JP2010013521A - Heat conductive silicone composition - Google Patents

Heat conductive silicone composition Download PDF

Info

Publication number
JP2010013521A
JP2010013521A JP2008173240A JP2008173240A JP2010013521A JP 2010013521 A JP2010013521 A JP 2010013521A JP 2008173240 A JP2008173240 A JP 2008173240A JP 2008173240 A JP2008173240 A JP 2008173240A JP 2010013521 A JP2010013521 A JP 2010013521A
Authority
JP
Japan
Prior art keywords
mass
group
component
compounds
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008173240A
Other languages
Japanese (ja)
Inventor
Kunihiro Yamada
邦弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008173240A priority Critical patent/JP2010013521A/en
Publication of JP2010013521A publication Critical patent/JP2010013521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat conductive silicone composition exhibiting both of good high thermal conductivity and insulating property. <P>SOLUTION: The heat conductive silicone composition has a viscosity of 100 to 1,000 Pas at 25°C before cured, and contains: (A) organopolysiloxane having a specified viscosity and having two or more alkenyl groups bonded to silicon atoms in one molecule; (B) organohydrogenpolysiloxane having two or more SiH groups in one molecule; (C) Al powder having an average particle diameter of 0.5 to 50 μm and an oxygen amount of 0.5 to 5.0 mass%; (E) at least one kind selected from (E1) organosilane expressed by the formula of R<SP>1</SP><SB>a</SB>R<SP>2</SP><SB>b</SB>Si(OR<SP>3</SP>)<SB>4-a-b</SB>and (E2) hydrolyzable methylpolysiloxane having three functional groups at one end shown in the figure; (F) a catalyst selected from a group of platinum and platinum compounds; (G) a reaction controlling agent selected from acetylene compounds, nitrogen compounds, organic phosphorus compounds, oxime compounds and organic chlorine compounds; and (D) heat conductive powder other than the Al powder component (C), having an average particle diameter of 0.1 to 5.0 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱伝導性及び絶縁性に優れたシリコーン組成物に関する。   The present invention relates to a silicone composition excellent in thermal conductivity and insulation.

電子部品の多くは使用中に熱が発生するので、その電子部品を適切に機能させるためには、その電子部品から熱を取り除くことが必要である。特にパーソナルコンピューターに使用されているCPU等の集積回路素子は、動作周波数の高速化により発熱量が増大しており、熱対策が重要な問題となっている。   Since many electronic components generate heat during use, it is necessary to remove the heat from the electronic components in order for the electronic components to function properly. In particular, an integrated circuit element such as a CPU used in a personal computer has an increased amount of heat generated due to an increase in operating frequency, and countermeasures against heat are an important issue.

この熱を除去する手段として多くの方法が提案されている。特に発熱量の多い電子部品では、電子部品とヒートシンク等の部材の間に熱伝導性グリースや熱伝導性シートの熱伝導性材料を介在させて熱を逃がす方法が提案されている(特許文献1及び特許文献2参照)。   Many methods have been proposed as means for removing this heat. In particular, in an electronic component that generates a large amount of heat, a method for releasing heat by interposing a heat conductive grease or a heat conductive material such as a heat conductive sheet between the electronic component and a member such as a heat sink has been proposed (Patent Document 1). And Patent Document 2).

また、この熱伝導性材料としては、シリコーンオイルをベースとし、酸化亜鉛やアルミナ粉末を配合した放熱グリースが知られている(特許文献3及び特許文献4参照)。   Moreover, as this heat conductive material, the thermal radiation grease which mix | blended the zinc oxide and the alumina powder based on silicone oil is known (refer patent document 3 and patent document 4).

更に、熱伝導性を向上させるために、窒化アルミニウム粉末を用いたものとして、上記特許文献1には、液状オルガノシリコーンキャリア、シリカファイバー、並びにデンドライト状酸化亜鉛、薄片状窒化アルミニウム及び薄片状窒化ホウ素から選択される少なくとも1種からなる揺変性熱伝導材料が開示されている。また、特許文献5には、特定のオルガノポリシロキサンに一定粒径範囲の球状六方晶系窒化アルミニウム粉末を配合したシリコーングリース組成物が、特許文献6には、粒径の細かい窒化アルミニウム粉末と粒径の粗い窒化アルミニウム粉末とを組み合わせた熱伝導性シリコーングリースが、特許文献7には、窒化アルミニウム粉末と酸化亜鉛粉末とを組み合わせた熱伝導性シリコーングリースが、特許文献8には、オルガノシランで表面処理した窒化アルミニウム粉末を用いた熱伝導性グリース組成物が開示されている。   Furthermore, in order to improve the thermal conductivity, the above Patent Document 1 discloses that a liquid organosilicone carrier, silica fiber, dendritic zinc oxide, flaky aluminum nitride and flaky boron nitride are used. A thixotropic heat-conducting material consisting of at least one selected from is disclosed. Patent Document 5 discloses a silicone grease composition obtained by blending a specific organopolysiloxane with a spherical hexagonal aluminum nitride powder having a certain particle size range, and Patent Document 6 discloses a fine particle aluminum nitride powder and particles. A thermally conductive silicone grease combined with a coarse-grained aluminum nitride powder is disclosed in Patent Document 7; a thermally conductive silicone grease combined with an aluminum nitride powder and a zinc oxide powder is disclosed in Patent Document 8; A thermally conductive grease composition using surface-treated aluminum nitride powder is disclosed.

窒化アルミニウムの熱伝導率は70〜270W/mKであり、これより熱伝導性の高い材料として熱伝導率900〜2,000W/mKのダイヤモンドがある。特許文献9には、シリコーン樹脂に、ダイヤモンド、酸化亜鉛、及び分散剤を配合した熱伝導性シリコーン組成物が開示されている。   Aluminum nitride has a thermal conductivity of 70 to 270 W / mK, and diamond having a thermal conductivity of 900 to 2,000 W / mK is a material having a higher thermal conductivity. Patent Document 9 discloses a thermally conductive silicone composition in which diamond, zinc oxide, and a dispersant are blended with a silicone resin.

また、金属は熱伝導率の高い材料であり、電子部品の絶縁を必要としない個所には使用可能である。特許文献10には、シリコーンオイル等の基油に金属アルミニウム粉末を配合した熱伝導性グリース組成物が開示されている。   In addition, metal is a material having high thermal conductivity, and can be used in places where electronic components do not require insulation. Patent Document 10 discloses a thermally conductive grease composition in which metallic aluminum powder is blended with a base oil such as silicone oil.

金属アルミニウム粉末は、シリコーンオイル等への濡れ性が非常に良いため充填率を上げ易く、高熱伝導性能を得るためには非常に有効な熱伝導性充填剤である。しかし金属粉末であるため、絶縁性を必要とする箇所には使用しがたい。一方、絶縁性を有するアルミナ粉末、酸化亜鉛粉末などの金属酸化物粉末や、窒化アルミニウム粉末、窒化ホウ素粉末、窒化ケイ素などのセラミック粉末はシリコーンオイル等への十分な濡れ性がないため高充填しにくく、アルミニウム粉末を使用した場合に比べ高熱伝導性能を得ることが出来なかった。即ち、良好な高熱伝導性と絶縁性とを両立する熱伝導性シリコーン組成物を得ることは困難であった。   The metallic aluminum powder is very effective in obtaining wettability to silicone oil and the like, so that the filling rate can be easily increased and high heat conduction performance can be obtained. However, since it is a metal powder, it is difficult to use it in places that require insulation. On the other hand, metal powders such as insulating alumina powder and zinc oxide powder, and ceramic powders such as aluminum nitride powder, boron nitride powder, and silicon nitride do not have sufficient wettability with silicone oil, etc. It was difficult to obtain high thermal conductivity compared to the case of using aluminum powder. That is, it has been difficult to obtain a heat conductive silicone composition having both good high heat conductivity and insulating properties.

特開昭56−28264号公報JP-A-56-28264 特開昭61−157587号公報JP-A 61-157487 特公昭52−33272号公報Japanese Patent Publication No.52-33272 特公昭59−52195号公報Japanese Patent Publication No.59-52195 特開平2−153995号公報Japanese Patent Laid-Open No. 2-153955 特開平3−14873号公報Japanese Patent Laid-Open No. 3-14873 特開平10−110179号公報JP-A-10-110179 特開2000−63872号公報JP 2000-63872 A 特開2002−30217号公報JP 2002-30217 A 特開2000−63873号公報JP 2000-63873 A

本発明は、上記事情に鑑みなされたもので、良好な高熱伝導性と絶縁性の両方を示す熱伝導性シリコーン組成物を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the heat conductive silicone composition which shows both favorable high heat conductivity and insulation.

本発明者等は、上記目的を達成するために種々検討した結果、オイル状のオルガノポリシロキサンに平均粒径が0.5〜50μmであり且つ0.5〜5.0質量%の酸素量をもつアルミニウム粉末を高充填することにより得られた熱伝導性シリコーン組成物は、良好な熱伝導性及び絶縁性を有することを見出し、本発明をなすに至った。   As a result of various studies to achieve the above object, the present inventors have determined that the oily organopolysiloxane has an average particle size of 0.5 to 50 μm and an oxygen amount of 0.5 to 5.0 mass%. It has been found that a heat conductive silicone composition obtained by high-filling an aluminum powder having good heat conductivity and insulation has led to the present invention.

即ち、本発明は、下記成分(A)〜(G):
(A)1分子中に少なくとも2個の、ケイ素原子に結合したアルケニル基を有する、25℃の粘度が10〜100,000mm2/sのオルガノポリシロキサン 100質量部、
(B)1分子中に少なくとも2個のSi-H基を有するオルガノハイドロジェンポリシロキサン {Si-H基の個数}/{成分(A)中のアルケニル基の個数}が0.5〜5.0となる量、
(C)平均粒径が0.5〜50μmであり、0.5〜5.0質量%の酸素量をもつアルミニウム粉末 500〜1300質量部、
(E)下記(E1)及び(E2)から選ばれる少なくとも1種:
(E1)下記一般式(1)で示されるオルガノシラン:
a Si(OR34-a-b (1)
(式中、Rは炭素数9〜15のアルキル基、Rは炭素数1〜8の炭化水素基、R3は、各々独立して炭素数1〜6のアルキル基、aは1〜3の整数、bは0〜2の整数、a+bは1〜3の整数である)0.01〜15質量部、及び
(E2)下記一般式(2)で表される片末端3官能加水分解性メチルポリシロキサン:
That is, the present invention includes the following components (A) to (G):
(A) 100 parts by mass of an organopolysiloxane having at least two alkenyl groups bonded to silicon atoms in one molecule and having a viscosity at 25 ° C. of 10 to 100,000 mm 2 / s,
(B) An organohydrogenpolysiloxane having at least two Si—H groups in one molecule {number of Si—H groups} / {number of alkenyl groups in component (A)} is 0.5 to 5.0 ,
(C) 500 to 1300 parts by mass of aluminum powder having an average particle size of 0.5 to 50 μm and an oxygen content of 0.5 to 5.0% by mass;
(E) At least one selected from the following (E1) and (E2):
(E1) Organosilane represented by the following general formula (1):
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
Wherein R 1 is an alkyl group having 9 to 15 carbon atoms, R 2 is a hydrocarbon group having 1 to 8 carbon atoms, R 3 is each independently an alkyl group having 1 to 6 carbon atoms, and a is 1 to 1 An integer of 3, b is an integer of 0 to 2, a + b is an integer of 1 to 3) 0.01 to 15 parts by mass, and (E2) one terminal trifunctional hydrolyzable methyl represented by the following general formula (2) Polysiloxane:

Figure 2010013521
・・・(2)

(式中、R4は炭素数1〜6のアルキル基、cは5〜100の整数である)1〜100質量部、
(F)白金及び白金化合物からなる群より選択される触媒 白金元素として成分(A)の0.1〜500ppmとなる量、及び
(G)アセチレン化合物、窒素化合物、有機リン化合物、オキシム化合物、及び有機クロロ化合物より選択される少なくとも1種の反応制御剤 0.01〜1質量部
を含む、25℃での硬化前の粘度が100〜1000Pasである熱伝導性シリコーン組成物である。
Figure 2010013521
... (2)

(Wherein R 4 is an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100) 1 to 100 parts by mass,
(F) a catalyst selected from the group consisting of platinum and platinum compounds, and an amount of 0.1 to 500 ppm of component (A) as platinum element, and (G) acetylene compounds, nitrogen compounds, organophosphorus compounds, oxime compounds, and organic chloro It is a thermally conductive silicone composition having a viscosity of 100 to 1000 Pas at 25 ° C. before curing, comprising 0.01 to 1 part by mass of at least one reaction control agent selected from compounds.

本発明の熱伝導性シリコーン組成物は、良好な熱伝導率と絶縁性との両方を兼ね備える。   The thermally conductive silicone composition of the present invention has both good thermal conductivity and insulating properties.

以下、本発明の組成物に用いる各成分について説明する。
[成分(A)]
成分(A)のオルガノポリシロキサンは、ケイ素原子に直結したアルケニル基を1分子中に少なくとも2個有するもので、直鎖状でも分岐状でもよく、また異なる粘度の2種以上の混合物でも良い。アルケニル基としては、ビニル基、アリル基、1−ブテニル基、1−ヘキセニル基など炭素原子数2〜6のアルケニル基が例示されるが、合成のし易さ及びコストの面からビニル基が好ましい。ケイ素原子に結合する残余の有機基としては、メチル基、エチル基、プルピル基、ブチル基、ヘキシル基、ドデシル基などのアルキル基;フェニル基などのアリール基;2−フェニルエチル基、2−フェニルプロピル基などのアラルキル基が例示され、さらにクロロメチル基、3.3.3.−トリフルオロプロピル基などのハロゲン原子置換アルキル基も例示される。これらのうち、合成のし易さ及びコストの面からメチル基が好ましい。ケイ素原子に結合するアルケニル基は、オルガノポリシロキサンの分子鎖の末端、途中の何れに存在してもよいが、すくなくとも末端に存在することが好ましい。該オルガノポリシロキサンは、25℃における粘度が好ましくは10〜100,000mm2/sの範囲、更に好ましくは100〜50,000mm2/sの範囲にあるものが良い。粘度が10mm2/sより低いと得られる組成物の保存安定性が悪くなり、100,000mm2/sより大きくなると得られる組成物の進展性が悪くなる。なお、オルガノポリシロキサンの粘度は、オストワルド粘度計により測定される25℃における動粘度である。
Hereinafter, each component used for the composition of this invention is demonstrated.
[Component (A)]
The organopolysiloxane of component (A) has at least two alkenyl groups directly bonded to silicon atoms in one molecule, and may be linear or branched, or a mixture of two or more of different viscosities. Examples of the alkenyl group include alkenyl groups having 2 to 6 carbon atoms such as vinyl group, allyl group, 1-butenyl group and 1-hexenyl group, but vinyl group is preferable from the viewpoint of ease of synthesis and cost. . Examples of the remaining organic group bonded to the silicon atom include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a dodecyl group; an aryl group such as a phenyl group; a 2-phenylethyl group, and a 2-phenylpropylene group. An aralkyl group such as a chloro group, and a halogen atom-substituted alkyl group such as a chloromethyl group and 3.3.3.-trifluoropropyl group are also exemplified. Among these, a methyl group is preferable from the viewpoint of ease of synthesis and cost. The alkenyl group bonded to the silicon atom may be present at any end of the molecular chain of the organopolysiloxane, but it is preferably at least at the end. The organopolysiloxane preferably has a viscosity at 25 ° C. of preferably 10 to 100,000 mm 2 / s, more preferably 100 to 50,000 mm 2 / s. When the viscosity is lower than 10 mm 2 / s, the storage stability of the resulting composition is deteriorated, and when it is higher than 100,000 mm 2 / s, the progress of the obtained composition is deteriorated. The viscosity of the organopolysiloxane is a kinematic viscosity at 25 ° C. measured with an Ostwald viscometer.

[成分(B)]
成分(B)のSi-H基を有するオルガノハイドロジェンポリシロキサンは、架橋により組成物を網状化するためにSi-H基を1分子中に少なくとも2個有することが必要である。ケイ素原子に結合する残余の有機基としてはメチル基、エチル基、プルピル基、ブチル基、ヘキシル基、ドデシル基などのアルキル基;フェニル基などのアリール基;2-フェニルエチル基、2-フェニルプロピル基などのアラルキル基が例示され、さらにクロロメチル基、3.3.3.-トリフルオロプロピル基などのハロゲン置換アルキル基も例示される。これらのうち、合成のし易さ、コストの面からメチル基が好ましい。かかるSi-H基を有するオルガノポリシロキサンは、直鎖状、分岐状および環状のいずれであっても良く、またこれらの混合物であっても良い。成分(B)の配合量は、成分(A)中のアルケニル基の数に対する成分(B)中のSi-H基の数、即ち、{Si-H基の個数}/{成分(A)中のアルケニル基の個数}、が0.5〜5.0、好ましくは1.0〜3.0、となる量である。この比が0.5より小さいと組成物を硬化した場合、十分な網状構造をとれず、また硬化後の必要な硬さが得られず、5.0より大きいと脱水素反応が起こりやすく危険である。
[Component (B)]
The organohydrogenpolysiloxane having Si—H groups as component (B) needs to have at least two Si—H groups in one molecule in order to reticulate the composition by crosslinking. Examples of the remaining organic group bonded to the silicon atom include an alkyl group such as a methyl group, an ethyl group, a purpyl group, a butyl group, a hexyl group, and a dodecyl group; an aryl group such as a phenyl group; a 2-phenylethyl group, and 2-phenylpropyl Examples thereof include aralkyl groups such as a group, and further examples include halogen-substituted alkyl groups such as a chloromethyl group and 3.3.3.-trifluoropropyl group. Of these, a methyl group is preferred from the viewpoint of ease of synthesis and cost. Such organopolysiloxane having a Si—H group may be linear, branched or cyclic, or a mixture thereof. The blending amount of component (B) is the number of Si—H groups in component (B) relative to the number of alkenyl groups in component (A), ie {number of Si—H groups} / {in component (A). The number of alkenyl groups in the formula is 0.5 to 5.0, preferably 1.0 to 3.0. If this ratio is less than 0.5, when the composition is cured, a sufficient network structure cannot be obtained, and the necessary hardness after curing cannot be obtained. If the ratio is more than 5.0, a dehydrogenation reaction is likely to occur.

[成分(C)]
成分(C)のアルミニウム粉末は、平均粒径が0.5〜50μmの範囲、好ましく1.0〜30μmの範囲、更に好ましくは1.0〜20μmの範囲のものである。平均粒径が0.5μm未満では高充填が難しくなり、50μmを超えるとシリコーングリースが不均一になる。なお、本発明において、平均粒径は、例えばレーザー回折法等による体積平均径(又は累積平均径:メディアン径)として求めることができる。
成分(C)のアルミニウム粉末はまた、0.5〜5.0質量%、好ましくは0.5〜3.0質量%の範囲の酸素を含む。酸素量が0.5質量%より小さいと良好な絶縁性を示さず、5.0質量%よりも大きいとベースオイルとの濡れ性が悪くなる。
アルミニウムの酸素量を増やす方法としては、アルミニウム粉末を数百度の高温槽に放置し酸化を進行させるか、あるいは恒温恒湿槽などの機器を使用し高温多湿下で放置することでも得られる。しかしながら、酸素量さえ特定の範囲にあれば良く、特にこれらの方法に限ったものではない。また、酸素量の測定はJIS Z 2613の不活性ガス融解-赤外線吸収法に準拠して測定することが出来る。
上記アルミニウム粉末の配合割合は、成分(A)100質量部に対して500〜1300質量部の範囲、好ましくは600〜1000質量部の範囲である。500質量部より小さいと得られる組成物の熱伝導率が十分ではなく、一方1300質量部より大きいと硬化前の熱伝導性シリコーン組成物の流動性がなくなり、作業性が低下する。
[Component (C)]
The aluminum powder of component (C) has an average particle size in the range of 0.5 to 50 μm, preferably in the range of 1.0 to 30 μm, and more preferably in the range of 1.0 to 20 μm. When the average particle size is less than 0.5 μm, high filling becomes difficult, and when it exceeds 50 μm, the silicone grease becomes non-uniform. In the present invention, the average particle diameter can be obtained as, for example, a volume average diameter (or cumulative average diameter: median diameter) by a laser diffraction method or the like.
The aluminum powder of component (C) also contains oxygen in the range of 0.5 to 5.0% by weight, preferably 0.5 to 3.0% by weight. When the amount of oxygen is less than 0.5% by mass, good insulation is not exhibited, and when it is greater than 5.0% by mass, the wettability with the base oil is deteriorated.
As a method for increasing the amount of oxygen in aluminum, the aluminum powder can be left in a high temperature bath of several hundred degrees to advance the oxidation, or can be left in a high temperature and high humidity using a device such as a constant temperature and humidity chamber. However, the oxygen amount only needs to be within a specific range, and is not limited to these methods. The amount of oxygen can be measured in accordance with JIS Z 2613 inert gas melting-infrared absorption method.
The blending ratio of the aluminum powder is in the range of 500 to 1300 parts by mass, preferably in the range of 600 to 1000 parts by mass with respect to 100 parts by mass of the component (A). If it is less than 500 parts by mass, the resulting composition has insufficient thermal conductivity, whereas if it is greater than 1300 parts by mass, the fluidity of the thermally conductive silicone composition before curing is lost and workability is reduced.

[成分(D)]
本発明では、更に熱伝導性を向上させるために、成分(D)として、上記成分(C)アルミニウム粉末以外の平均粒径が0.1〜5.0μmの熱伝導性粉末、例えば、酸化亜鉛粉末、酸化アルミニウム粉末、窒化ホウ素粉末、窒化アルミニウム粉末、炭化ケイ素粉末などの無機粉末を添加してもよい。ここで熱伝導性粉末とは、室温で熱伝導率が5W/(m・℃)以上の粉末を云う。
平均粒径が0.1〜5.0μmである熱伝導性粉末を1種もしくは2種以上添加すると、シリコーン中で充填されたアルミニウム粉末の隙間に入り込むことで充填性が向上する。また本発明の熱伝導性シリコーン組成物の安定性が向上し、オイル分離を防ぐことができるために好ましい。平均粒径が0.1μm未満では嵩密度が大きくなるために高充填が難しくなるおそれがあり、5.0μmを超えるとアルミニウム粉末との組合せによる最密充填ができなくなるおそれがある。ので、平均粒径は0.1〜5.0μmの範囲であることが好ましく、より好ましくは0.2〜3.0μmの範囲である。
成分(D)の熱伝導性粉末の配合量は、成分(A)100質量部に対して0〜500質量部の範囲であることが好ましく、より好ましくは50〜500質量部、特に好ましくは100〜400質量部の範囲である。500質量部より多いと熱伝導性シリコーングリース組成物の流動性がなくなり、作業性が低下する場合がある。なお、成分(C)及び(D)の合計配合量は、熱伝導性シリコーン組成物中60〜90体積%、特に70〜85体積%であることが好ましい。
[Component (D)]
In the present invention, in order to further improve the thermal conductivity, as the component (D), a thermal conductive powder having an average particle size other than the above component (C) aluminum powder of 0.1 to 5.0 μm, for example, zinc oxide Inorganic powders such as powder, aluminum oxide powder, boron nitride powder, aluminum nitride powder, and silicon carbide powder may be added. Here, the thermally conductive powder refers to a powder having a thermal conductivity of 5 W / (m · ° C.) or more at room temperature.
When one or more heat conductive powders having an average particle size of 0.1 to 5.0 μm are added, the filling property is improved by entering the gaps between the aluminum powders filled in the silicone. Moreover, it is preferable because the stability of the heat conductive silicone composition of the present invention is improved and oil separation can be prevented. If the average particle size is less than 0.1 μm, the bulk density increases, so that high filling may be difficult, and if it exceeds 5.0 μm, close-packing with a combination with aluminum powder may not be possible. Therefore, the average particle size is preferably in the range of 0.1 to 5.0 μm, more preferably in the range of 0.2 to 3.0 μm.
The blending amount of the heat conductive powder of component (D) is preferably in the range of 0 to 500 parts by weight, more preferably 50 to 500 parts by weight, particularly preferably 100 with respect to 100 parts by weight of component (A). It is the range of -400 mass parts. When the amount is more than 500 parts by mass, the fluidity of the thermally conductive silicone grease composition is lost, and workability may be reduced. In addition, it is preferable that the total compounding quantity of component (C) and (D) is 60-90 volume% in a heat conductive silicone composition, especially 70-85 volume%.

[成分(E)]
成分(E)として、一般式:R a Si(OR34-a-b (1)
(式中、R、R、R3、a、及びbは前に定義した通りである)で表されるオルガノシランが使用し得る。ベースオイルである成分(A)は成分(C)及び(D)のような充填剤との濡れ性が悪く、ウエッター(濡れ性向上剤)を添加して混合しないと充填剤を充分な量で充填することができない。そこで種々検討した結果、上記一般式のオルガノシランを添加することで成分(C)及び(D)の充填量を著しくあげられることを見いだした。
ウエッターとして用いられるオルガノシランの上記一般式中のR1の具体例としては、例えばノニル基、デシル基、ドデシル基、テトラデシル基等の炭素数9−15のアルキル基が挙げられる。アルキル基の炭素数が9より小さいと充填剤との濡れ性が充分でなく、15より大きいと上記オルガノシランが常温で固化するので、取り扱いが不便な上、得られた組成物の低温特性が低下する。
[Ingredient (E)]
Ingredient as a (E), the general formula: R 1 a R 2 b Si (OR 3) 4-ab (1)
(Wherein R 1 , R 2 , R 3 , a, and b are as previously defined) can be used. Component (A), which is a base oil, has poor wettability with fillers such as components (C) and (D), and if a wetter (wetting improver) is not added and mixed, a sufficient amount of filler is filled. Can not do it. As a result of various studies, it has been found that the amount of the components (C) and (D) can be significantly increased by adding the organosilane of the above general formula.
Specific examples of R 1 in the above general formula of the organosilane used as a wetter include, for example, alkyl groups having 9 to 15 carbon atoms such as nonyl group, decyl group, dodecyl group, tetradecyl group and the like. If the carbon number of the alkyl group is less than 9, the wettability with the filler is not sufficient, and if it is greater than 15, the organosilane solidifies at room temperature, which is inconvenient to handle and the low temperature characteristics of the resulting composition are low. descend.

上記一般式中のaは1、2又は3であるが、1であるのが好ましい。上記一般式中のbは0、1又は2であるが、0であるのが好ましい。
また、上記一般式中のR2は炭素数1〜8の飽和若しくは不飽和の1価の炭化水素基であり、この様な基としてはアルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、これらの基の水素原子の1つ以上をハロゲン原子で置換した基等を挙げることができる。例えばメチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロヘキシル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;3,3,3-トリフロロプロピル基、2-(パーフロロブチル)エチル基、2-(パーフロロオクチル)エチル基、p-クロロフェニル基等のハロゲン置換アルキル基が挙げられるが、特にメチル基、エチル基が好ましい。
上記一般式中のRはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などの炭素数1〜6の1種もしくは2種以上のアルキル基であり、特にメチル基又はエチル基が好ましい。
A in the above general formula is 1, 2 or 3, and is preferably 1. Although b in the above general formula is 0, 1 or 2, it is preferably 0.
R 2 in the above general formula is a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms. Examples of such a group include an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, and an aralkyl group. Groups, groups obtained by substituting one or more hydrogen atoms of these groups with halogen atoms, and the like. For example, alkyl groups such as methyl group, ethyl group, propyl group, hexyl group and octyl group; cyclohexyl groups such as cyclopentyl group and cyclohexyl group; alkenyl groups such as vinyl group and allyl group; aryl groups such as phenyl group and tolyl group; Aralkyl groups such as 2-phenylethyl group and 2-methyl-2-phenylethyl group; 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group And halogen-substituted alkyl groups such as a p-chlorophenyl group, and a methyl group and an ethyl group are particularly preferable.
R 3 in the above general formula is one or more alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, particularly a methyl group or an ethyl group. Groups are preferred.

一般式(1)で表されるオルガノシランの具体例としては、下記のものを挙げることができる:
C10H21Si(OCH33、C12H25Si(OCH33、C10H21Si(CH3)(OCH32、C10H21Si(C6H6)(OCH32、C10H21Si(CH3)(OC2H52、C10H21Si(CH=CH2)(OCH32、C10H21Si(CH2CH2CF3)(OCH32
一般式(1)のオルガノシランの配合量は、成分(A)100質量部に対して好ましくは0.01〜15質量部の範囲であり、更に好ましくは0.1〜10質量部である。0.01質量部より少ないと成分(A)の濡れ性が乏しいものとなり、15質量部より多くしても濡れ性の効果が増大することがなく、不経済である。
Specific examples of the organosilane represented by the general formula (1) include the following:
C 10 H 21 Si (OCH 3 ) 3 , C 12 H 25 Si (OCH 3 ) 3 , C 10 H 21 Si (CH 3 ) (OCH 3 ) 2 , C 10 H 21 Si (C 6 H 6 ) (OCH 3) 2, C 10 H 21 Si (CH 3) (OC 2 H 5) 2, C 10 H 21 Si (CH = CH 2) (OCH 3) 2, C 10 H 21 Si (CH 2 CH 2 CF 3 ) (OCH 3 ) 2 .
The amount of the organosilane of the general formula (1) is preferably in the range of 0.01 to 15 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A). If the amount is less than 0.01 parts by mass, the wettability of the component (A) becomes poor, and if it exceeds 15 parts by mass, the effect of the wettability does not increase, which is uneconomical.

また、一般式(1)のオルガノシランの代わりに又はそれと併用して、成分(C)及び(D)のウエッター成分として、下記一般式(2)で表される片末端3官能加水分解性メチルポリシロキサンを使用し得る。   Further, instead of or in combination with the organosilane of the general formula (1), as a wetter component of the components (C) and (D), one-terminal trifunctional hydrolyzable methyl represented by the following general formula (2) Polysiloxanes can be used.

Figure 2010013521
・・・(2)

式(2)中、R4は炭素数1〜6のアルキル基であり、cは5〜100の整数であり、好ましくは10〜60の整数である。
この片末端3官能加水分解性メチルポリシロキサンの配合量は、成分(A)100質量部に対して1〜100質量部であることが好ましく、さらに好ましくは20〜50質量部である。1質量部より少ないとウェッター効果が期待できないし、100質量部より多くとも濡れ性の効果の増大は期待できず不経済である。本発明においては、成分(C)及び(D)のウエッター成分として、上記一般式(1)で表されるアルコキシシランと一般式(2)で表される片末端3官能加水分解性メチルポリシロキサンとを併用することもできる。
Figure 2010013521
... (2)

In the formula (2), R 4 is an alkyl group having 1 to 6 carbon atoms, c is an integer of 5 to 100, preferably 10 to 60 integers.
The blending amount of the one-terminal trifunctional hydrolyzable methylpolysiloxane is preferably 1 to 100 parts by mass, more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the component (A). If the amount is less than 1 part by mass, the wetter effect cannot be expected, and if it exceeds 100 parts by mass, an increase in wettability cannot be expected, which is uneconomical. In the present invention, as the wetter component of components (C) and (D), the alkoxysilane represented by the general formula (1) and the one-terminal trifunctional hydrolyzable methylpolysiloxane represented by the general formula (2) Can also be used in combination.

成分(E)として、一般式(1)のオルガノシラン及び一般式(2)の片末端3官能加水分解性メチルポリシロキサンを併用した場合、成分(E)の合計配合量は、成分(A)100質量部に対して0.01〜50質量部、好ましくは1〜40質量部である。   When the organosilane of the general formula (1) and the one-terminal trifunctional hydrolyzable methylpolysiloxane of the general formula (2) are used in combination as the component (E), the total amount of the component (E) is the component (A). It is 0.01-50 mass parts with respect to 100 mass parts, Preferably it is 1-40 mass parts.

[成分(F)]
成分(F)の白金および白金化合物から選ばれる触媒は、成分(A)のアルケニル基と成分(B)のSi-H基との間の付加反応の促進成分である。この成分(F)としては、例えば白金の単体、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金配位化合物などが挙げられる。成分(F)の配合量は成分(A)の重量に対し白金原子として0.1〜500ppmの範囲である。0.1ppmより少ないと触媒としての効果がなく、500ppmを越えても特に硬化速度の向上は期待できない。
[Component (F)]
The catalyst selected from platinum of component (F) and a platinum compound is a component for promoting the addition reaction between the alkenyl group of component (A) and the Si—H group of component (B). Examples of the component (F) include platinum alone, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, and platinum coordination compounds. The compounding quantity of a component (F) is the range of 0.1-500 ppm as a platinum atom with respect to the weight of a component (A). If it is less than 0.1 ppm, there is no effect as a catalyst, and even if it exceeds 500 ppm, no improvement in the curing rate can be expected.

[成分(G)]
成分(G)の反応制御剤は、室温でのヒドロシリル化反応の進行を抑え、シェルフライフ、ポットライフを延長させるものである。反応制御剤としては公知のものを使用することができ、アセチレン化合物、各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物から選ばれる1種又は2種以上が使用できる。成分(G)の配合量は、成分(A)100質量部に対して0.01〜1質量部、好ましくは0.01〜0.5質量部の範囲である。0.01質量部より少ないと充分なシェルフライフ、ポットライフが得られず、1質量部より多いと硬化性が低下する。
[Component (G)]
The reaction control agent of component (G) suppresses the progress of the hydrosilylation reaction at room temperature and extends shelf life and pot life. Known reaction control agents can be used, and one or more selected from acetylene compounds, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds can be used. The compounding quantity of a component (G) is 0.01-1 mass part with respect to 100 mass parts of components (A), Preferably it is the range of 0.01-0.5 mass part. If the amount is less than 0.01 parts by mass, sufficient shelf life and pot life cannot be obtained. If the amount is more than 1 part by mass, the curability decreases.

[その他の成分]
本発明には上記した成分(A)〜(G)以外に必要に応じて、素子と放熱体などを化学的に接着、固定するために接着助剤等を入れても良いし、劣化を防ぐために酸化防止剤等入れても良い。
[Other ingredients]
In the present invention, in addition to the components (A) to (G) described above, if necessary, an adhesion aid or the like may be added to chemically bond and fix the element and the heat radiating body to prevent deterioration. In order to prevent this, an antioxidant may be added.

本発明の熱伝導性シリコーン組成物は、上記成分(A)〜(G)を混合し、1液付加タイプとして長期低温保存できる。この熱伝導性シリコーン組成物は、場合によっては市販されているシリンジやカートリッジに詰めてディスペンス塗布することができる。このため、粘度が100Pasより低いとディスペンシス時に液垂れを起こしてしまうし、1000Pasより高いとディスペンス効率が悪くなるため、粘度100〜1000Pasの範囲で使用可能であるが、好ましくは100〜600Pasが良い。
本発明の熱伝導性シリコーン組成物はディスペンス装着後、素子などの発熱部材からの発熱によって硬化し、硬化後はこの組成物はタック性を有するので、ずれたり離脱することはない。またディスペンス装着後、積極的に加熱硬化させても良い。
The heat conductive silicone composition of the present invention can be stored at a low temperature for a long period of time as a one-component addition type by mixing the components (A) to (G). In some cases, this thermally conductive silicone composition can be dispensed by filling a commercially available syringe or cartridge. For this reason, if the viscosity is lower than 100 Pas, dripping occurs at the time of dispensing, and if it is higher than 1000 Pas, the dispensing efficiency is deteriorated. .
The thermally conductive silicone composition of the present invention is cured by heat generated from a heat-generating member such as an element after dispensing, and after curing, the composition has tackiness so that it is not displaced or detached. Further, after the dispensing is mounted, the heat curing may be actively performed.

以下、実施例を掲げて本発明をさらに詳述する。まず、本発明組成物を形成する以下の各成分を用意した。
成分(A):
A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における粘度が600mm2/sのジメチルポリシロキサン
A-2:両末端がジメチルビニルシリル基で封鎖され、25℃における粘度が30,000mm2/sのジメチルポリシロキサン
成分(B):
B-1:下記式で表されるオルガノハイドロジェンポリシロキサン
Hereinafter, the present invention will be described in further detail with reference to examples. First, the following components for forming the composition of the present invention were prepared.
Ingredient (A):
A-1: Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a viscosity at 25 ° C. of 600 mm 2 / s
A-2: Dimethylpolysiloxane component having both ends blocked with dimethylvinylsilyl groups and a viscosity at 25 ° C. of 30,000 mm 2 / s (B):
B-1: Organohydrogenpolysiloxane represented by the following formula

Figure 2010013521
Figure 2010013521

成分(C):下記のアルミニウム粉末と酸化亜鉛粉末を、5リットルプラネタリーミキサー(井上製作所(株)製)を用い下記(表-1)の混合比で室温にて15分混合し、C-1〜6を得た。
C−1:アルミニウム粉末(平均粒径5.6μm、酸素量2.7質量%)
C−2:アルミニウム粉末(平均粒径12.3μm、酸素量0.64質量%)
C−3:アルミニウム粉末(平均粒径7.6μm、酸素量0.31質量%)
C−4:アルミニウム粉末(平均粒径14.6μm、酸素量7.5質量%)
C−5:アルミニウム粉末(平均粒径0.4μm、酸素量3.0質量%)
C−6:アルミニウム粉末(平均粒径55.4μm、酸素量0.91質量%)
ここで、成分(C)の酸素濃度測定は、JIS Z 2613の不活性ガス融解−赤外線吸収法に準拠して行った。分析装置には堀場製作所製のOXYGEN/NITROGEN ANALYZER EMGA−523を使用した。また、上記成分(C)及び下記成分(D)の平均粒径は、日機装株式会社製の粒度分析計であるマイクロトラックMT3300EXにより測定した累積平均径(メディアン径)の値である。
成分(D)
D−1:アルミナ粉末(平均粒径1.4μm)
D−2:酸化亜鉛粉末(平均粒径:0.5μm)
D−3:アルミナ粉末(平均粒径6.5μm)
成分(E)
E−1:下記組成で表されるアルコキシシラン
1021Si(OCH33
E−2:下記組成式で表される加水分解性メチルポリシロキサン
Ingredient (C): The following aluminum powder and zinc oxide powder were mixed at room temperature for 15 minutes at a mixing ratio of the following (Table-1) using a 5 liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.). 1-6 were obtained.
C-1: Aluminum powder (average particle size 5.6 μm, oxygen content 2.7 mass%)
C-2: Aluminum powder (average particle size 12.3 μm, oxygen content 0.64 mass%)
C-3: Aluminum powder (average particle size 7.6 μm, oxygen content 0.31 mass%)
C-4: Aluminum powder (average particle size 14.6 μm, oxygen content 7.5% by mass)
C-5: Aluminum powder (average particle size 0.4 μm, oxygen content 3.0 mass%)
C-6: Aluminum powder (average particle size 55.4 μm, oxygen content 0.91 mass%)
Here, the oxygen concentration measurement of a component (C) was performed based on the inert gas melting-infrared absorption method of JISZ2613. OXYGEN / NITROGEN ANALYZER EMGA-523 manufactured by HORIBA, Ltd. was used as the analyzer. Moreover, the average particle diameter of the said component (C) and the following component (D) is a value of the cumulative average diameter (median diameter) measured by Microtrac MT3300EX which is a particle size analyzer made by Nikkiso Co., Ltd.
Ingredient (D)
D-1: Alumina powder (average particle size 1.4 μm)
D-2: Zinc oxide powder (average particle size: 0.5 μm)
D-3: Alumina powder (average particle size 6.5 μm)
Ingredient (E)
E-1: Alkoxysilane C 10 H 21 Si (OCH 3 ) 3 represented by the following composition
E-2: Hydrolyzable methylpolysiloxane represented by the following composition formula

Figure 2010013521

成分(F)
F-1:塩化白金酸のエタノール溶液、白金原子を1%含有
成分(G)
G-1:1-エチニル-1-シクロヘキサノール
上記成分(A)〜(G)を以下のように混合して実施例1〜6および比較例1〜8の組成物を得た。即ち、表1又は表2に示す配合量で5リットルプラネタリーミキサー釜(井上製作所(株)社製)にまず成分(A)を取り、これに成分(C)、(D)及び(E)を加え、70℃で1時間混合した。常温になるまで冷却した後、成分(G)を加えて15分間混合した。次に成分(F)を加えてまた15分間攪拌し、最後に成分(B)を加えてさらに30分間混合し、均一な組成物を得た。
Figure 2010013521

Ingredient (F)
F-1: Ethanol solution of chloroplatinic acid, containing 1% platinum atom (G)
G-1: 1-ethynyl-1-cyclohexanol The components (A) to (G) were mixed as follows to obtain compositions of Examples 1 to 6 and Comparative Examples 1 to 8. That is, the component (A) is first taken in a 5-liter planetary mixer kettle (manufactured by Inoue Seisakusho Co., Ltd.) with the blending amounts shown in Table 1 or Table 2, and then the components (C), (D) and (E) And mixed at 70 ° C. for 1 hour. After cooling to room temperature, component (G) was added and mixed for 15 minutes. Next, component (F) was added and stirred again for 15 minutes. Finally, component (B) was added and mixed for another 30 minutes to obtain a uniform composition.

<試験方法>
得られた熱伝導性シリコーン組成物の特性を、下記の試験方法で測定した。結果を表1及び2に併記する。
〔粘度〕
熱伝導性シリコーングリース組成物を25℃の恒温室に24時間放置後、マルコム粘度計を使用して回転数10rpmでの粘度を測定した。
〔熱伝導率測定方法〕
各組成物を6mm厚の型に流し込み、120℃で1時間加熱して、厚み6mmのシート状のゴム成形物を作成したのち、25℃に戻した。これを4枚重ねて計24mm厚のブロック片を作った。このブロック片を京都電子工業(株)社製のModel QTM-500で測定した。
〔絶縁性測定方法〕
JIS K6249に準拠した方法にて測定を行った。調整した材料を、1mm厚の型に流し込み、120℃で1時間加熱して、厚み1mmのシート状成型物を作成したのち、25℃に戻した。このシートを用いてHP(ヒューレットパッカー)社製の体積抵抗測定装置『4329A HIGH RESISTANCE METER』を用いて電圧500Vにてシートの体積抵抗率を測定した。
<Test method>
The characteristic of the obtained heat conductive silicone composition was measured with the following test method. The results are shown in Tables 1 and 2.
〔viscosity〕
The thermally conductive silicone grease composition was allowed to stand in a thermostatic chamber at 25 ° C. for 24 hours, and then the viscosity at a rotation speed of 10 rpm was measured using a Malcolm viscometer.
[Method of measuring thermal conductivity]
Each composition was poured into a 6 mm thick mold and heated at 120 ° C. for 1 hour to prepare a sheet-like rubber molded product having a thickness of 6 mm, and then returned to 25 ° C. A total of 24mm thick block pieces were made by stacking four of them. The block pieces were measured with Model QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd.
[Insulation measurement method]
Measurement was performed by a method based on JIS K6249. The adjusted material was poured into a 1 mm thick mold and heated at 120 ° C. for 1 hour to form a 1 mm thick sheet-like molded product, and then returned to 25 ° C. Using this sheet, the volume resistivity of the sheet was measured at a voltage of 500 V using a volume resistance measuring device “4329A HIGH RESISTANCE METER” manufactured by HP (Hewlett-Packard).

Figure 2010013521
Figure 2010013521

表中の成分(A)〜(G)の数値は質量部である。Viはビニル基である。 The numerical values of components (A) to (G) in the table are parts by mass. Vi is a vinyl group.

Figure 2010013521

表中の成分(A)〜(G)の数値は質量部である。Viはビニル基である。
Figure 2010013521

The numerical values of components (A) to (G) in the table are parts by mass. Vi is a vinyl group.

表1及び2の結果から、本発明のシリコーン組成物は、比較例の組成物に比べて、優れた熱伝導性及び絶縁性の両方を兼ね備えることが分かる。   From the results of Tables 1 and 2, it can be seen that the silicone composition of the present invention has both excellent thermal conductivity and insulating properties as compared with the composition of the comparative example.

Claims (4)

下記成分(A)〜(G):
(A)1分子中に少なくとも2個の、ケイ素原子に結合したアルケニル基を有する、25℃の粘度が10〜100,000mm2/sのオルガノポリシロキサン 100質量部、
(B)1分子中に少なくとも2個のSi-H基を有するオルガノハイドロジェンポリシロキサン {Si-H基の個数}/{成分(A)中のアルケニル基の個数}が0.5〜5.0となる量、
(C)平均粒径が0.5〜50μmであり、0.5〜5.0質量%の酸素量をもつアルミニウム粉末 500〜1300質量部、
(E)下記(E1)及び(E2)から選ばれる少なくとも1種:
(E1)下記一般式(1)で示されるオルガノシラン:
a Si(OR34-a-b (1)
(式中、Rは炭素数9〜15のアルキル基、Rは炭素数1〜8の炭化水素基、R3は、各々独立して炭素数1〜6のアルキル基、aは1〜3の整数、bは0〜2の整数、a+bは1〜3の整数である)0.01〜15質量部、及び
(E2)下記一般式(2)で表される片末端3官能加水分解性メチルポリシロキサン:
Figure 2010013521
・・・(2)

(式中、R4は炭素数1〜6のアルキル基、cは5〜100の整数である)1〜100質量部、
(F)白金及び白金化合物からなる群より選択される触媒 白金元素として成分(A)の0.1〜500ppmとなる量、及び
(G)アセチレン化合物、窒素化合物、有機リン化合物、オキシム化合物、及び有機クロロ化合物より選択される少なくとも1種の反応制御剤 0.01〜1質量部
を含む、25℃での硬化前の粘度が100〜1000Pasである熱伝導性シリコーン組成物。
The following components (A) to (G):
(A) 100 parts by mass of an organopolysiloxane having at least two alkenyl groups bonded to silicon atoms in one molecule and having a viscosity at 25 ° C. of 10 to 100,000 mm 2 / s,
(B) An organohydrogenpolysiloxane having at least two Si—H groups in one molecule {number of Si—H groups} / {number of alkenyl groups in component (A)} is 0.5 to 5.0 ,
(C) 500 to 1300 parts by mass of aluminum powder having an average particle size of 0.5 to 50 μm and an oxygen content of 0.5 to 5.0% by mass;
(E) At least one selected from the following (E1) and (E2):
(E1) Organosilane represented by the following general formula (1):
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
Wherein R 1 is an alkyl group having 9 to 15 carbon atoms, R 2 is a hydrocarbon group having 1 to 8 carbon atoms, R 3 is each independently an alkyl group having 1 to 6 carbon atoms, and a is 1 to 1 An integer of 3, b is an integer of 0 to 2, a + b is an integer of 1 to 3) 0.01 to 15 parts by mass, and (E2) one terminal trifunctional hydrolyzable methyl represented by the following general formula (2) Polysiloxane:
Figure 2010013521
... (2)

(Wherein R 4 is an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100) 1 to 100 parts by mass,
(F) a catalyst selected from the group consisting of platinum and platinum compounds, and an amount of 0.1 to 500 ppm of component (A) as platinum element, and (G) acetylene compounds, nitrogen compounds, organophosphorus compounds, oxime compounds, and organic chloro A thermally conductive silicone composition having a viscosity before curing at 25 ° C of from 100 to 1000 Pas, comprising 0.01 to 1 part by mass of at least one reaction control agent selected from compounds.
成分(D)として、上記成分(C)アルミニウム粉末以外の平均粒径が0.1〜5.0μmの熱伝導性粉末を500質量部以下の量で更に含むことを特徴とする請求項1に記載の熱伝導性シリコーン組成物。   The component (D) further includes a heat conductive powder having an average particle size of 0.1 to 5.0 μm other than the component (C) aluminum powder in an amount of 500 parts by mass or less. The heat conductive silicone composition as described. 成分(D)の量が50〜500質量部であることを特徴とする請求項2に記載の熱伝導性シリコーン組成物。   The amount of a component (D) is 50-500 mass parts, The heat conductive silicone composition of Claim 2 characterized by the above-mentioned. 成分(D)が酸化亜鉛粉末、酸化アルミニウム粉末、窒化ホウ素粉末、窒化アルミニウム粉末及び炭化ケイ素粉末から成る群から選ばれる1種以上であることを特徴とする請求項2又は3に記載の熱伝導性シリコーン組成物。   The heat conduction according to claim 2 or 3, wherein the component (D) is at least one selected from the group consisting of zinc oxide powder, aluminum oxide powder, boron nitride powder, aluminum nitride powder and silicon carbide powder. Silicone composition.
JP2008173240A 2008-07-02 2008-07-02 Heat conductive silicone composition Pending JP2010013521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173240A JP2010013521A (en) 2008-07-02 2008-07-02 Heat conductive silicone composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173240A JP2010013521A (en) 2008-07-02 2008-07-02 Heat conductive silicone composition

Publications (1)

Publication Number Publication Date
JP2010013521A true JP2010013521A (en) 2010-01-21

Family

ID=41699927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173240A Pending JP2010013521A (en) 2008-07-02 2008-07-02 Heat conductive silicone composition

Country Status (1)

Country Link
JP (1) JP2010013521A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059237A (en) * 2008-09-01 2010-03-18 Dow Corning Toray Co Ltd Thermally conductive silicone composition and semiconductor device
JP2011084621A (en) * 2009-10-14 2011-04-28 Denki Kagaku Kogyo Kk Heat conductive material
JP2014003141A (en) * 2012-06-18 2014-01-09 Shin Etsu Chem Co Ltd Thermally conductive sheet, and electronic apparatus
WO2014115456A1 (en) * 2013-01-22 2014-07-31 信越化学工業株式会社 Heat conductive silicone composition, heat conductive layer, and semiconductor device
US9481851B2 (en) 2012-04-24 2016-11-01 Shin-Etsu Chemical Co., Ltd. Thermally-curable heat-conductive silicone grease composition
JP2017043717A (en) * 2015-08-27 2017-03-02 信越化学工業株式会社 Thermally conducive silicone composition
WO2017135158A1 (en) * 2016-02-05 2017-08-10 北川工業株式会社 Heat-conducting member and method for producing heat-conducting member
WO2018088417A1 (en) * 2016-11-09 2018-05-17 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof, and manufacturing method
WO2018088416A1 (en) * 2016-11-09 2018-05-17 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof, and manufacturing method
US10023741B2 (en) 2013-05-24 2018-07-17 Shin-Etsu Chemical Co., Ltd. Heat-conductive silicone composition
WO2019098290A1 (en) * 2017-11-17 2019-05-23 富士高分子工業株式会社 Two-step curable thermally conductive silicone composition and method for producing same
JP2020002212A (en) * 2018-06-26 2020-01-09 住友金属鉱山株式会社 Thermal conductive grease
KR20200033543A (en) * 2018-09-20 2020-03-30 주식회사 엘지화학 Laminated film
KR20200041668A (en) * 2018-10-12 2020-04-22 주식회사 엘지화학 Silicon release coating composition, release film, heat-ratiating member and method of manufacturing heat-radiating pad
KR20200041675A (en) * 2018-10-12 2020-04-22 주식회사 엘지화학 Composition for heat-radiating pad and heat-radiating pad comprising cured product thereof
JP2021515819A (en) * 2018-01-11 2021-06-24 ダウ シリコーンズ コーポレーション How to apply a thermally conductive composition on an electronic component
JPWO2022138627A1 (en) * 2020-12-21 2022-06-30
CN115667407A (en) * 2020-05-22 2023-01-31 信越化学工业株式会社 Silicone composition with high thermal conductivity
JP2023508750A (en) * 2020-03-05 2023-03-03 ダウ グローバル テクノロジーズ エルエルシー Shear-thinning thermally conductive silicone composition
WO2023143728A1 (en) 2022-01-28 2023-08-03 Wacker Chemie Ag Aluminum-containing thermal pastes

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059237A (en) * 2008-09-01 2010-03-18 Dow Corning Toray Co Ltd Thermally conductive silicone composition and semiconductor device
JP2011084621A (en) * 2009-10-14 2011-04-28 Denki Kagaku Kogyo Kk Heat conductive material
US9481851B2 (en) 2012-04-24 2016-11-01 Shin-Etsu Chemical Co., Ltd. Thermally-curable heat-conductive silicone grease composition
JP2014003141A (en) * 2012-06-18 2014-01-09 Shin Etsu Chem Co Ltd Thermally conductive sheet, and electronic apparatus
WO2014115456A1 (en) * 2013-01-22 2014-07-31 信越化学工業株式会社 Heat conductive silicone composition, heat conductive layer, and semiconductor device
JPWO2014115456A1 (en) * 2013-01-22 2017-01-26 信越化学工業株式会社 Thermally conductive silicone composition, thermally conductive layer and semiconductor device
US9698077B2 (en) 2013-01-22 2017-07-04 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition based on combination of components, heat conductive layer, and semiconductor device
US10023741B2 (en) 2013-05-24 2018-07-17 Shin-Etsu Chemical Co., Ltd. Heat-conductive silicone composition
JP2017043717A (en) * 2015-08-27 2017-03-02 信越化学工業株式会社 Thermally conducive silicone composition
CN108603034A (en) * 2016-02-05 2018-09-28 北川工业株式会社 The manufacturing method of heat conduction component and heat conduction component
WO2017135158A1 (en) * 2016-02-05 2017-08-10 北川工業株式会社 Heat-conducting member and method for producing heat-conducting member
US10781312B2 (en) 2016-02-05 2020-09-22 Kitagawa Industries Co., Ltd. Thermally conductive member and method for producing thermally conductive member
WO2018088416A1 (en) * 2016-11-09 2018-05-17 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof, and manufacturing method
JPWO2018088416A1 (en) * 2016-11-09 2019-06-24 信越化学工業株式会社 Thermally conductive silicone composition, cured product thereof, and method of producing the same
JPWO2018088417A1 (en) * 2016-11-09 2019-06-24 信越化学工業株式会社 Thermally conductive silicone composition, cured product thereof, and method of producing the same
WO2018088417A1 (en) * 2016-11-09 2018-05-17 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof, and manufacturing method
WO2019098290A1 (en) * 2017-11-17 2019-05-23 富士高分子工業株式会社 Two-step curable thermally conductive silicone composition and method for producing same
US11485861B2 (en) 2018-01-11 2022-11-01 Dow Silicones Corporation Method for applying thermally conductive composition on electronic components
JP7066853B2 (en) 2018-01-11 2022-05-13 ダウ シリコーンズ コーポレーション How to apply a thermally conductive composition on an electronic component
JP2021515819A (en) * 2018-01-11 2021-06-24 ダウ シリコーンズ コーポレーション How to apply a thermally conductive composition on an electronic component
JP2020002212A (en) * 2018-06-26 2020-01-09 住友金属鉱山株式会社 Thermal conductive grease
JP7073939B2 (en) 2018-06-26 2022-05-24 住友金属鉱山株式会社 Thermally conductive grease
KR102327838B1 (en) 2018-09-20 2021-11-17 주식회사 엘지화학 Laminated film
KR20200033543A (en) * 2018-09-20 2020-03-30 주식회사 엘지화학 Laminated film
KR20200041675A (en) * 2018-10-12 2020-04-22 주식회사 엘지화학 Composition for heat-radiating pad and heat-radiating pad comprising cured product thereof
KR102326677B1 (en) 2018-10-12 2021-11-15 주식회사 엘지화학 Composition for heat-radiating pad and heat-radiating pad comprising cured product thereof
KR102382162B1 (en) * 2018-10-12 2022-04-01 주식회사 엘지화학 Silicon release coating composition, release film, heat-ratiating member and method of manufacturing heat-radiating pad
KR20200041668A (en) * 2018-10-12 2020-04-22 주식회사 엘지화학 Silicon release coating composition, release film, heat-ratiating member and method of manufacturing heat-radiating pad
US11746236B2 (en) 2020-03-05 2023-09-05 Dow Global Technologies Llc Shear thinning thermally conductive silicone compositions
JP2023508750A (en) * 2020-03-05 2023-03-03 ダウ グローバル テクノロジーズ エルエルシー Shear-thinning thermally conductive silicone composition
CN115667407A (en) * 2020-05-22 2023-01-31 信越化学工业株式会社 Silicone composition with high thermal conductivity
EP4155347A4 (en) * 2020-05-22 2024-06-05 Shin-Etsu Chemical Co., Ltd. Highly thermally-conductive silicone composition
WO2022138627A1 (en) * 2020-12-21 2022-06-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Water-resistant adhesive polyorganosiloxane composition
JPWO2022138627A1 (en) * 2020-12-21 2022-06-30
WO2023143728A1 (en) 2022-01-28 2023-08-03 Wacker Chemie Ag Aluminum-containing thermal pastes

Similar Documents

Publication Publication Date Title
JP2010013521A (en) Heat conductive silicone composition
JP5182515B2 (en) Thermally conductive silicone grease composition
JP5304623B2 (en) Selection method of high thermal conductivity potting material
JP7134582B2 (en) Thermally conductive polyorganosiloxane composition
JP5565758B2 (en) Curable, grease-like thermally conductive silicone composition and semiconductor device
JP6708005B2 (en) Thermally conductive silicone putty composition
JP5648619B2 (en) Thermally conductive silicone composition
JP6614362B2 (en) Thermally conductive silicone composition
JP5843364B2 (en) Thermally conductive composition
JP2011246536A (en) Thermally conductive silicone grease composition
JP7070320B2 (en) Thermally conductive silicone composition
JP6493092B2 (en) Thermally conductive silicone composition
EP3636715A1 (en) Heat-conductive polyorganosiloxane composition
JP6933198B2 (en) Thermally conductive silicone composition and its manufacturing method
JP6579272B2 (en) Thermally conductive silicone composition
JP2009221310A (en) Heat-conductive silicone grease composition
JP2020041024A (en) Heat conductive silicone composition
JP7371249B2 (en) High thermal conductivity silicone composition
JP6943028B2 (en) Thermally conductive silicone composition
JP2019077845A (en) Thermally conductive silicone potting composition
KR20190047609A (en) Thermal conductive silicone potting composition and cured product thereof
WO2021206064A1 (en) Resin composition, heat-radiating member, and electronic apparatus
JP2009221311A (en) Heat conductive grease composition
JP7060097B2 (en) Thermally Conductive Silicone Compositions and Thermally Conductive Sheets
JP7435618B2 (en) Thermally conductive silicone potting composition and cured product thereof