus for polishing a rotating grindstone, and a grindstone and a grinding apparatus using the same will be described in detail below with reference to the drawings.
In the present specification, processing for polishing diamond abrasive grains is described as “polishing processing”, and processing for grinding a workpiece such as a mold with a tool having the diamond abrasive grains is distinguished from “grinding processing”.
First, a method for polishing diamond abrasive grains will be described.
In general, there are various polishing methods for diamond abrasive grains. When considering abrasive wear, there are chemical wear and physical wear.
In chemical wear, diamond, which is abrasive grains, and Fe, Co, Si, SiO 2 and the like are removed by a chemical reaction. The reaction requires heat, and diamond has a high thermal conductivity and the surrounding objects have a low thermal conductivity. Therefore, the periphery of the diamond becomes a thermal resistance, and the entire diamond reacts. Since the speed of the chemical reaction (wear) of diamond increases in proportion to the cube of the diamond diameter (proportional to weight (volume)), the larger the diamond, the harder it is to wear. Chemical polishing is usually performed by chemical action by rubbing SiO 2 together. However, there is a tendency to react from the edge of the abrasive grains, which makes it difficult to form an edge on diamond, and it is known that it is often inappropriate as a tool polishing method.

一方、物理摩耗は、欠損と脱粒の2通りが考えられる。一般的に鏡面研削加工では砥粒径が小さいので、脱粒が支配的と考えられている。小さいダイヤモンドは、接着剤との結合面積が小さいため、接着力が弱く(径の二乗に比例)、脱粒し易く、物理摩耗にも弱い。物理研磨は、ダイヤモンドが結晶の方向(原子の重なり方)により研磨加工速度が異なるため、研磨加工し難くなることは必至である。また、平面の研磨加工には適するが、角部の丸み付けや曲面研磨加工においては、場所により研磨方向が異なり、同じように研磨しても、歪な形に研磨されてしまうことがある。また、フラットな板に押し付けて研磨加工する場合には、階段状などのインコーナー形状等の研磨加工ができないとされている。   On the other hand, there are two types of physical wear: defect and degranulation. In general, in the mirror grinding process, the grain size is small, and therefore, degranulation is considered to be dominant. Small diamond has a small bonding area with the adhesive, and therefore has a low adhesive strength (proportional to the square of the diameter), is easy to degranulate, and is also susceptible to physical wear. In physical polishing, the polishing process speed varies depending on the crystal direction of the diamond (the way atoms overlap), so it is inevitable that the polishing process becomes difficult. Further, although it is suitable for flat surface polishing, in rounding corners and curved surface polishing, the polishing direction differs depending on the location, and even if the same polishing is performed, it may be polished in a distorted shape. Further, when polishing is performed by pressing against a flat plate, it is said that polishing such as an in-corner shape such as a step shape cannot be performed.

そのようなことから、上記のダイヤモンド粒子を用いた研磨加工の不具合を解消する新規な研磨装置が提案されている(特開2006−224252号公報参照)。この研磨装置は、工具(砥石)に対面するワーク設置側に石英を配置し、紫外線を研磨加工点に照射しながら、石英と工具とを接触させつつ摺動させ、工具側の位置制御をナノオーダで制御することで研磨を行なっている。この研磨方法(以下、紫外線石英研磨と呼称する。)によれば、紫外線を照射していることで石英とダイヤモンドとが積極的に化学反応を起こし、化学研磨でありながら物理研磨のように鋭利なエッジ加工を実現できる。   For this reason, a novel polishing apparatus has been proposed that solves the problem of polishing using the diamond particles (see Japanese Patent Application Laid-Open No. 2006-224252). In this polishing apparatus, quartz is placed on the workpiece installation side facing the tool (grinding stone), and while sliding the quartz and the tool in contact with each other while irradiating the polishing point with ultraviolet rays, the position control on the tool side is nano-ordered. Polishing is performed by controlling at. According to this polishing method (hereinafter referred to as “ultraviolet quartz polishing”), the chemical reaction between quartz and diamond is positively caused by irradiating with ultraviolet rays, so that it is sharp like physical polishing while being chemical polishing. Edge processing can be realized.

本研磨装置においては、基本的に上記の石英紫外線研磨法を適用して、回転砥石先端の各ダイヤモンド砥粒の高さが均一に揃うように研磨する。特に、石英と回転砥石との間に弾性を持たせ、常に双方の接触状態が一定圧力で押圧されているように維持することで、ダイヤモンド砥粒を高精度で研磨することが可能となっている。   In this polishing apparatus, basically, the above-described quartz ultraviolet polishing method is applied to polish the diamond abrasive grains at the tip of the rotating grindstone so that the heights thereof are evenly aligned. In particular, it is possible to polish diamond abrasive grains with high precision by providing elasticity between quartz and a rotating grindstone and maintaining the contact state of both of them to be constantly pressed at a constant pressure. Yes.

図1に研磨装置のブロック構成図を示した。
この研磨装置100は、多数の砥粒を有する回転砥石11に対して、回転砥石11の表面の砥粒に切れ刃を形成するものであり、研磨面13aが石英で構成された石英研磨工具13を相互に押し当てて摺動させるとともに、石英研磨工具13と回転砥石11との接触部位17に、光化学反応を促進させる紫外線Lを照射することで、回転砥石11の表面を研磨する。
FIG. 1 shows a block diagram of the polishing apparatus.
The polishing apparatus 100 forms a cutting edge on the abrasive grains on the surface of the rotating grindstone 11 with respect to the rotating grindstone 11 having a large number of abrasive grains, and a quartz polishing tool 13 having a polishing surface 13a made of quartz. Are pressed against each other and slid, and the surface 17 of the rotating grindstone 11 is polished by irradiating the contact portion 17 between the quartz polishing tool 13 and the rotating grindstone 11 with ultraviolet light L that promotes a photochemical reaction.

つまり、研磨装置100は石英研磨工具13に対面して配置され、石英研磨工具13に対して回転砥石11を押し当て可能に保持する保持台19と、石英研磨工具13と回転砥石11とを相互に摺動させる摺動手段としての主軸モータ23および砥石回転モータ25と、石英研磨工具13と回転砥石11との接触部位17に紫外線を照射する光照射手段としての光源27およびライトガイド29と、を備えている。   That is, the polishing apparatus 100 is disposed so as to face the quartz polishing tool 13, and the holding table 19 that holds the rotating grindstone 11 against the quartz polishing tool 13 and the quartz polishing tool 13 and the rotating grindstone 11 are mutually connected. A spindle motor 23 and a grindstone rotating motor 25 as sliding means for sliding on, a light source 27 and a light guide 29 as light irradiating means for irradiating the contact portion 17 between the quartz polishing tool 13 and the rotating grindstone 11 with ultraviolet rays, It has.

また、保持台19、主軸モータ23、砥石回転モータ25、光源27等は、制御部31に接続され、制御部31はこれらそれぞれを制御する。   Moreover, the holding stand 19, the spindle motor 23, the grindstone rotating motor 25, the light source 27, and the like are connected to the control unit 31, and the control unit 31 controls them.

保持台19は、図2に図1のV方向矢視図を示すように、石英研磨工具13の研磨面13aに対する回転砥石11の当接位置x,y,zおよび傾斜角φなどの各軸の調整が可能となっている。また、回転砥石11は砥石回転モータ25により回転駆動された状態で、主軸モータ23により回転駆動された石英研磨工具13の研磨面13aに摺接する。   As shown in FIG. 2 as viewed in the direction of the arrow V in FIG. 1, the holding table 19 has various axes such as the contact position x, y, z of the rotating grindstone 11 with respect to the polishing surface 13 a of the quartz polishing tool 13 and the inclination angle φ. Can be adjusted. The rotating grindstone 11 is in sliding contact with the polishing surface 13 a of the quartz polishing tool 13 that is rotationally driven by the spindle motor 23 while being rotationally driven by the grindstone rotating motor 25.

この研磨装置100による研磨対象となる回転砥石11は、図3に示すように、丸棒状の超硬素材からなり、シャンク35の一端側に形成された細径部35aの先端外周に、回転砥石11の砥石表面から突出するようにダイヤモンド砥粒37が電着または蝋付けにより固着されている。細径部35aは、例えば直径0.5〜1.0mm程の細径にされ、その先端が逆すり鉢状の凸状面に形成されている。ダイヤモンド砥粒37は、砥粒サイズを表す粒度(ダイヤモンド工業協会規格 IDAS001)が#20〜#1000の範囲のものを好適に利用できる。特に#100の砥粒は、平均砥粒径が150μmであり、#3000(平均砥粒径5μm)のものと比較して化学的強度は9000倍、脱粒に対しては600倍強い工具が得られる。ここで、上記化学的強度とは、ダイヤモンドが化学変化するまでの熱上昇する速度が、砥粒の粒度が大きくなることで抑制され、その結果、化学反応の進み具合が鈍ることを意味する。つまり、ダイヤモンドでは熱伝導度が非常に高いため、砥粒表層のみ温度が上昇することはなく、砥粒全体が昇温することになる。このため、砥粒が化学反応を生じる温度に到達するまでの昇温特性は、砥粒の比熱に影響され、砥粒の重さ(体積)によって昇温の速度が異なる。つまり、砥粒サイズに応じて異なる反応速度となる。   As shown in FIG. 3, the rotating grindstone 11 to be polished by the polishing apparatus 100 is made of a round bar-shaped cemented carbide material, and the rotating grindstone is disposed on the outer periphery of the small diameter portion 35 a formed on one end side of the shank 35. The diamond abrasive grains 37 are fixed by electrodeposition or brazing so as to protrude from the surface of the 11 grindstones. The small-diameter portion 35a has a small diameter of, for example, a diameter of about 0.5 to 1.0 mm, and its tip is formed in an inverted mortar-shaped convex surface. As the diamond abrasive grains 37, those having a grain size (diamond industry association standard IDAS001) in the range of # 20 to # 1000 can be suitably used. In particular, the # 100 abrasive grain has an average abrasive grain size of 150 μm, a tool that is 9000 times stronger in chemical strength than that of # 3000 (average abrasive grain diameter of 5 μm), and a tool that is 600 times stronger against grain removal. It is done. Here, the chemical strength means that the rate of heat rise until the diamond is chemically changed is suppressed by increasing the grain size of the abrasive grains, and as a result, the progress of the chemical reaction is slowed down. That is, since the thermal conductivity of diamond is very high, the temperature does not rise only in the surface layer of the abrasive grains, and the temperature of the entire abrasive grains rises. For this reason, the temperature rise characteristic until the temperature at which the abrasive grains reach a chemical reaction is affected by the specific heat of the abrasive grains, and the rate of temperature rise varies depending on the weight (volume) of the abrasive grains. That is, the reaction speed varies depending on the abrasive grain size.

そして、上記のように回転砥石11は、丸棒状のシャンクの一端側に形成された細径部35aの先端外周に切れ刃が形成されるので、研削加工時にワークとシャンク35が干渉しにくい構造にできる。また、細径部35aの先端が、回転軸を中心に逆すり鉢状の凸状面を有する形状であるため、微細な研削加工に適した形状となっている。   As described above, the rotating grindstone 11 has a structure in which the cutting edge is formed on the outer periphery of the small diameter portion 35a formed on one end side of the round bar-shaped shank, so that the workpiece and the shank 35 do not interfere with each other during grinding. Can be. Moreover, since the tip of the small-diameter portion 35a has a shape having an inverted mortar-shaped convex surface around the rotation axis, the shape is suitable for fine grinding.

光源27は、石英とダイヤモンドとの光化学反応を促進させる波長の光を発生する。発光源としては、波長10nm以上で、波長250nm以下、より望ましくは225nm以下の紫外線ランプが用いられる。例えば、ライトガイド29の光出射端の照度が1400mW/cm(波長248nm)のものが利用可能である。その他にも、他の光源に波長選択性を有する適宜なフィルタを組み合わせて構成してもよい。 The light source 27 generates light having a wavelength that promotes the photochemical reaction between quartz and diamond. As the light source, an ultraviolet lamp having a wavelength of 10 nm or more and a wavelength of 250 nm or less, more preferably 225 nm or less is used. For example, the light guide 29 having an illuminance of 1400 mW / cm 2 (wavelength 248 nm) can be used. In addition, an appropriate filter having wavelength selectivity may be combined with another light source.

ライトガイド29は光ファイバ束からなり、光源27からの光を、研磨加工位置である接触部位17まで導いている。ここでは、石英研磨工具13が透明な石英からなるので、研削工具13の研磨面13aとは反対側の面から光を導入させている。このため、接触部位17の正面側斜方から光を供給する場合と比較して、回転砥石11との干渉を考慮することなく、また、接触部位17に影を生じさせることがなく、しかも均一に高強度で光照射が可能となる。   The light guide 29 is formed of an optical fiber bundle, and guides light from the light source 27 to the contact portion 17 that is a polishing processing position. Here, since the quartz polishing tool 13 is made of transparent quartz, light is introduced from the surface opposite to the polishing surface 13 a of the grinding tool 13. For this reason, compared with the case where light is supplied from the front side obliquely of the contact portion 17, interference with the rotating grindstone 11 is not considered, and the contact portion 17 is not shaded and is uniform. It is possible to irradiate light with high intensity.

なお、石英研磨工具13に対して紫外光を入射する場合の入射光の光量は、研磨面13a側において研磨加工に十分な光量となるように維持される。石英研磨工具13の光透過率は、例えば、合成石英板(住金セラミック アンド クオーツ社製、合成石英ガラスSK−1300、厚み6mm、半径50mm、片面光学研磨、片面すりガラス面)を用いた場合、この合成石英板に光を垂直入射して、測定感度248nmの紫外線照度計により光透過率を測定したところ、光学研磨面に照射した場合の光透過率は58%、すりガラス面に照射した場合の光透過率は36%であった。また、石英研磨工具13への入射光の照射角度は、石英板面の法線方向に対して斜めになる程、研磨加工効率は低下するため、石英板面に垂直な方向とすることが好ましい。   Note that the amount of incident light when ultraviolet light is incident on the quartz polishing tool 13 is maintained to be a sufficient amount of light for polishing on the polishing surface 13a side. The light transmittance of the quartz polishing tool 13 is, for example, when a synthetic quartz plate (manufactured by Sumikin Ceramics and Quartz, synthetic quartz glass SK-1300, thickness 6 mm, radius 50 mm, single-side optical polishing, single-side ground glass surface) is used. When light was incident on the synthetic quartz plate at a normal angle and the light transmittance was measured with an ultraviolet illuminance meter with a measurement sensitivity of 248 nm, the light transmittance was 58% when irradiated onto the optical polished surface, and the light when irradiated onto the ground glass surface. The transmittance was 36%. In addition, the irradiation angle of the incident light to the quartz polishing tool 13 is preferably set in a direction perpendicular to the quartz plate surface because the polishing processing efficiency decreases as the angle becomes oblique with respect to the normal direction of the quartz plate surface. .

上記構成の研磨装置100は、次のように制御部31からの指令に基づいて動作する。まず、石英研磨工具13を主軸モータ23により回転駆動して、石英研磨工具13を回転させる。一方、回転砥石11を砥石回転モータ25により回転駆動する。そして、光源27を点灯して、光源27からの紫外光をライトガイド29を通じて回転砥石11の近傍に照射する。この状態で保持台19により回転砥石11に送りや切り込みを与えて、石英研磨工具13の研磨面13aに回転砥石11の先端を接触させ、双方を摺動させて研磨を行う。そして、保持台19の各軸を回転砥石11に応じて動作させることで、回転砥石11の砥石表面から突出したダイヤモンド砥粒37の先端部を平滑化して切れ刃を形成する。この平滑化された面は、全周に切れ刃が形成された逃げ面となる。   The polishing apparatus 100 having the above configuration operates based on a command from the control unit 31 as follows. First, the quartz polishing tool 13 is rotated by the spindle motor 23 to rotate the quartz polishing tool 13. On the other hand, the rotating grindstone 11 is rotationally driven by a grindstone rotating motor 25. Then, the light source 27 is turned on, and the ultraviolet light from the light source 27 is irradiated to the vicinity of the rotating grindstone 11 through the light guide 29. In this state, the holding table 19 feeds or cuts the rotating grindstone 11, the tip of the rotating grindstone 11 is brought into contact with the polishing surface 13a of the quartz polishing tool 13, and both are slid to perform polishing. Then, by operating each axis of the holding table 19 according to the rotating grindstone 11, the tip of the diamond abrasive grain 37 protruding from the grindstone surface of the rotating grindstone 11 is smoothed to form a cutting edge. This smoothed surface becomes a flank surface with cutting edges formed on the entire circumference.

ここで、保持台19の機構について説明する。
図4に逃げ機構付き保持台の概念的な構成例を示した。(a)は加圧前、(b)は加圧後の状態を示している。
保持台19と砥石回転モータ25とは、バネにより一方向へ押圧するスライダ機構を介して接続されている。すなわち、図4(a)に示すように、保持台19の上部には、砥石回転モータ25の下部に形成されたスライド溝51に挿入されるガイド53と、同じく砥石回転モータ25の下部と摺動しつつ支持する支持部55が形成されている。また、砥石回転モータ25の下部に形成された突起57には、支持部55との間に圧縮付勢されたバネ59が配置され、バネ59は、突起57を常に回転砥石11側に押圧している。
Here, the mechanism of the holding stand 19 will be described.
FIG. 4 shows a conceptual configuration example of a holding table with a relief mechanism. (A) shows the state before pressurization, and (b) shows the state after pressurization.
The holding table 19 and the grindstone rotating motor 25 are connected via a slider mechanism that presses in one direction by a spring. That is, as shown in FIG. 4 (a), the upper portion of the holding table 19 is slid with the guide 53 inserted into the slide groove 51 formed at the lower portion of the grindstone rotating motor 25 and the lower portion of the grindstone rotating motor 25. A support portion 55 is formed to support while moving. Further, a protrusion 59 formed on the lower portion of the grindstone rotating motor 25 is provided with a spring 59 that is compressed and biased with the support portion 55, and the spring 59 always presses the protrusion 57 toward the rotating grindstone 11 side. ing.

上記構成の逃げ機構付き保持台は、図4(b)に示すように、保持台19を石英研磨工具13側に移動させて回転砥石11を石英研磨工具13に押圧すると、バネ59の弾性により砥石回転モータ25は保持台19の送り方向とは逆方向に戻され、これにより、回転砥石11と石英研磨工具13とは、バネ59の弾性に応じた一定圧力で接触する。   As shown in FIG. 4 (b), the holding base with a relief mechanism having the above-described configuration moves due to the elasticity of the spring 59 when the holding base 19 is moved toward the quartz polishing tool 13 and the rotating grindstone 11 is pressed against the quartz polishing tool 13. The grindstone rotating motor 25 is returned in the direction opposite to the feeding direction of the holding table 19, and thereby the rotating grindstone 11 and the quartz polishing tool 13 come into contact with each other with a constant pressure corresponding to the elasticity of the spring 59.

このように、石英研磨工具13の研磨面13aを一定圧力で押圧して接触させた状態で、石英研磨工具13を主軸モータ23により回転駆動し、また、回転砥石11を砥石回転モータ25により回転駆動することで、回転砥石11は、自転しながら石英研磨工具13の回転中心から距離rだけ離れた位置で、石英研磨工具13の研磨面13aとの摺動によって研磨される。回転砥石11の自転により、回転砥石11は高い精度で回転対称形状に研磨加工される。   In this way, the quartz polishing tool 13 is driven to rotate by the spindle motor 23 while the polishing surface 13a of the quartz polishing tool 13 is pressed and brought into contact with a constant pressure, and the rotating grindstone 11 is rotated by the grindstone rotating motor 25. By driving, the rotating grindstone 11 is polished by sliding with the polishing surface 13a of the quartz polishing tool 13 at a position separated from the rotation center of the quartz polishing tool 13 by a distance r while rotating. By the rotation of the rotating grindstone 11, the rotating grindstone 11 is polished into a rotationally symmetric shape with high accuracy.

なお、バネ59は、圧縮コイルバネの他、板バネ、ゴムなどの軟性弾性体等を用いることができ、油圧ダンパー等の他の任意のアクチュエータを用いてもよい。
また、紫外線を照射する接触部位に酸素ガスを吹き付けることで、活性酸素の発生量が増加し、石英が化学反応する際の炭素除去が促進されて、研磨加工効率の向上が図られる。また、窒素ガスを吹き付けたり、潤滑油をミスト状に吹き付けたり、冷風を吹き付けることでも、冷却や潤滑効果が得られる。
As the spring 59, a soft elastic body such as a leaf spring or rubber can be used in addition to the compression coil spring, and any other actuator such as a hydraulic damper may be used.
In addition, by blowing oxygen gas to the contact site that is irradiated with ultraviolet rays, the amount of active oxygen generated increases, and carbon removal when quartz reacts chemically is promoted, thereby improving the polishing efficiency. Also, cooling and lubricating effects can be obtained by blowing nitrogen gas, blowing mist of lubricating oil, or blowing cold air.

図5に上記構成の研磨装置100により紫外線石英研磨を行う前後の回転砥石の拡大図を示した。(a)は紫外線石英研磨前の状態、(b)は紫外線石英研磨後の状態を模式的に示している。
図5(a)に示すように、研磨を行う前の回転砥石11のダイヤモンド砥粒37は、ランダムにダイヤモンド砥粒37が付着して、各砥粒の高さはバラバラになっている。この状態の回転砥石11を用いて研削加工しても、加工面はギザギザの粗面となり、鏡面を得ることはできない。一方、図5(b)に示すように、研磨を行った後の回転砥石11のダイヤモンド砥粒37は、各砥粒の高さは、nmオーダーの正確な高さに揃えられている。つまり、研磨により各砥粒に形成されたエッジが全て切れ刃61として作用するようにツルーイング・ドレッシングされている。切れ刃61で囲まれた面は、逃げ面63であり、この逃げ面63の高さ、すなわち、切れ刃61の高さは高い精度で均一揃っている。
FIG. 5 shows an enlarged view of the rotating grindstone before and after performing the ultraviolet quartz polishing by the polishing apparatus 100 having the above configuration. (A) schematically shows a state before ultraviolet quartz polishing, and (b) schematically shows a state after ultraviolet quartz polishing.
As shown to Fig.5 (a), the diamond abrasive grain 37 of the rotating grindstone 11 before grinding | polishing has adhered the diamond abrasive grain 37 at random, and the height of each abrasive grain is scattered. Even if grinding is performed using the rotating grindstone 11 in this state, the processed surface becomes a rough surface and a mirror surface cannot be obtained. On the other hand, as shown in FIG. 5 (b), the diamond abrasive grains 37 of the rotating grindstone 11 after being polished are arranged so that the height of each abrasive grain is accurate to the order of nm. That is, truing / dressing is performed such that all edges formed on each abrasive grain by polishing act as the cutting edge 61. The surface surrounded by the cutting edge 61 is a flank 63, and the height of the flank 63, that is, the height of the cutting edge 61 is evenly aligned with high accuracy.

図6はダイヤモンド砥粒の研磨後における実際の回転砥石先端の状態を示した。この先端半径が0.5mm程度の回転砥石11の先端に、平均粒径100μm程度のダイヤモンド砥粒を分散させて配置し、工具として利用可能な状態としている。その回転砥石11に対し、石英を相対移動させながら接触させつつ、紫外線を照射して各ダイヤモンド砥粒を研磨した。各ダイヤモンド砥粒は、逃げ面とその周囲の切れ刃が形成され、各逃げ面は、それぞれ回転砥石11の外形に沿った同一の曲面上に略一致する面となる。   FIG. 6 shows the actual state of the tip of the rotating grindstone after the polishing of the diamond abrasive grains. Diamond abrasive grains having an average particle size of about 100 μm are dispersed and arranged at the tip of the rotating grindstone 11 having a tip radius of about 0.5 mm, and can be used as a tool. Each diamond abrasive grain was polished by irradiating ultraviolet rays while contacting the rotating grindstone 11 while relatively moving quartz. Each diamond abrasive grain is formed with a flank and cutting edges around the flank, and each flank is substantially coincident with the same curved surface along the outer shape of the rotating grindstone 11.

ここで、図7、図8を用いて、このダイヤモンド砥粒の切れ刃の状態を説明する。
図7に切れ刃の高さのバラツキを回転軸に沿って規定する説明図で、(a)は回転砥石の回転軸を含む断面図、(b)は回転軸上の位置A1を中心とする円周線上の砥粒の高さを示すグラフである。
図7(a)に示すように、ダイヤモンド砥粒37の切れ刃は、回転砥石11の表面に付着したダイヤモンド砥粒37のうち、所定高さ以上の砥粒で研磨により削られて形成される切れ刃が、それぞれの回転軸位置において、回転軸を中心とする円周方向に沿って揃えられている。つまり、研磨により形成され回転軸を中心とする各円周上に存在するダイヤモンド砥粒の切れ刃が、回転軸上の各位置で、それぞれ回転軸からの半径距離の変動量が所定の範囲内に収められている。
Here, the state of the cutting edge of this diamond abrasive grain is demonstrated using FIG. 7, FIG.
7A and 7B are explanatory views for defining the variation in the height of the cutting edge along the rotation axis. FIG. 7A is a cross-sectional view including the rotation axis of the rotating grindstone, and FIG. 7B is centered on a position A1 on the rotation axis. It is a graph which shows the height of the abrasive grain on a circumference line.
As shown in FIG. 7A, the cutting edge of the diamond abrasive grain 37 is formed by polishing with abrasive grains having a predetermined height or more among the diamond abrasive grains 37 adhering to the surface of the rotating grindstone 11. The cutting edges are aligned along the circumferential direction around the rotation axis at each rotation axis position. In other words, the cutting edge of diamond abrasive grains formed by polishing and existing on each circumference centering on the rotation axis has a variation amount of the radial distance from the rotation axis within a predetermined range at each position on the rotation axis. It is contained in.

つまり、任意の回転軸位置A1に対して、半径raの位置にダイヤモンド砥粒37の切れ刃61が存在するように、回転軸位置A1を中心とする円周上には、他のダイヤモンド砥粒による切れ刃が多数存在する。回転角θを横軸に半径距離rの変化を表す図7(b)に示すように、回転軸位置A1においては、複数のダイヤモンド砥粒による切れ刃が円周上に次々と現れる。そして、切れ刃の高さは、殆ど同じ高さに揃っているが、回転角θが0°のときのraを始め、厳密にはそれぞれのダイヤモンド砥粒毎に異なっている。本実施形態の研磨装置100により研磨したダイヤモンド砥粒37では、円周上の全周にわたる切れ刃の高さの最大値rmaxと最小値rminを求めたときに、その差分ΔH(rmax−rmin)が±100nmの範囲内に収められている。実験結果によれば、差分ΔHを±200nm程度とした場合には、研削加工表面にクラックが発生して鏡面性が劣化する場合があったため、±100nmの範囲内にすることが好ましい。 That is, other diamond abrasive grains are arranged on the circumference centering on the rotational axis position A1 so that the cutting edge 61 of the diamond abrasive grains 37 exists at a position of the radius ra with respect to an arbitrary rotational axis position A1. There are many cutting edges. As shown in FIG. 7B, which shows the change in the radial distance r with the rotation angle θ as the horizontal axis, at the rotation axis position A1, cutting edges of a plurality of diamond abrasive grains appear one after another on the circumference. The heights of the cutting edges are almost the same, but are strictly different for each diamond abrasive grain, including ra when the rotation angle θ is 0 °. In the diamond abrasive grain 37 polished by the polishing apparatus 100 of the present embodiment, when the maximum value r max and the minimum value r min of the height of the cutting edge over the entire circumference are obtained, the difference ΔH A (r max −r min ) is within a range of ± 100 nm. According to the experimental results, when the difference [Delta] H A was about ± 200 nm, since the specularity cracks are generated in the grinding surface there is a case where the deterioration, it is preferable in the range of ± 100 nm.

これにより、回転砥石11を回転駆動して研削加工する際に、砥粒の突き出し量が高精度に均一に揃えられているため、切れ刃がワークに接触する位置(研削位置)が高精度で一定とされ、研削加工精度が高くなる。   As a result, when the rotary grindstone 11 is rotationally driven for grinding, the protruding amount of the abrasive grains is evenly aligned with high accuracy, so the position (grinding position) where the cutting edge comes into contact with the workpiece is highly accurate. The grinding accuracy is increased.

また、本実施形態の回転砥石11は、ダイヤモンド砥粒37が、粒度を#20〜#1000の範囲、好ましくは#80〜#200とし、回転砥石11の表面に配置されることで、高切り込みが可能となり、しかも砥粒一つ一つの体積が小さくなりすぎず、切れ刃の摩耗が少なくなるので、安定した研磨加工が行える。つまり、回転砥石11に比較的低メッシュサイズのダイヤモンド砥粒を多数ちりばめ、上述した紫外線石英研磨加工を施すことで、砥粒の摩耗や脱落を軽減しつつ回転砥石11を多刃エンドミルのような工具にすることができる。これにより、研削加工時において、高切り込みを実現しながら、送り速度を実用速度とすることが可能となり、短時間でしかも高精度に鏡面研削加工が行える。   Further, the rotating grindstone 11 of the present embodiment has a high cutting depth by arranging the diamond abrasive grains 37 in the range of # 20 to # 1000, preferably # 80 to # 200, on the surface of the rotating grindstone 11. In addition, the volume of each abrasive grain does not become too small, and wear of the cutting edge is reduced, so that stable polishing can be performed. That is, a large number of diamond grains having a relatively low mesh size are interspersed on the rotating grindstone 11 and the above-described ultraviolet quartz polishing process is performed, so that the rotating grindstone 11 can be made like a multi-blade end mill while reducing abrasive wear and dropout. It can be a tool. As a result, the feed rate can be set to a practical speed while realizing high cutting during grinding, and mirror grinding can be performed with high accuracy in a short time.

その結果、例えば、超硬合金、ダイアモンドライクカーボン(DLC)、非晶質カーボン(グラッシーカーボン(商品名) 東海カーボン社製)、光学ガラス、SiC(炭化ケイ素)、タングステン合金(アンビロイ(登録商標) 三菱マテリアルシーエムアイ社製)等のセラミック及び耐熱・耐食鋼(ステンレス鋼材)からなるワークを、回転砥石11により鏡面状に研削する場合に、比較的大きな切り込み量や送り量であっても延性モードでの研削加工が容易に実現でき、小径で且つ高接線角度を持つ形状に対しても良好な鏡面を形成できるようになる。   As a result, for example, cemented carbide, diamond-like carbon (DLC), amorphous carbon (glassy carbon (trade name) manufactured by Tokai Carbon Co., Ltd.), optical glass, SiC (silicon carbide), tungsten alloy (Ambiloy (registered trademark)) When grinding a workpiece made of ceramic and heat-resistant / corrosion-resistant steel (stainless steel) such as Mitsubishi Materials CMI Co., Ltd. into a mirror surface with the rotating grindstone 11, even in a relatively large depth of cut or feed, it is in ductility mode. Thus, a good mirror surface can be formed even for a shape having a small diameter and a high tangential angle.

次に、図8を参照して回転砥石の切れ刃の高さのバラツキを回転軸方向に沿って規定する。図8は切れ刃の高さを回転軸に沿って規定する説明図で、(a)は回転砥石の回転軸を含む断面図、(b)は回転砥石表面の一部分Pの拡大断面図である。   Next, with reference to FIG. 8, the variation in the height of the cutting edge of the rotating grindstone is defined along the direction of the rotation axis. FIGS. 8A and 8B are explanatory views for defining the height of the cutting edge along the rotation axis. FIG. 8A is a cross-sectional view including the rotation axis of the rotary whetstone, and FIG. 8B is an enlarged cross-sectional view of a portion P of the surface of the rotary whetstone. .

図8(a)に示すように、回転砥石11の回転軸を通る断面において、回転砥石11が回転軸を中心に回転したときのダイヤモンド砥粒37による切れ刃の出現領域を、研磨加工帯GBとして表している。この研磨加工帯GBは、回転軸を中心とする円周上の各砥粒全体に対する切れ刃に応じて決定され、この研磨加工帯GB内に位置するワークが研削加工対象となることを意味する。この研磨加工帯GBは、回転砥石11の表面の法線方向の最大厚みで±100nm以下にされている。すなわち、図8(b)の断面図に示すように、回転砥石11の回転により円周上の各砥粒の切れ刃61A,61B,・・・が回転軸を含む断面上に現れる。研磨加工帯GBは、これら切れ刃の出現範囲を表しており、回転砥石11の先端形状に沿って存在する。図示例では簡単化して一定厚みΔHBとしているが、実際には厚みΔHは場所により異なるものである。 As shown in FIG. 8A, in the cross section passing through the rotation axis of the rotating grindstone 11, the appearance region of the cutting edge by the diamond abrasive grains 37 when the rotating grindstone 11 rotates around the rotation axis is represented by the polishing band GB. It represents as. The polishing band GB is determined according to the cutting edge for each abrasive grain on the circumference around the rotation axis, and means that the workpiece located in the polishing band GB is to be ground. . The polishing band GB is set to ± 100 nm or less in the maximum thickness in the normal direction of the surface of the rotating grindstone 11. That is, as shown in the cross-sectional view of FIG. 8B, the cutting blades 61 </ b> A, 61 </ b> B,... The polishing band GB represents the appearance range of these cutting edges, and exists along the tip shape of the rotating grindstone 11. In the illustrated example, is constant thickness ΔHB was simplified, the thickness actually [Delta] H B are different depending on the location.

いずれの場合も、紫外線石英研磨により、回転砥石11に形成された各ダイヤモンド砥粒37の切れ刃は、正確に回転砥石11の先端形状に沿った曲面上に配置され、各砥粒の逃げ面がその曲面と略一致する。このような切れ刃の高さが揃った回転砥石11によりワークを研削加工することで、ワーク表面を鏡面研削加工することが可能となる。また、全ての砥粒には、回転対称形の曲面にする研磨加工が施されている為、バニッシニング効果も期待でき、光学部材を研削加工する際は、良好な光学面が得られる。そして、刃先の安定性は、化学的にも物理的にも向上し、安定した研削加工が可能となる。   In any case, the cutting edge of each diamond abrasive grain 37 formed on the rotating grindstone 11 by ultraviolet quartz polishing is accurately placed on the curved surface along the tip shape of the rotating grindstone 11, and the flank of each abrasive grain. Substantially coincides with the curved surface. By grinding the workpiece with the rotary grindstone 11 having the same cutting edge height, the workpiece surface can be mirror-polished. Further, since all the abrasive grains are polished to have a rotationally symmetric curved surface, a burnishing effect can be expected, and a good optical surface can be obtained when grinding an optical member. The stability of the cutting edge is improved both chemically and physically, and stable grinding can be performed.

上記のような回転砥石11の砥粒の切れ刃は、紫外線石英研磨によって得られるもので、他の研磨方法ではこれ程の精度で高さを揃えることはできない。例えば、スカイフ盤での研磨加工では±1μm程度までしか揃えることができない。   The cutting edges of the abrasive grains of the rotating grindstone 11 as described above are obtained by ultraviolet quartz polishing, and the height cannot be made uniform with such accuracy by other polishing methods. For example, it is possible to align only up to about ± 1 μm by polishing with a Skyf board.

次に、上記研磨装置の他の実施の形態について説明する。
上記研磨装置では、回転砥石11と石英である石英研磨工具13との接触状態が一定圧力で押圧されているように維持するため、逃げ機構付きの保持台19を用いていたが、その機能を主軸モータ23側に持たせることができる。
図9は主軸モータと接続される側に逃げ機構を設けた研磨装置の構成例を概念的に示す構成図である。図中、図1で示した部材と同じ部材については同じ符号を付与している。
Next, another embodiment of the polishing apparatus will be described.
In the above polishing apparatus, in order to maintain the contact state between the rotating grindstone 11 and the quartz polishing tool 13 made of quartz at a constant pressure, the holding table 19 with a relief mechanism is used. The main shaft motor 23 can be provided.
FIG. 9 is a block diagram conceptually showing a configuration example of a polishing apparatus provided with a relief mechanism on the side connected to the spindle motor. In the figure, the same members as those shown in FIG.

この研磨装置200においては、石英研磨工具13を主軸モータ23により回転駆動し、砥石回転モータ25により回転駆動される回転砥石11に対して石英研磨工具13を押し当てる。この場合の押し当て力は、主軸モータ23を図示しない送り機構により回転砥石11側へ送ることで生じさせる。このときに石英研磨工具13が回転砥石11から受ける力は、図4に示すバネ等の弾性部材によって同様の機構により吸収して、押し当て力を一定に維持する。この場合、回転砥石11側は石英研磨工具13の回転軸に対して傾斜させて回転させる機構とすることで、回転砥石11の形状寸法が管理しやすくなり、研磨加工の精度を向上できる。   In this polishing apparatus 200, the quartz polishing tool 13 is rotationally driven by the spindle motor 23, and the quartz polishing tool 13 is pressed against the rotating grindstone 11 that is rotationally driven by the grindstone rotating motor 25. The pressing force in this case is generated by sending the spindle motor 23 to the rotating grindstone 11 side by a feed mechanism (not shown). At this time, the force that the quartz polishing tool 13 receives from the rotating grindstone 11 is absorbed by a similar mechanism by an elastic member such as a spring shown in FIG. 4 to keep the pressing force constant. In this case, when the rotary grindstone 11 side is inclined and rotated with respect to the rotation axis of the quartz polishing tool 13, the shape and size of the rotary grindstone 11 can be easily managed and the accuracy of the polishing process can be improved.

図10は図9に示す研磨装置における逃げ機構を石英研磨工具に機能させる構成例を概念的に示す構成図である。この研磨装置300においては、石英研磨工具13Aの厚みを弾性変形容易な程度に薄くしている。この場合の回転砥石11からの押し当て力は、石英研磨工具13Aが反りにより変形することで吸収され、押し当て力が一定に維持される。この構成によれば、逃げ機構を設ける必要がなく、装置構造を簡略化できる。   FIG. 10 is a block diagram conceptually showing a configuration example in which the escape mechanism in the polishing apparatus shown in FIG. In this polishing apparatus 300, the thickness of the quartz polishing tool 13A is made thin enough to be easily elastically deformed. In this case, the pressing force from the rotating grindstone 11 is absorbed when the quartz polishing tool 13A is deformed by warpage, and the pressing force is kept constant. According to this configuration, there is no need to provide an escape mechanism, and the device structure can be simplified.

図11は逃げ機構を設けずに、石英研磨工具を削ることで実質的に押し当て力を一定に維持する構成例を概念的に示す構成図である。この場合の研磨装置300に用いる石英研磨工具13Bは砲弾型であり、回転砥石11の外表面に石英研磨工具13Bの曲面を接触させて研磨する。この場合、曲面同士の接触となり、接触面積が狭くなり、回転砥石11と石英研磨工具13Bの双方が削られて研磨加工が進む。このように、回転砥石11の押し当てにより石英研磨工具13Bが削られることで、押し当て力が略一定に保たれる。   FIG. 11 is a configuration diagram conceptually showing a configuration example in which the pressing force is substantially maintained constant by cutting the quartz polishing tool without providing a relief mechanism. The quartz polishing tool 13B used in the polishing apparatus 300 in this case is a cannonball type, and the curved surface of the quartz polishing tool 13B is brought into contact with the outer surface of the rotating grindstone 11 for polishing. In this case, the curved surfaces come into contact with each other, the contact area is reduced, and both the rotating grindstone 11 and the quartz polishing tool 13B are scraped, and the polishing process proceeds. Thus, the pressing force is kept substantially constant by cutting the quartz polishing tool 13B by pressing the rotating grindstone 11.

次に、上記の各研磨装置により研磨された回転砥石を用いて高脆材料であるワークを研削加工する研削装置の実施の形態を説明する。
図12に研削装置のブロック構成図を示した。
この研削装置500は、基本的には図1に示す研磨装置100の石英研磨工具13をワークWに付け替えた構成としており、共通する部材には同じ符号を付与している。ワークWは硬脆材料からなり、チャックにより主軸モータ23の主軸に取り付けられる。タンク39には研削液65が貯留され、研削液供給ポンプ67により研削液吐出管路69を通じて研削部位に研削液65を供給している。主軸に取り付けられたワークWは、保持台19によるx方向への切り込み、およびy方向への送りによって研削加工される。なお、保持台19は前述の図2に示すように、回転砥石11の傾斜角φ方向への傾斜移動も可能であり、多様な形状の研削を可能としている。
Next, an embodiment of a grinding apparatus that grinds a workpiece that is a highly brittle material using the rotating grindstone polished by each of the above-described polishing apparatuses will be described.
FIG. 12 shows a block diagram of the grinding apparatus.
The grinding apparatus 500 basically has a configuration in which the quartz polishing tool 13 of the polishing apparatus 100 shown in FIG. 1 is replaced with a workpiece W, and the same reference numerals are given to common members. The workpiece W is made of a hard and brittle material, and is attached to the main shaft of the main shaft motor 23 by a chuck. A grinding liquid 65 is stored in the tank 39, and the grinding liquid 65 is supplied to a grinding site through a grinding liquid discharge pipe 69 by a grinding liquid supply pump 67. The workpiece W attached to the main shaft is ground by cutting in the x direction by the holding table 19 and feeding in the y direction. As shown in FIG. 2 described above, the holding table 19 can also be inclined and moved in the direction of the inclination angle φ of the rotating grindstone 11 and can grind various shapes.

つまり、回転砥石11は、研磨装置100による研磨加工、すなわち、切れ刃の生成を行った後に、研磨装置100の砥石回転モータ25の回転軸から取り外されることなく、石英研磨工具13をワークWに付け替えるのみで、そのまま研削加工に供される。このため、回転軸からの脱着による芯ずれ等が発生せず、安定して高精度な研削加工が行える。
また、回転砥石11の一端側に形成された細径部の先端は、回転軸を中心とする逆すり鉢状の凸状面を有する砲弾型に形成されているので、ワークWの研削加工自由度が高い。例えば、研削加工目標形状が、直径φ0.2〜5.0mmの凹面の任意の場所で部分的に曲面の窪みを有し、この窪みの曲率半径が2.5mmより小さい微小凹面であるような複雑曲面を有する場合でも、その全面を鏡面研削加工することができる。
In other words, the rotating grindstone 11 performs the polishing process by the polishing apparatus 100, that is, generates the cutting edge, and then removes the quartz polishing tool 13 from the rotating shaft of the grindstone rotating motor 25 of the polishing apparatus 100 to the workpiece W. Just replace it and it will be used for grinding. For this reason, misalignment or the like due to removal from the rotating shaft does not occur, and stable and highly accurate grinding can be performed.
Further, since the tip of the small diameter portion formed on one end side of the rotating grindstone 11 is formed in a bullet shape having an inverted mortar-shaped convex surface centered on the rotation axis, the degree of freedom in grinding the workpiece W Is expensive. For example, the grinding target shape has a partially curved depression at an arbitrary position of the concave surface having a diameter of 0.2 to 5.0 mm, and the concave radius of the depression is smaller than 2.5 mm. Even when it has a complex curved surface, the entire surface can be mirror-polished.

したがって、この回転砥石11によれば、レンズ等の精密な光学部材の光学面の鏡面研削加工や複雑な形状の鏡面研削加工に好適に適用でき、しかも研削加工時間を短く、かつ、回転砥石11の切れ刃の摩耗を抑えて工具寿命を伸ばすことできる。そして、この回転砥石11を用いて金型の研削加工を行うことで、硬脆材料からなる金型のキャビティ内壁面を高精度、高効率で研削加工でき、金型の製造コストを低減できる。   Therefore, according to the rotary grindstone 11, it can be suitably applied to the mirror grinding of the optical surface of a precision optical member such as a lens or the mirror grinding of a complicated shape, and the grinding time is shortened. The tool life can be extended by suppressing the wear of the cutting edge. Then, by performing grinding of the mold using the rotating grindstone 11, the cavity inner wall surface of the mold made of a hard and brittle material can be ground with high accuracy and high efficiency, and the manufacturing cost of the mold can be reduced.

その他、上記の研磨方法および研磨装置、並びに研削砥石およびこれを用いた研削装置の各実施の形態は、適宜な変更が可能である。例えば、回転砥石は、逆すり鉢状の凸状面を有する形状の他、円盤状の平砥石、ブロック状の角砥石等、種々の形状に適用することができる。また、研削対象についても、レンズ等の光学機能部材に限らず、他の複雑形状の研削加工にも適用できる。   In addition, each embodiment of said grinding | polishing method and grinding | polishing apparatus, a grinding stone, and a grinding | polishing apparatus using the same can be changed suitably. For example, the rotating grindstone can be applied to various shapes such as a disc-shaped flat grindstone and a block-shaped square grindstone in addition to a shape having an inverted mortar-shaped convex surface. Further, the object to be ground is not limited to an optical functional member such as a lens, but can be applied to grinding processing of other complicated shapes.

研磨装置のブロック構成図であるIt is a block block diagram of a polisher. 図1のV方向矢視図である。It is a V direction arrow directional view of FIG. 回転砥石の全体図である。It is a general view of a rotary grindstone. 逃げ機構付き保持台の概念的な構成例で、(a)は加圧前、(b)は加圧後の状態を示す一部断面構成図である。It is a conceptual structural example of a holding stand with a relief mechanism, (a) is a partial cross-sectional configuration diagram showing a state before pressurization, (b) is a state after pressurization. 研磨装置により研磨を行う前後の回転砥石の拡大図で、(a)は紫外線石英研磨前の状態、(b)は紫外線石英研磨後の状態を模式的に示す説明図である。It is an enlarged view of the rotating grindstone before and behind grinding | polishing with a grinding | polishing apparatus, (a) is the state before ultraviolet quartz grinding | polishing, (b) is explanatory drawing which shows the state after ultraviolet quartz grinding | polishing typically. ダイヤモンド砥粒の研磨後における実際の回転砥石先端の状態を示す説明図である。It is explanatory drawing which shows the state of the actual rotary grindstone tip after grinding | polishing of a diamond abrasive grain. 切れ刃の高さのバラツキを回転軸に沿って規定する説明図で、(a)は回転砥石の回転軸を含む断面図、(b)は回転軸上の位置A1を中心とする円周線上の砥粒の高さを示すグラフである。It is explanatory drawing which prescribes | regulates the variation in the height of a cutting edge along a rotating shaft, (a) is sectional drawing containing the rotating shaft of a rotating grindstone, (b) is on the circumference line centering on position A1 on a rotating shaft. It is a graph which shows the height of the abrasive grain. 切れ刃の高さを回転軸に沿って規定する説明図で、(a)は回転砥石の回転軸を含む断面図、(b)は回転砥石表面の一部分Pの拡大断面図である。It is explanatory drawing which prescribes | regulates the height of a cutting edge along a rotating shaft, (a) is sectional drawing containing the rotating shaft of a rotating grindstone, (b) is an expanded sectional view of the part P of the rotating grindstone surface. 主軸モータと接続される側に逃げ機構を設けた研磨装置の構成例を概念的に示す構成図である。It is a block diagram which shows notionally the structural example of the grinding | polishing apparatus which provided the escape mechanism in the side connected with a spindle motor. 図9に示す研磨装置における逃げ機構を石英研磨工具に機能させる構成例を概念的に示す構成図である。It is a block diagram which shows notionally the structural example which functions the escape mechanism in the grinding | polishing apparatus shown in FIG. 9 to a quartz polishing tool. 逃げ機構を設けずに押し当て力を一定に維持する研磨装置の構成例を概念的に示す構成図である。It is a block diagram which shows notionally the structural example of the grinding | polishing apparatus which maintains a pressing force uniformly, without providing an escape mechanism. 研削装置のブロック構成図である。It is a block block diagram of a grinding device.

符号の説明Explanation of symbols

11 回転砥石
13 石英研磨工具(石英)
17 接触部位
19 保持台
23 主軸モータ
25 砥石回転モータ
27 光源
29 ライトガイド
31 制御部
33 チャック
35 シャンク
35a 細径部
37 ダイヤモンド砥粒
39 タンク
51 スライド溝
53 ガイド
55 支持部
57 突起
59 バネ
61 切れ刃
63 逃げ面
65 研削液
100,200,300,400 研磨装置
500 研削装置
L 紫外線
GB 研磨加工帯
W ワーク
11 Rotating whetstone 13 Quartz polishing tool (quartz)
DESCRIPTION OF SYMBOLS 17 Contact part 19 Holding stand 23 Main shaft motor 25 Grinding wheel rotation motor 27 Light source 29 Light guide 31 Control part 33 Chuck 35 Shank 35a Small diameter part 37 Diamond abrasive grain 39 Tank 51 Slide groove 53 Guide 55 Support part 57 Projection 59 Spring 61 Cutting edge 63 Flank 65 Grinding fluid 100, 200, 300, 400 Polishing device
500 Grinding machine L Ultraviolet GB Polishing zone W Workpiece

Claims (15)

多数のダイヤモンド砥粒を有する回転砥石に対して、回転砥石表面のダイヤモンド砥粒に切れ刃を形成する回転砥石の研磨方法であって、
石英研磨工具の石英研磨面と前記回転砥石とを相互に押し当てて摺動させるとともに、前記石英研磨面と前記回転砥石との接触部位に紫外線を照射することで、前記回転砥石表面から突出したダイヤモンド砥粒の先端部を平滑化して切れ刃を形成する回転砥石の研磨方法。
For a rotating grindstone having a large number of diamond abrasive grains, a polishing method for the rotating grindstone that forms a cutting edge on the diamond abrasive grains on the surface of the rotating grindstone,
The quartz polishing surface of the quartz polishing tool and the rotating grindstone were pressed against each other and slid, and the contact portion between the quartz polishing surface and the rotating grindstone was irradiated with ultraviolet rays, thereby protruding from the surface of the rotating grindstone. A method for polishing a rotating grindstone in which the tip of diamond abrasive grains is smoothed to form a cutting edge.
請求項1記載の回転砥石の研磨方法であって、
前記石英研磨工具と前記回転砥石の少なくともいずれかを回転駆動して研磨を行う回転砥石の研磨方法。
A method for polishing a rotating grindstone according to claim 1,
A method for polishing a rotating grindstone, wherein polishing is performed by rotationally driving at least one of the quartz polishing tool and the rotating grindstone.
請求項1または請求項2記載の回転砥石の研磨方法であって、
前記石英研磨工具と前記回転砥石とを一定の圧力で押し当てながら研磨する回転砥石の研磨方法。
A method for polishing a rotating grindstone according to claim 1 or 2,
A method for polishing a rotating grindstone, in which the quartz polishing tool and the rotating grindstone are pressed against each other at a constant pressure.
請求項1〜請求項3のいずれか1項記載の回転砥石の研磨方法であって、
前記石英研磨工具の石英研磨面と前記回転砥石との接触部位を酸素ガス雰囲気にして研磨する回転砥石の研磨方法。
A method for polishing a rotating grindstone according to any one of claims 1 to 3,
A method for polishing a rotating grindstone, comprising polishing a contact portion between a quartz polishing surface of the quartz polishing tool and the rotating grindstone in an oxygen gas atmosphere.
多数のダイヤモンド砥粒を有する回転砥石に対して、該回転砥石表面の砥粒に切れ刃を形成する回転砥石の研磨装置であって、
石英研磨面を有する石英研磨工具と、
前記石英研磨工具に対面して配置され、前記石英研磨工具の石英研磨面に対して前記回転砥石を押し当て可能に保持する保持台と、
前記石英研磨工具と前記回転砥石とを相互に摺動させる摺動手段と、
前記石英研磨工具と前記回転砥石との接触部位に紫外線を照射する光照射手段と、
を備え、
前記回転砥石表面から突出したダイヤモンド砥粒の先端部を平滑化して切れ刃を形成する回転砥石の研磨装置。
A rotary grindstone polishing apparatus that forms cutting edges on abrasive grains on the surface of the rotary grindstone with respect to the rotary grindstone having a large number of diamond abrasive grains.
A quartz polishing tool having a quartz polishing surface;
A holding stand that is arranged to face the quartz polishing tool and holds the rotating grindstone against the quartz polishing surface of the quartz polishing tool;
Sliding means for sliding the quartz polishing tool and the rotating grindstone against each other;
A light irradiating means for irradiating ultraviolet rays to a contact portion between the quartz polishing tool and the rotating grindstone;
With
A polishing apparatus for a rotating grindstone that forms a cutting edge by smoothing the tip of diamond abrasive grains protruding from the surface of the rotating grindstone.
請求項5記載の回転砥石の研磨装置であって、
前記石英研磨工具と前記回転砥石との接触状態を、一定の圧力で当接するように維持する接触圧力制御手段を備えた回転砥石の研磨装置。
A polishing apparatus for a rotating grindstone according to claim 5,
A polishing apparatus for a rotating grindstone, comprising contact pressure control means for maintaining a contact state between the quartz polishing tool and the rotating grindstone so as to abut at a constant pressure.
請求項5または請求項6記載の回転砥石の研磨装置であって、
前記摺動手段が、前記保持台に保持された回転砥石を、該回転砥石の回転軸を中心に回転駆動する砥石回転駆動部を備えた回転砥石の研磨装置。
A rotary grindstone polishing apparatus according to claim 5 or 6,
An apparatus for polishing a rotating grindstone, wherein the sliding means includes a grindstone rotation driving unit that rotationally drives the rotating grindstone held on the holding table about a rotation axis of the rotating grindstone.
請求項5〜請求項7のいずれか1項記載の回転砥石の研磨装置であって、
前記摺動手段が、前記石英研磨工具を回転駆動する研磨工具回転駆動部を備えた回転砥石の研磨装置。
A rotary grindstone polishing apparatus according to any one of claims 5 to 7,
A polishing apparatus for a rotating grindstone, wherein the sliding means includes a polishing tool rotation driving unit that rotationally drives the quartz polishing tool.
請求項5〜請求項8のいずれか1項記載の回転砥石の研磨装置であって、
前記光照射手段が、紫外線を前記石英研磨工具の石英研磨面とは反対側の面から前記回転砥石との接触部位に向けて照射する回転砥石の研磨装置。
A polishing apparatus for a rotating grindstone according to any one of claims 5 to 8,
The rotating grindstone polishing apparatus in which the light irradiating means irradiates ultraviolet rays from a surface opposite to the quartz polishing surface of the quartz polishing tool toward a contact portion with the rotating grindstone.
ダイヤモンド砥粒を基材上に電着または蝋付けした回転砥石であって、
請求項1〜請求項4のいずれか1項記載の回転砥石の研磨方法により回転軸先端の外周面が研磨され、
該研磨により形成され前記回転軸を中心とする各円周上に存在する前記ダイヤモンド砥粒の切れ刃が、前記回転軸上の各位置で、それぞれ該回転軸からの半径距離の変動量が±100nm以内の範囲に収められている回転砥石。
A rotating grindstone in which diamond abrasive grains are electrodeposited or brazed onto a substrate,
The outer peripheral surface of the tip of the rotating shaft is polished by the method for polishing a rotating grindstone according to any one of claims 1 to 4.
The cutting edge of the diamond abrasive grains formed by the polishing and existing on each circumference around the rotation axis has a variation amount of the radial distance from the rotation axis at each position on the rotation axis. A rotating grindstone that is within a range of 100 nm.
請求項10記載の回転砥石であって、
前記回転砥石の回転軸を通る断面において、前記回転砥石が前記回転軸を中心に回転したときの切れ刃の出現領域を表す、前記回転軸先端の外周面に沿った研磨加工帯が、回転砥石表面の法線方向の厚みの変動量で±100nm以下にされた回転砥石。
The rotary grindstone according to claim 10,
In a cross section passing through the rotation axis of the rotary grindstone, a polishing band along the outer peripheral surface of the tip of the rotary shaft, which represents an appearance region of a cutting edge when the rotary grindstone rotates around the rotary shaft, is a rotary grindstone A rotating whetstone whose surface normal direction thickness variation is ± 100 nm or less.
請求項10または請求項11記載の回転砥石であって、
前記ダイヤモンド砥粒の切れ刃が、丸棒状のシャンクの一端側に形成された細径部の先端外周に形成された回転砥石。
A rotary whetstone according to claim 10 or claim 11,
A rotating grindstone in which the cutting edge of the diamond abrasive grains is formed on the outer periphery of the tip of a small diameter portion formed on one end of a round bar-shaped shank.
請求項12記載の回転砥石であって、
前記細径部の先端が、回転軸を中心に逆すり鉢状の凸状面を有する回転砥石。
The rotary whetstone according to claim 12,
A rotating grindstone in which the tip of the small-diameter portion has an inverted mortar-shaped convex surface about a rotation axis.
請求項10〜請求項13のいずれか1項記載の回転砥石であって、
前記ダイヤモンド砥粒のサイズを表す粒度が、#20〜#1000の範囲である回転砥石。
The rotary whetstone according to any one of claims 10 to 13,
A rotating grindstone having a particle size representing a size of the diamond abrasive grains in a range of # 20 to # 1000.
請求項10〜請求項14のいずれか1項記載の回転砥石を用いて研削加工を行う研削装置。   The grinding device which grinds using the rotary grindstone of any one of Claims 10-14.
JP2008244655A 2008-09-24 2008-09-24 Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone Pending JP2010076013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008244655A JP2010076013A (en) 2008-09-24 2008-09-24 Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008244655A JP2010076013A (en) 2008-09-24 2008-09-24 Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone

Publications (1)

Publication Number Publication Date
JP2010076013A true JP2010076013A (en) 2010-04-08

Family

ID=42207055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008244655A Pending JP2010076013A (en) 2008-09-24 2008-09-24 Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone

Country Status (1)

Country Link
JP (1) JP2010076013A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123792A (en) * 2011-12-16 2013-06-24 Fujitsu Ltd Method for manufacturing semiconductor device, and grinding device
JP2014161990A (en) * 2013-02-27 2014-09-08 Kochi Fel Kk Diamond grinding device and diamond grinding method
JP2015150683A (en) * 2014-02-18 2015-08-24 中国砂輪企業股▲ふん▼有限公司 Chemical mechanical polishing adjustor having high performance
KR20170072241A (en) * 2014-10-03 2017-06-26 지코 리미티드 Method for shaping and finishing a workpiece
JP2021000683A (en) * 2019-06-20 2021-01-07 国立大学法人 熊本大学 Truing method and truing apparatus
CN114055299A (en) * 2021-11-30 2022-02-18 湖南迅犇智能科技有限公司 Surface polishing device for mechanical die production
CN115236108A (en) * 2022-07-22 2022-10-25 锦州阳光能源有限公司 Welding process quality detection method of crystalline silicon battery based on electron microscope
CN115256151A (en) * 2022-08-11 2022-11-01 湖州中芯半导体科技有限公司 High-precision CVD diamond fine grinding tool
CN115236108B (en) * 2022-07-22 2024-04-26 锦州阳光能源有限公司 Welding process quality detection method of crystalline silicon battery based on electron microscope

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123792A (en) * 2011-12-16 2013-06-24 Fujitsu Ltd Method for manufacturing semiconductor device, and grinding device
JP2014161990A (en) * 2013-02-27 2014-09-08 Kochi Fel Kk Diamond grinding device and diamond grinding method
JP2015150683A (en) * 2014-02-18 2015-08-24 中国砂輪企業股▲ふん▼有限公司 Chemical mechanical polishing adjustor having high performance
KR20170072241A (en) * 2014-10-03 2017-06-26 지코 리미티드 Method for shaping and finishing a workpiece
JP2017532214A (en) * 2014-10-03 2017-11-02 ジーコ リミテッド Method of forming a workpiece
KR102413618B1 (en) * 2014-10-03 2022-06-27 지코 이노베이션즈 리미티드 Method for shaping and finishing a workpiece
JP7309177B2 (en) 2019-06-20 2023-07-18 国立大学法人 熊本大学 Truing method and truing device
JP2021000683A (en) * 2019-06-20 2021-01-07 国立大学法人 熊本大学 Truing method and truing apparatus
CN114055299A (en) * 2021-11-30 2022-02-18 湖南迅犇智能科技有限公司 Surface polishing device for mechanical die production
CN114055299B (en) * 2021-11-30 2022-11-08 青岛佳友模具科技有限公司 Surface polishing device for mechanical die production
CN115236108A (en) * 2022-07-22 2022-10-25 锦州阳光能源有限公司 Welding process quality detection method of crystalline silicon battery based on electron microscope
CN115236108B (en) * 2022-07-22 2024-04-26 锦州阳光能源有限公司 Welding process quality detection method of crystalline silicon battery based on electron microscope
CN115256151A (en) * 2022-08-11 2022-11-01 湖州中芯半导体科技有限公司 High-precision CVD diamond fine grinding tool
CN115256151B (en) * 2022-08-11 2024-03-01 湖州中芯半导体科技有限公司 High-precision CVD diamond micro grinding tool

Similar Documents

Publication Publication Date Title
US7883398B2 (en) Abrasive tool
JP2010076013A (en) Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone
JPH11267902A (en) Tool having ultra-fine cutting blade and processing tool having ultra-fine cutting blade
TW201309423A (en) Double-head grinding method and double-head grinding apparatus
JPH0775944A (en) Brittle material machining method and device therefor
CN103831705A (en) Polishing apparatus and method for polishing peripheral edge of workpiece, such as glass plate, by polishing tape
JP4441552B2 (en) Diamond conditioner
US5146909A (en) Stationary fine point diamond trueing and dressing block and method of use
JP3299523B2 (en) Tool for turning groove of hard foam resin pad
JP2000094303A (en) Grinding method and grinding device
JP2008073832A (en) Grinding wheel for manufacturing thin wafer and grinding method
JP3497492B2 (en) Hard foam resin grooved pad for semiconductor device processing and pad turning groove processing tool
TW201600229A (en) Scribing wheel and method of manufacturing same
JP3630950B2 (en) Manufacturing method of spherical lens
JP2004216483A (en) Ultraprecision machining tool
JP2000190199A (en) Plane correcting method for surface plate
JP7093875B2 (en) Workpiece processing equipment, grindstone, and work processing method
WO2000024548A1 (en) Polishing apparatus and a semiconductor manufacturing method using the same
JP2009056517A (en) Method and tool for truing diamond wheel
JP2010250893A (en) Manufacturing method of magnetic disk glass substrate, and surface correction method of bonded abrasive tool
JPH05253825A (en) Manufacture of optical lens, and optical lens
JP2003260646A (en) Grinding method of nonaxisymmetric and aspheric surface, and its device
JP3671250B2 (en) Diamond grinding wheel and its truing device
TW202237333A (en) Shaft-equipped grindstone, chamfering method, glass plate manufacturing method, and glass plate
JP5122856B2 (en) Discharge truing electrode, discharge truing device and grinding device