JP2008073832A - Grinding wheel for manufacturing thin wafer and grinding method - Google Patents

Grinding wheel for manufacturing thin wafer and grinding method Download PDF

Info

Publication number
JP2008073832A
JP2008073832A JP2006281910A JP2006281910A JP2008073832A JP 2008073832 A JP2008073832 A JP 2008073832A JP 2006281910 A JP2006281910 A JP 2006281910A JP 2006281910 A JP2006281910 A JP 2006281910A JP 2008073832 A JP2008073832 A JP 2008073832A
Authority
JP
Japan
Prior art keywords
grinding
grinding wheel
shaped
abrasive layer
diamond film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006281910A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Shimoda
一喜 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADD KK
Original Assignee
ADD KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADD KK filed Critical ADD KK
Priority to JP2006281910A priority Critical patent/JP2008073832A/en
Publication of JP2008073832A publication Critical patent/JP2008073832A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grinding wheel which is used for grinding a silicon wafer and other materials acquired for slicing, has good cutting ability and high cutting efficiency and can provide high quality surface finishing without giving any damage on the ground material, and also to provide a grinding method having economical effects. <P>SOLUTION: A groove 9 and uneven patterns are formed on a diamond film section of the ring-shaped or disk-shaped grinding wheel which has the diamond film 7 as an abrasive layer, by a CVD method. Ridge sections of inner and outer peripheries or an outer periphery of the abrasive layer of the grinding wheel are formed in a round shape. Thus, effective and economical grinding is performed by using pure water as a grinding liquid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

発明の属する分野Field of Invention

本発明はシリコンウェハの研削加工やその他薄片化が要求される被研削材の研削加工に用いられる研削砥石、研削方法に関する。The present invention relates to a grinding wheel and a grinding method used for grinding a silicon wafer and for grinding a workpiece to be thinned.

インゴットよりスライスされたシリコンウェハの研削、研磨による薄片化および平坦化の工具としてダイヤモンド砥粒を用いた研削砥石が使用されてきた。
かかる研削砥石はリング状、あるいは円盤状の基材の表面に砥粒であるダイヤモンド粒が電着、あるいはレジンボンド、メタルボンド、ビトリボンド等で結合保持され、研削作用を働く砥粒層として形成されている。ダイヤモンドは他の物質とは接着しにくいため、これらの電着層、ボンドが機械的にダイヤモンド粒を掴むことが主な保持方法であり砥粒層の厚さが等しい条件で強度比較したとき、レジンが最も低く以下ビトリ、メタル、電着の順で、これがまた砥石寿命の順位となっている。
ダイヤモンド粒は砥粒層として無作為に配列され、粒子の大きさ、形状、密度が不均一で、ダイヤモンド粒の配列の少ない部分の電着層あるいはボンドが局所的に磨耗し、最悪の場合はダイヤモンド粒が脱落してしまうことになる。ダイヤモンド粒の脱落は薄片化研削加工の途中で、ウェハに傷をつけたり破損の原因となっていた。
また、酸性またはアルカリ性の研削液を使用して研削加工する場合、電着層あるいはボンドが化学反応により劣化したり、溶解し基材からダイヤモンド粒が脱落する等、研削砥石の形状が損なわれ高い研削精度、研削比を保てなくなる。そのため、絶えずドレッシングを繰り返し行うことによって、劣化した切れ味を回復させて使用しているのが現状である。研削加工するにあたって、砥石としての切れ味を持続させるためには、ダイヤモンド粒、ボンドの脱落がなく、高い加工圧力に対しても砥粒がボンドの中に陥没しないだけの硬さがあり、ダイヤモンド粒の有効な突出を保つ特性を有することが必要であるが、従来型の砥石ではボンドの結合、保持力が強すぎると、自生発刃作用が不十分となり、ダイヤモンド粒、ボンドの摩滅的磨耗による目つぶれが生じ研削抵抗が増大し仕上げ面粗さが悪くなる等、研削精度が低下するのは免れない、またボンドの結合、保持力が弱いと前述したようなダイヤモンド粒の脱落等の問題があり、ダイヤモンド粒と基材の結合保持部材としての電着層、レジンボンド、メタルボンド、ビトリボンドを用いた砥石では特に近年の研削加工の生産性向上、薄片化の要求に対し優れた能力を発揮することができない。また、研削液の廃液処理費や切れ味を保つためのドレッシング等による砥石の磨耗量の増大など砥石の消費量が多くなり不経済でもあった。一般に研削面の表面粗さを鏡面に近づけるためには、微小砥粒で切り込み深さの浅い研削加工を行うことにより加工表面の残留応力も少なくなり、割れや破砕の生じない高能率加工が期待できるとされている。従来の砥石では砥粒の微小化、形状、密度の均一化、薄膜化、砥石としての形状の創成には限界があり、シリコンウェハのさらなる薄片化やダメージの小さい研削に限界があった。
A grinding wheel using diamond abrasive grains has been used as a tool for grinding, polishing and flattening a silicon wafer sliced from an ingot.
Such a grinding wheel is formed as an abrasive layer that acts as a grinding function, with diamond grains, which are abrasive grains, bonded and held on the surface of a ring-shaped or disk-shaped substrate by electrodeposition, resin bonding, metal bonding, vitribonding, etc. ing. Since diamond is difficult to adhere to other substances, the main holding method is that these electrodeposition layers and bonds mechanically grab the diamond grains, and when the strength is compared under the condition that the thickness of the abrasive layer is equal, The resin is the lowest, and in the order of vitri, metal, and electrodeposition, this is also the rank of the grinding wheel life.
The diamond grains are randomly arranged as an abrasive layer, the size, shape and density of the grains are non-uniform, and the electrodeposited layer or bond in the part where the diamond grains are less arranged is locally worn, and in the worst case Diamond grains will fall off. The drop-off of diamond grains caused scratches or damage to the wafer during the thinning grinding process.
In addition, when grinding using an acidic or alkaline grinding fluid, the shape of the grinding wheel is high because the electrodeposition layer or bond deteriorates due to a chemical reaction or dissolves and the diamond grains fall off from the substrate. Grinding accuracy and grinding ratio cannot be maintained. Therefore, the current situation is that the deteriorated sharpness is recovered by continuously performing dressing repeatedly. In order to maintain the sharpness of the grindstone when grinding, diamond grains and bonds do not fall off, and the diamond grains are hard enough not to sink into the bond even at high processing pressures. However, if the bond and holding force of the conventional type grindstone is too strong, the self-generated blade action will be insufficient, resulting in abrasive wear of diamond grains and bonds. Grinding accuracy increases due to crushing, increased grinding resistance, and poor finished surface roughness, and it is inevitable that the grinding accuracy will be lowered. Yes, especially in grinding stones using electrodeposition layers, resin bonds, metal bonds, and vitribonds as bonding and holding members for diamond grains and base materials. It is not possible to exhibit an excellent ability for determined. In addition, the consumption of the grindstone is increased and the consumption of the grindstone is increased, such as an increase in the wear amount of the grindstone due to dressing for maintaining the sharpness of the waste liquid and the sharpness. In general, in order to bring the surface roughness of the grinding surface closer to a mirror surface, grinding with a shallow cutting depth with fine abrasive grains will reduce residual stress on the processing surface, and high-efficiency machining that does not cause cracking or crushing is expected. It is supposed to be possible. Conventional grindstones have limitations in reducing the size of the abrasive grains, making the shape and density uniform, making the film thin, and creating a shape as a grindstone, and there are limits to further thinning silicon wafers and grinding with less damage.

発明が解決しようとする課題Problems to be solved by the invention

本発明はインゴットからスライスされたシリコンウェハの研削加工やその他薄片化が要求される被研削材の研削加工の生産性向上、切れ味の良い且つ高品質な面仕上げ、被研削材に対しダメージの小さい研削が可能な研削砥石及び経済的効果のある研削方法を確立することを目的とする。The present invention improves the productivity of grinding of a silicon wafer sliced from an ingot and other grinding materials that require thinning, sharp and high quality surface finish, and little damage to the grinding material It aims at establishing the grinding wheel which can be ground, and the grinding method with an economical effect.

課題を解決する為の手段Means to solve the problem

本発明のシリコンウェハの研削加工やその他薄片化が要求される被研削材の平坦化の研削加工に用いられる研削砥石は、リング状あるいは円盤状の基材の表面に砥粒層として直接CVD法により、ダイヤモンド膜を成膜してなることを特徴としている。従来のダイヤモンド粒をボンドや電着により基材に固着して創成した砥石と異なり、砥粒層は100%ダイヤモンド膜であるため、ボンドや電着層の磨耗や剥離、ダイヤモンド粒の脱落がない。
基材の加工精度を高めることにより、砥石形状精度も高めることが出来る。CVD法で基材にダイヤモンド膜を成膜することにより、ダイヤモンド粒子の配列、形状、大きさ、密度、膜厚を均一に自在に制御して製作できるため、被研削材の特性にあった研削加工が実現できる。特に砥粒層としてのダイヤモンド膜に溝や凹凸のパターンを設けることにより切れ味が向上する。
ダイヤモンド膜は化学的に安定なため、酸性やアルカリ性の研削液に対しても安定で磨耗しにくいため耐久性に優れている。さらには従来砥石に比べて、目詰まりしにくいため水圧や空圧で簡単に研削屑が排出され常に優れた切れ味を保て、研削面に毟れ等の発生がなく研削比が高く生産性の向上が図れる。
CVD法によればダイヤモンド膜は高密度で超微粒にも成膜する事ができ、切れ刃の大きさ、切れ刃の高さも均一な研削砥石が製作できる。このため切り込み深さの浅い研削加工、0.1〜0.05μmレベルに制御して加工することもでき、被研削材の加工表面に残留応力も少なくなり、割れや破砕の生じない、ダメージの少ない研削ができるため、薄片化や高品質の面仕上げが可能となる。
本発明はCVD法によりダイヤモンド膜を成膜してなるリング状、あるいは円盤状の研削砥石を用いて研削加工する場合、酸性やアルカリ性の研削液を使用する必要もなく純水を用いて高能率の研削加工ができる。
The grinding wheel used for the grinding processing of the silicon wafer of the present invention and the other flattening grinding of the material to be thinned is a direct CVD method as an abrasive layer on the surface of a ring-shaped or disk-shaped substrate. Thus, a diamond film is formed. Unlike conventional grinding stones created by bonding diamond grains to the base material by bonding or electrodeposition, the abrasive grain layer is a 100% diamond film, so there is no wear or peeling of the bond or electrodeposition layer, and no diamond grains fall off. .
By increasing the processing accuracy of the base material, the shape accuracy of the grindstone can also be increased. By forming a diamond film on the base material by CVD, it is possible to manufacture the diamond particles by controlling the arrangement, shape, size, density, and film thickness uniformly and freely. Processing can be realized. In particular, the sharpness is improved by providing grooves or irregular patterns on the diamond film as the abrasive layer.
Since diamond films are chemically stable, they are excellent in durability because they are stable and resistant to wear even with acidic and alkaline grinding fluids. Furthermore, since clogging is less likely to occur compared to conventional grinding stones, grinding waste can be easily discharged with water pressure or pneumatic pressure, maintaining excellent sharpness, and there is no occurrence of stagnation on the grinding surface, resulting in a high grinding ratio and high productivity. Improvement can be achieved.
According to the CVD method, a diamond film can be formed even on ultrafine particles with a high density, and a grinding wheel with a uniform cutting edge size and cutting edge height can be produced. For this reason, grinding can be performed with a shallow depth of cut, controlled to a level of 0.1 to 0.05 μm, the residual stress on the processed surface of the material to be ground is reduced, and cracks and fractures are not generated. Since less grinding is possible, thinning and high-quality surface finishing are possible.
In the present invention, when grinding is performed using a ring-shaped or disc-shaped grinding wheel formed by forming a diamond film by a CVD method, it is not necessary to use an acidic or alkaline grinding liquid, and high efficiency is achieved using pure water. Can be ground.

リング状、円盤状の砥石を用いて被研削材を研削する場合の研削砥石の切りこみとして、大多数の研削盤は回転する研削砥石の切りこみ深さを剛な機構で設定し、研削砥石の磨耗を無視すれば切り込んだ深さだけ被研削材を研削することができる強制切りこみ式がとられている。
一方、回転する研削砥石を一定の圧力で被研削材に押し付けて研削する定圧切りこみ方式がある。加工テーブルで送られてくる被研削面に起伏があれば砥石は起伏にしたがって前進、後退、あるいは上下し、全面を一様に平坦に研削加工する
高品質の面仕上げを要求する研削加工やラッピングには、定圧切りこみ方式が適している。
切りこみ方式としては加工目的に合った方式で加工すれば良いことになるが切りこみ深さを設定する場合、砥粒の磨耗を無視することができない。従来の研削砥石は砥粒、ボンドの磨耗による自生発刃作用、ドレッシングによる発刃等により研削精度、研削比を保つ必要があり研削加工の生産性向上には難があった。
本発明のようにCVD法により基材にダイヤモンド膜を成膜してなる研削砥石は磨耗しにくいため、切りこみ深さが容易に設定でき切れ味が持続できるため、いずれの方式においても高能率的な高精度の研削加工が可能である。
研削砥石の基材の表面にCVD法により粒子の大きさ、形状、配列、密度、膜厚を均一にダイヤモンド膜を成膜してなる研磨体については、本願発明者は既に特願2005−36398号で開示しているが、本発明はかかる研磨体を用いてインゴットよりスライスされたシリコンウェハの薄片化の研削加工やその他、薄片化が求められている被研削材の研削に用いることが出来るように更に改善を加えた新規な技術を有する研削砥石を提供するものである。
When grinding a workpiece using a ring-shaped or disk-shaped grinding wheel, most grinding machines set the depth of cutting of the rotating grinding wheel with a rigid mechanism and wear the grinding wheel. If this is ignored, a forced cutting method is employed that can grind the material to be ground to the depth of the cut.
On the other hand, there is a constant pressure cutting method in which a rotating grinding wheel is pressed against a material to be ground with a constant pressure for grinding. Grinding or lapping that requires high-quality surface finish that grinds the entire surface uniformly and flatly by moving the grinding wheel forward, backward, or up and down according to the undulation if the grinding surface sent by the processing table has undulations For this, a constant pressure cutting method is suitable.
As the cutting method, it is only necessary to perform processing according to the processing purpose. However, when the cutting depth is set, the wear of the abrasive grains cannot be ignored. Conventional grinding wheels need to maintain grinding accuracy and grinding ratio by the action of self-sharpening due to abrasive grains, bond wear, and blades by dressing, and it has been difficult to improve the productivity of grinding.
Since the grinding wheel formed by forming a diamond film on the base material by CVD as in the present invention is not easily worn, the cutting depth can be easily set and the sharpness can be maintained. High precision grinding is possible.
The inventors of the present application have already applied Japanese Patent Application No. 2005-36398 for a polishing body in which a diamond film is uniformly formed on the surface of a grinding wheel base material by a CVD method so as to have a uniform particle size, shape, arrangement, density and film thickness. However, the present invention can be used for grinding a silicon wafer sliced from an ingot using such a polishing body, or for grinding a workpiece to be thinned. Thus, the present invention provides a grinding wheel having a novel technique with further improvements.

図9は本発明の研削砥石を使用するシリコンウェハの研削方法を模式的に示す。
1は本発明による研削砥石の組立体である、2はシリコンウェハ、3はシリコンウェハを載置する加工テーブルである。
加工テーブル3を回転あるいは前後左右に移動させながら、回転する研削砥石組立体1で、加工テーブル3上に載置したシリコンウェハ2を所定の圧力で加圧しながら、または所定の切りこみ深さで切りこみながら研削する。この研削加工の際、加工テーブル3上に図示していない研削液の供給源から研削液5がシリコンウェハ2、研削砥石組立体1の研削作用面に向かってノズル4から噴射され、研削により発生する摩擦熱を冷却、または研削屑の排出を助ける。加工テーブル3は回転あるいは前後、左右に移動させる方法で説明したが、加工テーブル3は回転のみで研削砥石組立体1を回転させながら前後、左右、上下に移動させて研削することもできる。
研削砥石組立体1の回転数、シリコンウェハ2への研削砥石組立体1の切りこみ深さ、または加工圧力の制御、加工テーブル3の回転数、研削砥石組立体1または加工テーブル3の移動速度等は図示していない制御盤によって適正な研削条件に設定され制御される。
以下にかかる研削装置に用いられる本発明による研削砥石として、本発明者が開示済みの特願2005−363986号による研磨体にさらに改良を加えたシリコンウェハの研削砥石の実施例について説明する。
FIG. 9 schematically shows a silicon wafer grinding method using the grinding wheel of the present invention.
1 is an assembly of a grinding wheel according to the present invention, 2 is a silicon wafer, and 3 is a processing table for placing the silicon wafer.
While the processing table 3 is rotated or moved back and forth, and left and right, the rotating grinding wheel assembly 1 is used to press the silicon wafer 2 placed on the processing table 3 with a predetermined pressure or with a predetermined depth of cut. While grinding. During this grinding process, the grinding liquid 5 is sprayed from the nozzle 4 toward the grinding surface of the silicon wafer 2 and the grinding wheel assembly 1 from a grinding liquid supply source (not shown) on the processing table 3 and is generated by grinding. To cool the frictional heat, or help to discharge grinding scraps. Although the processing table 3 has been described by a method of rotating or moving back and forth, and left and right, the processing table 3 can also be ground by moving it back and forth, left and right, and up and down while rotating the grinding wheel assembly 1 only by rotation.
Control of the rotational speed of the grinding wheel assembly 1, the depth of cutting of the grinding wheel assembly 1 into the silicon wafer 2, or the processing pressure, the rotational speed of the processing table 3, the moving speed of the grinding wheel assembly 1 or the processing table 3, etc. Are set and controlled with appropriate grinding conditions by a control panel (not shown).
As an example of a grinding wheel according to the present invention for use in a grinding apparatus according to the present invention, an example of a grinding wheel for a silicon wafer obtained by further improving the polishing body according to Japanese Patent Application No. 2005-363986 disclosed by the present inventor will be described.

図10は図9の研削砥石組立体1の模式図である。リング状あるいは円盤状の基材6の下端にCVD法により砥粒層として粒子の大きさ、形状、密度、膜厚を均一にダイヤモンド膜7を成膜させてなる研削砥石部と、基材6の中心部上方に一体的にあるいは分解可能に組付けされた回転軸13から構成されている。以下、説明をわかりやすくするために研削砥石組立体1と回転軸13のない研削砥石部を総称して研削砥石として説明する。FIG. 10 is a schematic view of the grinding wheel assembly 1 of FIG. A grinding wheel portion in which a diamond film 7 is uniformly formed in a size, shape, density, and film thickness as an abrasive layer by a CVD method on the lower end of a ring-shaped or disk-shaped substrate 6, and the substrate 6 It is comprised from the rotating shaft 13 integrally or removably assembled | attached above the center part. Hereinafter, in order to make the description easy to understand, the grinding wheel assembly 1 and the grinding wheel portion without the rotating shaft 13 will be collectively referred to as a grinding wheel.

図1は本発明における研削砥石の第一の実施例で図10で示した研削砥石組立体1の基材6およびダイヤモンド膜7部を下方からみたリング状研削砥石の模式図である。
特にリング状の基材6の砥粒層として作用させる表面の外周及び内周の稜部をR加工しておき、その表面にCVD法によりダイヤモンド膜を成膜して砥粒層とした研磨砥石を提供するものである。稜部にRをもたせることによりシリコンウェハを研削する際の最初の切りこみが滑らかに行われ、研削砥石とシリコンウェハの切りこみの際の衝撃が小さく、割れや破損防止の効果が期待できる。シリコンウェハの薄片化の研削が進むにつれて有効となる。
FIG. 1 is a schematic diagram of a ring-shaped grinding wheel as viewed from below the base material 6 and the diamond film 7 of the grinding wheel assembly 1 shown in FIG. 10 in the first embodiment of the grinding wheel of the present invention.
In particular, a polishing grindstone in which the outer peripheral and inner peripheral ridges of the ring-shaped substrate 6 acting as an abrasive layer are R-processed and a diamond film is formed on the surface by a CVD method to form an abrasive layer. Is to provide. By giving R to the ridge, the initial cutting when the silicon wafer is ground is smoothly performed, the impact when cutting the grinding wheel and the silicon wafer is small, and the effect of preventing cracks and breakage can be expected. It becomes effective as the grinding of silicon wafer thinning proceeds.

図2は本発明における研削砥石の第2の実施例である。リング状の砥粒層としてのダイヤモンド膜部8に基材6の内周部から外周部に向かって研削液や研磨屑が排出されるように複数の溝9A、9B、9C、9Dを設けたことを特徴とする研削砥石を提供するものである。FIG. 2 shows a second embodiment of the grinding wheel according to the present invention. A plurality of grooves 9 </ b> A, 9 </ b> B, 9 </ b> C, and 9 </ b> D are provided in the diamond film portion 8 as a ring-shaped abrasive layer so that grinding fluid and polishing waste are discharged from the inner peripheral portion of the substrate 6 toward the outer peripheral portion. The present invention provides a grinding wheel characterized by that.

図3は本発明における研削砥石の第3の実施例である。円盤状の基材10の砥粒層として作用させる表面の外周の稜部を予めR加工しておき、その表面にCVD法によりダイヤモンド膜8を成膜して砥粒層とした研削砥石を提供するものである。
図4は本発明における研削砥石の第4の実施例である。円盤状の基材10の表面に砥粒層としてCVD法で成膜されたダイヤモンド膜8部に中心部から外周に向かって研削液や研削屑が排出されるように複数の溝9A、9B、9C、9Dを設けたことを特徴とする円盤状研削砥石を提供するものである。
FIG. 3 shows a third embodiment of the grinding wheel according to the present invention. Providing a grinding wheel that has a rim portion of the outer periphery of the surface that acts as an abrasive layer of the disk-shaped substrate 10 in advance, and a diamond film 8 is formed on the surface by a CVD method to form an abrasive layer. To do.
FIG. 4 shows a fourth embodiment of the grinding wheel according to the present invention. A plurality of grooves 9 </ b> A, 9 </ b> B, so that grinding fluid and grinding debris are discharged from the central part to the outer periphery of the diamond film 8 part formed by CVD as an abrasive layer on the surface of the disk-shaped substrate 10. A disc-shaped grinding wheel characterized by providing 9C and 9D is provided.

図5は本発明における研削砥石の第5の実施例で第4の実施例の複数の溝9A、9B、9C、9D、を研削液、研削屑が中心から外周に向かって排出されるように放射状に設けたことを特徴とした円盤状研削砥石を提供するものである。
図6は本発明における研削砥石の第6の実施例である。円盤状の基材10の表面に砥粒層としてCVD法で成膜されたダイヤモンド膜8部に中心部から外周に向かって研磨液や研磨屑が排出されやすいように渦巻き状の溝を設けたことを特徴とする円盤状研削砥石を提供するものである。図2、図4、図5で示したダイヤモンド膜8部に設けた複数の溝は予め基材6や基材10の表面に機械加工により加工しておき、CVD法によりダイヤモンド膜8を成膜して砥粒層として製作することが出来る。
図6で示したうず巻き状の溝11も同様に基材10の表面に機械加工により加工しておき、CVD法によりダイヤモンド膜8を成膜して砥粒層として製作することが出来る。
FIG. 5 shows a fifth embodiment of the grinding wheel according to the present invention, in which a plurality of grooves 9A, 9B, 9C, 9D of the fourth embodiment are discharged from the center toward the outer periphery. The present invention provides a disk-shaped grinding wheel characterized by being provided radially.
FIG. 6 shows a sixth embodiment of the grinding wheel according to the present invention. A spiral groove is provided on the surface of the disk-shaped substrate 10 so that the polishing liquid and polishing debris can be easily discharged from the center to the outer periphery of the diamond film 8 formed as an abrasive layer by the CVD method. A disc-shaped grinding wheel characterized by the above is provided. A plurality of grooves provided in the diamond film 8 shown in FIGS. 2, 4 and 5 are processed in advance on the surface of the base 6 or 10 by machining, and the diamond film 8 is formed by the CVD method. Thus, it can be produced as an abrasive layer.
Similarly, the spiral-shaped groove 11 shown in FIG. 6 can be machined on the surface of the substrate 10, and the diamond film 8 can be formed by the CVD method to be manufactured as an abrasive layer.

図7は本発明における別の研削砥石の製作方法を示す模式図であり図8は図7の制作方法によるCVD法により成膜されたダイヤモンド膜8を有する円盤状研削砥石である。
図7はCVD法により成膜する際、基材10の表面上方に砥粒層としてのダイヤモンド膜8を、成膜する部分と、成膜しない図2、図4、
図5で示した複数の溝9A、9B、9C、9Dの部分、および図6で示したうず巻き状の溝11部分が形成できるようにパターン化された穴を有するマスク板12を設けて、選択的にCVD法で膜付けすることにより、基板6、基板10に予め機械加工により溝加工することなく、同様の溝や凹凸のパターンを有するダイヤモンド膜が形成できる。
FIG. 7 is a schematic diagram showing another grinding wheel manufacturing method according to the present invention, and FIG. 8 is a disk-shaped grinding wheel having a diamond film 8 formed by the CVD method according to the manufacturing method of FIG.
FIG. 7 shows a portion where a diamond film 8 as an abrasive grain layer is formed above the surface of the base material 10 when the film is formed by the CVD method, and FIG. 2, FIG.
A mask plate 12 having holes patterned so as to form a plurality of grooves 9A, 9B, 9C, 9D shown in FIG. 5 and a spiral groove 11 shown in FIG. 6 is provided for selection. By forming a film by the CVD method, it is possible to form a diamond film having a similar groove or uneven pattern on the substrate 6 and the substrate 10 without previously machining the groove by machining.

また別の方法として図示していないが、基材10の表面にパターン化された酸化膜を膜付けした後、CVD法により酸化膜のない部分にはダイヤモンド膜が形成され、酸化膜のある部分には成膜されないよう選択的に成膜して、溝や凹凸のパターンのダイヤモンド膜を有する研削砥石を製作することが出来る。  Although not shown as another method, after a patterned oxide film is formed on the surface of the base material 10, a diamond film is formed in a portion without the oxide film by a CVD method, and a portion with the oxide film is formed. Thus, it is possible to manufacture a grinding wheel having a diamond film having a groove or a concavo-convex pattern.

図8はCVD法によって、マスク板12のパターン、または基材10の表面に膜付けされたパターンによって任意の配列、密度、形状、膜厚にダイヤモンド粒子を成長させて製作された円盤状研磨砥石である。CVD法では反応ガスを変えることにより、ダイヤモンドの粒子の大きさ、形状、密度、膜厚を自由に制御して成膜できることからシリコンウェハを研削加工するに最適な粒子の大きさ、形状、膜厚の研削砥石が製作できる。
かかる研削砥石を用いて前述した図9に示すような研磨方法でシリコンウェハ2を高能率で研削加工が実現できた。
FIG. 8 shows a disc-shaped polishing grindstone manufactured by growing diamond particles in an arbitrary arrangement, density, shape and film thickness by the pattern of the mask plate 12 or the pattern formed on the surface of the substrate 10 by the CVD method. It is. In the CVD method, by changing the reaction gas, the diamond particle size, shape, density, and film thickness can be freely controlled to form a film, so the optimum particle size, shape, and film for grinding silicon wafers. Thick grinding wheels can be manufactured.
Using this grinding wheel, the silicon wafer 2 could be ground with high efficiency by the polishing method as shown in FIG. 9 described above.

発明の効果The invention's effect

本発明による研削砥石は砥粒層がCVD法で成膜されたダイヤモンドであるため、耐磨耗性に優れ、高密度かつ微粒で切れ刃の大きさ、切れ刃の高さも均一である。切れ味もよく、砥粒の刃先位置を常に安定的に保つことができるため、高い形状精度でシリコンウェハ等の被研削材を高能率的に研削加工が出来る。
研削砥石の基材の加工精度を高めることにより、研削砥石の形状精度も高めることができるため精密研削に適している。
砥粒層としてのダイヤモンド膜はCVD法により、粒子の大きさ、配列、形状、密度、膜厚を均一に自在に制御して製作できるため、シリコンウェハの薄膜化の研削の際、微小砥粒の研削砥石で切りこみ深さの浅い研削加工も行うことができ、加工表面の残留応力も少なくなり、割れや破砕の生じない高品質の面仕上げが期待できる。
リング状または円盤状の研削砥石の内外周の稜部をR状に形成したり、砥粒層に内側から外周側に向かって研削液や研削屑を排出する溝や凹凸を設けることにより、研削液の流れにより砥粒層の目づまりが防止でき、砥粒層の冷却効果も向上するとともに、シリコンウェハの熱歪も防止でき、薄片化加工にダメージの少ない研削加工ができる。
ダイヤモンドは化学的に安定であり、酸性やアルカリ性の研削液の使用は問題ないが、切れ味がよいことから純水を研削液として用いて研削加工できるため廃液処理費などの経費が軽減でき経済的である。
Since the grinding wheel according to the present invention is diamond whose grain layer is formed by CVD, it has excellent wear resistance, high density, fine grains, and uniform cutting edge size and cutting edge height. The sharpness is good and the cutting edge position of the abrasive grains can always be kept stable, so that the material to be ground such as a silicon wafer can be efficiently ground with high shape accuracy.
By increasing the processing accuracy of the base material of the grinding wheel, the shape accuracy of the grinding wheel can be increased, which is suitable for precision grinding.
A diamond film as an abrasive layer can be manufactured by controlling the size, arrangement, shape, density, and thickness of the particles uniformly and freely by CVD. Grinding with a shallow cutting depth can be performed with this grinding wheel, the residual stress on the processed surface is reduced, and a high-quality surface finish without cracking or crushing can be expected.
Grinding by forming the ridges on the inner and outer circumferences of a ring-shaped or disk-shaped grinding wheel in an R shape, or providing grooves and irregularities in the abrasive layer to discharge grinding fluid and grinding debris from the inside to the outer circumference The clogging of the abrasive layer can be prevented by the flow of the liquid, the cooling effect of the abrasive layer can be improved, the thermal distortion of the silicon wafer can also be prevented, and the grinding process can be performed with little damage to the thinning process.
Diamond is chemically stable, and there is no problem in using acidic or alkaline grinding fluids. However, because of its sharpness, it can be ground using pure water as grinding fluid, so it can reduce costs such as waste liquid treatment costs. It is.

本発明における研削砥石の第1の実施例の模式図The schematic diagram of the 1st Example of the grinding wheel in this invention 本発明における研削砥石の第2の実施例の模式図The schematic diagram of the 2nd Example of the grinding wheel in this invention 本発明における研削砥石の第3の実施例の模式図The schematic diagram of the 3rd Example of the grinding wheel in this invention 本発明における研削砥石の第4の実施例の模式図Schematic diagram of the fourth embodiment of the grinding wheel in the present invention 本発明における研削砥石の第5の実施例の模式図Schematic diagram of the fifth embodiment of the grinding wheel in the present invention 本発明における研削砥石の第6の実施例の模式図Schematic diagram of the sixth embodiment of the grinding wheel in the present invention 本発明における研削砥石の別の制作方法を示す模式図The schematic diagram which shows another production method of the grinding wheel in this invention 本発明における別の制作方法で膜付けされた研削砥石の模式図Schematic diagram of a grinding wheel coated with another production method of the present invention 本発明における研削砥石を使用するシリコンウェハの研削方法の模式図Schematic diagram of silicon wafer grinding method using grinding wheel in the present invention 本発明における研削砥石の組立体の模式図Schematic diagram of an assembly of grinding wheels in the present invention

符号の説明Explanation of symbols

1:研削砥石の組立体 2:シリコンウェハ 3:加工テーブル 4:ノズル
5:研削液 6:基材 7:ダイヤモンド膜 8:ダイヤモンド膜
9A、9B、9C、9D:溝 10:基材 11:溝
12:マスク板 13:回転軸
1: Assembly of grinding wheel 2: Silicon wafer 3: Processing table 4: Nozzle 5: Grinding liquid 6: Base material 7: Diamond film 8: Diamond films 9A, 9B, 9C, 9D: Groove 10: Substrate 11: Groove 12: Mask plate 13: Rotating shaft

Claims (12)

リング状の基材の砥粒層として作用させる表面の稜部をR状に形成し、CVD法により該表面にダイヤモンド膜を成膜してなることを特徴としたリング状研削砥石。A ring-shaped grinding wheel characterized in that a ridge portion of a surface that acts as an abrasive layer of a ring-shaped substrate is formed in an R shape and a diamond film is formed on the surface by a CVD method. 円盤状の基材の砥粒層として作用させる表面の稜部をR状に形成し、CVD法により該表面にダイヤモンド膜を成膜してなることを特徴とした円盤状研削砥石。A disk-shaped grinding wheel characterized in that a ridge portion of a surface that acts as an abrasive layer of a disk-shaped substrate is formed in an R shape and a diamond film is formed on the surface by a CVD method. リング状の基材の砥粒層として作用させる凹溝を設けてなる表面にCVD法によりダイヤモンド膜を成膜してなることを特徴としたリング状研削砥石。A ring-shaped grinding wheel characterized in that a diamond film is formed by CVD on a surface provided with a concave groove that acts as an abrasive layer of a ring-shaped substrate. 円盤状の基材の砥粒層として作用させる凹溝を設けてなる表面にCVD法によりダイヤモンド膜を成膜してなることを特徴とした円盤状研削砥石。A disk-shaped grinding wheel characterized in that a diamond film is formed by a CVD method on a surface provided with a concave groove that acts as an abrasive layer of a disk-shaped substrate. リング状の基材の砥粒層として作用させる表面に複数のパターン化された穴を有するマスク板を載置し、CVD法によりダイヤモンド膜を成膜することにより凹溝を形成させてなることを特徴としたリング状研削砥石。A mask plate having a plurality of patterned holes is placed on the surface to act as an abrasive layer of a ring-shaped substrate, and a groove is formed by forming a diamond film by a CVD method. A ring-shaped grinding wheel with special features. リング状の基材の砥粒層として作用させる表面に複数のパターン化された穴を有するマスク板を載置し、CVD法によりダイヤモンド膜を成膜することにより凹凸を形成させてなることを特徴としたリング状研削砥石A mask plate having a plurality of patterned holes is placed on the surface to act as an abrasive layer of a ring-shaped substrate, and a diamond film is formed by a CVD method to form irregularities. Ring-shaped grinding wheel 円盤状の基材の砥粒層として作用させる表面に複数のパターン化された穴を有するマスク板を載置し、CVD法によりダイヤモンド膜を成膜することにより凹溝を形成させてなることを特徴とした円盤状研削砥石。A mask plate having a plurality of patterned holes is placed on the surface acting as an abrasive layer of a disk-shaped substrate, and a diamond film is formed by a CVD method to form a groove. A disc-shaped grinding wheel. 円盤状の基材を砥粒層として作用させる表面に複数のパターン化された穴を有するマスク板を載置し、CVD法によりダイヤモンド膜を成膜することにより凹凸を形成させてなることを特徴とした円盤状研削砥石。A mask plate having a plurality of patterned holes is placed on a surface on which a disk-shaped substrate acts as an abrasive layer, and a diamond film is formed by CVD to form irregularities. A disc-shaped grinding wheel. リング状の基材の砥粒層として作用させる表面にパターン化された酸化膜を膜付けした後、CVD法によりダイヤモンド膜を成膜し、酸化膜の膜付けされた部分を凹部として形成させてなることを特徴としたリング状研削砥石。After depositing a patterned oxide film on the surface that acts as an abrasive layer of a ring-shaped substrate, a diamond film is formed by CVD, and the oxide film is formed as a recess. A ring-shaped grinding wheel characterized by 円盤状の基材の砥粒層として作用させる表面にパターン化された酸化膜を膜付けした後、CVD法によりダイヤモンド膜を成膜し、酸化膜の膜付けされた部分を凹部として形成させてなることを特徴とした円盤状研削砥石。After depositing a patterned oxide film on the surface that acts as an abrasive layer of a disk-shaped substrate, a diamond film is formed by CVD, and the oxide film is formed as a recess. A disc-shaped grinding wheel characterized by 基材の砥粒層として作用させる表面にCVD法によりダイヤモンド膜を成膜させてなる研削砥石を回転させながら、回転する加工テーブルに保持されたシリコンウェハ等の、被研削材表面を所定の圧力で加圧しながら研削する工程で前記研削砥石とシリコンウェハ等の被研削材に純水を散布しながら研削することを特徴とした研削方法。While rotating a grinding wheel formed by depositing a diamond film by CVD on the surface that acts as the abrasive layer of the substrate, the surface of the material to be ground, such as a silicon wafer held on a rotating processing table, is subjected to a predetermined pressure. Grinding while sprinkling pure water on the grinding wheel and the material to be ground such as a silicon wafer in the step of grinding while applying pressure. 基材の砥粒層として作用させる表面にCVD法によりダイヤモンド膜を成膜させてなる研削砥石を回転させながら、回転する加工テーブルに保持されたシリコンウェハ等の被研削材表面を所定の切り込み深さで切り込みながら研削する工程で、前記研削砥石とシリコンウェハ等の被研削材に純水を散布しながら研削することを特徴とした研削方法The surface of the material to be ground, such as a silicon wafer held on a rotating processing table, is rotated with a predetermined depth of cut while rotating a grinding wheel formed by forming a diamond film on the surface to act as the abrasive layer of the substrate by CVD. Grinding while sprinkling pure water on the grinding wheel and the material to be ground such as silicon wafer in the step of grinding while cutting
JP2006281910A 2006-09-19 2006-09-19 Grinding wheel for manufacturing thin wafer and grinding method Pending JP2008073832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281910A JP2008073832A (en) 2006-09-19 2006-09-19 Grinding wheel for manufacturing thin wafer and grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281910A JP2008073832A (en) 2006-09-19 2006-09-19 Grinding wheel for manufacturing thin wafer and grinding method

Publications (1)

Publication Number Publication Date
JP2008073832A true JP2008073832A (en) 2008-04-03

Family

ID=39346411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281910A Pending JP2008073832A (en) 2006-09-19 2006-09-19 Grinding wheel for manufacturing thin wafer and grinding method

Country Status (1)

Country Link
JP (1) JP2008073832A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026006A1 (en) * 2008-09-02 2010-03-11 S.O.I. Tec Silicon On Insulator Technologies A mixed trimming method
JP2011218470A (en) * 2010-04-07 2011-11-04 Mitsubishi Heavy Ind Ltd Grinding tool and method for manufacturing the same
CN107671724A (en) * 2016-08-01 2018-02-09 中国砂轮企业股份有限公司 Chemical mechanical grinding dresser and manufacturing method thereof
KR200494294Y1 (en) * 2021-01-26 2021-09-08 신대철 Grinding Tool
CN114633221A (en) * 2022-02-25 2022-06-17 西安鑫垚陶瓷复合材料有限公司 Diamond tool for processing continuous fiber toughened SiC ceramic matrix composite and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026006A1 (en) * 2008-09-02 2010-03-11 S.O.I. Tec Silicon On Insulator Technologies A mixed trimming method
JP2011218470A (en) * 2010-04-07 2011-11-04 Mitsubishi Heavy Ind Ltd Grinding tool and method for manufacturing the same
CN107671724A (en) * 2016-08-01 2018-02-09 中国砂轮企业股份有限公司 Chemical mechanical grinding dresser and manufacturing method thereof
TWI616279B (en) * 2016-08-01 2018-03-01 中國砂輪企業股份有限公司 Chemical mechanical polishing dresser and manufacturing method thereof
KR200494294Y1 (en) * 2021-01-26 2021-09-08 신대철 Grinding Tool
CN114633221A (en) * 2022-02-25 2022-06-17 西安鑫垚陶瓷复合材料有限公司 Diamond tool for processing continuous fiber toughened SiC ceramic matrix composite and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI406736B (en) Tool having sintered-body abrasive portion and method for producing the same
JP3829092B2 (en) Conditioner for polishing pad and method for producing the same
US7658666B2 (en) Superhard cutters and associated methods
JP3534115B1 (en) Edge-polished nitride semiconductor substrate, edge-polished GaN free-standing substrate, and edge processing method for nitride semiconductor substrate
KR101091030B1 (en) Method for producing pad conditioner having reduced friction
WO1998014307A1 (en) Superabrasive tool and method of its manufacture
TWI513548B (en) A grindstone and a grinding and polishing device using the grindstone
TW200837823A (en) CMP pad conditioners and associated methods
TW201303992A (en) Dual dressing system for CMP pads and associated methods
JP2008073832A (en) Grinding wheel for manufacturing thin wafer and grinding method
JP2010076013A (en) Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone
JP2003300165A (en) Segment type grinding wheel
JP4441552B2 (en) Diamond conditioner
JP3299523B2 (en) Tool for turning groove of hard foam resin pad
JP6189032B2 (en) Grinding method of ceramic substrate with silver penetrating electrode
JP3497492B2 (en) Hard foam resin grooved pad for semiconductor device processing and pad turning groove processing tool
TW201600229A (en) Scribing wheel and method of manufacturing same
TWI383860B (en) Modular dresser
JP2013094924A (en) Grinding method for ceramic substrate with through electrode
JP2000190199A (en) Plane correcting method for surface plate
JP2004042215A (en) Polishing stone, and apparatus and method for mirror-finishing cut surface
WO2000024548A1 (en) Polishing apparatus and a semiconductor manufacturing method using the same
TWI681843B (en) Method for conditioning polishing pad
JP5352977B2 (en) Dress gear
JPH11188588A (en) Disk substrate intermediate product and its manufacture