JP5093488B2 - Thermally conductive silicone composition, adhesive structure, and semiconductor device - Google Patents

Thermally conductive silicone composition, adhesive structure, and semiconductor device Download PDF

Info

Publication number
JP5093488B2
JP5093488B2 JP2008105313A JP2008105313A JP5093488B2 JP 5093488 B2 JP5093488 B2 JP 5093488B2 JP 2008105313 A JP2008105313 A JP 2008105313A JP 2008105313 A JP2008105313 A JP 2008105313A JP 5093488 B2 JP5093488 B2 JP 5093488B2
Authority
JP
Japan
Prior art keywords
group
component
conductive silicone
thermally conductive
silicone composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008105313A
Other languages
Japanese (ja)
Other versions
JP2009256428A (en
Inventor
邦弘 山田
敬 三好
展明 松本
謙一 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008105313A priority Critical patent/JP5093488B2/en
Publication of JP2009256428A publication Critical patent/JP2009256428A/en
Application granted granted Critical
Publication of JP5093488B2 publication Critical patent/JP5093488B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Description

本発明は、少なくとも表面が金などの貴金属により形成されている固体被着体の接着剤として用いられる熱伝導性シリコーン組成物及びそれを用いた接着構造体並びにその構造体を採用して形成した半導体装置に関する。   The present invention is formed by adopting a thermally conductive silicone composition used as an adhesive for a solid adherend having at least a surface formed of a noble metal such as gold, an adhesive structure using the same, and the structure. The present invention relates to a semiconductor device.

従来、シリコーン樹脂を基材へ接着する方法としては、シリコーン樹脂に接着性を付与する材料を混合しておくか、又は基材表面に予めシリコーン又はシランカップリング剤等を含むプライマーを塗布した後、シリコーン樹脂を塗布・硬化させる方法が一般的である。   Conventionally, as a method for adhering a silicone resin to a substrate, a material that imparts adhesiveness to the silicone resin is mixed, or a primer containing silicone or a silane coupling agent is applied to the substrate surface in advance. A method of applying and curing a silicone resin is common.

しかしながら、金などの貴金属表面へのシリコーン組成物の接着が困難であるという問題がある。これは、通常、シリコーン組成物に含まれる成分、又はプライマー中の反応基が基材表面の置換基と反応し、化学結合することで接着力が生じるが、金表面には置換基が極めて少なく、このような作用が生じにくいためと考えられる。更には、特に金表面上ではシリコーン樹脂がたびたび硬化阻害を起こすため硬化が進行せず、そのため接着力が発現しにくいという問題点があった。   However, there is a problem that adhesion of the silicone composition to the surface of a noble metal such as gold is difficult. This is because the components contained in the silicone composition or the reactive groups in the primer react with the substituents on the surface of the substrate and chemically bond to produce an adhesive force, but there are very few substituents on the gold surface. This is considered to be because such an action is difficult to occur. Furthermore, especially on the gold surface, the silicone resin frequently causes inhibition of curing, so that the curing does not proceed, and therefore, there is a problem that it is difficult to develop an adhesive force.

なお、本発明に関連する公知文献としては、下記のものがある。
特公平3−12114号公報 特開平9−208923号公報
In addition, as a well-known document relevant to this invention, there exist the following.
Japanese Patent Publication No. 3-12114 JP-A-9-208923

本発明は、上記事情に鑑みなされたもので、固体被着体、特に金などの貴金属表面を有する固体被着体の接着剤として用いられる熱伝導性シリコーン組成物、該組成物の硬化物を上記固体被着体に接着させた熱伝導性シリコーン接着構造体、及びその構造体を採用して形成した半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a thermally conductive silicone composition used as an adhesive for a solid adherend, particularly a solid adherend having a noble metal surface such as gold, and a cured product of the composition. It is an object of the present invention to provide a thermally conductive silicone adhesive structure bonded to the solid adherend and a semiconductor device formed by employing the structure.

本発明者らは、上記の目的を達成するために鋭意検討した結果、固体被着体、特に少なくとも表面が金などの貴金属にて形成された固体被着体に用いる接着剤として、ケイ素原子に結合した水素原子を一分子中に5〜30個有するオルガノハイドロジェンポリシロキサンを含有する熱伝導性シリコーン組成物を用いることで、熱伝導性シリコーン組成物の硬化物の接着性が向上することを見出した。
即ち、上記特定のオルガノハイドロジェンポリシロキサンを含有する熱伝導性シリコーン組成物を、その金などの貴金属表面に塗布し、加熱硬化して接着力を測定したところ、明らかに接着力の向上が見られることを知見し、本発明をなすに至った。
As a result of diligent investigations to achieve the above object, the present inventors have found that silicon atoms are used as an adhesive for a solid adherend, particularly a solid adherend having a surface formed of a noble metal such as gold. By using a thermally conductive silicone composition containing an organohydrogenpolysiloxane having 5 to 30 bonded hydrogen atoms in one molecule, the adhesiveness of the cured product of the thermally conductive silicone composition is improved. I found it.
That is, when the heat-conductive silicone composition containing the above specific organohydrogenpolysiloxane was applied to the surface of a noble metal such as gold and heat-cured to measure the adhesive strength, the adhesive strength was clearly improved. As a result, the present invention has been made.

従って、本発明は、下記熱伝導性シリコーン組成物及び接着構造体並びに半導体装置を提供する。
〔請求項1〕
少なくとも表面が貴金属により形成されている固体被着体用の接着剤であって、
(A)成分:ケイ素原子に結合したアルケニル基を一分子中に少なくとも1個有するオルガノポリシロキサン;100質量部、
(B)成分:ケイ素原子に結合した水素原子を一分子中に5〜30個有するオルガノハイドロジェンポリシロキサン;{(B)成分由来のケイ素原子に結合した水素原子の個数}/{(A)成分由来のアルケニル基の個数}が0.3〜3.0となる量、
(C)成分:10W/m℃以上の熱伝導率を有する熱伝導性充填剤;100〜2,000質量部、
(D)成分:白金及び白金化合物からなる群より選択される触媒;白金原子として(A)成分と(B)成分の合計質量に対し0.1〜500ppmとなる量
を含有してなり、25℃における粘度が10〜1,000Pa・sである熱伝導性シリコーン組成物。
〔請求項2〕
少なくとも表面が貴金属により形成されている固体被着体の表面に、請求項1記載の熱伝導性シリコーン組成物の硬化物が接着されてなる熱伝導性シリコーン接着構造体。
〔請求項3〕
前記熱伝導性シリコーン組成物の硬化物の厚さが、5〜500μmであることを特徴とする請求項2記載の熱伝導性シリコーン接着構造体。
〔請求項4〕
少なくとも表面が貴金属により形成されている固体被着体が半導体チップであって、該半導体チップから発生した熱を、熱伝導性シリコーン組成物の硬化物を通して放熱体に伝える請求項2又は3記載の接着構造体の構成となっていることを特徴とする半導体装置。
Accordingly, the present invention provides the following thermally conductive silicone composition, adhesive structure, and semiconductor device.
[Claim 1]
An adhesive for a solid adherend having at least a surface formed of a noble metal,
(A) component: organopolysiloxane having at least one alkenyl group bonded to a silicon atom in one molecule; 100 parts by mass;
Component (B): organohydrogenpolysiloxane having 5 to 30 hydrogen atoms bonded to silicon atoms in one molecule; {(B) number of hydrogen atoms bonded to silicon atoms derived from component} / {(A) The number of alkenyl groups derived from the component} is 0.3 to 3.0,
(C) Component: Thermally conductive filler having a thermal conductivity of 10 W / m ° C or higher; 100 to 2,000 parts by mass;
Component (D): a catalyst selected from the group consisting of platinum and platinum compounds; containing an amount of 0.1 to 500 ppm as a platinum atom with respect to the total mass of components (A) and (B), 25 A thermally conductive silicone composition having a viscosity at 10 ° C. of 10 to 1,000 Pa · s.
[Claim 2]
The heat conductive silicone adhesion structure formed by adhere | attaching the hardened | cured material of the heat conductive silicone composition of Claim 1 to the surface of the solid to-be-adhered body in which the surface is at least formed with the noble metal.
[Claim 3]
The thermally conductive silicone adhesive structure according to claim 2, wherein the cured product of the thermally conductive silicone composition has a thickness of 5 to 500 µm.
[Claim 4]
The solid adherend having at least a surface formed of a noble metal is a semiconductor chip, and heat generated from the semiconductor chip is transmitted to the heat radiating body through a cured product of the thermally conductive silicone composition. A semiconductor device having a structure of an adhesive structure.

本発明によれば、金などの貴金属に接着可能な熱伝導性シリコーン組成物が得られ、少なくとも表面が金などの貴金属により形成されている固体被着体に対し、該熱伝導性シリコーン組成物の硬化物を高接着力で接着してなる熱伝導性シリコーン接着構造体を得ることができる。   According to the present invention, a thermally conductive silicone composition capable of adhering to a noble metal such as gold is obtained, and the thermally conductive silicone composition is at least applied to a solid adherend having a surface formed of a noble metal such as gold. It is possible to obtain a thermally conductive silicone adhesive structure obtained by adhering a cured product of the above with high adhesive strength.

本発明の熱伝導性シリコーン組成物は、下記(A)〜(D)成分を必須成分とすることを特徴とするものである。
(A)成分:ケイ素原子に結合したアルケニル基を一分子中に少なくとも1個有するオルガノポリシロキサン;100質量部、
(B)成分:ケイ素原子に結合した水素原子を一分子中に5〜30個有するオルガノハイドロジェンポリシロキサン;{(B)成分由来のケイ素原子に結合した水素原子の個数}/{(A)成分由来のアルケニル基の個数}が0.3〜3.0となる量、
(C)成分:10W/m℃以上の熱伝導率を有する熱伝導性充填剤;100〜2,000質量部、
(D)成分:白金及び白金化合物からなる群より選択される触媒;白金原子として(A)成分と(B)成分の合計質量に対し0.1〜500ppmとなる量。
The heat conductive silicone composition of the present invention comprises the following components (A) to (D) as essential components.
(A) component: organopolysiloxane having at least one alkenyl group bonded to a silicon atom in one molecule; 100 parts by mass;
Component (B): organohydrogenpolysiloxane having 5 to 30 hydrogen atoms bonded to silicon atoms in one molecule; {(B) number of hydrogen atoms bonded to silicon atoms derived from component} / {(A) The number of alkenyl groups derived from the component} is 0.3 to 3.0,
(C) Component: Thermally conductive filler having a thermal conductivity of 10 W / m ° C. or higher; 100 to 2,000 parts by mass;
Component (D): a catalyst selected from the group consisting of platinum and platinum compounds; an amount of 0.1 to 500 ppm relative to the total mass of components (A) and (B) as platinum atoms.

(A)成分は、ケイ素原子に結合したアルケニル基を一分子中に少なくとも1個有するオルガノポリシロキサンであり、その分子構造は直鎖状、分岐状又は網状のいずれでもよいが、直鎖状であることが経済面から好ましい。   Component (A) is an organopolysiloxane having at least one alkenyl group bonded to a silicon atom in one molecule, and the molecular structure may be linear, branched or networked, It is preferable from an economic viewpoint.

また、(A)成分は、25℃における粘度が10mm2/sより小さいと揮発性が高いため組成が安定しない場合があり、また100,000mm2/sより大きいと組成物の粘度が高くなり、扱いが難しくなる場合があるため、10〜100,000mm2/sの範囲であることが好ましく、より好ましくは1,000〜50,000mm2/sである。なお、この粘度は動粘度であって、オストワルド粘度計による25℃での測定値である(以下、同じ)。 In addition, the component (A) has a high volatility when the viscosity at 25 ° C. is less than 10 mm 2 / s, and the composition may not be stable. When the viscosity is greater than 100,000 mm 2 / s, the viscosity of the composition increases. , there are cases in which handling is difficult, is preferably in the range of 10~100,000mm 2 / s, more preferably 1,000~50,000mm 2 / s. This viscosity is a kinematic viscosity and is a value measured at 25 ° C. by an Ostwald viscometer (the same applies hereinafter).

(A)成分のケイ素原子に結合するアルケニル基としては、炭素数2〜8のものが好ましく、ビニル基、アリル基、ブテニル基、ヘキセニル基等が挙げられ、好ましくはビニル基である。ケイ素原子に結合するアルケニル基は分子中のどの位置に存在してもよいが、少なくとも分子末端に存在することが望ましい。   (A) As an alkenyl group couple | bonded with the silicon atom of a component, a C2-C8 thing is preferable, A vinyl group, an allyl group, a butenyl group, a hexenyl group etc. are mentioned, Preferably it is a vinyl group. The alkenyl group bonded to the silicon atom may be present at any position in the molecule, but is preferably present at least at the molecular end.

(A)成分のケイ素原子に結合するアルケニル基以外の有機基としては、炭素数1〜10のもの、例えばメチル基、エチル基、プロピル基、ブチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、キシリル基等のアリール基、フェニルエチル基、フェニルプロピル基等のアラルキル基、γ−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基等が例示される。   As the organic group other than the alkenyl group bonded to the silicon atom of the component (A), one having 1 to 10 carbon atoms, for example, an alkyl group such as methyl group, ethyl group, propyl group, butyl group, cyclopentyl group, cyclohexyl group, etc. Aryl groups such as cycloalkyl groups, phenyl groups and xylyl groups, aralkyl groups such as phenylethyl groups and phenylpropyl groups, alkyl halide groups such as γ-chloropropyl groups and 3,3,3-trifluoropropyl groups, etc. Is exemplified.

(A)成分の分子鎖末端基としては、トリメチルシロキシ基、ジメチルビニルシロキシ基、ジメチルフェニルシロキシ基、メチルビニルフェニルシロキシ基等のトリオルガノシロキシ基、水酸基、アルコキシ基等が例示される。   Examples of the molecular chain terminal group of the component (A) include triorganosiloxy groups such as trimethylsiloxy group, dimethylvinylsiloxy group, dimethylphenylsiloxy group, and methylvinylphenylsiloxy group, hydroxyl groups, and alkoxy groups.

(A)成分中の有機基の種類、分子鎖末端封鎖基の種類及び粘度等は得られる熱伝導性シリコーン組成物の使用目的に応じて適宜選択することができる。また、粘度、構造が違う(A)成分を数種類使用してもよい。   (A) The kind of organic group in a component, the kind of molecular chain terminal blocking group, a viscosity, etc. can be suitably selected according to the intended purpose of the heat conductive silicone composition obtained. Moreover, you may use several types of (A) component from which a viscosity and a structure differ.

(B)成分のオルガノハイドロジェンポリシロキサンは、(A)成分とヒドロシリル化反応する架橋剤であり、ケイ素原子に結合する水素原子を一分子中に5〜30個有するオルガノハイドロジェンポリシロキサンである。5個より少ないと、十分にヒドロシリル化反応が進まず硬化阻害が起きる。また30個より多いと硬化後、加熱下において経時で硬くなりすぎ放熱特性が劣化する。好ましくは8〜20個である。   The (B) component organohydrogenpolysiloxane is a crosslinking agent that undergoes a hydrosilylation reaction with the (A) component, and is an organohydrogenpolysiloxane having 5 to 30 hydrogen atoms bonded to silicon atoms in one molecule. . When the number is less than 5, the hydrosilylation reaction does not proceed sufficiently, and curing inhibition occurs. On the other hand, if it is more than 30, it will become too hard over time after heating and the heat dissipation characteristics will deteriorate. Preferably 8-20.

(B)成分のオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、分岐状又は網状のいずれでもよく、25℃における粘度が1〜10,000mm2/sであることが好ましく、より好ましくは1〜1,000mm2/sである。また、粘度の違う数種類の(B)成分を使用してもよい。 The molecular structure of the organohydrogenpolysiloxane of component (B) may be linear, branched or network, and preferably has a viscosity at 25 ° C. of 1 to 10,000 mm 2 / s, more preferably. 1 to 1,000 mm 2 / s. Moreover, you may use several types of (B) component from which a viscosity differs.

(B)成分のケイ素原子に結合する水素原子以外の有機基としては、アルケニル基を除く炭素数1〜10のもの、例えばメチル基、エチル基、プロピル基、ブチル基等のアルキル基、フェニル基、トリル基等のアリール基、フェニルエチル基、フェニルプロピル基等のアラルキル基、γ−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基等が例示される。   As the organic group other than the hydrogen atom bonded to the silicon atom of the component (B), those having 1 to 10 carbon atoms excluding the alkenyl group, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group, a phenyl group And aryl groups such as tolyl group, aralkyl groups such as phenylethyl group and phenylpropyl group, and halogenated alkyl groups such as γ-chloropropyl group and 3,3,3-trifluoropropyl group.

(B)成分の配合量は、{(B)成分由来のケイ素原子に結合した水素原子の個数}/{(A)成分由来のアルケニル基の個数}が0.3〜3.0になる量である。これが0.3より小さいと十分にヒドロシリル化反応が進まないし、3.0より大きいと硬化後、加熱下において経時で硬くなりすぎ放熱特性が劣化する。好ましくは0.5〜2.0である。   The amount of component (B) is such that {number of hydrogen atoms bonded to silicon atom derived from component (B) / {number of alkenyl groups derived from component (A)} is 0.3 to 3.0. It is. When this is less than 0.3, the hydrosilylation reaction does not proceed sufficiently, and when it is more than 3.0, after curing, it becomes too hard under heating and deteriorates heat dissipation characteristics. Preferably it is 0.5-2.0.

(C)成分の熱伝導性充填剤は、熱伝導性を付与するためのものである。この熱伝導性充填剤は、10W/m℃以上の熱伝導率を有するものである。熱伝導率が10W/m℃未満では、得られる熱伝導性シリコーン組成物の熱伝導率が悪くなる。   The thermally conductive filler of component (C) is for imparting thermal conductivity. This thermally conductive filler has a thermal conductivity of 10 W / m ° C. or higher. When the thermal conductivity is less than 10 W / m ° C., the thermal conductivity of the obtained thermal conductive silicone composition becomes poor.

熱伝導性充填剤としては、アルミニウム粉末、酸化亜鉛粉末、アルミナ粉末、窒化硼素粉末、窒化アルミニウム粉末、窒化ケイ素粉末、銅粉末、銀粉末、ダイヤモンド粉末、ニッケル粉末、亜鉛粉末、ステンレス粉末、カーボン粉末等が挙げられるが、これらに限られたものではない。これらは球状、不定形状どちらでもよく、これらを2種類以上混合してもよい。   Thermally conductive fillers include aluminum powder, zinc oxide powder, alumina powder, boron nitride powder, aluminum nitride powder, silicon nitride powder, copper powder, silver powder, diamond powder, nickel powder, zinc powder, stainless steel powder, carbon powder However, it is not limited to these. These may be either spherical or irregular shapes, and two or more of these may be mixed.

また、(C)成分の平均粒径は、0.1μmより小さいと得られる組成物の粘度が高くなりすぎて進展性の乏しいものとなる場合があるし、100μmより大きいと得られる組成物が不均一となる場合があるため、好ましくは0.1〜100μmの範囲、より好ましくは1〜20μmの範囲であることがよい。なお、この平均粒径は、レーザー回折・散乱法で求めることができる体積基準の平均粒径である。   Moreover, when the average particle diameter of (C) component is smaller than 0.1 micrometer, the viscosity of the composition obtained may become high too much, and it may become a thing with poor progress, and the composition obtained when larger than 100 micrometers may be obtained. Since it may become non-uniform | heterogenous, Preferably it is the range of 0.1-100 micrometers, More preferably, it is good in the range of 1-20 micrometers. This average particle size is a volume-based average particle size that can be determined by a laser diffraction / scattering method.

(C)成分の配合量は、(A)成分100質量部に対して100質量部より少ないと得られる組成物の熱伝導率が悪く、かつ保存安定性の乏しいものとなるし、2,000質量部より多いと伸展性の乏しいものとなるため、100〜2,000質量部の範囲、好ましくは200〜1,500質量部の範囲である。   When the blending amount of the component (C) is less than 100 parts by weight with respect to 100 parts by weight of the component (A), the resulting composition has poor thermal conductivity and poor storage stability, and 2,000. Since it will become a thing with a poor extensibility when it exceeds more than a mass part, it is the range of 100-2,000 mass parts, Preferably it is the range of 200-1,500 mass parts.

(D)成分は、(A)成分と(B)成分のヒドロシリル化反応を促進させる白金及び白金化合物からなる群より選択される白金系触媒である。白金系触媒としては、白金単体粒子、白金担持粒子、塩化白金酸、白金錯体、及び白金配位化合物の群から選ばれる1種又は2種以上を挙げることができる。白金担持粒子としては、シリカ、アルミナ、カーボンブラック等に白金粒子を担持したものを用いることができる。白金錯体としては、白金−オレフィン錯体、白金−アルコール錯体、白金−ビニルシロキサン錯体、白金−ホスフィン錯体、白金−ホスファイト錯体等を例示することができる。   Component (D) is a platinum-based catalyst selected from the group consisting of platinum and platinum compounds that promote the hydrosilylation reaction of components (A) and (B). Examples of the platinum-based catalyst include one or more selected from the group consisting of simple platinum particles, platinum-supported particles, chloroplatinic acid, a platinum complex, and a platinum coordination compound. As platinum carrying | support particle | grains, what carried | supported platinum particle | grains to silica, an alumina, carbon black etc. can be used. Examples of platinum complexes include platinum-olefin complexes, platinum-alcohol complexes, platinum-vinylsiloxane complexes, platinum-phosphine complexes, platinum-phosphite complexes, and the like.

(D)成分の配合量としては、(A)成分と(B)成分を十分に反応させるだけの必要量を配合させる必要があり、通常白金金属として、(A),(B)成分の合計質量に対し0.1〜500ppmとなる量である。   (D) As a compounding quantity of a component, it is necessary to mix | blend the required quantity only to fully react (A) component and (B) component, Usually, as a platinum metal, the sum total of (A) and (B) component The amount is 0.1 to 500 ppm based on the mass.

本発明の組成物には、(D)成分の触媒活性を抑制する目的で、(E)成分として、アセチレン化合物、窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物より選択される制御剤を配合することができる。(E)成分としては、例えば、1−エチニルシクロヘキサノール等のアセチレン化合物、アミン化合物、亜リン酸エステルなどが挙げられる。   In the composition of the present invention, for the purpose of suppressing the catalytic activity of the component (D), as the component (E), a control agent selected from an acetylene compound, a nitrogen compound, an organic phosphorus compound, an oxime compound, and an organic chloro compound is included. Can be blended. Examples of the component (E) include acetylene compounds such as 1-ethynylcyclohexanol, amine compounds, and phosphites.

(E)成分の配合量は、(A)成分100質量部に対して0〜1質量部の範囲である。(E)成分を配合する場合、(A)成分100質量部に対して好ましくは0.01〜1質量部の範囲であり、より好ましくは0.05〜0.5質量部の範囲である。0.01質量部より少ないと十分な制御効果が得られない場合があり、1質量部より多いとヒドロシリル化反応が十分に進まなくなってしまう。   (E) The compounding quantity of a component is the range of 0-1 mass part with respect to 100 mass parts of (A) component. (E) When mix | blending a component, Preferably it is the range of 0.01-1 mass part with respect to 100 mass parts of (A) component, More preferably, it is the range of 0.05-0.5 mass part. When the amount is less than 0.01 parts by mass, a sufficient control effect may not be obtained. When the amount is more than 1 part by mass, the hydrosilylation reaction does not proceed sufficiently.

また、本発明の組成物には、更に、必要に応じて接着成分としてエポキシ基あるいはアルコキシ基などを有する成分を含んでもよいし、(C)成分の(A)成分への濡れ性向上剤として、下記式(1)で表されるオルガノポリシロキサンや、下記式(2)で表されるオルガノシランを配合してもよい。   Further, the composition of the present invention may further contain a component having an epoxy group or an alkoxy group as an adhesive component, if necessary, or as a wettability improver for the component (A) of the component (C). An organopolysiloxane represented by the following formula (1) or an organosilane represented by the following formula (2) may be blended.

Figure 0005093488
(式中、R1は独立に非置換又は置換の一価炭化水素基であり、R2は独立にアルキル基又はアシル基であり、aは5〜100の整数であり、bは1〜3の整数である。)
Figure 0005093488
(Wherein R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 2 is independently an alkyl group or an acyl group, a is an integer of 5 to 100, and b is 1 to 3) Is an integer.)

上記R1は、独立に非置換又は置換の一価の炭化水素基であり、その例としては、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基が挙げられる。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert−ブチル基、2−エチルヘキシル基等が挙げられる。環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等が挙げられる。アリール基としては、例えば、フェニル基、トリル基等が挙げられる。アラルキル基としては、例えば、2−フェニルエチル基、2−メチル−2−フェニルエチル基等が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3−トリフルオロプロピル基、2−(ノナフルオロブチル)エチル基、2−(ヘプタデカフルオロオクチル)エチル基等が挙げられる。R1は好ましくはメチル基、フェニル基である。 R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group. Examples thereof include a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an aryl group, an aralkyl group, and a halogenated group. An alkyl group is mentioned. Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group. Examples of the branched alkyl group include isopropyl group, isobutyl group, tert-butyl group, 2-ethylhexyl group and the like. Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group. Examples of the aryl group include a phenyl group and a tolyl group. Examples of the aralkyl group include a 2-phenylethyl group and a 2-methyl-2-phenylethyl group. Examples of the halogenated alkyl group include 3,3,3-trifluoropropyl group, 2- (nonafluorobutyl) ethyl group, 2- (heptadecafluorooctyl) ethyl group, and the like. R 1 is preferably a methyl group or a phenyl group.

上記R2は、独立にアルキル基又はアシル基である。アルキル基としては、例えば、R1について例示したのと同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基が挙げられる。アシル基としては、例えば、アセチル基、オクタノイル基が挙げられる。R2はアルキル基であることが好ましく、特にはメチル基、エチル基であることが好ましい。
aは5〜100の整数である。bは1〜3の整数であり、好ましくは3である。
R 2 is independently an alkyl group or an acyl group. Examples of the alkyl group include linear alkyl groups, branched alkyl groups, and cyclic alkyl groups similar to those exemplified for R 1 . Examples of the acyl group include an acetyl group and an octanoyl group. R 2 is preferably an alkyl group, particularly preferably a methyl group or an ethyl group.
a is an integer of 5 to 100. b is an integer of 1 to 3, preferably 3.

上記式(1)で表されるオルガノポリシロキサンの好適な具体例としては、下記のものを挙げることができる。

Figure 0005093488
Specific examples of the organopolysiloxane represented by the above formula (1) include the following.
Figure 0005093488

このオルガノポリシロキサンを使用する場合の配合量は、(A)成分100質量部に対して0〜50質量部、特に0.01〜30質量部とすることが好ましい。   The amount of the organopolysiloxane used is preferably 0 to 50 parts by mass, particularly 0.01 to 30 parts by mass with respect to 100 parts by mass of the component (A).

3 c4 dSi(OR54-c-d (2)
(式中、R3は独立に炭素数9〜15のアルキル基であり、R4は独立に非置換又は置換の炭素数1〜8の一価炭化水素基であり、R5は独立に炭素数1〜6のアルキル基であり、cは1〜3の整数であり、dは0〜2の整数であり、ただし、c+dは1〜3の整数である。)
R 3 c R 4 d Si ( OR 5) 4-cd (2)
Wherein R 3 is independently an alkyl group having 9 to 15 carbon atoms, R 4 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 is independently carbon. (C1 is an integer of 1 to 3, d is an integer of 0 to 2, and c + d is an integer of 1 to 3.)

上記R3は、独立に炭素数9〜15のアルキル基であり、その具体例としては、ノニル基、デシル基、ドデシル基、テトラデシル基、ペンタデシル基等が挙げられる。 R 3 is independently an alkyl group having 9 to 15 carbon atoms, and specific examples thereof include a nonyl group, a decyl group, a dodecyl group, a tetradecyl group, and a pentadecyl group.

上記R4は、独立に非置換又は置換の炭素数1〜8の飽和又は不飽和の一価炭化水素基であり、その具体例としては、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基;3,3,3−トリフルオロプロピル基、2−(ノナフルオロブチル)エチル基、2−(ヘプタデカフルオロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基が挙げられ、特にメチル基、エチル基が好ましい。 R 4 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group. Alkyl group such as a group; cycloalkyl group such as cyclopentyl group and cyclohexyl group; alkenyl group such as vinyl group and allyl group; aryl group such as phenyl group and tolyl group; 2-phenylethyl group and 2-methyl-2-phenyl Aralkyl groups such as ethyl groups; halogenated hydrocarbon groups such as 3,3,3-trifluoropropyl groups, 2- (nonafluorobutyl) ethyl groups, 2- (heptadecafluorooctyl) ethyl groups, p-chlorophenyl groups In particular, a methyl group and an ethyl group are preferable.

上記R5は、独立に炭素数1〜6のアルキル基であり、その具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられ、特にメチル基、エチル基が好ましい。 R 5 is independently an alkyl group having 1 to 6 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. An ethyl group is preferred.

上記cは、通常、1〜3の整数であるが、特に好ましくは1である。上記dは0〜2の整数である。ただし、c+dは1〜3の整数である。   The above c is usually an integer of 1 to 3, but is particularly preferably 1. Said d is an integer of 0-2. However, c + d is an integer of 1-3.

上記式(2)で表されるオルガノシランの具体例としては、
1021Si(OCH33
1225Si(OCH33
1225Si(OC253
1021Si(CH3)(OCH32
1021Si(C65)(OCH32
1021Si(CH3)(OC252
1021Si(CH=CH2)(OCH32
1021Si(CH2CH2CF3)(OCH32
等が挙げられる。
As a specific example of the organosilane represented by the above formula (2),
C 10 H 21 Si (OCH 3 ) 3 ,
C 12 H 25 Si (OCH 3 ) 3 ,
C 12 H 25 Si (OC 2 H 5 ) 3 ,
C 10 H 21 Si (CH 3 ) (OCH 3 ) 2 ,
C 10 H 21 Si (C 6 H 5 ) (OCH 3 ) 2 ,
C 10 H 21 Si (CH 3 ) (OC 2 H 5 ) 2 ,
C 10 H 21 Si (CH═CH 2 ) (OCH 3 ) 2 ,
C 10 H 21 Si (CH 2 CH 2 CF 3 ) (OCH 3 ) 2
Etc.

このオルガノシランを使用する場合の配合量は、(A)成分100質量部に対して0〜20質量部、特に0.01〜10質量部とすることが好ましい。   When this organosilane is used, the blending amount is preferably 0 to 20 parts by mass, particularly 0.01 to 10 parts by mass with respect to 100 parts by mass of the component (A).

本発明の熱伝導性シリコーン組成物は、上記(A)〜(D)成分、及び必要に応じて(E)成分、その他の添加剤等を常法に準じて混合することにより調製できる。
本発明の熱伝導性シリコーン組成物は、硬化する前の回転粘度計により測定される25℃における粘度が、10Pa・sより低いと(C)成分の熱伝導性充填剤が沈降しやすくなるし、1,000Pa・sより高いと硬すぎて容器などへの充填性が悪くなるため、10〜1,000Pa・sの範囲、好ましくは50〜500Pa・sの範囲である。
The thermally conductive silicone composition of the present invention can be prepared by mixing the above components (A) to (D) and, if necessary, the component (E), other additives and the like according to a conventional method.
When the viscosity at 25 ° C. measured by a rotational viscometer before curing of the thermally conductive silicone composition of the present invention is lower than 10 Pa · s, the thermally conductive filler of component (C) tends to settle. If it is higher than 1,000 Pa · s, it is too hard and the filling property into a container or the like is deteriorated, so the range is from 10 to 1,000 Pa · s, preferably from 50 to 500 Pa · s.

本発明の熱伝導性シリコーン接着構造体は、上記熱伝導性シリコーン組成物の硬化物(熱伝導性シリコーン)を、固体被着体、特に少なくとも表面が金などの貴金属により形成されている固体被着体表面に接着させてなるもので、この場合、該固体被着体表面上に熱伝導性シリコーン組成物を配置し、加熱することにより得られる。   The thermally conductive silicone adhesive structure of the present invention is obtained by applying a cured product (thermally conductive silicone) of the above-mentioned thermally conductive silicone composition to a solid adherend, particularly at least a surface formed of a noble metal such as gold. In this case, it is obtained by placing a heat conductive silicone composition on the surface of the solid adherend and heating.

ここで、固体被着体としては、例えば半導体装置の半導体チップやこの半導体チップからの熱が伝導される放熱体等が挙げられ、この場合、これら固体被着体は金属であっても非金属であってもよく、特に固体被着体の少なくとも表面が金などの貴金属にて形成されているものが本発明において有効であるが、これに限定されるものではない。なお、固体被着体表面に金などの貴金属を形成する方法としては、例えば蒸着、スパッタリング等の気相めっき法や電気めっき、無電解めっき等にて形成することができる。   Here, examples of the solid adherend include a semiconductor chip of a semiconductor device and a heat radiator that conducts heat from the semiconductor chip. In this case, the solid adherend may be a metal or a nonmetal. In particular, at least the surface of the solid adherend is formed of a noble metal such as gold is effective in the present invention, but is not limited thereto. As a method for forming a noble metal such as gold on the surface of the solid adherend, it can be formed by, for example, a vapor phase plating method such as vapor deposition or sputtering, electroplating or electroless plating.

上記固体被着体表面に、上述した熱伝導性シリコーン組成物を塗着して加熱硬化させることにより、固体被着体に熱伝導性シリコーン組成物の硬化物を接着させることができる。熱伝導性シリコーン組成物の加熱方法は特に限定されないが、オーブンなどを用いることが好ましい。加熱温度は100〜180℃程度とし、加熱時間は5分から2時間とすることが好ましいが、これらに限定されるものではない。なお、熱伝導性シリコーン組成物の硬化物(熱伝導性シリコーン)の厚さは適宜選定されるが、通常5〜500μm、特に10〜100μmであることが好ましい。   The cured product of the thermally conductive silicone composition can be adhered to the solid adherend by applying the above-mentioned thermally conductive silicone composition to the surface of the solid adherend and curing it by heating. Although the heating method of a heat conductive silicone composition is not specifically limited, It is preferable to use oven etc. The heating temperature is preferably about 100 to 180 ° C., and the heating time is preferably 5 minutes to 2 hours, but is not limited thereto. In addition, although the thickness of the hardened | cured material (thermally conductive silicone) of a heat conductive silicone composition is selected suitably, it is preferable that it is usually 5-500 micrometers, especially 10-100 micrometers.

図2は、本発明の熱伝導性シリコーン接着構造体を利用した半導体装置の一実施例の縦断面図であり、図中21はCPU等の電子部品を示す。そして、この電子部品21表面には、金薄膜22が形成され、この薄膜22上に熱伝導性シリコーン組成物23が形成されている。この熱伝導性シリコーン組成物23はヒートスプレッダー(放熱体)24により押圧されている。また、ヒートスプレッダー24とオルガニック基板等の基板25との間には接着剤26が塗布されていて、上記加熱条件において加熱させることで熱伝導性シリコーン組成物23及び接着剤26を硬化させ、これにより半導体装置は完成する。なお、図中27はハンダボールである。   FIG. 2 is a longitudinal sectional view of an embodiment of a semiconductor device using the thermally conductive silicone adhesive structure according to the present invention, in which 21 denotes an electronic component such as a CPU. A gold thin film 22 is formed on the surface of the electronic component 21, and a heat conductive silicone composition 23 is formed on the thin film 22. This thermally conductive silicone composition 23 is pressed by a heat spreader (heat radiator) 24. Further, an adhesive 26 is applied between the heat spreader 24 and the substrate 25 such as an organic substrate, and the heat conductive silicone composition 23 and the adhesive 26 are cured by heating under the above heating conditions. Thereby, the semiconductor device is completed. In the figure, reference numeral 27 denotes a solder ball.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。また、実施例において示す「部」及び「%」は特に明示しない限り、質量部及び質量%を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. Further, “parts” and “%” shown in the examples indicate parts by mass and mass% unless otherwise specified.

[実施例1〜6、比較例1〜6]
[被接着体の作製]
被接着体:真空機工株式会社製のVPS−020型スパッタ装置を使い、以下条件にて10mm角のシリコンウエハーの片面に金を蒸着させた。またULVAC社製の触針式表面形状測定器にて蒸着した金膜厚を測定したところ0.15μmであった。
(スパッタ条件)
ターゲット:金
ガスの種類:空気
電流値:5〜10mA
真空度:1〜2×10-1Pa
蒸着時間:10分
[Examples 1-6, Comparative Examples 1-6]
[Production of adherend]
To-be-adhered body: VPS-020 type sputtering apparatus manufactured by Vacuum Kiko Co., Ltd. was used, and gold was vapor-deposited on one side of a 10 mm square silicon wafer under the following conditions. Moreover, it was 0.15 micrometer when the gold | metal film thickness vapor-deposited with the stylus type surface shape measuring device made from ULVAC was measured.
(Sputtering conditions)
Target: Gold gas type: Air current value: 5-10 mA
Degree of vacuum: 1-2 × 10 −1 Pa
Deposition time: 10 minutes

[熱伝導性シリコーン組成物の作製]
表1,2に示す配合にて実施例及び比較例の熱伝導性シリコーン組成物を製造した。具体的な製造方法としては、成分(A)と成分(C)、更には必要に応じて濡れ性向上剤を加え、5リッタープラネタリーミキサーで70℃、1時間の加熱撹拌を行った。冷却後の混合物に対し、成分(E)を加え、15分間撹拌混合を行い、続いて成分(D)を加えて再び15分間撹拌混合を行った。最後に成分(B)を加えて30分間真空下で撹拌混合を行い、熱伝導性シリコーン組成物を得た。
[Preparation of thermally conductive silicone composition]
The heat conductive silicone compositions of Examples and Comparative Examples were produced with the formulations shown in Tables 1 and 2. As a specific production method, components (A) and (C), and a wettability improver were added if necessary, and the mixture was heated and stirred with a 5-liter planetary mixer at 70 ° C. for 1 hour. To the mixture after cooling, component (E) was added and stirred and mixed for 15 minutes. Subsequently, component (D) was added and stirred and mixed again for 15 minutes. Finally, the component (B) was added and stirred and mixed under vacuum for 30 minutes to obtain a heat conductive silicone composition.

[テストピースの作製と接着力の測定]
図1に示すように、25mm×100mmの鉄表面にニッケルをコートしたニッケル板14(株式会社テストピース製)を用意し、このニッケル板14と金薄膜を形成させた被接着体10との間に、金薄膜側が熱伝導性シリコーン組成物12と接するように挟み込んだ。なお、熱伝導性シリコーン組成物の厚さは30μmであった。この積層物10、12、14を125℃のオーブンに90分間装入して熱伝導性シリコーン組成物12を加熱硬化させ、テストピースを作製した。被接着体10の横方向からプローブ20で負荷を与え、破壊荷重を測定し、この値を接着力とした。接着力の測定機は、株式会社レスカのボンディングテスターPTR−1000を用い、測定を3回行った結果の平均値を採用した。
[Production of test piece and measurement of adhesive strength]
As shown in FIG. 1, a nickel plate 14 (manufactured by Test Piece Co., Ltd.) having a 25 mm × 100 mm iron surface coated with nickel is prepared, and between the nickel plate 14 and the adherend 10 on which a gold thin film is formed. The gold thin film side was sandwiched so as to be in contact with the heat conductive silicone composition 12. The thickness of the heat conductive silicone composition was 30 μm. The laminates 10, 12, and 14 were placed in an oven at 125 ° C. for 90 minutes to heat and cure the heat conductive silicone composition 12 to prepare a test piece. A load was applied with the probe 20 from the lateral direction of the adherend 10 to measure a breaking load, and this value was defined as an adhesive force. The adhesive force measuring machine employs an average value of the results obtained by performing the measurement three times using a Resca Bonding Tester PTR-1000.

[熱抵抗測定]
前記被接着体の作製において作製された片面に金蒸着されたシリコンウエハーと、何も表面蒸着していない10mm角のシリコンウエハーとの間に、熱伝導性シリコーン組成物を挟み込み、125℃のオーブンに90分間装入して熱伝導性シリコーン組成物を加熱硬化させ、熱抵抗測定用の試験片を作製し、熱抵抗を測定した。また、更にこの試験片を125℃で1,000時間放置し、再び同様に熱抵抗を測定した。なお、この熱抵抗測定はニッチェ社製のナノフラッシュ型番:LFA447によって行った。
[Thermal resistance measurement]
A 125 ° C. oven is formed by sandwiching a thermally conductive silicone composition between a silicon wafer with gold deposited on one side and a 10 mm square silicon wafer with no surface deposited on it. The heat conductive silicone composition was heated and cured for 90 minutes to prepare a test piece for measuring heat resistance, and the heat resistance was measured. Further, this test piece was left at 125 ° C. for 1,000 hours, and the thermal resistance was again measured in the same manner. This thermal resistance measurement was performed with a nano flash model number: LFA447 manufactured by Niche.

[熱伝導性シリコーン組成物の硬化物厚さ測定]
前記熱抵抗測定に用いた被接着体及びシリコンウエハーの厚みを予めマイクロゲージで測定しておき、熱伝導性シリコーン組成物を挟み込み、125℃のオーブンに90分間装入して熱伝導性シリコーン組成物を加熱硬化させた後、同様に総計の厚みを計ることで熱伝導性シリコーン組成物の硬化物厚さを算出した。
[Measurement of cured product thickness of thermally conductive silicone composition]
The thickness of the adherend and silicon wafer used in the measurement of the thermal resistance was measured in advance with a micro gauge, the thermal conductive silicone composition was sandwiched, and the thermal conductive silicone composition was placed in an oven at 125 ° C. for 90 minutes. After the product was cured by heating, the thickness of the total amount was similarly measured to calculate the cured product thickness of the thermally conductive silicone composition.

[熱伝導性シリコーン組成物の粘度測定]
回転粘度計としてマルコム社製のマルコム粘度計(型番:PL−1TL)を用い、25℃、10rpmにて熱伝導性シリコーン組成物の粘度測定を行った。
[Measurement of viscosity of thermally conductive silicone composition]
Using a Malcolm viscometer (model number: PL-1TL) manufactured by Malcolm as a rotational viscometer, the viscosity of the thermally conductive silicone composition was measured at 25 ° C. and 10 rpm.

[熱伝導率の測定]
各熱伝導性シリコーン組成物を3cm厚の型に流し込み、キッチン用ラップを被せて京都電子工業(株)製のModel QTM−500で測定した。
[Measurement of thermal conductivity]
Each thermally conductive silicone composition was poured into a 3 cm thick mold, covered with a kitchen wrap, and measured with Model QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd.

Figure 0005093488
Figure 0005093488

Figure 0005093488
Figure 0005093488

成分(A)
A−1:両末端がジメチルビニルシリル基で封鎖され、25℃における粘度が600mm2/sのジメチルポリシロキサン
Ingredient (A)
A-1: Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a viscosity at 25 ° C. of 600 mm 2 / s

成分(B)
B−1:下記式で表されるオルガノハイドロジェンポリシロキサン

Figure 0005093488
25℃における粘度:27mm2/s Ingredient (B)
B-1: Organohydrogenpolysiloxane represented by the following formula
Figure 0005093488
Viscosity at 25 ° C .: 27 mm 2 / s

B−2:下記式で表されるオルガノハイドロジェンポリシロキサン

Figure 0005093488
25℃における粘度:28mm2/s B-2: Organohydrogenpolysiloxane represented by the following formula
Figure 0005093488
Viscosity at 25 ° C .: 28 mm 2 / s

B−3:下記式で表されるオルガノハイドロジェンポリシロキサン

Figure 0005093488
25℃における粘度:17mm2/s B-3: Organohydrogenpolysiloxane represented by the following formula
Figure 0005093488
Viscosity at 25 ° C .: 17 mm 2 / s

B−4:下記式で表されるオルガノハイドロジェンポリシロキサン

Figure 0005093488
25℃における粘度:33mm2/s B-4: Organohydrogenpolysiloxane represented by the following formula
Figure 0005093488
Viscosity at 25 ° C .: 33 mm 2 / s

B−5:下記式で表されるオルガノハイドロジェンポリシロキサン

Figure 0005093488
25℃における粘度:27mm2/s B-5: Organohydrogenpolysiloxane represented by the following formula
Figure 0005093488
Viscosity at 25 ° C .: 27 mm 2 / s

B−6:下記式で表されるオルガノハイドロジェンポリシロキサン

Figure 0005093488
25℃における粘度:83mm2/s B-6: Organohydrogenpolysiloxane represented by the following formula
Figure 0005093488
Viscosity at 25 ° C .: 83 mm 2 / s

成分(C)
C−1:平均粒径4.9μmのアルミニウム粉末(熱伝導率236W/m℃)
C−2:平均粒径15.0μmのアルミニウム粉末(熱伝導率236W/m℃)
C−3:平均粒径1.0μmの酸化亜鉛粉末(熱伝導率54W/m℃)
Ingredient (C)
C-1: Aluminum powder having an average particle size of 4.9 μm (thermal conductivity 236 W / m ° C.)
C-2: Aluminum powder having an average particle size of 15.0 μm (thermal conductivity 236 W / m ° C.)
C-3: Zinc oxide powder having an average particle size of 1.0 μm (thermal conductivity 54 W / m ° C.)

成分(D)
D−1:白金−ジビニルテトラメチルジシロキサン錯体のA−1溶液、白金原子として1%含有
Ingredient (D)
D-1: A-1 solution of platinum-divinyltetramethyldisiloxane complex, containing 1% as a platinum atom

成分(E)
E−1:1−エチニル−1−シクロヘキサノールの50%トルエン溶液
Ingredient (E)
E-1: 50% toluene solution of 1-ethynyl-1-cyclohexanol

濡れ性向上剤
濡れ性向上剤−1:C1021Si(OCH33
Wetting improver wettability improving agent -1: C 10 H 21 Si ( OCH 3) 3

テストピースの作製及び接着力の測定方法を示す図である。It is a figure which shows the preparation methods of a test piece, and the measuring method of adhesive force. 本発明に係わる半導体装置の一実施例の縦断面図である。It is a longitudinal cross-sectional view of one Example of the semiconductor device concerning this invention.

符号の説明Explanation of symbols

10 被接着体
12 熱伝導性シリコーン組成物
14 ニッケル板
20 プローブ
21 電子部品
22 金薄膜
23 熱伝導性シリコーン組成物
24 ヒートスプレッダー(放熱体)
25 オルガニック基板
26 接着剤
27 ハンダボール
DESCRIPTION OF SYMBOLS 10 To-be-adhered body 12 Thermal conductive silicone composition 14 Nickel plate 20 Probe 21 Electronic component 22 Gold thin film 23 Thermal conductive silicone composition 24 Heat spreader (heat radiator)
25 Organic substrate 26 Adhesive 27 Solder ball

Claims (4)

少なくとも表面が貴金属により形成されている固体被着体用の接着剤であって、
(A)成分:ケイ素原子に結合したアルケニル基を一分子中に少なくとも1個有するオルガノポリシロキサン;100質量部、
(B)成分:ケイ素原子に結合した水素原子を一分子中に5〜30個有するオルガノハイドロジェンポリシロキサン;{(B)成分由来のケイ素原子に結合した水素原子の個数}/{(A)成分由来のアルケニル基の個数}が0.3〜3.0となる量、
(C)成分:10W/m℃以上の熱伝導率を有する熱伝導性充填剤;100〜2,000質量部、
(D)成分:白金及び白金化合物からなる群より選択される触媒;白金原子として(A)成分と(B)成分の合計質量に対し0.1〜500ppmとなる量
を含有してなり、25℃における粘度が10〜1,000Pa・sである熱伝導性シリコーン組成物。
An adhesive for a solid adherend having at least a surface formed of a noble metal,
(A) component: organopolysiloxane having at least one alkenyl group bonded to a silicon atom in one molecule; 100 parts by mass;
Component (B): organohydrogenpolysiloxane having 5 to 30 hydrogen atoms bonded to silicon atoms in one molecule; {(B) number of hydrogen atoms bonded to silicon atoms derived from component} / {(A) The number of alkenyl groups derived from the component} is 0.3 to 3.0,
(C) Component: Thermally conductive filler having a thermal conductivity of 10 W / m ° C. or higher; 100 to 2,000 parts by mass;
Component (D): a catalyst selected from the group consisting of platinum and platinum compounds; containing an amount of 0.1 to 500 ppm as a platinum atom with respect to the total mass of components (A) and (B), 25 A thermally conductive silicone composition having a viscosity at 10 ° C. of 10 to 1,000 Pa · s.
少なくとも表面が貴金属により形成されている固体被着体の表面に、請求項1記載の熱伝導性シリコーン組成物の硬化物が接着されてなる熱伝導性シリコーン接着構造体。   The heat conductive silicone adhesion structure formed by adhere | attaching the hardened | cured material of the heat conductive silicone composition of Claim 1 to the surface of the solid to-be-adhered body in which the surface is at least formed with the noble metal. 前記熱伝導性シリコーン組成物の硬化物の厚さが、5〜500μmであることを特徴とする請求項2記載の熱伝導性シリコーン接着構造体。   The thermally conductive silicone adhesive structure according to claim 2, wherein the cured product of the thermally conductive silicone composition has a thickness of 5 to 500 µm. 少なくとも表面が貴金属により形成されている固体被着体が半導体チップであって、該半導体チップから発生した熱を、熱伝導性シリコーン組成物の硬化物を通して放熱体に伝える請求項2又は3記載の接着構造体の構成となっていることを特徴とする半導体装置。   The solid adherend having at least a surface formed of a noble metal is a semiconductor chip, and heat generated from the semiconductor chip is transmitted to the heat radiating body through a cured product of the thermally conductive silicone composition. A semiconductor device having a structure of an adhesive structure.
JP2008105313A 2008-04-15 2008-04-15 Thermally conductive silicone composition, adhesive structure, and semiconductor device Expired - Fee Related JP5093488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105313A JP5093488B2 (en) 2008-04-15 2008-04-15 Thermally conductive silicone composition, adhesive structure, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105313A JP5093488B2 (en) 2008-04-15 2008-04-15 Thermally conductive silicone composition, adhesive structure, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2009256428A JP2009256428A (en) 2009-11-05
JP5093488B2 true JP5093488B2 (en) 2012-12-12

Family

ID=41384276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105313A Expired - Fee Related JP5093488B2 (en) 2008-04-15 2008-04-15 Thermally conductive silicone composition, adhesive structure, and semiconductor device

Country Status (1)

Country Link
JP (1) JP5093488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067153A (en) * 2010-09-21 2012-04-05 Shin-Etsu Chemical Co Ltd Thermally conductive silicone adhesive composition and thermally conductive silicone elastomer molding

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138857A (en) * 2009-12-28 2011-07-14 Shin-Etsu Chemical Co Ltd Method of manufacturing electronic device with excellent heat dissipation and rework properties, and electronic device
JP5447337B2 (en) * 2010-10-29 2014-03-19 信越化学工業株式会社 Silicon structure manufacturing method and semiconductor device
WO2013129600A1 (en) * 2012-03-02 2013-09-06 富士高分子工業株式会社 Putty-like heat transfer material and method for producing same
WO2023243712A1 (en) * 2022-06-17 2023-12-21 積水化学工業株式会社 Thermally conductive composition and thermally conductive member

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065699B2 (en) * 1987-09-16 1994-01-19 日本電気株式会社 Semiconductor device
JP2865496B2 (en) * 1992-08-24 1999-03-08 株式会社日立製作所 Multi-chip module
JPH07249718A (en) * 1994-03-09 1995-09-26 Fujitsu Ltd Semiconductor device
JP3580358B2 (en) * 2000-06-23 2004-10-20 信越化学工業株式会社 Thermal conductive silicone composition and semiconductor device
JP3803058B2 (en) * 2001-12-11 2006-08-02 信越化学工業株式会社 Thermally conductive silicone composition, cured product thereof, laying method, and heat dissipation structure of semiconductor device using the same
JP4162955B2 (en) * 2002-09-13 2008-10-08 信越化学工業株式会社 Adhesive silicone composition for heat dissipation member
JP4154605B2 (en) * 2004-01-23 2008-09-24 信越化学工業株式会社 Thermally conductive silicone heat dissipation composition and method for manufacturing heat dissipation structure
JP4803365B2 (en) * 2006-02-22 2011-10-26 信越化学工業株式会社 Thermally conductive silicone composition, thermally conductive silicone molded article and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067153A (en) * 2010-09-21 2012-04-05 Shin-Etsu Chemical Co Ltd Thermally conductive silicone adhesive composition and thermally conductive silicone elastomer molding

Also Published As

Publication number Publication date
JP2009256428A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
KR101244566B1 (en) Heat conductive silicone grease composition and cured products thereof
JP5843368B2 (en) Thermally conductive silicone composition and cured product thereof
JP5447337B2 (en) Silicon structure manufacturing method and semiconductor device
TWI755437B (en) One-liquid curable thermal conductive silicone grease composition and electric/electronic article
JP4656340B2 (en) Thermally conductive silicone grease composition
JP5640945B2 (en) Curable organopolysiloxane composition and semiconductor device
TWI736699B (en) Thermally conductive silicon-oxygen composition, semiconductor device, and manufacturing method of semiconductor device
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
EP1878767A1 (en) Heat conductive silicone grease composition and cured product thereof
JP5565758B2 (en) Curable, grease-like thermally conductive silicone composition and semiconductor device
JP4913874B2 (en) Curable organopolysiloxane composition and semiconductor device
JP5898139B2 (en) Thermally conductive silicone composition
JP2008038137A (en) Heat conductive silicone grease composition and cured product thereof
JP5365572B2 (en) Room temperature moisture thickening type thermally conductive silicone grease composition
JP5472055B2 (en) Thermally conductive silicone grease composition
JP2010013521A (en) Heat conductive silicone composition
JP5093488B2 (en) Thermally conductive silicone composition, adhesive structure, and semiconductor device
JP2009235279A (en) Heat-conductive molding and manufacturing method therefor
WO2018025502A1 (en) Thermally conductive silicone composition
JP7371249B2 (en) High thermal conductivity silicone composition
JP6314710B2 (en) Thermally conductive silicone composition
KR20160135690A (en) Silicone composition having excellent long-term storage stability and heat-radiating function
JP7467017B2 (en) Thermally conductive silicone composition and cured product thereof
WO2024084897A1 (en) Curable organopolysiloxane composition and semiconductor device
JP5045922B2 (en) Thermally conductive silicone adhesive structure, manufacturing method thereof, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees