JP5451764B2 - 照射位置確認機能を有する超音波検出装置及びその方法 - Google Patents

照射位置確認機能を有する超音波検出装置及びその方法 Download PDF

Info

Publication number
JP5451764B2
JP5451764B2 JP2011525965A JP2011525965A JP5451764B2 JP 5451764 B2 JP5451764 B2 JP 5451764B2 JP 2011525965 A JP2011525965 A JP 2011525965A JP 2011525965 A JP2011525965 A JP 2011525965A JP 5451764 B2 JP5451764 B2 JP 5451764B2
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic detection
bone
voltage
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011525965A
Other languages
English (en)
Other versions
JPWO2011016586A1 (ja
Inventor
奈緒子 坂本
純 武田
厚 朝比奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Pharma Ltd
Original Assignee
Teijin Pharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Pharma Ltd filed Critical Teijin Pharma Ltd
Priority to JP2011525965A priority Critical patent/JP5451764B2/ja
Publication of JPWO2011016586A1 publication Critical patent/JPWO2011016586A1/ja
Application granted granted Critical
Publication of JP5451764B2 publication Critical patent/JP5451764B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0875Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1703Guides or aligning means for drills, mills, pins or wires using imaging means, e.g. by X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0013Fracture healing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0052Ultrasound therapy using the same transducer for therapy and imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0073Ultrasound therapy using multiple frequencies

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Surgical Instruments (AREA)
  • Electrotherapy Devices (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Description

本発明は、照射位置確認機能を有する超音波検出装置及びその方法に関し、特に超音波を用いて、対象物を検出する、あるいは適切な照射を確認する方法又は装置に関する。
整形外科的処置として超音波療法を適用する際、超音波が適切に患部に当たるよう超音波の照射位置決定を行う必要がある。その方法として、患部のX線写真が用いられることがあるが、X線写真は二次元情報であるため、軟部組織の厚い上腕部や大腿部において、目標に対する正しい照射位置や角度の決定が困難である。
従来の技術として、特許文献1に記載のように、超音波照射によって、骨折部位に照射されていることを判断する装置があるが、これは超音波が骨を長軸方向に伝搬することを利用して判断する装置であって、本発明のものとは異なる。また、特許文献2には、骨に超音波を照射し、その反射波を用いる方法が開示されている。
超音波治療法においては、治療効率を確実に得る為にも、適切な超音波照射位置や角度の決定は、治療用の超音波照射装置においては不可欠な技術である。
国際公開第2008/018612号 国際公開第2007/069775号
本発明の目的は、超音波を目標に正確に照射することを可能にする装置及びその方法を提供することである。また、生体において外部から目標対象物が分かりにくい場合、例えば軟部組織の厚い上腕部や大腿部などにおいても、目標対象物に対する正しい照射位置や照射角度の決定を可能にすることを目的とする。
本発明は、以下の手段により課題を解決する。
すなわち、本発明は、下記に示すものである。
(1)生体に対して超音波パルスを照射して超音波照射位置を検出する超音波検出装置であり、超音波を送信する1個もしくは複数の超音波照射用トランスデューサ、前記超音波照射用トランスデューサから照射した超音波の反射波を受信する1個もしくは複数の信号受信用トランスデューサ、
前記信号受信用トランスデューサが受信した受信信号を記憶する信号記憶部、
前記信号記憶部が記憶した記憶信号の解析を行う解析プログラム、
前記解析プログラムによる解析結果及び/又は前記記憶信号を利用し、得られた反射波が超音波照射の目標対象物から得られたものであるか否かの判別を行う判別プログラム、並びに
前記記憶信号、前記解析結果、及び前記判別プログラムによる判別結果からなる群から選ばれる1つ以上のものを表示する表示部を備え、
前記解析プログラム及び/又は判別プログラムが、生体内における反射体の違いによって受信信号の情報に違いがあることを利用して解析及び/又は判別を行うことを特徴とする超音波検出装置。
(2)前記解析プログラム及び/又は前記判別プログラムが、受信信号における周波数及び/又は電圧のパラメータを利用して解析及び/又は判別を行うことを特徴とする(1)に記載の超音波検出装置。
(3)前記解析プログラムが、少なくとも、生体内の反射体の違いによる反射波の周波数成分の強度分布の違いを利用して解析を行うことを特徴とする(1)又は(2)に記載の超音波検出装置。
(4)前記解析プログラムが、得られた反射波の受信信号における周波数の高周波成分と低周波成分の比を算出することを特徴とする(2)又は(3)に記載の超音波検出装置。
(5)前記解析プログラムにおいて利用する周波数の高周波成分と低周波成分が、送信超音波の中心周波数及びその付近の帯域、及び、第2のピーク周波数及びその付近の帯域、の2種類の帯域から周波数の高周波成分と低周波成分を選び出すことを特徴とする(4)に記載の超音波検出装置。
(6)前記解析プログラムにおいて利用する高周波成分と低周波成分が、1.5±0.1MHzの帯域と、1.2±0.1MHzの帯域の最大値である(4)に記載の超音波検出装置。
(7)前記判別プログラムが、前記解析プログラムにおける解析結果と予め設定された数値との比較により、判別を行う(1)から(6)のいずれかに記載の超音波検出装置。
(8)前記判別プログラムが、反射波における最高電圧と予め設定された数値との比較により、判別を行う(1)から(7)のいずれかに記載の超音波検出装置。
(9)超音波照射用トランスデューサの一つの設置位置における連続する照射角度/もしくは体表上の連続した異なる位置にて複数反射波が得られるとき、複数の反射波それぞれにおいて含まれる時間情報、並びに電圧及び/又は周波数の高周波成分と低周波成分の比を、前記表示部が、縦軸に時間情報、横軸に角度としたマップ上に、電圧及び/又は周波数の高周波成分と低周波成分の比を該当する時間及び角度のマスに数値に応じて色分けして表示を行う(1)から(8)のいずれかに記載の超音波検出装置。
(10)前記数値が前記予め設定された数値を超え、目標対象物である可能性が高いと検出した角度が複数あり、それらを目標対象物角度範囲としたとき、治療に最適な角度が前記目標対象物角度範囲の中央であることを特徴とする、(9)に記載の超音波検出装置。
(11)前記解析プログラムにおいて、受信信号を解析する時間の範囲、及び/もしくは受信信号を記憶する時間の範囲、及び/もしくは判別プログラムが判別する時間の範囲が、予め設定される時間範囲設定プログラムで決定されることを特徴とする、(1)から(10)のいずれかに記載の超音波検出装置。
(12)前記時間範囲設定プログラムが、反射信号の電圧の包絡線をとり、電圧A以上の値を頂点に持つ包絡線の波形に関し、電圧B時の包絡線の傾きが正のときに電圧Cまで戻った点を検知開始時間とし、A、B、及びCにはA≧B>Cの関係が成立し、検知開始時間から開始される一定の時間幅を解析対象範囲とする方法であることを特徴とする、(11)に記載の超音波検出装置。
(13)前記時間範囲設定プログラムが、四肢断面において、複数個体の周上の点から直下の骨までの距離と前記四肢周との比(距離/周)をとり、((前記比の複数個体数データによる平均値)±(k×標準偏差))を係数とし、被照射者四肢周が得られたときに前記係数に前記被照射者四肢周を乗じることにより、周上の点から直下の骨までの距離の範囲を予測する方法により決定される距離の範囲の2倍数を、軟部組織中の音速で割って決定される時間幅を解析対象範囲とする方法であることを特徴とする、(11)に記載の超音波検出装置。
(14)前記超音波照射用トランスデューサが前記信号受信用トランスデューサを兼用していることを特徴とする(1)から(13)のいずれかに記載の超音波検出装置。
(15)前記超音波検出装置が、目標対象物として骨を検出するためのものである(1)から(14)のいずれかに記載の超音波検出装置。
(16)前記超音波検出装置が、目標対象物として体内の腫瘍/もしくは変性した組織を検出するためのものである(1)から(15)のいずれかに記載の超音波検出装置。
(17)前記超音波検出装置が超音波治療器と一体となっている(1)から(16)のいずれかに記載の超音波検出装置。
(18)同一照射位置における、前記記憶信号、前記解析結果、又は前記判別プログラムによる判別結果の経時変化によって、目標対象物の治癒状態を判定する(1)から(17)のいずれかに記載の超音波検出装置。
なお、以上述べた各構成は、本発明の趣旨を逸脱しない限り、互いに組み合わせることが可能である。
本発明の超音波検出方法又は装置を用いることによって、超音波を目標対象物に正確に照射することが可能となる。また、目標対象物の位置が外部から分かりにくい場合、例えば大腿部や上腕部など軟部組織の厚い部位にあっても、目標対象物への適切な超音波の照射や照射角度の決定が実現できる。
図1は、大腿骨骨折治療への適用例を示す概略図である。
図2は、本発明における装置構成要素を示す概略図である。
図3は、反射波を変換して検出信号として得た概略図である。
図4は、周波数成分の強度分布の例を示す概略図である。
図5は、豚骨の反射波が形状により大きく変化することを確認した基礎実験の結果である。
図6は、データ番号をX軸、時間をY軸、電圧をZ軸にプロットして三次元情報として表示した結果表示例である。
図7は、骨と軟部組織における伝搬超音波の減衰特性の概略図である。
図8は、周波数成分の強度分布の変化を理論計算により示した例である。
図9は、信号検知の具体例である。
図10は、FFT解析の具体例である。
図11は、モデルを用いた基礎実験における周波数成分比算出の具体例である。
図12は、マッピングによる電圧の画像化の具体例である。
図13は、体表−骨間距離予測法の具体例を示す概略図である。
図14は、体表−骨間距離予測法の別の具体例を示す概略図である。
図15は、大腿上における体表上の連続した異なる位置を示す具体例である。
本発明者らは、超音波が媒質中を進む際、音響インピーダンスの異なる境界面で反射し、かつ境界面における音響インピーダンスの差や媒質の減衰特性により、その反射波が持つ超音波特性が異なる、という性質に着目し、超音波の反射波が本来照射の目標対象物から発生したものかを判断することで、目標対象物への適切な超音波ビーム照射位置及び方向の決定を可能にした。また、本発明では、送信用トランスデューサを用いて反射波を受信することで、単一トランスデューサでの検出を実現することも可能である。さらに、本発明の超音波検出方法又は装置は、反射波における電圧、周波数、及び信号出現時間のうち1つ以上のパラメータを利用し、それらの経験的な値等より決定した閾値を用いて、反射波を検出することが可能である。
[適用例]
本発明を図面に示す実施例に基づいて説明する。なお、実施例では、目標対象物を骨として説明するが、本発明の超音波検出装置は、ヒトや動物の四肢、胴体及び頭などの身体のいずれの骨、内臓、腫瘍等の変性した組織等においても利用可能である。つまり、目標対象物が内部に音響インピーダンスの異なる境界面を有し、かつ境界面における音響インピーダンスの差や媒質の減衰特性により、その反射波が持つ超音波特性が異なれば、利用可能である。よって、本発明は図示の実施例に限定されるものではない。
大腿骨骨折治療への本発明の適用例を、図1に示す。図1は、目標対象物が軟部組織の厚い大腿部にある、骨又は骨折位置である例である。骨折部位1を治療するときには、医療機関で決定された装着位置に超音波照射用トランスデューサ及び信号受信用トランスデューサである送受信用トランスデューサ2を設置し、固定具3を用いて大腿に装着する。固定具3は、送受信用トランスデューサ2を装填し体表4に固定できるものであればよく、例えばベルトを有する円筒状のもの等を用いる。このとき、送受信用トランスデューサ2と体表4との間に、超音波伝搬物質5を介在させる。超音波伝搬物質5は、超音波を伝搬するものであればよく、例えば水や超音波ゲル等が好適である。
本発明の超音波検出装置又は方法は、例えば外来、病棟などの医療機関における診察や超音波治療時、もしくは患者宅での超音波治療前後あるいは治療中に、患部(超音波照射の目標対象物)への適切な照射位置及び/又は方向を決定する際に用いる。患部は、超音波骨折治療器(例えば、SAFHS(登録商標))を使用する場合は、骨もしくは骨折部が患部となる。超音波が目標対象物に照射したか否かの検出にはトランスデューサが受信した反射超音波を用い、本発明の検出装置又はその方法が、超音波骨折治療器等との同体又は別体であるかは問わない。使用態様の例としては、X線画像により医師等が超音波照射を決定する位置(大腿部の場合、長軸位置のみ医師が決定する)にトランスデューサを設置して超音波を照射し、トランスデューサが受信した体内から得られた反射波を基に、目標とする対象へと適切に照射できているかを検出する。検出した位置及び/又は角度で、トランスデューサの送信波を治療用超音波に切り替えたり、トランスデューサを治療用トランスデューサに取り替えたりすることで、正確な超音波の照射を実現する。
[装置構成]
本発明の超音波検出装置又は方法では、超音波の反射波を利用するため、送受信に同一のトランスデューサを用いることができる。また、超音波照射用トランスデューサと信号受信用トランスデューサを別々のトランスデューサで構成し、1つ又は複数のトランスデューサで送信した超音波の反射波を、別の1つ又は複数のトランスデューサで受信してもよい。例えば、1つのトランスデューサで超音波を送信し、反射波が届くと予想できる全ての位置、あるいは反射波の有無および電圧、周波数成分の強度分布等パラメータの分布を知ろうとしている全ての位置に複数のトランスデューサを設置して反射波を受信したり、目標対象物に照射可能と考えられる全ての位置に複数のトランスデューサを設置し、反射波が届くと予想できる位置、あるいは反射波の有無および電圧、周波数成分の強度分布等パラメータの分布を知ろうとしている全ての位置に複数のトランスデューサを設置して反射波を受信するなど、種々の態様がある。
また、送受信のトランスデューサを治療に使用するトランスデューサと同一とすれば、骨検出あるいは骨折検出後のトランスデューサの付け替えが不要であり、正確な位置及び方向での治療を実施することが可能となる。さらに、本発明の超音波検出装置を治療器と一体化すれば、治療の前、間、又は後に、タイミングを選ばず、照射位置の検出を実施でき、万一治療の最中に姿勢等の影響で照射位置が変わった場合でも、正しく目標対象物である骨あるいは骨折部に照射することが可能となる。
図2に、本発明における装置構成要素を示す。判別装置6は、送信回路9、受信回路10、送信条件設定部12、信号記憶部13及び判別プログラム14を含む制御部8、電力供給手段11、並びに表示部15を備えている。実際の装置内の動きを以下に記述する。
まず、電力供給手段11から電力を供給された制御部8は、送信条件設定部12より設定された送信条件にて送信回路9に駆動信号を送る。駆動信号を受信した送信回路9はケーブル7を介して送受信用トランスデューサ2に信号を送り、送受信用トランスデューサ2は超音波を送信する。このとき受信側は、制御部8が送信回路9に駆動信号を送る、あるいは送信が停止するタイミングでトリガ信号を受信回路10に送り、信号検知を開始する。ここで、電力供給手段11は、具体的には、内蔵電源あるいは外部電源等が挙げられ、判別装置6各部に電力を供給している。
送受信用トランスデューサ2より受信した超音波は電気信号に変換され、ケーブル7を介して受信回路10に送られる。検知した信号は信号記憶部13により記憶され、あるいは記憶された信号の解析を行う解析プログラムによって解析され、予め設定した判別条件を基に、判別プログラム14を用いて判別される。その結果は表示部15により表示され、骨に照射されているか否かの判別が可能となる。ここで、信号記憶部13は、具体的には、半導体メモリ等が挙げられる。また表示部15は、具体的には、結果を文字、数値、信号波形、グラフ、又は画像で表示するLCDや点灯で表示するLED等が挙げられる。
本発明の超音波検出装置又は方法が治療装置と一体であれば、治療前に適切な照射位置が決定されることで、骨検出用超音波から治療用超音波に切り替えて即治療を開始することができる。判別装置6で治療用超音波の送信も可能であるときは、送信回路9で両条件を必要に応じて切り替えて用いる。判別装置6では治療用超音波の送信が不可能であるときは、本体の超音波検出装置の判別装置のみ、又は判別装置とトランスデューサを有する本体全体を治療器に変更し、治療を開始する。
[超音波の送受信条件]
検出超音波の照射条件は、目標対象物に適切な条件の超音波を用いる。
例えば骨検出あるいは骨折検出の場合、適切な検出用超音波の送信条件として、1.5MHzの周波数、5μsのバースト幅、10Hzの繰り返し周波数、超音波出力の時間平均と空間平均が0.042mW/cm、受信条件として、サンプリング周波数20MHz、20dBの増幅、10MHzのLPF、100kHzのHPFが好ましい。上述の条件に限らず、例えばバースト幅においては、超音波を送信してから骨あるいは骨折部から反射してトランスデューサで受信するまでの時間よりも短ければ良く、トランスデューサから骨までの距離が40mmである場合は、軟部組織内の音速を1585m/secと仮定すると、50.5μsより短ければ良い((距離L)×2/(音速V)=40(mm)×2/1585(m/sec)=50.5(μsec)。また、繰り返し周波数、超音波出力、増幅は生体にとって安全な条件の範囲内にあり、かつ媒質での超音波の減衰を考慮しても目標とする骨あるいは骨折部からの反射波が取得できる条件であれば良い。
治療用超音波には、骨折治療に適切な条件の超音波を用いる。例えば適切な超音波条件として、1.5MHzの周波数、200μsのバースト幅、1kHzの繰り返し周波数、超音波出力の時間平均と空間平均が30mW/cmの超音波が好ましい。
[判別に必要なパラメータの取得]
上述の送受信条件により得られた反射信号は、トランスデューサ2によって、判別に適した形式、又は情報へと変換される。変換後の検出信号の例を図3に示す。変換後の周波数成分の強度分布の例を図4に示す。
まず反射波は、トランスデューサ2で音圧から電気信号へと変換された後、判別装置6へと送信され、反射波の振幅は電圧16として、トランスデューサから反射体(送信超音波の反射波を生じさせたもの)までの2倍(往復分)の距離は時間17として取得される。周波数成分は、図3の反射波に解析処理を加えることで、取得される。波形に含まれる周波数成分を観察する方法の一つとしてFFT解析があり、対象とする反射波を含む範囲でFFT解析を行うことで、その範囲内に含まれている周波数成分の強度分布を取得することができる。図4は、送信波の中心周波数18を中心として得られる周波数成分の強度分布をモデルとして表した図である。以上のプロセスにより、反射波の情報として、電圧(振幅)、時間(距離)、及び周波数成分を取得することができる。本発明の信号記憶部は、波形の生データ、つまり全データにおける時間情報に対する信号強度等を記憶し、解析プログラムは受信信号を解析することによって周波数情報を取得する。
[判別]
取得した反射波の電圧(振幅)、時間(距離)、及び周波数成分の強度分布に対し、各種文献から引用した音響インピーダンス、減衰係数、音速の値、及び/又は基礎実験より得られた値から算出した値を予め設定された数値の閾値とし、それらを比較することで反射体が目標対象物から得られたものであるかを判別する。例えば、丸善(社)出版の「超音波便覧」や、(社)日本エム・イー学会ME技術教育委員会監修、南江堂出版、「MEの基礎知識と安全管理」、コロナ社出版の「医用超音波機器ハンドブック」等に数値が挙げられている。基礎実験より定めた閾値を用いて判別する例を以下に示す。
まず、一般的に、反射信号の電圧は、反射体へ到達するまでの減衰、反射体の反射面形状、反射境界面の音響インピーダンス、検出体へ到達するまでの減衰の全ての影響を受けて決定される。超音波骨折治療法への適用を想定した場合、骨へ到達するまでの軟部組織中の減衰、骨の形状、軟部組織と骨の音響インピーダンス、トランスデューサへ到達するまでの軟部組織中の減衰の影響を受ける。
超音波が媒質中を伝搬する際、音響インピーダンスが異なる境界面で反射が生じる。生体内では、軟部組織、骨はもちろん、筋膜や毛細血管、筋繊維など軟部組織内の種々の組織で音響インピーダンスが異なるため、伝搬する過程で様々な境界面から反射が生じる。中でも、骨と軟部組織の音響インピーダンスの差が、異種軟部組織間の差よりも極めて大きいことから、反射面形状や減衰等の影響を受けない場合、異種軟部組織間と比べて骨は大きな反射波を生じる。しかし、基礎実験により、曲率が大きい骨反射面で生じた反射波(図5B)は、曲率が小さい骨反射面で生じた反射波(図5A)よりも振幅が小さくなり、曲率の違いによって反射波の振幅が大きく異なることが確認された。生体においては、骨の反射面形状に更に減衰等の影響が加わり、異種軟部組織間で得られる反射波よりも骨で得られる反射波の方が小さくなるケースがある。原理的には、骨は筒状構造を呈しており、表面は軟部組織に比べ凸状の大きい曲率を有しているため、反射波が散乱してしまうためである。また、軟部組織で生じる反射波のうち、骨よりも体表に近い位置にて生じるものは、超音波が透過する距離が短いことから、軟部組織透過による減衰の影響が小さい。このように、超音波照射時のトランスデューサ、軟部組織、及び骨の位置関係が、骨反射にとって不利な条件である場合、軟部組織反射波が骨反射波よりも大きくなる。したがって、これらの条件下では、電圧のみでの判別が困難となるため、電圧に加え、時間及び/又は周波数を組み合わせた条件を設定して、これらについても判別プログラムによって判別することが好ましい。電圧は、受信した反射波に特別な処理を加えることなく判別に利用できるため、ソフトの構成を単純化できるメリットがある。判別に電圧を用いる場合は、信号記憶部に記憶した受信信号の電圧情報をそのまま用いて、判別プログラムで予め設定された値(閾値となる)と比較を行うことができる。
時間は、超音波を送信してから受信するまでの時間であり、音速と時間の積が距離となることから、各音速の文献値を引用することで、反射対象までの伝搬距離として利用することができる。すなわち、取得した総伝搬距離の半分が体表から反射体までの距離を表すため、例えば骨を目標対象とするとき解剖学的知見を基に予測した体表から骨までの距離と比較することで、得られた反射波が骨と同程度の深さに存在するものか否かを判断することができる。例えば、大腿の体表に金属(X線画像に写るもの)を貼り付け、大腿横方向からX線画像を撮影し、金属と骨との距離を予測するなどで可能となる。しかし、骨と同程度の深さにも反射体となり得る軟部組織が存在することから、時間情報のみではなく、電圧や周波数などを組み合わせて判別するのが好ましい。例えば、トランスデューサを大腿表面のある位置に設置し、位置を変えずにトランスデューサの角度のみを骨の短軸方向に沿って変更して、複数の反射波を連続取得し、データ番号(19)をX軸、時間(20)をY軸、電圧(21)をZ軸にプロットして三次元情報として表示し、予め得られている解剖学的知見から得られる予測と連続性を有する視覚的情報から反射体を推定する(図6(A))等である。図6(B)は、図6(A)の三次元表示から電圧(21)を表示するZ軸を無くし、データ番号(19)をX軸、時間(20)をY軸にプロットして二次元にて表示したものである。図6(A)、図6(B)共に、予め設定された閾値を超え、骨の可能性が高いと検出された箇所(30)は、赤や黄色など他の箇所と区別できる色等を用いて表示する。
周波数は、骨と軟部組織における伝搬超音波の減衰特性の違いを利用する。骨と軟部組織における伝搬超音波の減衰特性の概略図を図7に示す。生体組織の減衰特性は組織によって異なり、骨(22)は軟部組織(23)に比べ、伝搬する超音波の高周波成分がより多く減衰する特徴を持つことが知られている。
この特性の違いについて、反射波に含まれる周波数成分の強度分布に差異が現れることを理論計算及び基礎実験より確認している。図8に基礎実験の結果を示す。図8(A)は、1.5MHzで超音波を照射した際の照射直後の各周波数成分における強度分布を示している。これを照射し、骨から反射してきた場合の各周波数成分を図8(B)、軟部組織から反射してきた場合の各周波数成分を図8(C)に示す。これらより、図8(C)に比べ図8(B)の方が、1.5MHz付近の周波数に対する1.2MHz付近の周波数の比を考えたときに、より高周波数成分の減衰が大きくなっていることがわかる。したがって、周波数では反射波に含まれる成分の強度分布に着目することで、骨か軟部組織からの反射かの判別が可能となる。
周波数成分を求めるためのFFT解析の範囲は、予め定めた範囲設定方法にて決定される。そして、指定した範囲にて、電圧値等波形認識のために予め設定された解析条件にて、骨反射波か軟部組織反射波かの解析を行う。なお、周波数成分を求めるための解析方法は、FFTに限らず、周波数成分を求めることが可能な他の方法であっても特に問題ない。
信号検知・FFT解析の具体例を図9に示す。取得した反射信号に対し、信号部分を含むある程度幅をもった時間幅、もしくは、反射波が最初に返ってきた時間(およそ、超音波を照射した時間を0として、0に測定あるいは文献により取得した体表から目標対象物である骨までの距離の2倍を超音波が進む時間を足した時間)から始まり、超音波が当たった目標対象物の骨表面とは逆側の骨表面からの反射波を含む時間幅を解析対象範囲とする。
具体例としては、5μsecのバースト幅の超音波を送信した場合、信号部分の立ち上がり開始から30μsecの時間幅24を解析対象範囲とするなどである。信号の検知開始点を決定する方法の具体例としては、解析対象範囲の反射信号の包絡線25をとり、ノイズ電圧以上の電圧A(図9では0.4V(26))を超えた値を頂点に持つ波形に関し、電圧B(図9では0.4V)時の包絡線の傾き(27)が正のときに、包絡線に沿って電圧C(図9では0.1V)まで戻った点を検知開始時間とする方法が挙げられる。このとき、電圧A、B、Cには、A≧B>Cの関係が成立する。なお、電圧Cはノイズ電圧以上で電圧Aよりも小さい電圧、電圧Bは、A≧B>Cの関係により決定される電圧とする。なお、骨は円筒状であり、外表面、内腔面等で反射が生じるため、複数の反射波がタイミングがずれて返ってくることがある。解析を行う時間幅は、骨からタイミングがずれて返ってくる複数の反射波のうち、およそ超音波が照射された骨の外表面、および内腔面から返った反射波が含まれる時間幅より長ければ良い。
解析方法としては、骨反射波と軟部組織反射波における減衰特性の違いについて着目し、測定値に予め設定された解析を加え、その結果得られる数値を予め設定された値と比較する。
具体的な解析方法としては、例えば、測定値に含まれる2種以上の周波数成分量の比を算出する。例えば、送信超音波の中心周波数及びその付近の帯域、中心周波数よりも低い第2のピーク周波数及びその付近の帯域、の2種類である。この場合、送信超音波の中心周波数及びその付近の帯域の最大値、及び中心周波数よりも低い第2のピーク周波数及びその付近の帯域の最大値のうち、高周波の方を高周波成分と、低周波の方を低周波成分と呼ぶ。
具体的算出例は、送信超音波の中心周波数が1.5MHz、第2のピークが1.2MHzに存在する場合、反射波の周波数分布のうち、1.5±0.1MHzの帯域の最大値と、1.2±0.1MHzの帯域の最大値を比較するものとし、1.2±0.1MHzの帯域の最大値を1.5±0.1MHzの帯域の最大値で割る。図10の下図は、中心周波数が1.5MHz、第2のピークが1.2MHzに存在する超音波を送信した際に得られた反射波の周波数成分を表しており、この場合の周波数成分量の比は、0.6/5.3=0.11となる。
この解析にて算出された値は、高周波の減衰が大きいほど、算出される周波数成分比は大きい値を示す。よって、骨は軟部組織に比べ、伝搬する超音波の高周波成分がより多く減衰するので、軟部組織反射波よりも骨反射波の方が解析結果の値が大きくなる。なお、上記では、低周波成分を高周波成分で割ったが、高周波成分を低周波成分で割って比を求めてもよい。
測定値に上記解析を加え、予め設定された値(閾値となる)との比較を行うことで、判別プログラムで骨の判別を行う。
予め設定された値は、基礎実験で得られた結果を用いて設定されるものである。基礎実験より、これまで骨からの反射波、軟部組織からの反射波において、上記解析方法にて算出される値が異なる(骨の方が数値が大きくなる)ことがわかっており、骨からの反射波のみを検出できるよう閾値を設定する。具体例として、モデルを用いた基礎実験の結果を図11に示す。水中28に反射体モデル29を設置し、骨モデルとして豚骨を、軟部組織モデルとしてシリコンゴムを用いた。得られた反射波において、上記解析方法にて算出された周波数成分比は、骨モデル4.5に対し、軟部組織モデル1.5と3倍を示した。この場合、例えば2を閾値と設定することで、2より大きい成分比であれば骨であるとする、骨判別を行うことができる。
周波数成分比は、受信した反射波に対し、上述のとおりFFT解析や成分比の算出といった特別な処理を加えて得られるものであり、アルゴリズムや装置構成が他の反射波情報を用いた場合と比べ処理が複雑になるが、電圧値の大小に関係なく判別に利用できるため、電圧値が十分に得られないケースでも使用することができる。
よって、電圧が十分に得られない軟部組織が厚い部位や反射面の骨形状の曲率が大きい部位においても、周波数成分比を使うことによって、骨判別を行うことができる。また、周波数成分比に時間や電圧と組み合わせて判別を行うアルゴリズムを作成することで、より判別精度が上がる。
本発明の超音波検出装置は、上述の反射波情報である、電圧、周波数成分等において、骨からの反射波が、骨以外からの反射波と比較して異なることを利用し、いずれか一つ以上を用いて骨検出、あるいは骨折位置検出、あるいは軟部組織検出を行うことができる。
骨/骨折あるいは軟部組織の判別は、あらかじめ設定した閾値による判別;情報を直接表示し、医師等使用者の判断も加えることによる判別(例えば振幅の最大値を選ぶなど);及び複数のデータをマッピングして表示し、医師等使用者の判断も加えることによる判別、のいずれか一つ以上の方法にて行う。
閾値を利用する場合は、骨あるいは骨折位置を装置が判別する。閾値は、例えば、開発段階の送受信条件下で予め実測した骨と軟部組織の反射波データをもとに設定する。閾値の例としては、電圧については、軟部組織から得られる反射波の電圧が4Vpp未満である場合4Vpp以上の値、周波数については、軟部組織から得られる反射波の周波数成分比が10未満である場合10以上の値、時間については、骨とトランスデューサの位置関係から骨の反射波が40μs未満に存在し得ないと判断できる場合40μs以上、であれば骨に照射しているとする、などが挙げられる。閾値を越えた場合、ランプ点灯などで使用者に対して表示され、トランスデューサ設置条件(位置、角度)での照射が適切であることを伝える。
情報を直接表示する場合、判別装置、あるいは別体に設けられた数字表示部に上記反射波に関する情報などが表示され、これを元に医師など使用者が適切な照射を判断する。例えば、トランスデューサの体表設置位置や方向の変化に伴い表示部の数字が変化し、その最大値や最大値の9割以上の値を示す位置及び/又は方向が適切である、というように、使用者が解剖学的、超音波物性的知見を加味し、骨組織と軟部組織との境界を自ら判断する。数字表示以外にも、目盛りによる表示、ランプの明暗、ランプ点滅の早さ、音の有無、音の高低、パルス音の間隔による表現も考えられ、これらの組み合わせであっても構わない。医師などの使用者は、臨床情報などと上記情報を組み合わせて、適切な照射位置及び/又は照射角度の決定を行う。
値をマッピングし画像化する場合は、表示される目標対象物である骨組織や軟部組織の存在や特徴を示す画像情報に対し、医師等の使用者が判別を行う。例えば、一つの位置における連続照射角度にて取得した複数のデータについて、一角度のデータにつき、時間情報と測定値(電圧及び/又は周波数)がそれぞれ得られるならば、縦軸に時間情報、横軸に照射角度としたマップ上に、測定値を該当する時間及び照射角度のマスに数値に応じて色分けを行う。色分けの方法としては、視覚として識別できればよく、例えば、電圧2Vpp未満は青色、4Vpp以上は赤色といった分類で、使用者に対し視覚的な情報も与える。この場合、4Vpp以上は骨からの反射波である可能性が高く、2Vpp未満は軟部組織からの反射波である可能性が高いことを示す。測定値が電圧の場合のマップを例として図12に示す。画像パターンを予め設定しそれと比較することで骨あるいは骨折位置を装置が判別する、あるいは、医師等使用者が知見を交え判別を行う。この場合、図120(31)の明るい領域が赤色であって骨である可能性が高いことを示す。なお、マップ上に表示する複数のデータは、一つの位置における連続照射角度にて取得した複数のデータに限る必要はなく、体表上の連続した異なる位置にて取得した複数のデータであっても良い。体表上の連続した異なる位置とは、例えば、図15において、大腿上で直線状に1から20mmの間隔で連続配置している位置41などである。
予め時間情報を設定する場合、例えば、既存の超音波画像装置あるいはX線装置、あるいは大腿周と内部構造の関係から算出される骨深さ予測係数、あるいは大腿部正面側の内部構造と大腿部全体の内部構造の関係を表した係数から得られる骨深さ予測値を利用して取得する。大腿周と内部構造の関係から算出される骨深さ予測係数について、図13を用いて具体例を以下に示す。予め設定される大腿上の、特定の大腿断面32において、複数の被測定者の大腿周囲径(33)を取得するとともに、周上側(身体正面側)を20等分する点(34)(点1側が内側、点20側が外側)において、超音波診断画像を取得し、全画像における体表−骨表面間距離(35)を測定する。なお、前記特定の大腿断面の周とは、測定対象となり得る大腿骨の位置に対応し、例えば大腿における長軸方向中央部の周とするが、これに限らない。被測定者全員の各20点における(距離/大腿周囲径)を計算し、平均(μ)及び標準偏差(σ)を取得する。得られた平均(μ)及び標準偏差(σ)より、母集団の予測区間(μ±kσ)を計算する。なお、kは標準偏差(σ)に乗じることで、予測区間の範囲の大小を調節する数字である。例えば、統計学における95%信頼区間を表すk=1.96でも良い。これを予め設定する時間情報設定の係数とし、患者の同じ大腿長軸位置における周がわかったときに、この予測区間を乗じ、骨深さの範囲をある程度の範囲を持った深さ(cm)と予測する。この範囲を音速で割った商を算出し、反射波の出現時間を予測する。大腿周から出現時間を予測するのは、患者それぞれで大腿周及び骨深さが異なるためである。なお、上記では20等分したが、照射位置の必要数に応じた数にすれば良いし、照射位置が明確であれば等分する必要はなく、その照射位置におけるデータを取得すればよい。
また、他の具体例を図14を基に説明する。大腿断面(32)において、正面側半分を等分割する1から20までの点34(点1側が体内側、点20側が体外側)において、11、1、20における体表から骨までの距離を予め算出する(それぞれa(36)、b(37)、c(38)とする)。点2から点10までの点を点Aとし、点Aにおける体表から骨までの距離d(39)を、「d=a×((b/a−1)×(11−A)/(11−1)+1)」、点12から点19の間に存在する点を点Bとし、点Bおける体表から骨までの距離e(40)を、「e=a×((c/a−1)×(B−11)/(20−11)+1)」で算出し、点Aにおいてはd、点Bにおいてはeの2倍数を軟部組織中の音速で割って、体表−骨間距離を算出し、反射波の出現時間を予測する。点がn数のときは、上記の式に準じて、特定の点における体表から骨までの距離を算出し、反射波の出現時間を予測できる。
また上記方法にて骨の範囲を予測するのではなく、骨よりも体表に近い深さに存在する軟部組織の深さを測定して軟部組織深さを予測し、その範囲以後の領域を骨深さの予測範囲とする方法でもよい。
記載した全ての判別方法において、目標対象物である骨折部からの反射波情報が治癒に伴い徐々に変化する現象や個体差による違いを反映し、閾値や値の範囲を変更・調整しても構わない。
表示される数値から治癒の過程を知り、適切な治療に加え、治療効果を知ることも可能である。骨折部は、治癒過程においてやや膨らんだ形状を呈し、やがて完治して膨らみが解消され、付近の骨組織となだらかな連続性を持った状態に至る。反射信号の電圧は、前述の通り、形状の影響を強く受けることになるため、膨隆から扁平に近い状態になることで、徐々に大きくなるものと予想される。また骨折部は治癒の過程において、患部に血腫ができて肉芽組織で架橋をつくり、そこに置き代わった軟骨様組織にカルシウムが沈着して正常な骨組織となる。つまり、患部は軟部組織に近い状態の組織から骨組織へと置換されていくことになるため、周波数に関しても治癒に伴い変化が生じると予想される。具体的には、周波数成分比が治癒に伴い、徐々に増大してくると予想される。よって、本発明は、同一照射位置における、記憶信号、解析結果、又は判別プログラムによる判別結果等の経時変化によって、目標対象物の治癒状態を判定することも可能である。このときの判定は医師等によって判定しても良いし、治癒閾値を設定して、治癒閾値に達すると表示部に治癒したことを表示させる判定手段を設けても良い。
なお、本発明は骨、軟部組織といった異なる組織の判別に用いる以外に、骨組織内あるいは軟部組織内の腫瘍等、変性した組織の探索に使用しても良い。
本発明の超音波検出方法又は装置を用いることによって、ヒトや動物の四肢、胴体及び頭などの身体のいずれの骨、内臓、腫瘍などの変性した組織等においても、超音波を目標対象物に正確に照射することが可能となる。
1 骨折部位
2 送受信用トランスデューサ
3 固定具
4 体表
5 超音波伝搬物質
6 判別装置
7 ケーブル
8 制御部
9 送信回路
10 受信回路
11 電力供給手段
12 送信条件設定部
13 信号記憶部
14 判別判別プログラム
15 表示部
16 電圧
17 時間
18 周波数
19 データ番号
20 時間
21 電圧
22 骨のデータ
23 軟部組織のデータ
24 時間幅
25 反射信号の包絡線
26 電圧
27 0.4V時の包絡線の傾き
28 水中
29 反射体モデル
30 送受信用トランスデューサ
31 骨である可能性が高い領域
32 大腿断面
33 大腿周囲径
34 点
35 体表−骨表面間距離
36 a
37 b
38 c
39 d
40 e
41 体表上の連続した異なる位置

Claims (16)

  1. 生体に対して超音波パルスを照射して超音波照射位置を検出する超音波検出装置であり、超音波を送信する1個もしくは複数の超音波照射用トランスデューサ、
    前記超音波照射用トランスデューサから照射した超音波の反射波を受信する1個もしくは複数の信号受信用トランスデューサ、
    前記信号受信用トランスデューサが受信した受信信号を記憶する信号記憶部、
    前記信号記憶部が記憶した記憶信号の解析を行う解析プログラム、
    前記解析プログラムによる解析結果及び/又は前記記憶信号を利用し、得られた反射波が超音波照射の目標対象物から得られたものであるか否かの判別を行う判別プログラム、並びに
    前記記憶信号、前記解析結果、及び前記判別プログラムによる判別結果からなる群から選ばれる1つ以上のものを表示する表示部を備え、
    前記解析プログラムが、得られた反射波の受信信号における周波数の高周波成分と低周波成分の比を算出し、
    前記解析プログラム及び/又は判別プログラムが、生体内における反射体の違いによって、受信信号における周波数及び/又は電圧のパラメータに違いがあることを利用して解析及び/又は判別を行うことを特徴とする超音波検出装置。
  2. 前記解析プログラムが、少なくとも、生体内の反射体の違いによる反射波の周波数成分の強度分布の違いを利用して解析を行うことを特徴とする請求項1に記載の超音波検出装置。
  3. 前記解析プログラムにおいて利用する周波数の高周波成分と低周波成分が、送信超音波の中心周波数及びその付近の帯域、及び、第2のピーク周波数及びその付近の帯域、の2種類の帯域から周波数の高周波成分と低周波成分を選び出すことを特徴とする請求項1又は2に記載の超音波検出装置。
  4. 前記解析プログラムにおいて利用する高周波成分と低周波成分が、1.5±0.1MHzの帯域と、1.2±0.1MHzの帯域の最大値である請求項1又は2に記載の超音波検出装置。
  5. 前記判別プログラムが、前記解析プログラムにおける解析結果と予め設定された数値との比較により、判別を行う請求項1からのいずれか1項に記載の超音波検出装置。
  6. 前記判別プログラムが、反射波における最高電圧と予め設定された数値との比較により、判別を行う請求項1からのいずれか1項に記載の超音波検出装置。
  7. 超音波照射用トランスデューサの一つの設置位置における連続する照射角度/もしくは体表上の連続した異なる位置にて複数反射波が得られるとき、複数の反射波それぞれにおいて含まれる時間情報、並びに電圧及び/又は周波数の高周波成分と低周波成分の比を、前記表示部が、縦軸に時間情報、横軸に角度としたマップ上に、電圧及び/又は周波数の高周波成分と低周波成分の比を該当する時間及び角度のマスに数値に応じて色分けして表示を行う請求項1からのいずれか1項に記載の超音波検出装置。
  8. 前記数値が前記予め設定された数値を超え、目標対象物である可能性が高いと検出した角度が複数あり、それらを目標対象物角度範囲としたとき、治療に最適な角度が前記目標対象物角度範囲の中央であることを特徴とする、請求項に記載の超音波検出装置。
  9. 前記解析プログラムにおいて、受信信号を解析する時間の範囲、及び/もしくは受信信号を記憶する時間の範囲、及び/もしくは判別プログラムが判別する時間の範囲が、予め設定される時間範囲設定プログラムで決定されることを特徴とする、請求項1からのいずれか1項に記載の超音波検出装置。
  10. 前記時間範囲設定プログラムが、反射信号の電圧の包絡線をとり、電圧A以上の値を頂点に持つ包絡線の波形に関し、電圧B時の包絡線の傾きが正のときに電圧Cまで戻った点を検知開始時間とし、A、B、及びCにはA≧B>Cの関係が成立し、検知開始時間から開始される一定の時間幅を解析対象範囲とする方法であることを特徴とする、請求項に記載の超音波検出装置。
  11. 前記時間範囲設定プログラムが、四肢断面において、複数個体の周上の点から直下の骨までの距離と前記四肢周との比(距離/周)をとり、((前記比の複数個体数データによる平均値)±(k×標準偏差))を係数とし、被照射者四肢周が得られたときに前記係数に前記被照射者四肢周を乗じることにより、周上の点から直下の骨までの距離の範囲を予測する方法により決定される距離の範囲の2倍数を、軟部組織中の音速で割って決定される時間幅を解析対象範囲とする方法であることを特徴とする、請求項に記載の超音波検出装置。
  12. 前記超音波照射用トランスデューサが前記信号受信用トランスデューサを兼用していることを特徴とする請求項1から11のいずれか1項に記載の超音波検出装置。
  13. 前記超音波検出装置が、目標対象物として骨を検出するためのものである請求項1から12のいずれか1項に記載の超音波検出装置。
  14. 前記超音波検出装置が、目標対象物として体内の腫瘍/もしくは変性した組織を検出するためのものである請求項1から13のいずれか1項に記載の超音波検出装置。
  15. 前記超音波検出装置が超音波治療器と一体となっている請求項1から14のいずれか1項に記載の超音波検出装置。
  16. 同一照射位置における、前記記憶信号、前記解析結果、又は前記判別プログラムによる判別結果の経時変化によって、目標対象物の治癒状態を判定する請求項1から15のいずれか1項に記載の超音波検出装置。
JP2011525965A 2009-08-05 2010-08-05 照射位置確認機能を有する超音波検出装置及びその方法 Active JP5451764B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011525965A JP5451764B2 (ja) 2009-08-05 2010-08-05 照射位置確認機能を有する超音波検出装置及びその方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009182485 2009-08-05
JP2009182485 2009-08-05
JP2011525965A JP5451764B2 (ja) 2009-08-05 2010-08-05 照射位置確認機能を有する超音波検出装置及びその方法
PCT/JP2010/063675 WO2011016586A1 (ja) 2009-08-05 2010-08-05 照射位置確認機能を有する超音波検出装置及びその方法

Publications (2)

Publication Number Publication Date
JPWO2011016586A1 JPWO2011016586A1 (ja) 2013-01-17
JP5451764B2 true JP5451764B2 (ja) 2014-03-26

Family

ID=43544478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011525965A Active JP5451764B2 (ja) 2009-08-05 2010-08-05 照射位置確認機能を有する超音波検出装置及びその方法

Country Status (6)

Country Link
US (1) US9301729B2 (ja)
EP (1) EP2462873B1 (ja)
JP (1) JP5451764B2 (ja)
CN (1) CN102469990B (ja)
HK (1) HK1166597A1 (ja)
WO (1) WO2011016586A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5775751B2 (ja) * 2011-06-15 2015-09-09 オリンパス株式会社 超音波照射装置
JP2014151123A (ja) * 2013-02-13 2014-08-25 Nippon Sigmax Kk 超音波骨折治療装置
JP6192001B2 (ja) * 2013-02-22 2017-09-06 フクダ電子株式会社 超音波骨折治療器
JP6297781B2 (ja) * 2013-02-22 2018-03-20 フクダ電子株式会社 超音波骨折治療器およびその制御方法
JP6190042B2 (ja) * 2013-12-26 2017-08-30 ノースン・カンパニー・リミテッドNohsn Co., Ltd. 超音波又は光音響プローブとこれを用いた超音波診断システム、超音波治療システム、超音波診断及び治療システム、並びに超音波又は光音響システム
FR3017043B1 (fr) * 2014-02-03 2017-10-13 Spineguard Systeme medical et procede pour localiser un point d'entree et identifier une trajectoire d'un instrument chirurgical dans une structure anatomique
EP3364864B1 (en) 2015-11-13 2022-09-28 Orthoforge Medical devices for monitoring and stimulating osteogenesis
GB201703051D0 (en) * 2017-02-24 2017-04-12 Optasense Holdings Ltd Monitoring subsea cables
JP7087502B2 (ja) * 2018-03-19 2022-06-21 セイコーエプソン株式会社 超音波センサー、及び電子機器
JP7073879B2 (ja) * 2018-04-18 2022-05-24 オムロンヘルスケア株式会社 生体音測定装置、生体音測定支援方法、生体音測定支援プログラム
US20200254283A1 (en) * 2019-02-07 2020-08-13 Nuvasive Specialized Orthopedics, Inc. Medical devices for ultrasonic therapy
CN112545862B (zh) * 2020-11-18 2022-12-23 未来穿戴技术有限公司 按摩区域识别方法及筋膜枪、服务器、计算机可读存储介质
CN115192926A (zh) * 2022-07-13 2022-10-18 苏州思萃电子功能材料技术研究所有限公司 一种自适应超声骨修复治疗系统及治疗方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179745A (en) * 1981-04-30 1982-11-05 Fujitsu Ltd Method and device for measuring material property by ultrasonic wave
JPH06509736A (ja) * 1992-06-08 1994-11-02 ルナー コーポレイション 超音波密度計測装置及び方法
JP2005125081A (ja) * 2003-09-30 2005-05-19 Fuji Photo Film Co Ltd 超音波診断装置
WO2007069775A1 (ja) * 2005-12-14 2007-06-21 Teijin Pharma Limited 照射位置確認機能を有する医療用超音波装置
WO2008018612A1 (fr) * 2006-08-07 2008-02-14 Teijin Pharma Limited Dispositif de cicatrisation d'une fracture osseuse par ultrasons, récepteur de cicatrisation d'une fracture osseuse, et dispositif d'examen de la position d'une fracture osseuse

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886069A (en) * 1987-12-21 1989-12-12 General Electric Company Method of, and apparatus for, obtaining a plurality of different return energy imaging beams responsive to a single excitation event
US4976148A (en) * 1989-09-12 1990-12-11 The United Stated Of America As Represented By The Department Of Energy Resonant ultrasound spectrometer
EP0525858A2 (en) * 1991-07-17 1993-02-03 Koninklijke Philips Electronics N.V. Method and device for determining variations in the position of a movable object by means of ultrasound
JPH08266484A (ja) * 1995-03-31 1996-10-15 Nippon Koden Corp 生体信号測定装置
WO2003061478A2 (en) * 2002-01-22 2003-07-31 P.M.G. Medica Ltd. A system and method for detection of motion
US7481769B2 (en) 2003-09-30 2009-01-27 Fujifilm Corporation Ultrasonic diagnosing apparatus
JP4753881B2 (ja) * 2004-01-16 2011-08-24 コンプメディクス リミテッド 心電図から導出された睡眠呼吸障害の監視、検出及び分類のための装置及び信号処理方法
US20050171429A1 (en) * 2004-01-16 2005-08-04 Mathew Prakash P. Method and system for very high frame rates in ultrasound B-Mode imaging
US7588539B2 (en) * 2004-01-21 2009-09-15 Siemens Medical Solutions Usa, Inc. Integrated low-power pw/cw transmitter
US7300403B2 (en) * 2004-07-20 2007-11-27 Angelsen Bjoern A J Wide aperture array design with constrained outer probe dimension
DE102004037723B4 (de) * 2004-08-04 2007-10-04 Pepperl + Fuchs Gmbh Ultraschallsensor mit einstellbarem Erfassungsbereich
US8183745B2 (en) * 2006-05-08 2012-05-22 The Penn State Research Foundation High frequency ultrasound transducers
JP2009183454A (ja) * 2008-02-06 2009-08-20 Teijin Pharma Ltd 周波数減衰特性を利用した超音波検査装置又は超音波照射位置検査方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179745A (en) * 1981-04-30 1982-11-05 Fujitsu Ltd Method and device for measuring material property by ultrasonic wave
JPH06509736A (ja) * 1992-06-08 1994-11-02 ルナー コーポレイション 超音波密度計測装置及び方法
JP2005125081A (ja) * 2003-09-30 2005-05-19 Fuji Photo Film Co Ltd 超音波診断装置
WO2007069775A1 (ja) * 2005-12-14 2007-06-21 Teijin Pharma Limited 照射位置確認機能を有する医療用超音波装置
WO2008018612A1 (fr) * 2006-08-07 2008-02-14 Teijin Pharma Limited Dispositif de cicatrisation d'une fracture osseuse par ultrasons, récepteur de cicatrisation d'une fracture osseuse, et dispositif d'examen de la position d'une fracture osseuse

Also Published As

Publication number Publication date
WO2011016586A1 (ja) 2011-02-10
US9301729B2 (en) 2016-04-05
JPWO2011016586A1 (ja) 2013-01-17
CN102469990A (zh) 2012-05-23
CN102469990B (zh) 2014-09-17
EP2462873A4 (en) 2013-01-30
EP2462873B1 (en) 2017-06-14
US20120130240A1 (en) 2012-05-24
HK1166597A1 (en) 2012-11-02
EP2462873A1 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP5451764B2 (ja) 照射位置確認機能を有する超音波検出装置及びその方法
US20070043290A1 (en) Method and apparatus for the detection of a bone fracture
US20090131838A1 (en) Method and system for the enhancement and monitoring of the healing process of bones
CN110415248B (zh) 一种基于超声的血管监测方法、装置、设备及存储介质
AU2006325905B9 (en) Medical ultrasonic apparatus having irradiation position-confirming function
KR20140107852A (ko) 캐비테이션 검출 방법과 그를 위한 초음파 의료 장치
KR20180103845A (ko) 호흡 모니터링을 위한 초음파 방법 및 장치
US20090069683A1 (en) Ultrasound diagnosis apparatus
WO2012096443A2 (ko) 주파수 변화를 이용한 고강도 집속 초음파 제어 방법과 그를 위한 고강도 집속 초음파 치료 장치
US6308715B1 (en) Ultrasonic detection of restenosis in stents
JP2010057520A (ja) 超音波を用いた骨強度診断装置及び骨強度診断方法
JP2013537055A (ja) 骨の骨密度を評価する方法と装置
JPWO2008018612A1 (ja) 超音波骨折治療器、骨折治療用受信装置及び骨折位置検査器
JP4439080B2 (ja) 超音波治療装置
JP2001231788A (ja) 骨の治療・治癒診断方法及び治療・治癒診断装置
JP2009183454A (ja) 周波数減衰特性を利用した超音波検査装置又は超音波照射位置検査方法
CN112075955A (zh) 粘弹性介质超声波参数测量方法与装置
JP2000325383A (ja) 骨の治療・治癒診断方法及び治療・治癒診断装置
KR20220131551A (ko) 음향 방출을 사용한 이식 평가
WO2024172039A1 (ja) 超音波診断装置、形状推定装置および当該装置を含むシステム
WO2011007169A1 (en) Foetal position detector
JP2008119238A (ja) トランスデューサ角度調節機構を有する超音波骨折治療器
KR20230063145A (ko) 초음파를 이용한 장기 인식 및 치료시스템
JP2009183453A (ja) 超音波伝搬速度を利用した超音波検査装置又は超音波照射位置検査方法
JPH09234200A (ja) 超音波による骨の診断方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5451764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350