JP5447337B2 - Silicon structure manufacturing method and semiconductor device - Google Patents

Silicon structure manufacturing method and semiconductor device Download PDF

Info

Publication number
JP5447337B2
JP5447337B2 JP2010243249A JP2010243249A JP5447337B2 JP 5447337 B2 JP5447337 B2 JP 5447337B2 JP 2010243249 A JP2010243249 A JP 2010243249A JP 2010243249 A JP2010243249 A JP 2010243249A JP 5447337 B2 JP5447337 B2 JP 5447337B2
Authority
JP
Japan
Prior art keywords
silicone composition
conductive silicone
thermally conductive
group
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010243249A
Other languages
Japanese (ja)
Other versions
JP2012096361A (en
Inventor
邦弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010243249A priority Critical patent/JP5447337B2/en
Publication of JP2012096361A publication Critical patent/JP2012096361A/en
Application granted granted Critical
Publication of JP5447337B2 publication Critical patent/JP5447337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、特に、少なくとも表面に金などの貴金属層が形成されている基材の該表面に熱伝導性シリコーン組成物の硬化膜を形成したシリコーン構造体の製造方法及びこれにより得られる半導体装置に関する。   The present invention particularly relates to a method for producing a silicone structure in which a cured film of a thermally conductive silicone composition is formed on the surface of a base material on which a noble metal layer such as gold is formed, and a semiconductor device obtained thereby About.

CPUやグラフィックなどの半導体素子とヒートスプレッダー等の放熱部材との間に介在させる熱伝導性シリコーン樹脂としては、その樹脂組成物を硬化させて介在させるものが一般的である。硬化させない放熱グリースなどを介在させると、熱衝撃などによりグリースがはみ出してしまい、著しく放熱性能が低下してしまうためである。硬化させるための硬化方法としては、一般的に付加反応を利用することが多い。その要因としては、熱による硬化時間が短くて済み、また硬化後の硬さをコントロールしやすいなどの理由がある。   As a heat conductive silicone resin interposed between a semiconductor element such as a CPU or graphic and a heat radiating member such as a heat spreader, a resin composition that is cured and interposed is generally used. This is because if a heat-dissipating grease or the like that is not cured is interposed, the grease protrudes due to thermal shock or the like, and the heat-dissipating performance is significantly reduced. In general, an addition reaction is often used as a curing method for curing. The reason is that the curing time by heat is short and the hardness after curing is easy to control.

しかしながら、半導体素子の表面は金属シリコンである場合が多いが、その金属シリコン表面上に金が蒸着されている場合がある。金表面上では、付加反応は進行しにくく硬さのコントロールが非常に難しい。そのため、特開2008−106185号公報(特許文献1)のように、金表面にプライマーを処理する技術もあるが、プライマーの塗布、更には乾燥という工程が非常に煩わしく、また不経済であった。特開2009−256428号公報(特許文献2)に記載の方法では、特定の架橋剤を用いることで金表面上でも付加反応にて硬化させることができるが、金蒸着されていない基材に用いると極めて硬くなってしまう。使用する側とすれば、金蒸着されているものと、されていないものとで放熱材料を使い分けなければならず、より使い勝手のよい熱伝導性シリコーン組成物が求められていた。   However, the surface of the semiconductor element is often metallic silicon, but gold may be deposited on the metallic silicon surface. On the gold surface, the addition reaction does not proceed easily and it is very difficult to control the hardness. For this reason, there is a technique for treating a primer on the gold surface as disclosed in Japanese Patent Application Laid-Open No. 2008-106185 (Patent Document 1), but the steps of applying the primer and further drying are very troublesome and uneconomical. . In the method described in Japanese Patent Application Laid-Open No. 2009-256428 (Patent Document 2), a specific cross-linking agent can be used to cure by an addition reaction even on a gold surface, but it is used for a substrate on which gold is not deposited. It becomes extremely hard. On the side to be used, it is necessary to use different heat-dissipating materials depending on whether gold is deposited or not, and there is a need for a heat-conducting silicone composition that is easier to use.

特開2008−106185号公報JP 2008-106185 A 特開2009−256428号公報JP 2009-256428 A

本発明は、上記事情に鑑みなされたもので、従来硬化が困難であった表面、特に、金などの貴金属層を有する基材表面上での熱伝導性シリコーン組成物の硬化を容易に行うことができるシリコーン構造体の製造方法及びこの方法によって得られる半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is easy to cure a thermally conductive silicone composition on a surface that has conventionally been difficult to cure, particularly on a substrate surface having a noble metal layer such as gold. An object of the present invention is to provide a method for producing a silicone structure that can be manufactured and a semiconductor device obtained by this method.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、表面に金などの貴金属層を有する基材表面上に熱伝導性シリコーン組成物を硬化・積層する際に用いる硬化剤として、10時間半減期温度が80℃以上130℃未満の範囲のパーオキサイドを含有する熱伝導性シリコーン組成物を用いることで、熱伝導性シリコーン組成物の硬化物が容易に形成されることを見出し、本発明をなすに至った。   As a result of diligent studies to achieve the above object, the present inventors have found that a curing agent used for curing and laminating a thermally conductive silicone composition on a substrate surface having a noble metal layer such as gold on the surface. It has been found that a cured product of a thermally conductive silicone composition can be easily formed by using a thermally conductive silicone composition containing a peroxide having a 10-hour half-life temperature in the range of 80 ° C. or higher and lower than 130 ° C. The present invention has been made.

従って、本発明は、下記のシリコーン構造体の製造方法及び半導体装置を提供する。
請求項1:
少なくとも表面に貴金属層を有する基材の該表面上に熱伝導性シリコーン組成物の硬化膜を形成してなるシリコーン構造体を製造する方法において、熱伝導性シリコーン組成物の硬化剤として10時間半減期温度が80℃以上130℃未満のパーオキサイドを用いたことを特徴とするシリコーン構造体の製造方法。
請求項2:
少なくとも表面に貴金属層を有する基材の該表面と放熱部材との間に熱伝導性シリコーン組成物の硬化膜を介在させてなるシリコーン構造体を製造する方法において、熱伝導性シリコーン組成物の硬化剤として10時間半減期温度が80℃以上130℃未満のパーオキサイドを用いたことを特徴とするシリコーン構造体の製造方法。
請求項3:
熱伝導性シリコーン組成物が、
(A)成分:ケイ素原子に結合したアルケニル基を1分子中に少なくとも1個有するオルガノポリシロキサン、
(B)成分:熱伝導性充填剤、
(C)成分:10時間半減期温度が80℃以上130℃未満のパーオキサイド;組成物全体の0.05〜0.5質量%
を含有するものである請求項1又は2記載の製造方法。
請求項4:
熱伝導性シリコーン組成物が、
更に、(D)成分:ケイ素原子に結合した水素原子を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン
を含有する請求項3記載の製造方法。
請求項5:
熱伝導性シリコーン組成物が、
更に、下記式(1)
1 a 2 b Si(OR 3 4-a-b (1)
(式中、R 1 は独立に炭素数9〜15のアルキル基であり、R 2 は独立に非置換又は置換の炭素数1〜10の一価炭化水素基であり、R 3 は独立に炭素数1〜6のアルキル基であり、aは1〜3の整数であり、bは0〜2の整数であり、ただし、a+bは1〜3の整数である。)
で表されるオルガノシラン
を含有する請求項3又は4記載の製造方法。
請求項6:
熱伝導性シリコーン組成物の硬化膜の厚さが、20〜500μmである請求項1〜のいずれか1項記載の製造方法。
請求項7:
上記基材が、表面に金の蒸着層を有する金属シリコンである請求項1〜のいずれか1項記載の製造方法。
請求項8:
少なくとも表面に貴金属層を有する基材の該表面と放熱部材との間に、10時間半減期温度が80℃以上130℃未満のパーオキサイドを硬化剤とする熱伝導性シリコーン組成物の硬化膜が介在してなることを特徴とする半導体装置。
Accordingly, the present invention provides the following method for producing a silicone structure and semiconductor device.
Claim 1:
In a method for producing a silicone structure formed by forming a cured film of a thermally conductive silicone composition on the surface of a substrate having a noble metal layer on at least the surface, the curing agent for the thermally conductive silicone composition is reduced by half for 10 hours. A method for producing a silicone structure, wherein a peroxide having an initial temperature of 80 ° C. or higher and lower than 130 ° C. is used.
Claim 2:
In the method for producing a silicone structure in which a cured film of a thermally conductive silicone composition is interposed between the surface of a substrate having a noble metal layer on the surface and a heat radiating member, curing of the thermally conductive silicone composition A method for producing a silicone structure, wherein a peroxide having a 10-hour half-life temperature of 80 ° C. or higher and lower than 130 ° C. is used as an agent.
Claim 3:
The thermally conductive silicone composition is
Component (A): organopolysiloxane emissions having at least one alkenyl group bonded to a silicon atom in the molecule,
(B) component: thermally conductive filler,
Component (C): Peroxide having a 10-hour half-life temperature of 80 ° C. or higher and lower than 130 ° C .; 0.05 to 0.5% by mass of the entire composition
The manufacturing method of Claim 1 or 2 which contains.
Claim 4:
The thermally conductive silicone composition is
Furthermore, (D) component: The manufacturing method of Claim 3 containing the organohydrogen polysiloxane which has at least two hydrogen atoms couple | bonded with the silicon atom in 1 molecule.
Claim 5:
The thermally conductive silicone composition is
Further, the following formula (1)
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
(Wherein R 1 is independently an alkyl group having 9 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 3 is independently carbon. An alkyl group of 1 to 6, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3)
Organosilane represented by
The manufacturing method of Claim 3 or 4 containing this.
Claim 6:
The thickness of the cured film of the heat conductive silicone composition, method of any one of claims 1 to 5 is 20 to 500 [mu] m.
Claim 7:
The substrate The method of any one of claims 1 to 6 which is a metal silicon having a vapor deposited layer of gold on the surface.
Claim 8:
A cured film of a thermally conductive silicone composition comprising a peroxide having a 10-hour half-life temperature of 80 ° C. or more and less than 130 ° C. as a curing agent between the surface of the substrate having a noble metal layer on the surface and the heat radiating member. A semiconductor device characterized by being interposed.

本発明によれば、従来硬化が困難であった表面に特に金などの貴金属層を有する基材上での熱伝導性シリコーン組成物の硬化が容易になる。   According to the present invention, it is easy to cure a thermally conductive silicone composition on a substrate having a noble metal layer such as gold on a surface that has been difficult to cure.

本発明の半導体装置の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the semiconductor device of this invention. テストピースの作製及び接着力の測定方法を示す説明図である。It is explanatory drawing which shows the production method of a test piece, and the measuring method of adhesive force.

本発明のシリコーン構造体の製造方法は、少なくとも表面に貴金属層を有する基材の該表面上に、硬化剤として10時間半減期温度が80℃以上130℃未満のパーオキサイドを含む熱伝導性シリコーン組成物の硬化膜を形成させるものである。   The method for producing a silicone structure of the present invention includes a thermally conductive silicone containing a peroxide having a 10-hour half-life temperature of 80 ° C. or more and less than 130 ° C. as a curing agent on at least the surface of a substrate having a noble metal layer on the surface. A cured film of the composition is formed.

ここで、本発明で用いられる熱伝導性シリコーン組成物は、
(A)成分:ケイ素原子に結合したアルケニル基を1分子中に少なくとも1個有するオルガノポリシロキサン
(B)成分:熱伝導性充填剤
(C)成分:10時間半減期温度が80℃以上130℃未満のパーオキサイド
を必須成分とするものである。
Here, the thermally conductive silicone composition used in the present invention is:
(A) Component: Organopolysiloxane having at least one alkenyl group bonded to a silicon atom in one molecule (B) Component: Thermally conductive filler (C) Component: 10 hour half-life temperature of 80 ° C. or higher and 130 ° C. Less than the peroxide is an essential component.

[(A)成分]
(A)成分は、ケイ素原子に結合したアルケニル基を1分子中に少なくとも1個、特に
1〜5個有するオルガノポリシロキサンであり、その分子構造は直鎖状、分岐状又は網状のいずれでもよいが、直鎖状であることが経済面から好ましい。
[(A) component]
The component (A) is an organopolysiloxane having at least one, particularly 1 to 5, alkenyl groups bonded to silicon atoms, and the molecular structure thereof may be linear, branched or network-like. However, it is preferable from an economical viewpoint that it is linear.

また、(A)成分は、25℃における粘度が10mm2/sより小さいと揮発性が高いため組成が安定しない場合があり、また100,000mm2/sより大きいと組成物の粘度が高くなり、扱いが難しくなる場合があるため、10〜100,000mm2/sの範囲であることが好ましく、より好ましくは100〜50,000mm2/sである。なお、この粘度は動粘度であって、オストワルド粘度計による25℃での測定値である(以下、同じ)。 In addition, the component (A) has a high volatility when the viscosity at 25 ° C. is less than 10 mm 2 / s, and the composition may not be stable. When the viscosity is greater than 100,000 mm 2 / s, the viscosity of the composition increases. , there are cases in which handling is difficult, is preferably in the range of 10~100,000mm 2 / s, more preferably 100~50,000mm 2 / s. This viscosity is a kinematic viscosity and is a value measured at 25 ° C. by an Ostwald viscometer (the same applies hereinafter).

(A)成分のケイ素原子に結合するアルケニル基としては、炭素数2〜8のものが好ましく、ビニル基、アリル基、ブテニル基、ヘキセニル基等が挙げられ、好ましくはビニル基である。ケイ素原子に結合するアルケニル基は分子中のどの位置に存在してもよいが、少なくとも分子鎖末端に存在することが望ましい。   (A) As an alkenyl group couple | bonded with the silicon atom of a component, a C2-C8 thing is preferable, A vinyl group, an allyl group, a butenyl group, a hexenyl group etc. are mentioned, Preferably it is a vinyl group. The alkenyl group bonded to the silicon atom may be present at any position in the molecule, but is desirably present at least at the molecular chain end.

(A)成分のケイ素原子に結合するアルケニル基以外の有機基としては、炭素数1〜10のもの、例えばメチル基、エチル基、プロピル基、ブチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、キシリル基等のアリール基、フェニルエチル基、フェニルプロピル基等のアラルキル基、γ−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基等が例示される。   As the organic group other than the alkenyl group bonded to the silicon atom of the component (A), one having 1 to 10 carbon atoms, for example, an alkyl group such as methyl group, ethyl group, propyl group, butyl group, cyclopentyl group, cyclohexyl group, etc. Aryl groups such as cycloalkyl groups, phenyl groups and xylyl groups, aralkyl groups such as phenylethyl groups and phenylpropyl groups, alkyl halide groups such as γ-chloropropyl groups and 3,3,3-trifluoropropyl groups, etc. Is exemplified.

(A)成分の分子鎖末端基としては、トリメチルシロキシ基、ジメチルビニルシロキシ基、ジメチルフェニルシロキシ基、メチルビニルフェニルシロキシ基等のトリオルガノシロキシ基、水酸基、アルコキシ基等が例示される。   Examples of the molecular chain terminal group of the component (A) include triorganosiloxy groups such as trimethylsiloxy group, dimethylvinylsiloxy group, dimethylphenylsiloxy group, and methylvinylphenylsiloxy group, hydroxyl groups, and alkoxy groups.

(A)成分中の有機基の種類、分子鎖末端封鎖基の種類及び粘度等は得られる熱伝導性シリコーン組成物の使用目的に応じて適宜選択することができる。また、粘度、構造が違う(A)成分を数種類使用してもよい。   (A) The kind of organic group in a component, the kind of molecular chain terminal blocking group, a viscosity, etc. can be suitably selected according to the intended purpose of the heat conductive silicone composition obtained. Moreover, you may use several types of (A) component from which a viscosity and a structure differ.

[(B)成分]
(B)成分の熱伝導性充填剤は、熱伝導性シリコーン組成物に熱伝導性を付与するためのものである。例えば、アルミニウム粉末、銀粉末、銅粉末、ニッケル粉末、酸化亜鉛粉末、アルミナ粉末、酸化マグネシウム粉末、窒化アルミニウム粉末、窒化ホウ素粉末、窒化ケイ素粉末、ダイヤモンド粉末、グラファイト粉末、亜鉛粉末、ステンレス粉末、及びこれらの2種以上の組み合わせより選択される。
[Component (B)]
The thermally conductive filler of component (B) is for imparting thermal conductivity to the thermally conductive silicone composition. For example, aluminum powder, silver powder, copper powder, nickel powder, zinc oxide powder, alumina powder, magnesium oxide powder, aluminum nitride powder, boron nitride powder, silicon nitride powder, diamond powder, graphite powder, zinc powder, stainless steel powder, and It is selected from a combination of two or more of these.

これら熱伝導性フィラーの平均粒径は、通常、0.1〜50μm、好ましくは1〜20μmの範囲である。小さすぎると組成物の粘度が高くなりすぎて進展性の乏しいものとなる場合があり、大きすぎると得られる組成物が不均一になる場合がある。なお、この平均粒径は、レーザー回折・散乱法で求めることができる体積基準の平均粒径である。また、これら熱伝導性充填剤の形状は、球状、不定形状のどちらでもよい。   The average particle size of these thermally conductive fillers is usually in the range of 0.1 to 50 μm, preferably 1 to 20 μm. If it is too small, the viscosity of the composition may be too high and the progress may be poor, and if it is too large, the resulting composition may be non-uniform. This average particle size is a volume-based average particle size that can be determined by a laser diffraction / scattering method. Moreover, the shape of these heat conductive fillers may be either spherical or indefinite.

これら熱伝導性充填剤の添加量は、前記熱伝導性シリコーン組成物中、50質量%より少ないと所望する熱伝導率が得られないし、98質量%より多いと得られる熱伝導性シリコーン組成物の粘度が高くなり取り扱いが悪くなるため50〜98質量%が好ましい。   When the amount of the thermally conductive filler added is less than 50% by mass in the thermally conductive silicone composition, a desired thermal conductivity cannot be obtained, and when it is more than 98% by mass, the thermally conductive silicone composition obtained can be obtained. 50 to 98 mass% is preferable because the viscosity of the resin becomes high and handling becomes worse.

[(C)成分]
本発明で使用するパーオキサイドは、10時間半減期温度が80℃より低いと反応が早くなりすぎ、ポットライフの観点から取り扱いが悪くなるし、130℃以上であると、高い温度をかけないと反応が十分に進まないため使い勝手が悪くなるので、80℃以上130℃未満、好ましくは90℃以上120℃未満の範囲である。
[Component (C)]
When the peroxide used in the present invention has a 10-hour half-life temperature lower than 80 ° C., the reaction becomes too fast, the handling becomes worse from the viewpoint of pot life, and if it is 130 ° C. or higher, a high temperature is not applied. Since the reaction does not proceed sufficiently, the usability is deteriorated.

パーオキサイドとしては、例えば、ケトンパーオキサイド、ハイドロパーオキサイド、ジアシルパーオキサイド、ジアルキルパーオキサイド、パーオキシケタール、アルキルパーエステル、パーカーボネート等が挙げられる。これらは市販品を用いることができ、例えばパーブチルC、パーブチルI、パーヘキサC(商品名;いずれも日本油脂(株)製)等を例示できる。   Examples of the peroxide include ketone peroxide, hydroperoxide, diacyl peroxide, dialkyl peroxide, peroxyketal, alkyl perester, and percarbonate. These can use a commercial item, for example, perbutyl C, perbutyl I, perhexa C (brand name; all are made by NOF Corporation) etc. can be illustrated.

パーオキサイドの含有量は、熱伝導性シリコーン組成物全体の0.05質量%より小さいとなかなか反応が進まないし、0.5質量%より大きくても効果は変わらず不経済であるため0.05〜0.5質量%の範囲が良い。より好ましくは0.1〜0.3質量%である。   If the peroxide content is less than 0.05% by mass of the entire thermally conductive silicone composition, the reaction does not proceed easily, and if it exceeds 0.5% by mass, the effect is not changed and it is uneconomical. A range of ˜0.5 mass% is good. More preferably, it is 0.1-0.3 mass%.

[(D)成分]
本発明の組成物には、接着性の点から、更に、ケイ素原子に結合した水素原子(SiH基)を1分子中に少なくとも2個、特に3〜30個有するオルガノハイドロジェンポリシロキサンを添加混合しても良い。
[(D) component]
From the viewpoint of adhesion, the composition of the present invention is further mixed with an organohydrogenpolysiloxane having at least two hydrogen atoms (SiH groups) bonded to silicon atoms, particularly 3 to 30 in one molecule. You may do it.

(D)成分のオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、分岐状又は網状のいずれでもよく、25℃における粘度が1〜10,000mm2/sであることが好ましく、より好ましくは5〜100mm2/sである。また、粘度の違う数種類の(D)成分を使用してもよい。 The molecular structure of the organohydrogenpolysiloxane as component (D) may be linear, branched or network-like, and preferably has a viscosity at 25 ° C. of 1 to 10,000 mm 2 / s, more preferably. 5 to 100 mm 2 / s. Moreover, you may use several types of (D) components from which a viscosity differs.

(D)成分のケイ素原子に結合する水素原子以外の有機基としては、アルケニル基を除く炭素数1〜10のもの、例えばメチル基、エチル基、プロピル基、ブチル基等のアルキル基、フェニル基、トリル基等のアリール基、フェニルエチル基、フェニルプロピル基等のアラルキル基、γ−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基等が例示される。   As the organic group other than the hydrogen atom bonded to the silicon atom of the component (D), those having 1 to 10 carbon atoms excluding the alkenyl group, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group, a phenyl group And aryl groups such as tolyl group, aralkyl groups such as phenylethyl group and phenylpropyl group, and halogenated alkyl groups such as γ-chloropropyl group and 3,3,3-trifluoropropyl group.

(D)成分を使用する場合の配合量は、(A)成分100質量部に対して1〜50質量部、特に2〜30質量部である。   (D) When using a component, the compounding quantity is 1-50 mass parts with respect to 100 mass parts of (A) component, especially 2-30 mass parts.

また、本発明の組成物には、更に、必要に応じて(B)成分の(A)成分への濡れ性向上剤として、下記式(1)で表されるオルガノシランを配合してもよい。
1 a2 bSi(OR34-a-b (1)
(式中、R1は独立に炭素数9〜15のアルキル基であり、R2は独立に非置換又は置換の炭素数1〜10の一価炭化水素基であり、R3は独立に炭素数1〜6のアルキル基であり、aは1〜3の整数であり、bは0〜2の整数であり、ただし、a+bは1〜3の整数である。)
Further, the composition of the present invention may further contain an organosilane represented by the following formula (1) as a wettability improver for the component (A) of the component (B) as necessary. .
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
(Wherein R 1 is independently an alkyl group having 9 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 3 is independently carbon. An alkyl group of 1 to 6, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3)

1は、独立に炭素数9〜15のアルキル基であり、その具体例としては、ノニル基、デシル基、ドデシル基、テトラデシル基、ペンタデシル基等が挙げられる。 R 1 is independently an alkyl group having 9 to 15 carbon atoms, and specific examples thereof include a nonyl group, a decyl group, a dodecyl group, a tetradecyl group, a pentadecyl group, and the like.

2は、独立に非置換又は置換の炭素数1〜10、特に1〜8の飽和又は不飽和の一価炭化水素基であり、その具体例としては、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基;3,3,3−トリフルオロプロピル基、2−(ノナフルオロブチル)エチル基、2−(ヘプタデカフルオロオクチル)エチル基、p−クロロフェニル基等のハロゲン置換炭化水素基等が挙げられ、特にメチル基、エチル基が好ましい。 R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group, Alkyl groups such as hexyl group and octyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; alkenyl groups such as vinyl group and allyl group; aryl groups such as phenyl group and tolyl group; 2-phenylethyl group and 2-methyl Aralkyl groups such as 2-phenylethyl group; halogens such as 3,3,3-trifluoropropyl group, 2- (nonafluorobutyl) ethyl group, 2- (heptadecafluorooctyl) ethyl group, p-chlorophenyl group Examples thereof include a substituted hydrocarbon group, and a methyl group and an ethyl group are particularly preferable.

3は、独立に炭素数1〜6のアルキル基であり、その具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基、エチル基が好ましい。 R 3 is independently an alkyl group having 1 to 6 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and the like. Groups are preferred.

aは、通常、1〜3の整数であるが、特に好ましくは1である。bは0〜2の整数である。ただし、a+bは1〜3の整数である。   a is usually an integer of 1 to 3, but is particularly preferably 1. b is an integer of 0-2. However, a + b is an integer of 1-3.

上記式(1)で表されるオルガノシランの具体例としては、
1021Si(OCH33
1225Si(OCH33
1225Si(OC253
1021Si(CH3)(OCH32
1021Si(C65)(OCH32
1021Si(CH3)(OC252
1021Si(CH=CH2)(OCH32
1021Si(CH2CH2CF3)(OCH32
等が挙げられる。
As a specific example of the organosilane represented by the above formula (1),
C 10 H 21 Si (OCH 3 ) 3 ,
C 12 H 25 Si (OCH 3 ) 3 ,
C 12 H 25 Si (OC 2 H 5 ) 3 ,
C 10 H 21 Si (CH 3 ) (OCH 3 ) 2 ,
C 10 H 21 Si (C 6 H 5 ) (OCH 3 ) 2 ,
C 10 H 21 Si (CH 3 ) (OC 2 H 5 ) 2 ,
C 10 H 21 Si (CH═CH 2 ) (OCH 3 ) 2 ,
C 10 H 21 Si (CH 2 CH 2 CF 3 ) (OCH 3 ) 2
Etc.

このオルガノシランを使用する場合の配合量は、(A)成分100質量部に対して0〜20質量部、特に0.01〜10質量部とすることが好ましい。   When this organosilane is used, the blending amount is preferably 0 to 20 parts by mass, particularly 0.01 to 10 parts by mass with respect to 100 parts by mass of the component (A).

本発明の熱伝導性シリコーン組成物は、上記(A)〜(C)成分、及び必要に応じて(D)成分、その他の添加剤等を常法により混合することにより調製できる。
本発明の熱伝導性シリコーン組成物は、硬化する前の回転粘度計により測定される25℃における絶対粘度が、10Pa・sより低いと(B)成分の熱伝導性充填剤が沈降しやすくなるし、1,000Pa・sより高いと硬すぎて容器などへの充填性が悪くなるため、10〜1,000Pa・sの範囲、好ましくは50〜500Pa・sの範囲である。
The heat conductive silicone composition of the present invention can be prepared by mixing the above components (A) to (C) and, if necessary, the component (D), other additives and the like by a conventional method.
When the absolute viscosity at 25 ° C. measured by a rotational viscometer before curing of the thermally conductive silicone composition of the present invention is lower than 10 Pa · s, the thermally conductive filler of component (B) tends to settle. However, if it is higher than 1,000 Pa · s, it is too hard and the filling property into a container or the like is deteriorated, so it is in the range of 10 to 1,000 Pa · s, preferably in the range of 50 to 500 Pa · s.

本発明においては、表面に金などの貴金属層を有する基材の該表面と、ヒートスプレッダー等の放熱部材との間に本発明の熱伝導性シリコーン組成物の硬化膜を介在させることができるが、その厚みは20μm(硬化後)より小さいと、熱衝撃などによる構造体の反りに追随できなくなる場合があり、500μmより大きいと熱抵抗が大きくなるため放熱性能が乏しくなる場合があるので、20〜500μmの範囲が好ましい。より好ましくは20〜100μmの厚みが良い。   In the present invention, a cured film of the thermally conductive silicone composition of the present invention can be interposed between the surface of a base material having a noble metal layer such as gold on the surface and a heat radiating member such as a heat spreader. If the thickness is less than 20 μm (after curing), the structure may not be able to follow the warp of the structure due to thermal shock or the like, and if it is greater than 500 μm, the heat resistance may increase and the heat dissipation performance may be poor. A range of ˜500 μm is preferred. More preferably, a thickness of 20 to 100 μm is good.

硬化方法としては、パーオキサイドは一般的に酸素阻害を受け易いため、窒素、アルゴン等の不活性ガス雰囲気下で行うことが望ましいが、基材とヒートスプレッダー等との間に本発明の熱伝導性シリコーン組成物を介在させた場合、実質的には内部は影響されない。従って、大気中での硬化でも構わない。硬化温度及び時間は、構造体の大きさなどにもよるが、120℃より低いと反応の進みが遅くなる場合があり、200℃より高いと熱伝導性シリコーン組成物自体に劣化などの悪影響が出る場合があるため、120〜200℃の範囲、好ましくは130〜180℃の範囲が良く、5〜240分間、特に10〜120分間が好ましい。   As a curing method, peroxide is generally susceptible to oxygen inhibition, so it is desirable to carry out in an inert gas atmosphere such as nitrogen or argon. However, the heat conduction of the present invention is preferably performed between the substrate and a heat spreader. When an adhesive silicone composition is interposed, the inside is not substantially affected. Accordingly, curing in the air may be used. Although the curing temperature and time depend on the size of the structure and the like, if the temperature is lower than 120 ° C., the progress of the reaction may be slow. If the temperature is higher than 200 ° C., the thermal conductive silicone composition itself has an adverse effect such as deterioration. Since it may come out, the range of 120 to 200 ° C., preferably 130 to 180 ° C. is good, and is preferably 5 to 240 minutes, particularly preferably 10 to 120 minutes.

本発明の熱伝導性シリコーン構造体は、上記熱伝導性シリコーン組成物の硬化物(熱伝導性シリコーン)を、少なくとも表面に金などの貴金属層が形成されている基材表面に積層させてなるもので、この場合、該基材表面上に熱伝導性シリコーン組成物を配置し、加熱することにより得られる。   The thermally conductive silicone structure of the present invention is obtained by laminating a cured product (thermally conductive silicone) of the above thermally conductive silicone composition on at least the surface of a base material on which a noble metal layer such as gold is formed. In this case, the heat conductive silicone composition is disposed on the surface of the base material and heated.

ここで、基材としては、例えば半導体装置の半導体チップやこの半導体チップからの熱が伝導される放熱体等の半導体素子が挙げられ、これによって本発明の構造体は半導体装置として構成できる。この場合、これら基材は金属であっても非金属であってもよいが、シリコンが好ましく、また、特に基材の少なくとも表面に金などの貴金属層が形成されているものが本発明において有効であるが、これに限定されるものではない。なお、表面に金などの貴金属層を形成する方法としては、例えば蒸着、スパッタリング等の気相めっき法や、電気めっき、無電解めっき等にて形成することができる。   Here, examples of the substrate include semiconductor elements such as a semiconductor chip of a semiconductor device and a heat radiator that conducts heat from the semiconductor chip, and thus the structure of the present invention can be configured as a semiconductor device. In this case, the base material may be a metal or non-metal, but silicon is preferable, and those in which a noble metal layer such as gold is formed on at least the surface of the base material are effective in the present invention. However, the present invention is not limited to this. In addition, as a method of forming a noble metal layer such as gold on the surface, it can be formed by, for example, a vapor phase plating method such as vapor deposition or sputtering, electroplating, electroless plating, or the like.

上記基材表面に、上述した熱伝導性シリコーン組成物を塗着して加熱硬化させることにより、基材に熱伝導性シリコーン組成物の硬化物を積層させることができる。   A cured product of the heat conductive silicone composition can be laminated on the base material by applying the above-described heat conductive silicone composition to the surface of the base material and heating and curing the composition.

図1は、本発明の熱伝導性シリコーン組成物を硬化させることによって得られる半導体装置の一実施形態を示す縦断面図であり、図中、1は表面に金が蒸着された半導体素子(金蒸着された金属シリコン)を示す。この半導体素子1の金蒸着面上に熱伝導性シリコーン組成物膜2が形成されている。この熱伝導性シリコーン組成物膜2は、上記半導体素子1とヒートスプレッダー(放熱体)3との間に介在され、ヒートスプレッダーにより押圧されている。上記加熱条件において加熱することで熱伝導性シリコーン組成物2を硬化させ、これにより半導体装置10は完成する。なお、図中4は基板、5は半田、6はアンダーフィル剤である。   FIG. 1 is a longitudinal sectional view showing an embodiment of a semiconductor device obtained by curing the thermally conductive silicone composition of the present invention. In the figure, 1 is a semiconductor element (gold) having gold deposited on its surface. Deposited metal silicon). A thermally conductive silicone composition film 2 is formed on the gold vapor deposition surface of the semiconductor element 1. The thermally conductive silicone composition film 2 is interposed between the semiconductor element 1 and the heat spreader (heat radiator) 3 and is pressed by the heat spreader. Heat conductive silicone composition 2 is cured by heating under the above heating conditions, thereby completing semiconductor device 10. In the figure, 4 is a substrate, 5 is solder, and 6 is an underfill agent.

以下、調製例、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although a preparation example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

まず以下の組成物及び基板を用意した。
[調製例1]
<熱伝導性シリコーン組成物A>
両末端がジメチルビニルシリル基で封鎖され、25℃における粘度が600mm2/sのジメチルポリシロキサン100gに、平均粒径4.9μmのアルミニウム粉末800g、平均粒径1.0μmの酸化亜鉛粉末を200g、更にカップリング剤であるC1021Si(OCH33を6g、及び下記式(2)のSi−H基含有のオルガノポリシロキサンを11.7g加え、5リッタープラネタリーミキサーにて70℃で1時間加熱攪拌を行った。その後、室温まで冷却し、パーオキサイドとして日本油脂(株)製の商品名パーヘキサCを2.2g(10時間半減期温度:90.7℃、熱伝導性シリコーン組成物中約0.2質量%に相当する量)添加し、室温で15分間攪拌混合して、熱伝導性シリコーン組成物Aを得た。

Figure 0005447337
First, the following composition and substrate were prepared.
[Preparation Example 1]
<Thermal conductive silicone composition A>
Both ends are blocked with dimethylvinylsilyl groups, 100 g of dimethylpolysiloxane having a viscosity of 600 mm 2 / s at 25 ° C., 800 g of aluminum powder having an average particle size of 4.9 μm and 200 g of zinc oxide powder having an average particle size of 1.0 μm Further, 6 g of C 10 H 21 Si (OCH 3 ) 3 which is a coupling agent and 11.7 g of Si-H group-containing organopolysiloxane of the following formula (2) were added, and the mixture was 70 by a 5 liter planetary mixer. Stirring was carried out at 1 ° C. for 1 hour. Then, it cooled to room temperature and 2.2g (10-hour half-life temperature: 90.7 degreeC, about 0.2 mass% in a heat conductive silicone composition) the brand name Perhexa C by Nippon Oil & Fats Co., Ltd. as a peroxide. And the mixture was stirred and mixed at room temperature for 15 minutes to obtain a thermally conductive silicone composition A.
Figure 0005447337

[調製例2]
<熱伝導性シリコーン組成物B>
使用したパーオキサイドを日本油脂(株)製の商品名パーブチルI(10時間半減期温度:98.7℃)に変えた以外は全て調製例1と同じ方法で製造を行い、熱伝導性シリコーン組成物Bを得た。
[Preparation Example 2]
<Thermal conductive silicone composition B>
Except that the peroxide used was changed to the trade name Perbutyl I manufactured by Nippon Oil & Fats Co., Ltd. (10-hour half-life temperature: 98.7 ° C.), all production was performed in the same manner as in Preparation Example 1, and the heat conductive silicone composition Product B was obtained.

[調製例3]
<熱伝導性シリコーン組成物C>
使用したパーオキサイドを日本油脂(株)製の商品名パーブチルC(10時間半減期温度:119.5℃)に変えた以外は全て調製例1と同じ方法で製造を行い、熱伝導性シリコーン組成物Cを得た。
[Preparation Example 3]
<Thermal conductive silicone composition C>
Except that the peroxide used was changed to the trade name Perbutyl C (10-hour half-life temperature: 119.5 ° C.) manufactured by NOF Corporation, the production was carried out in the same manner as in Preparation Example 1, and the thermally conductive silicone composition Product C was obtained.

[調製例4]
<熱伝導性シリコーン組成物D>
パーオキサイドの添加量を1.1g(熱伝導性シリコーン組成物中約0.1質量%に相当する量)にした以外は全て調製例1と同じ方法で製造を行い、熱伝導性シリコーン組成物Dを得た。
[Preparation Example 4]
<Thermal conductive silicone composition D>
Production was performed in the same manner as in Preparation Example 1 except that the amount of peroxide added was 1.1 g (an amount corresponding to about 0.1% by mass in the thermally conductive silicone composition). The thermally conductive silicone composition D was obtained.

[調製例5]
<熱伝導性シリコーン組成物E>
使用したパーオキサイドを日本油脂(株)製の商品名パークミルP(10時間半減期温度;145.1℃)に変えた以外は全て調製例1と同じ方法で製造を行い、熱伝導性シリコーン組成物Eを得た。
[Preparation Example 5]
<Thermal conductive silicone composition E>
Production was conducted in the same manner as in Preparation Example 1, except that the peroxide used was changed to the product name Park Mill P (10-hour half-life temperature; 145.1 ° C.) manufactured by Nippon Oil & Fats Co., Ltd. Product E was obtained.

[調製例6]
<熱伝導性シリコーン組成物F>
両末端がジメチルビニルシリル基で封鎖され、25℃における粘度が600mm2/sのジメチルポリシロキサン100gに、平均粒径4.9μmのアルミニウム粉末800g、平均粒径1.0μmの酸化亜鉛粉末を200g、更にカップリング剤であるC1021Si(OCH33を6g加え、5リッタープラネタリーミキサーにて70℃で1時間加熱攪拌を行った。冷却後、1−エチニル−1−シクロヘキサノールの50質量%トルエン溶液を0.45g加え、更に白金−ビニルシロキサン錯体の0.5質量%トルエン溶液を0.2g、上記式(2)のSi−H基含有オルガノポリシロキサン11.7gをそれぞれ攪拌しながら順次加えていき、熱伝導性シリコーン組成物Fを得た(熱伝導性シリコーン組成物Fはパーオキサイドを含まない)。
[Preparation Example 6]
<Thermal conductive silicone composition F>
Both ends are blocked with dimethylvinylsilyl groups, 100 g of dimethylpolysiloxane having a viscosity of 600 mm 2 / s at 25 ° C., 800 g of aluminum powder having an average particle size of 4.9 μm and 200 g of zinc oxide powder having an average particle size of 1.0 μm Further, 6 g of C 10 H 21 Si (OCH 3 ) 3 as a coupling agent was added, and the mixture was heated and stirred at 70 ° C. for 1 hour with a 5-liter planetary mixer. After cooling, 0.45 g of a 50% by weight toluene solution of 1-ethynyl-1-cyclohexanol was added, and 0.2 g of a 0.5% by weight toluene solution of a platinum-vinylsiloxane complex was added. 11.7 g of H group-containing organopolysiloxane was sequentially added with stirring to obtain thermally conductive silicone composition F (thermally conductive silicone composition F does not contain peroxide).

<シリコンウェハー>
10mm角のシリコンウェハーの片面に金を蒸着させたシリコンウェハーAを用意した。ULVAC社製の触針式表面形状測定器にて蒸着した金の膜厚を測定したところ0.15μmであった。
<ニッケル板>
25mm×100mmの鉄表面にニッケルコートしたニッケル板を用意した((株)テストピース製)。
<Silicon wafer>
A silicon wafer A was prepared by depositing gold on one side of a 10 mm square silicon wafer. It was 0.15 micrometer when the film thickness of the gold | metal vapor deposited with the stylus type surface shape measuring device made from ULVAC was measured.
<Nickel plate>
A nickel plate having a nickel coating on a 25 mm × 100 mm iron surface was prepared (manufactured by Test Piece Co., Ltd.).

接着力及び厚さの測定は下記方法により行った。
〔接着力測定方法〕
図2に示すように、25mm×100mmの鉄表面にニッケルをコートしたニッケル板21((株)テストピース製)を用意し、このニッケル板21と金薄膜を形成したシリコンウェハー23との間に、金薄膜側が熱伝導性シリコーン組成物22と接するように挟み込んだ。この積層物21、22、23をオーブンに装入して下記温度及び時間で熱伝導性シリコーン組成物22を加熱硬化させ、テストピースを作製した。シリコンウェハー23の横方向からプローブ24で負荷を与え、破壊荷重を測定し、この値を接着力とした。接着力の測定機は、(株)レスカのボンディングテスターPTR−1000を用いた。なお、試験結果は3回行った結果の平均値を記載した。接着力を測ることで熱伝導性シリコーン組成物が硬化したか判断できる。20N以上を合格品とした。硬化しない場合、接着力はきわめて低くなる(10N以下程度)。
The measurement of adhesive force and thickness was performed by the following method.
[Adhesive strength measurement method]
As shown in FIG. 2, a nickel plate 21 (manufactured by Test Piece Co., Ltd.) having a 25 mm × 100 mm iron surface coated with nickel is prepared, and between the nickel plate 21 and a silicon wafer 23 on which a gold thin film is formed. The gold thin film side was sandwiched so as to be in contact with the heat conductive silicone composition 22. The laminates 21, 22, and 23 were placed in an oven, and the heat conductive silicone composition 22 was heated and cured at the following temperature and time to prepare a test piece. A load was applied from the lateral direction of the silicon wafer 23 with the probe 24, the breaking load was measured, and this value was taken as the adhesive strength. As an adhesive strength measuring machine, Reska Co., Ltd. bonding tester PTR-1000 was used. In addition, the test result described the average value of the result performed 3 times. It can be judged whether the heat conductive silicone composition was hardened by measuring adhesive force. 20N or more was regarded as an acceptable product. If it is not cured, the adhesion is very low (about 10 N or less).

〔熱伝導性シリコーン組成物硬化後の厚み測定〕
予め、シリコンウェハーA及びニッケル板を、(株)ミツトヨ製のマイクロゲージ(型番:MDE−25MJ)にて厚みを測定し、熱伝導性シリコーン組成物硬化後、全厚みを測定することで熱伝導性シリコーン組成物の厚みを算出した。
[Measurement of thickness after curing of thermally conductive silicone composition]
The thickness of silicon wafer A and nickel plate was measured in advance with a micro gauge (model number: MDE-25MJ) manufactured by Mitutoyo Corporation. After curing the heat conductive silicone composition, the total thickness was measured to conduct heat. The thickness of the conductive silicone composition was calculated.

[実施例1]
シリコンウェハーAの金蒸着面とニッケル板の間に熱伝導性シリコーン組成物Aを挟み込み、150℃のオーブンに60分間放置し、熱伝導性シリコーン組成物Aを硬化させた。熱伝導性シリコーン組成物の厚みを測定したところ25μmであった。硬化後の接着力を測定したところ、接着力は43Nであった。
[Example 1]
The thermally conductive silicone composition A was sandwiched between the gold deposition surface of the silicon wafer A and the nickel plate, and left in an oven at 150 ° C. for 60 minutes to cure the thermally conductive silicone composition A. It was 25 micrometers when the thickness of the heat conductive silicone composition was measured. When the adhesive strength after curing was measured, the adhesive strength was 43N.

[実施例2]
熱伝導性シリコーン組成物Aを熱伝導性シリコーン組成物Bに変えた以外は全て実施例1と同じにして硬化後の接着力を測定したところ39Nであった。このとき、熱伝導性シリコーン組成物の厚みを測定したところ33μmであった。
[Example 2]
Except that the heat conductive silicone composition A was changed to the heat conductive silicone composition B, the adhesive strength after curing was measured in the same manner as in Example 1 and found to be 39N. At this time, it was 33 micrometers when the thickness of the heat conductive silicone composition was measured.

[実施例3]
熱伝導性シリコーン組成物Aを熱伝導性シリコーン組成物Cに変えた以外は全て実施例1と同じにして硬化後の接着力を測定したところ35Nであった。このとき、熱伝導性シリコーン組成物の厚みを測定したところ36μmであった。
[Example 3]
Except that the thermally conductive silicone composition A was changed to the thermally conductive silicone composition C, the adhesive strength after curing was measured in the same manner as in Example 1 and found to be 35N. At this time, it was 36 micrometers when the thickness of the heat conductive silicone composition was measured.

[実施例4]
熱伝導性シリコーン組成物Aを熱伝導性シリコーン組成物Dに変えた以外は全て実施例1と同じにして硬化後の接着力を測定したところ32Nであった。このとき、熱伝導性シリコーン組成物の厚みを測定したところ32μmであった。
[Example 4]
Except that the thermally conductive silicone composition A was changed to the thermally conductive silicone composition D, the adhesive strength after curing was measured in the same manner as in Example 1 and found to be 32N. At this time, it was 32 micrometers when the thickness of the heat conductive silicone composition was measured.

[比較例1]
熱伝導性シリコーン組成物Aを熱伝導性シリコーン組成物Eに変えた以外は全て実施例1と同じにして硬化後の接着力を測定したところ9Nであった。このとき、熱伝導性シリコーン組成物の厚みを測定したところ31μmであった。
[Comparative Example 1]
Except that the thermally conductive silicone composition A was changed to the thermally conductive silicone composition E, the adhesive strength after curing was measured in the same manner as in Example 1 and found to be 9N. At this time, it was 31 micrometers when the thickness of the heat conductive silicone composition was measured.

[比較例2]
熱伝導性シリコーン組成物Aを熱伝導性シリコーン組成物Fに変えた以外は全て実施例1と同じにして硬化後の接着力を測定したところ5Nであった。このとき、熱伝導性シリコーン組成物の厚みを測定したところ29μmであった。
[Comparative Example 2]
Except that the thermally conductive silicone composition A was changed to the thermally conductive silicone composition F, the adhesive strength after curing was measured in the same manner as in Example 1 and found to be 5N. At this time, it was 29 micrometers when the thickness of the heat conductive silicone composition was measured.

1 表面に金が蒸着された半導体素子
2 熱伝導性シリコーン組成物膜
3 ヒートスプレッダー
4 基板
5 半田
6 アンダーフィル剤
10 半導体装置
21 ニッケル板
22 熱伝導性シリコーン組成物
23 シリコンウェハー
24 プローブ
DESCRIPTION OF SYMBOLS 1 Semiconductor element with gold deposited on surface 2 Thermally conductive silicone composition film 3 Heat spreader 4 Substrate 5 Solder 6 Underfill agent 10 Semiconductor device 21 Nickel plate 22 Thermally conductive silicone composition 23 Silicon wafer 24 Probe

Claims (8)

少なくとも表面に貴金属層を有する基材の該表面上に熱伝導性シリコーン組成物の硬化膜を形成してなるシリコーン構造体を製造する方法において、熱伝導性シリコーン組成物の硬化剤として10時間半減期温度が80℃以上130℃未満のパーオキサイドを用いたことを特徴とするシリコーン構造体の製造方法。   In a method for producing a silicone structure formed by forming a cured film of a thermally conductive silicone composition on the surface of a substrate having a noble metal layer on at least the surface, the curing agent for the thermally conductive silicone composition is reduced by half for 10 hours. A method for producing a silicone structure, wherein a peroxide having an initial temperature of 80 ° C. or higher and lower than 130 ° C. is used. 少なくとも表面に貴金属層を有する基材の該表面と放熱部材との間に熱伝導性シリコーン組成物の硬化膜を介在させてなるシリコーン構造体を製造する方法において、熱伝導性シリコーン組成物の硬化剤として10時間半減期温度が80℃以上130℃未満のパーオキサイドを用いたことを特徴とするシリコーン構造体の製造方法。   In the method for producing a silicone structure in which a cured film of a thermally conductive silicone composition is interposed between the surface of a substrate having a noble metal layer on the surface and a heat radiating member, curing of the thermally conductive silicone composition A method for producing a silicone structure, wherein a peroxide having a 10-hour half-life temperature of 80 ° C. or higher and lower than 130 ° C. is used as an agent. 熱伝導性シリコーン組成物が、
(A)成分:ケイ素原子に結合したアルケニル基を1分子中に少なくとも1個有するオルガノポリシロキサン、
(B)成分:熱伝導性充填剤、
(C)成分:10時間半減期温度が80℃以上130℃未満のパーオキサイド;組成物全体の0.05〜0.5質量%
を含有するものである請求項1又は2記載の製造方法。
The thermally conductive silicone composition is
Component (A): organopolysiloxane emissions having at least one alkenyl group bonded to a silicon atom in the molecule,
(B) component: thermally conductive filler,
Component (C): Peroxide having a 10-hour half-life temperature of 80 ° C. or higher and lower than 130 ° C .; 0.05 to 0.5% by mass of the entire composition
The manufacturing method of Claim 1 or 2 which contains.
熱伝導性シリコーン組成物が、
更に、(D)成分:ケイ素原子に結合した水素原子を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン
を含有する請求項3記載の製造方法。
The thermally conductive silicone composition is
Furthermore, (D) component: The manufacturing method of Claim 3 containing the organohydrogen polysiloxane which has at least two hydrogen atoms couple | bonded with the silicon atom in 1 molecule.
熱伝導性シリコーン組成物が、The thermally conductive silicone composition is
更に、下記式(1)Further, the following formula (1)
R 11 aa R 22 bb Si(ORSi (OR 3Three ) 4-a-b4-a-b (1)                      (1)
(式中、R(Wherein R 11 は独立に炭素数9〜15のアルキル基であり、RIs independently an alkyl group having 9 to 15 carbon atoms, R 22 は独立に非置換又は置換の炭素数1〜10の一価炭化水素基であり、RIs independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, R 3Three は独立に炭素数1〜6のアルキル基であり、aは1〜3の整数であり、bは0〜2の整数であり、ただし、a+bは1〜3の整数である。)Is independently an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3. )
で表されるオルガノシランOrganosilane represented by
を含有する請求項3又は4記載の製造方法。The manufacturing method of Claim 3 or 4 containing this.
熱伝導性シリコーン組成物の硬化膜の厚さが、20〜500μmである請求項1〜のいずれか1項記載の製造方法。 The thickness of the cured film of the heat conductive silicone composition, method of any one of claims 1 to 5 is 20 to 500 [mu] m. 上記基材が、表面に金の蒸着層を有する金属シリコンである請求項1〜のいずれか1項記載の製造方法。 The substrate The method of any one of claims 1 to 6 which is a metal silicon having a vapor deposited layer of gold on the surface. 少なくとも表面に貴金属層を有する基材の該表面と放熱部材との間に、10時間半減期温度が80℃以上130℃未満のパーオキサイドを硬化剤とする熱伝導性シリコーン組成物の硬化膜が介在してなることを特徴とする半導体装置。   A cured film of a thermally conductive silicone composition comprising a peroxide having a 10-hour half-life temperature of 80 ° C. or more and less than 130 ° C. as a curing agent between the surface of the substrate having a noble metal layer on the surface and the heat radiating member. A semiconductor device characterized by being interposed.
JP2010243249A 2010-10-29 2010-10-29 Silicon structure manufacturing method and semiconductor device Active JP5447337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010243249A JP5447337B2 (en) 2010-10-29 2010-10-29 Silicon structure manufacturing method and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243249A JP5447337B2 (en) 2010-10-29 2010-10-29 Silicon structure manufacturing method and semiconductor device

Publications (2)

Publication Number Publication Date
JP2012096361A JP2012096361A (en) 2012-05-24
JP5447337B2 true JP5447337B2 (en) 2014-03-19

Family

ID=46388873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243249A Active JP5447337B2 (en) 2010-10-29 2010-10-29 Silicon structure manufacturing method and semiconductor device

Country Status (1)

Country Link
JP (1) JP5447337B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171353A1 (en) 2022-03-08 2023-09-14 信越化学工業株式会社 Two-component thermally-conductive addition-curable silicone composition and cured product thereof
WO2023171352A1 (en) 2022-03-08 2023-09-14 信越化学工業株式会社 Thermally-conductive addition-curable silicone composition and cured product thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783128B2 (en) 2012-04-24 2015-09-24 信越化学工業株式会社 Heat curing type heat conductive silicone grease composition
CA2896300C (en) 2013-01-22 2020-10-27 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition, heat conductive layer, and semiconductor device
JP5898139B2 (en) 2013-05-24 2016-04-06 信越化学工業株式会社 Thermally conductive silicone composition
JP5947267B2 (en) 2013-09-20 2016-07-06 信越化学工業株式会社 Silicone composition and method for producing thermally conductive silicone composition
JP6149831B2 (en) 2014-09-04 2017-06-21 信越化学工業株式会社 Silicone composition
JP6708005B2 (en) * 2016-06-20 2020-06-10 信越化学工業株式会社 Thermally conductive silicone putty composition
JP6884787B2 (en) * 2016-08-18 2021-06-09 デンカ株式会社 Composition for heat conductive grease, heat conductive grease and heat dissipation member
WO2018056297A1 (en) 2016-09-26 2018-03-29 東レ・ダウコーニング株式会社 Curing reactive silicone gel and use thereof
JP6957864B2 (en) * 2016-11-09 2021-11-02 信越化学工業株式会社 Thermally conductive silicone composition and its cured product, electronic device and its manufacturing method
CN110446766A (en) 2017-04-06 2019-11-12 陶氏东丽株式会社 Liquid curing silicone adhesives composition, its solidfied material and its purposes
US11591470B2 (en) 2018-01-15 2023-02-28 Shin-Etsu Chemical Co., Ltd. Silicone composition
JP6977869B2 (en) 2018-03-23 2021-12-08 信越化学工業株式会社 Silicone composition
WO2020075411A1 (en) 2018-10-12 2020-04-16 信越化学工業株式会社 Addition curing silicone composition and method for manufacturing same
JP7476795B2 (en) * 2018-10-22 2024-05-01 信越化学工業株式会社 Addition-curable silicone composition
JP7027368B2 (en) 2019-04-01 2022-03-01 信越化学工業株式会社 Thermally conductive silicone composition, its manufacturing method and semiconductor device
JP7283555B2 (en) 2019-09-27 2023-05-30 信越化学工業株式会社 Thermally conductive silicone composition, method for producing same, semiconductor device, method for improving resistance to pump-out of thermally conductive filler layer of semiconductor device
EP4156249A4 (en) 2020-05-22 2024-06-05 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition, production method for same, and semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493258B2 (en) * 1996-01-05 2004-02-03 信越化学工業株式会社 Flame-retardant silicone rubber composition and flame-retardant silicone rubber molded article using the same
JP4574885B2 (en) * 2001-03-29 2010-11-04 電気化学工業株式会社 Heat dissipation spacer
JP3901615B2 (en) * 2002-08-21 2007-04-04 信越化学工業株式会社 Silicone adhesive and adhesive film
JP4628270B2 (en) * 2006-01-20 2011-02-09 信越化学工業株式会社 Thermosetting composition
JP2008106185A (en) * 2006-10-27 2008-05-08 Shin Etsu Chem Co Ltd Method for adhering thermally conductive silicone composition, primer for adhesion of thermally conductive silicone composition and method for production of adhesion composite of thermally conductive silicone composition
JP2009206124A (en) * 2008-02-26 2009-09-10 Shin Etsu Chem Co Ltd Sealing method of led device, and led device
JP5093488B2 (en) * 2008-04-15 2012-12-12 信越化学工業株式会社 Thermally conductive silicone composition, adhesive structure, and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171353A1 (en) 2022-03-08 2023-09-14 信越化学工業株式会社 Two-component thermally-conductive addition-curable silicone composition and cured product thereof
WO2023171352A1 (en) 2022-03-08 2023-09-14 信越化学工業株式会社 Thermally-conductive addition-curable silicone composition and cured product thereof

Also Published As

Publication number Publication date
JP2012096361A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5447337B2 (en) Silicon structure manufacturing method and semiconductor device
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
JP4572243B2 (en) Thermally conductive laminate and method for producing the same
JP4656340B2 (en) Thermally conductive silicone grease composition
JP5640945B2 (en) Curable organopolysiloxane composition and semiconductor device
JP4993611B2 (en) Heat dissipation material and semiconductor device using the same
JP5182515B2 (en) Thermally conductive silicone grease composition
EP3533837A1 (en) One-pack curable type thermally conductive silicone grease composition and electronic/electrical component
JP4913874B2 (en) Curable organopolysiloxane composition and semiconductor device
JP5565758B2 (en) Curable, grease-like thermally conductive silicone composition and semiconductor device
JP5898139B2 (en) Thermally conductive silicone composition
KR102132243B1 (en) Thermal conductive silicone composition and cured product, and composite sheet
JP2008038137A (en) Heat conductive silicone grease composition and cured product thereof
KR102683945B1 (en) silicone composition
JP6042307B2 (en) Curable heat conductive resin composition, method for producing the composition, cured product of the composition, method for using the cured product, semiconductor device having a cured product of the composition, and method for producing the semiconductor device
JP2009235279A (en) Heat-conductive molding and manufacturing method therefor
JP2018053260A (en) Thermal conductive silicone composition, cured article and composite sheet
WO2018025502A1 (en) Thermally conductive silicone composition
JP5093488B2 (en) Thermally conductive silicone composition, adhesive structure, and semiconductor device
JP5047505B2 (en) Electronic device excellent in heat dissipation and manufacturing method thereof
JP2016017159A (en) Thermally conductive silicone composition
JP7467017B2 (en) Thermally conductive silicone composition and cured product thereof
JP7485634B2 (en) Thermally conductive silicone composition and cured product thereof
WO2021241097A1 (en) Thermally conductive addition curing-type silicone composition
WO2024084897A1 (en) Curable organopolysiloxane composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5447337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150