JP2011084621A - Heat conductive material - Google Patents

Heat conductive material Download PDF

Info

Publication number
JP2011084621A
JP2011084621A JP2009237324A JP2009237324A JP2011084621A JP 2011084621 A JP2011084621 A JP 2011084621A JP 2009237324 A JP2009237324 A JP 2009237324A JP 2009237324 A JP2009237324 A JP 2009237324A JP 2011084621 A JP2011084621 A JP 2011084621A
Authority
JP
Japan
Prior art keywords
group
conductive material
volume
heat
heat conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009237324A
Other languages
Japanese (ja)
Other versions
JP5463116B2 (en
Inventor
Yuki Furukawa
古川由紀
Takuya Okada
岡田拓也
Toshiki Yamagata
山縣利貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009237324A priority Critical patent/JP5463116B2/en
Publication of JP2011084621A publication Critical patent/JP2011084621A/en
Application granted granted Critical
Publication of JP5463116B2 publication Critical patent/JP5463116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat conductive material exhibiting high heat conductivity even in a high-temperature condition and a high-temperature high-humidity condition. <P>SOLUTION: The heat conductive material is obtained by adding 0.5-3.0 pts.mass of an alkylalkoxysilane based on 100 pts.mass of the total of alumina powder and zinc oxide powder to a mixture consisting of 20-55 vol.% of the alumina powder having 1.0-25 μm of an average particle diameter (50% volumetric diameter), 5-28 vol.% of the zinc oxide powder having 0.2-1.0 μm of an average particle diameter (50% volumetric diameter) and residual vol.% of a silicone gel. Preferably, the alkylalkoxysilane is a methoxysilane having a ≤3C alkyl group or an ethoxysilane having an 8C alkyl group. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱伝導性材料に関する。 The present invention relates to a thermally conductive material.

電子部品の多くは使用中に熱を発生させるので、その電子部品を適切に機能させるためには、その電子部品から熱を取り除くことが必要である。電子部品からの熱を外部に逃すために、ヒートシンク等の放熱体が広く用いられている。電子部品から発生する熱を放熱体に効率よく伝導させるために、一般に電子部品と放熱体との間には熱伝導性材料が使用される。特に近年では、電子部材の高密度化や小型パソコンをはじめとする電子機器の小型・薄型・軽量化に伴い、それらに用いられる放熱部材の低熱抵抗化の要求が益々高まっており、放熱部材の薄化が要求されている。 Since many electronic components generate heat during use, it is necessary to remove the heat from the electronic component in order for the electronic component to function properly. In order to release heat from the electronic component to the outside, a heat radiating body such as a heat sink is widely used. In order to efficiently conduct heat generated from the electronic component to the heat radiating body, a heat conductive material is generally used between the electronic component and the heat radiating body. In particular, in recent years, with the increase in the density of electronic members and the downsizing, thinning, and weight reduction of electronic devices such as small personal computers, there has been an increasing demand for low heat resistance of the heat dissipation members used in them. Thinning is required.

熱伝導性材料としては、シリコーンゲルに熱伝導性無機粉末が充填された硬化物からなる放熱シート(特許文献1)、シリコーンゲルに熱伝導性無機粉末が充填され、柔軟性を有する硬化物からなる放熱スペーサー(特許文献2)、液状シリコーンに熱伝導性無機粉末が充填された流動性のある放熱グリース(特許文献3)、樹脂の相変化を利用したフェーズチェンジ型放熱部材等が例示される(特許文献4)。これらのうち、薄化が容易なものは、放熱グリース及びフェーズチェンジ型放熱部材であるが、汎用品においては、価格が安い放熱グリースが好んで使用されることがある。放熱グリースはその性状が液体に近く、放熱シートと比べて、発熱性電子部品や放熱体表面の凹凸に影響されることなく両者に密着して界面熱抵抗を小さくすることができる。このような放熱グリースとしては、シリコーンオイルをベースとして、アルミニウム粉末などの熱伝導性充填剤を配合したシリコーングリース組成物が提案されている(特許文献5)。 As the heat conductive material, a heat radiation sheet (Patent Document 1) made of a cured product in which a silicone gel is filled with a heat conductive inorganic powder, and from a cured product having a flexibility in which a silicone gel is filled with a heat conductive inorganic powder. Exemplified are a heat dissipation spacer (Patent Document 2), a fluid heat dissipation grease (Patent Document 3) in which liquid silicone is filled with a heat conductive inorganic powder, a phase change type heat dissipation member utilizing a phase change of a resin, and the like. (Patent Document 4). Among these, those that can be easily thinned are the heat radiation grease and the phase change type heat radiation member, but in general-purpose products, the heat radiation grease with a low price may be preferred. The heat dissipating grease has a property close to that of a liquid, and compared with the heat dissipating sheet, the heat dissipating grease can be in close contact with the heat generating electronic component and the unevenness of the heat dissipating member surface to reduce the interfacial thermal resistance. As such a heat dissipating grease, there has been proposed a silicone grease composition in which a heat conductive filler such as aluminum powder is blended based on silicone oil (Patent Document 5).

しかし、アルミニウム粉末や窒化アルミニウム粉末などの高熱伝導性無機粉末は、高温高湿下や高温下において、加水分解等により変質し、グリースの性能を劣化させるという問題点がある。 However, highly heat-conductive inorganic powders such as aluminum powder and aluminum nitride powder have a problem that they deteriorate due to hydrolysis or the like under high temperature and high humidity or high temperature, and degrade grease performance.

特開平6−96617号公報JP-A-6-96617 特開2002−299533号公報JP 2002-299533 A 特開2004−10880号公報JP 2004-10880 A 特開2008−108859号公報JP 2008-108859 A 特開2000−63873号公報JP 2000-63873 A

本発明の目的は、高温条件および高温高湿条件においても高い熱伝導性を示す熱伝導性材料を提供することを目的とする。 An object of the present invention is to provide a thermally conductive material exhibiting high thermal conductivity even under high temperature conditions and high temperature and high humidity conditions.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)平均粒径(50%体積径)1.0〜25μmのアルミナ粉末が20〜55体積%、平均粒径(50%体積径)0.2〜1.0μmの酸化亜鉛粉末が5〜28体積%、残部の体積%がシリコーンゲルであり、かつアルミナ粉末と酸化亜鉛粉末の合計量100質量部に対して、アルキルアルコキシシランを0.5〜3.0質量部添加すること特徴とする熱伝導性材料。
(2)アルキルアルコキシシランがアルキル基の炭素の数が3以下のメトキシシラン又はアルキル基の炭素の数が8のトリエトキシシランであること特徴とする前記(1)に記載の熱伝導性材料。
The present invention employs the following means in order to solve the above problems.
(1) Alumina powder having an average particle diameter (50% volume diameter) of 1.0 to 25 μm is 20 to 55 volume%, and zinc oxide powder having an average particle diameter (50% volume diameter) of 0.2 to 1.0 μm is 5 to 5. 28% by volume, the remaining volume% is silicone gel, and 0.5 to 3.0 parts by mass of alkylalkoxysilane is added to 100 parts by mass of the total amount of alumina powder and zinc oxide powder. Thermally conductive material.
(2) The heat conductive material as described in (1) above, wherein the alkylalkoxysilane is methoxysilane having 3 or less carbon atoms in the alkyl group or triethoxysilane having 8 carbon atoms in the alkyl group.

本発明の熱伝導性材料を電子部品に用いることにより、電子部品を高温条件又は高温高湿条件で使用した場合の耐久性を高め、実装時における信頼性をさらに向上させ、長期にわたって電子部品の本来の性能を発揮させることができる。   By using the heat conductive material of the present invention for an electronic component, the durability when the electronic component is used under a high temperature condition or a high temperature and high humidity condition is further improved, and the reliability at the time of mounting is further improved. The original performance can be exhibited.

本発明で用いられるシリコーンゲルは、付加反応型シリコーンゲルまたは、縮合反応型シリコーンゲルの少なくとも一方であることが好ましい。また、シリコーンゲル成分の一部をシリコーンゴムに置き換えても差し支えない。該シリコーンゴムは付加反応型シリコーンゴムまたは、過酸化物加硫タイプのシリコーンゴムの少なくとも一方であることが好ましい。これらのシリコーンゲル、シリコーンゴムのいずれにおいても、平均組成式が、RaSiO(4−a)/2(式中、Rは同一又は異種の非置換又は置換の1価炭化水素基であり、aは1.98〜2.02の正数である。)で示されるオルガノポリシロキサンを主成分としたものが好ましい。また、シリコーンゲルとしては低粘度のものが好ましく、粘度が100〜1100mPa・sであるものが好ましい。 The silicone gel used in the present invention is preferably at least one of an addition reaction type silicone gel or a condensation reaction type silicone gel. Further, a part of the silicone gel component may be replaced with silicone rubber. The silicone rubber is preferably at least one of addition reaction type silicone rubber or peroxide vulcanization type silicone rubber. In any of these silicone gels and silicone rubbers, the average composition formula is R 1 aSiO (4-a) / 2 (wherein R 1 is the same or different unsubstituted or substituted monovalent hydrocarbon group. , A is a positive number of 1.98 to 2.02). The silicone gel preferably has a low viscosity, and preferably has a viscosity of 100 to 1100 mPa · s.

本発明の熱伝導性無機粉末としては、アルミナ粉末と酸化亜鉛粉末が用いられる。本発明において、アルミナ粉末と酸化亜鉛粉末の平均粒径(50%体積径)を異ならせ、しかもアルミナ粉末の平均粒径(50%体積径)を酸化亜鉛粉末のそれよりも大きくしているのは、熱伝導性無機粉末を高充填しても熱伝導性材料の柔軟性を保たせ、熱伝導性を改善するためである。アルミナ粉末の平均粒径(50%体積径)が1.0μm未満では材料の粘度が高くなり過ぎ、25μmをこえると、グリースが薄肉化したときにそれが表面に突出し、低熱抵抗化が困難となる。一方、酸化亜鉛粉末の平均粒径(50%体積径)が0.2μm未満であると、グリ−スの粘度が高くなりすぎて薄化が容易でなくなり、1.0μmをこえると、アルミナ粉末を多く充填することに悪影響を及ぼす。特に好適な平均粒径(50%体積径)は、アルミナ粉末が1.0〜10μm、酸化亜鉛粉末が0.3〜0.8μmである。   As the thermally conductive inorganic powder of the present invention, alumina powder and zinc oxide powder are used. In the present invention, the average particle diameter (50% volume diameter) of the alumina powder and the zinc oxide powder is made different, and the average particle diameter (50% volume diameter) of the alumina powder is made larger than that of the zinc oxide powder. This is to maintain the flexibility of the heat conductive material and improve the heat conductivity even when highly filled with the heat conductive inorganic powder. If the average particle diameter (50% volume diameter) of the alumina powder is less than 1.0 μm, the viscosity of the material becomes too high. If the average particle diameter exceeds 25 μm, when the grease becomes thin, it protrudes to the surface, making it difficult to reduce the thermal resistance. Become. On the other hand, if the average particle diameter (50% volume diameter) of the zinc oxide powder is less than 0.2 μm, the viscosity of the grease becomes too high and thinning becomes difficult, and if it exceeds 1.0 μm, the alumina powder Adversely affects the filling of more. Particularly suitable average particle diameter (50% volume diameter) is 1.0 to 10 μm for alumina powder and 0.3 to 0.8 μm for zinc oxide powder.

熱伝導性材料中の熱伝導性無機粉末の含有率は、アルミナ粉末が20〜55体積%、特に33〜42体積%、酸化亜鉛粉末が5〜28体積%、特に20〜24体積%、シリコーンゲルが35〜60体積%、特に40〜47体積%であることが好ましい。シリコーンゲルの含有率が60体積%をこえると、熱伝導率を向上させる効果が少なく、グリースをいくら薄化しても低熱抵抗化は困難となる。また、シリコーンゲルの含有率が35体積%未満であると、グリースの粘度が高くなり、流動性が悪化する。   The content of the thermally conductive inorganic powder in the thermally conductive material is 20 to 55% by volume of alumina powder, particularly 33 to 42% by volume, 5 to 28% by volume of zinc oxide powder, particularly 20 to 24% by volume, silicone. It is preferable that the gel is 35 to 60% by volume, particularly 40 to 47% by volume. When the content of the silicone gel exceeds 60% by volume, the effect of improving the thermal conductivity is small, and it is difficult to reduce the thermal resistance no matter how thin the grease is. On the other hand, when the silicone gel content is less than 35% by volume, the viscosity of the grease increases and the fluidity deteriorates.

アルミナ粉末は、高熱伝導率の付与を担っている。そのため、その含有率が20体積%未満ではその効果が少なく、55体積%をこえると熱伝導性材料の粘度が高くなりすぎて薄化が困難となりその効果が少なくなる。   Alumina powder is responsible for imparting high thermal conductivity. Therefore, if the content is less than 20% by volume, the effect is small, and if it exceeds 55% by volume, the viscosity of the heat conductive material becomes too high, making it difficult to thin the effect.

酸化亜鉛粉末は、アルミナ粉末の粒子と粒子の隙間を埋め、熱伝導性を一段と向上させるために用いており、その含有率が5体積%未満ではその効果が認められず、28体積%をこえると熱伝導性材料の粘度が高くなる。   Zinc oxide powder is used to fill the gaps between the particles of alumina powder and further improve the thermal conductivity. If the content is less than 5% by volume, the effect is not recognized and exceeds 28% by volume. And the viscosity of the heat conductive material becomes high.

シランカップリング剤は、下記の一般式で表すことができる。
Si(OR4−(b+c)
式中、式中のRは、炭素原子数1〜15のアルキル基であり、例えばメチル基、エチル基、プロピル基、ヘキシル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。また、Rは炭素原子数1〜8の飽和又は不飽和の一価炭化水素基であり、例えばメチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロヘキシル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基、3,3,3−トリフロロプロピル基、2−(パーフロロブチル)エチル基、2−(パーフロロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基などが挙げられる。Rはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などの炭素原子数1〜6の1種もしくは2種以上のアルキル基であり、好ましくはメチル基、エチル基である。bは1〜3の整数であり、好ましくは1である。cは0〜2の整数、b+cは1〜3の整数である。
A silane coupling agent can be represented by the following general formula.
R 2 b R 3 c Si (OR 4 ) 4- (b + c)
In the formula, R 2 in the formula is an alkyl group having 1 to 15 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, a nonyl group, a decyl group, a dodecyl group, and a tetradecyl group. . R 3 is a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a cyclopentyl group, or a cyclohexyl group. Cyclohexyl group such as vinyl group, aryl group such as vinyl group and allyl group, aryl group such as phenyl group and tolyl group, aralkyl group such as 2-phenylethyl group and 2-methyl-2-phenylethyl group, 3, 3, 3 -Halogenated hydrocarbon groups such as -trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group and p-chlorophenyl group. R 4 is one or more alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group, butyl group, pentyl group and hexyl group, preferably methyl group or ethyl group. . b is an integer of 1 to 3, and preferably 1. c is an integer of 0 to 2, and b + c is an integer of 1 to 3.

シランカップリング剤として、本発明では、下記の条件のアルコキシシランを用いることが好ましい。
前記のRが、炭素原子数3以下又は8のアルキル基であり、例えばメチル基、エチル基、プロピル基、オクチル基が挙げられる。
前記のRが炭素原子数1又は2の飽和の一価炭化水素基であり、例えばメチル基、エチル基などが挙げられ、好ましくは前記のRの炭素原子数3以下の場合はメチル基、炭素原子数8の場合はエチル基である。
前記のbが1〜3の整数であり、好ましくは前記のRの炭素原子数3以下の場合は1、炭素原子数8の場合は1である。
前記のcが0〜2の整数であり、好ましくは0である。
As the silane coupling agent, in the present invention, it is preferable to use alkoxysilane under the following conditions.
Said R < 2 > is a C3 or less or C8 alkyl group, for example, a methyl group, an ethyl group, a propyl group, and an octyl group are mentioned.
R 4 is a saturated monovalent hydrocarbon group having 1 or 2 carbon atoms, and examples thereof include a methyl group and an ethyl group. Preferably, when R 2 has 3 or less carbon atoms, it is a methyl group. In the case of 8 carbon atoms, it is an ethyl group.
The b is an integer of 1 to 3, preferably 1 when the R 2 has 3 or less carbon atoms, and 1 when the carbon atom has 8 carbon atoms.
Said c is an integer of 0-2, Preferably it is 0.

アルコキシシランは、熱伝導性無機粉末とシリコーンゲルの濡れ性を向上させることにより、熱伝導率、耐熱性、耐湿性に寄与する。アルミナ粉末と酸化亜鉛粉末の合計量100質量部に対するアルキルアルコキシシランの添加量は0.5〜3.0質量部である。0.5質量部未満では濡れ性向上効果が小さく、また3.0質量部以上では遊離アルコキシシランが多くなり信頼性に悪影響を与える。 Alkoxysilane contributes to thermal conductivity, heat resistance, and moisture resistance by improving the wettability of the thermally conductive inorganic powder and the silicone gel. The addition amount of the alkyl alkoxysilane with respect to 100 mass parts of total amounts of an alumina powder and a zinc oxide powder is 0.5-3.0 mass parts. If it is less than 0.5 parts by mass, the effect of improving wettability is small, and if it is 3.0 parts by mass or more, the amount of free alkoxysilane increases and adversely affects reliability.

アルコキシシランとして、炭素数3以下のアルキルメトキシシラン、又は炭素の数が8のトリエトキシシランを用いると、高温信頼性及び高温高湿信頼性が著しく向上する。   When alkoxymethoxysilane having 3 or less carbon atoms or triethoxysilane having 8 carbon atoms is used as the alkoxysilane, high temperature reliability and high temperature and high humidity reliability are remarkably improved.

本発明の熱伝導性材料は、上記材料を万能混合攪拌機、ニーダー等で混練りすることによって製造することができる。 The heat conductive material of the present invention can be produced by kneading the above materials with a universal mixing stirrer, kneader or the like.

本発明を実施例により具体的に説明するが、本発明は実施例に限定されるものではない。
熱伝導性無機粉末として表1に示されるアルミナ粉末(住友化学社製商品名「AA−2」、電気化学社製商品名「DAW−10」「ASFP−20」「DAW−45」)および酸化亜鉛粉末(堺化学工業社製商品名「一種」「LPZINC−2」、ハクスイテック社製商品名「Zinconx Super F−1」)から選ばれた少なくとも1種の熱伝導性無機粉末、シリコーンゲルとして表2に示される、モメンティブ・パフォーマンス・マテリアル・ジャパン合同会社製商品名「XE14−B8530」(粘度 350mPa・s)、「TSE−3070」(粘度 800mPa・s)、東レ・ダウコーニング社製商品名「SE1885」(粘度 500mPa・s)、シランカップリング剤として表3に示される、東レ・ダウコーニング社製商品名「Z−6341」「Z−6013」「Z−6586」とを、表4の配合で内容量150mlの容器に量り取り、ハイブリットミキサー(シンキー社製商品名「あわとり練太郎 AR−250」、回転数2000rpm)を用いて5分間混練した。次いで、得られた混合物を110℃で3時間、加熱硬化させた。その後、再び同ハイブリットミキサーを用いて均一になるように混練し、熱伝導性材料を得た。
実施例3〜5では2種類のアルミナ粉末を用いて平均粒径の調整を行い、実施例3と4では2種類の酸化亜鉛粉末を用いて平均粒径の調整を行った。
EXAMPLES The present invention will be specifically described with reference to examples, but the present invention is not limited to the examples.
Alumina powder (trade name “AA-2”, manufactured by Sumitomo Chemical Co., Ltd., trade names “DAW-10”, “ASFP-20”, “DAW-45”) manufactured by Sumitomo Chemical Co., Ltd. At least one kind of thermally conductive inorganic powder selected from zinc powder (trade name “kind” “LPZINC-2”, trade name “Zinconx Super F-1” manufactured by Sakai Chemical Industry Co., Ltd.) as a silicone gel Product name “XE14-B8530” (viscosity 350 mPa · s), “TSE-3070” (viscosity 800 mPa · s), product name “Toray Dow Corning” SE 1885 ”(viscosity 500 mPa · s), shown in Table 3 as a silane coupling agent, Toray Dow Corning Product names “Z-6341”, “Z-6013”, and “Z-6586” were weighed into a 150 ml container with the formulation shown in Table 4 and hybrid mixer (trade name “Awori Nertaro AR-250, manufactured by Shinky Corporation”). And kneading for 5 minutes. The resulting mixture was then heat cured at 110 ° C. for 3 hours. Then, it knead | mixed uniformly using the said hybrid mixer again, and obtained the heat conductive material.
In Examples 3 to 5, the average particle size was adjusted using two types of alumina powder, and in Examples 3 and 4, the average particle size was adjusted using two types of zinc oxide powder.

得られた熱伝導性材料の平均粒径(50%体積径)、熱伝導率、高温試験、高温高湿試験、ちょう度の測定を以下に従って行った。それらの結果を表4、表5に示す。 The average particle diameter (50% volume diameter), thermal conductivity, high temperature test, high temperature and high humidity test, and consistency of the obtained heat conductive material were measured as follows. The results are shown in Tables 4 and 5.

(1)平均粒径(50%体積径):島津製作所製「レーザー回折式粒度分布測定装置SALD−2200」を用いて測定を行った。評価サンプルは、ガラスビーカーに50ccの純水と測定する熱伝導性粉末を5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。分散処理を行った熱伝導性材料の粉末の溶液をスポイドを用いて、装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待った。このようにして吸光度が安定になった時点で測定を行う。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算する。粒子径(体積径)は測定される粒子径の値に相対粒子量(差分%)を掛けて、相対粒子量の合計(100%)で割って求められる。 (1) Average particle diameter (50% volume diameter): Measurement was performed using “Laser diffraction particle size distribution analyzer SALD-2200” manufactured by Shimadzu Corporation. As an evaluation sample, 5 g of 50 cc of pure water and a heat conductive powder to be measured were added to a glass beaker, stirred using a spatula, and then subjected to a dispersion treatment for 10 minutes using an ultrasonic cleaner. The solution of the powder of the heat conductive material that had been subjected to the dispersion treatment was added drop by drop to the sampler portion of the apparatus using a dropper, and waited until the absorbance became measurable. The measurement is performed when the absorbance becomes stable in this way. In the laser diffraction particle size distribution measuring device, the particle size distribution is calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor. The particle diameter (volume diameter) is obtained by multiplying the value of the particle diameter to be measured by the relative particle amount (difference%) and dividing by the total relative particle amount (100%).

(2)熱伝導率:ASTMD5470に準拠して測定した。すなわち、ヒーターの埋め込まれた直方体の銅製治具(先端が10mm角)と、冷却ユニットを有する直方体の銅製治具(先端が10mm角)とを、試料(熱伝導性材料)約0.5cmを挟んで0.025mmの厚さに設定し、密着させて銅製冷却治具とした。試料量は、密着面全体を埋めるのに十分な量であり、少しはみ出させた状態とした。ヒーターに電力20Wをかけて30分間保持し、銅製治具と銅製治具との温度差(℃)を測定した。式、熱抵抗(℃/W)=温度差(℃)/電力(W)、により熱抵抗を算出した。この熱抵抗から、式、熱伝導率(W/mK)={電力(W)×厚み(m)}/{温度差(K)×測定面積(m)}にて、算出した。 (2) Thermal conductivity: measured in accordance with ASTM D5470. That is, a rectangular parallelepiped copper jig (tip is 10 mm square) embedded with a heater and a rectangular copper jig (tip is 10 mm square) having a cooling unit are approximately 0.5 cm 3 of a sample (thermally conductive material). Was set to a thickness of 0.025 mm, and was brought into close contact to form a copper cooling jig. The amount of the sample was a sufficient amount to fill the entire adhesion surface, and was in a state where it protruded slightly. An electric power of 20 W was applied to the heater and held for 30 minutes, and the temperature difference (° C.) between the copper jig and the copper jig was measured. The thermal resistance was calculated by the equation, thermal resistance (° C./W)=temperature difference (° C.) / Power (W). From this thermal resistance, it was calculated by the formula, thermal conductivity (W / mK) = {power (W) × thickness (m)} / {temperature difference (K) × measurement area (m 2 )}.

(3)高温下放置後の熱抵抗の測定:ポリイミドフィルム(東レ・デュポン社製商品名「カプトン」厚さ50.8μm)を縦80×横30mmにカットしたものとスライドグラス(松浪硝子工業社製商品名「S1111」縦76×横26mm、厚さ0.8mm)の間に熱伝導性材料を面積1976mm、厚さ0.2mmで挟み込み、大気中130℃雰囲気下で100時間放置した後、再度、同銅製冷却冶具により測定した。 (3) Measurement of thermal resistance after standing at high temperature: Polyimide film (trade name “Kapton” 50.8 μm thickness manufactured by Toray DuPont) cut into 80 × 30 mm and slide glass (Matsunami Glass Industrial Co., Ltd.) The product name “S1111” is 76 × 26 mm in length and 0.8 mm in thickness, and a thermally conductive material is sandwiched in an area of 1976 mm 2 and a thickness of 0.2 mm, and left in an atmosphere at 130 ° C. for 100 hours. Measured again with the same copper cooling jig.

(4)高温高湿下放置後の熱抵抗の測定:ポリイミドフィルム(東レ・デュポン社製商品名「カプトン」厚さ50.8μm)を縦80×横30mmにカットしたものとスライドグラス(松浪硝子工業社製商品名「S1111」縦76×横26mm、厚さ0.8mm)の間に熱伝導性材料を挟み込み、130℃、0.196MPa、相対湿度85%の雰囲気下で100時間放置した後、再度、同銅製冷却冶具により測定した。 (4) Measurement of thermal resistance after leaving under high temperature and high humidity: Polyimide film (trade name “Kapton” 50.8 μm thickness manufactured by Toray DuPont) cut into 80 × 30 mm and slide glass (Matsunami Glass) After sandwiching a heat conductive material between the trade name “S1111” manufactured by Kogyo Co., Ltd. (76 × 26 × 0.8 mm, thickness 0.8 mm) and left in an atmosphere of 130 ° C., 0.196 MPa and relative humidity 85% for 100 hours. Measured again with the same copper cooling jig.

(5)ちょう度:JISK 2220に基づき測定した。 (5) Consistency: Measured according to JISK 2220.

Figure 2011084621
Figure 2011084621

Figure 2011084621
Figure 2011084621

Figure 2011084621
Figure 2011084621

Figure 2011084621
Figure 2011084621

Figure 2011084621
Figure 2011084621

本発明の熱伝導性材料は、表4の各実施例から明らかなように、高温および高温高湿条件における熱特性の低下を抑制することができた。   As is clear from the respective examples in Table 4, the thermally conductive material of the present invention was able to suppress a decrease in thermal characteristics under high temperature and high temperature and high humidity conditions.

本発明の熱伝導性材料は、例えば、発熱性電子部品の放熱部材等として使用できる。

The heat conductive material of the present invention can be used as, for example, a heat radiating member of a heat-generating electronic component.

Claims (2)

平均粒径(50%体積径)1.0〜25μmのアルミナ粉末が20〜55体積%、平均粒径(50%体積径)0.2〜1.0μmの酸化亜鉛粉末が5〜28体積%、残部の体積%がシリコーンゲルであり、かつアルミナ粉末と酸化亜鉛粉末の合計量100質量部に対して、アルキルアルコキシシランを0.5〜3.0質量部添加することを特徴とする熱伝導性材料。 Alumina powder having an average particle diameter (50% volume diameter) of 1.0 to 25 μm is 20 to 55% by volume, and zinc oxide powder having an average particle diameter (50% volume diameter) of 0.2 to 1.0 μm is 5 to 28% by volume. In addition, 0.5% to 3.0 parts by mass of an alkylalkoxysilane is added to 100 parts by mass of the total amount of alumina powder and zinc oxide powder, with the remaining volume% being silicone gel, Sex material. アルキルアルコキシシランがアルキル基の炭素の数が3以下のメトキシシラン又はアルキル基の炭素の数が8のトリエトキシシランであること特徴とする請求項1に記載の熱伝導性材料。

The heat conductive material according to claim 1, wherein the alkylalkoxysilane is methoxysilane having 3 or less carbon atoms in the alkyl group or triethoxysilane having 8 carbon atoms in the alkyl group.

JP2009237324A 2009-10-14 2009-10-14 Thermally conductive material Expired - Fee Related JP5463116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009237324A JP5463116B2 (en) 2009-10-14 2009-10-14 Thermally conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009237324A JP5463116B2 (en) 2009-10-14 2009-10-14 Thermally conductive material

Publications (2)

Publication Number Publication Date
JP2011084621A true JP2011084621A (en) 2011-04-28
JP5463116B2 JP5463116B2 (en) 2014-04-09

Family

ID=44077818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009237324A Expired - Fee Related JP5463116B2 (en) 2009-10-14 2009-10-14 Thermally conductive material

Country Status (1)

Country Link
JP (1) JP5463116B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216523A (en) * 2015-05-14 2016-12-22 デンカ株式会社 Composition for thermal conducive grease, thermal conductive grease and heat dissipating member
JP2017066407A (en) * 2013-11-27 2017-04-06 日東電工株式会社 Conductive adhesive tape, electronic member and adhesive
WO2018033992A1 (en) * 2016-08-18 2018-02-22 デンカ株式会社 Composition for thermally-conductive grease, thermally-conductive grease, and heat dissipation member
CN108003625A (en) * 2017-12-21 2018-05-08 深圳市东成电子有限公司 Low hypotonic oily heat-conducting silicone grease filler of volatilization and preparation method thereof
WO2023008538A1 (en) * 2021-07-29 2023-02-02 積水ポリマテック株式会社 Thermally conductive composition and cured product

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3077578A4 (en) 2013-12-05 2017-07-26 Honeywell International Inc. Stannous methansulfonate solution with adjusted ph
MX2016016984A (en) 2014-07-07 2017-05-03 Honeywell Int Inc Thermal interface material with ion scavenger.
US10287471B2 (en) 2014-12-05 2019-05-14 Honeywell International Inc. High performance thermal interface materials with low thermal impedance
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
KR102554661B1 (en) 2016-03-08 2023-07-13 허니웰 인터내셔널 인코포레이티드 phase change material
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307698A (en) * 1998-04-17 1999-11-05 Denki Kagaku Kogyo Kk Heat dissipating spacer
JP2001503471A (en) * 1997-02-07 2001-03-13 ロックタイト コーポレーション Conductive resin composition
JP2002114663A (en) * 2000-08-02 2002-04-16 Kanebo Ltd Water-repellent cosmetic, agent for imparting water- repellency to cosmetic, method for imparting water- repellency to cosmetic, and method for evaluating water-repellency and water-resistance of cosmetic
JP2008184549A (en) * 2007-01-30 2008-08-14 Momentive Performance Materials Japan Kk Manufacturing method for heat-releasing material
JP2010013521A (en) * 2008-07-02 2010-01-21 Shin-Etsu Chemical Co Ltd Heat conductive silicone composition
JP2010150399A (en) * 2008-12-25 2010-07-08 Shin-Etsu Chemical Co Ltd Thermally conductive silicone grease composition
JP2011151280A (en) * 2010-01-25 2011-08-04 Denki Kagaku Kogyo Kk Heat dissipating member and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503471A (en) * 1997-02-07 2001-03-13 ロックタイト コーポレーション Conductive resin composition
JPH11307698A (en) * 1998-04-17 1999-11-05 Denki Kagaku Kogyo Kk Heat dissipating spacer
JP2002114663A (en) * 2000-08-02 2002-04-16 Kanebo Ltd Water-repellent cosmetic, agent for imparting water- repellency to cosmetic, method for imparting water- repellency to cosmetic, and method for evaluating water-repellency and water-resistance of cosmetic
JP2008184549A (en) * 2007-01-30 2008-08-14 Momentive Performance Materials Japan Kk Manufacturing method for heat-releasing material
JP2010013521A (en) * 2008-07-02 2010-01-21 Shin-Etsu Chemical Co Ltd Heat conductive silicone composition
JP2010150399A (en) * 2008-12-25 2010-07-08 Shin-Etsu Chemical Co Ltd Thermally conductive silicone grease composition
JP2011151280A (en) * 2010-01-25 2011-08-04 Denki Kagaku Kogyo Kk Heat dissipating member and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066407A (en) * 2013-11-27 2017-04-06 日東電工株式会社 Conductive adhesive tape, electronic member and adhesive
JP2016216523A (en) * 2015-05-14 2016-12-22 デンカ株式会社 Composition for thermal conducive grease, thermal conductive grease and heat dissipating member
WO2018033992A1 (en) * 2016-08-18 2018-02-22 デンカ株式会社 Composition for thermally-conductive grease, thermally-conductive grease, and heat dissipation member
CN108003625A (en) * 2017-12-21 2018-05-08 深圳市东成电子有限公司 Low hypotonic oily heat-conducting silicone grease filler of volatilization and preparation method thereof
WO2023008538A1 (en) * 2021-07-29 2023-02-02 積水ポリマテック株式会社 Thermally conductive composition and cured product

Also Published As

Publication number Publication date
JP5463116B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5463116B2 (en) Thermally conductive material
JP5231236B2 (en) Grease
JP4656340B2 (en) Thermally conductive silicone grease composition
JP5182515B2 (en) Thermally conductive silicone grease composition
TWI780100B (en) Thermally conductive resin composition, heat dissipation sheet, heat dissipation member, and manufacturing method thereof
US11739245B2 (en) Thermally conductive polyorganosiloxane composition
WO2020137086A1 (en) Heat-conductive composition and heat-conductive sheet employing same
JP6510315B2 (en) Thermal conductive grease composition, thermal conductive grease and heat dissipating member
WO2018079362A1 (en) Thermal conductive silicone composition, semiconductor device, and method for manufacturing semiconductor device
JP2010155870A (en) Thermally conductive compound and method for producing the same
JP5749536B2 (en) Thermally conductive moldings and their applications
WO2012067247A1 (en) High durability thermally conductive composite and low pump-out grease
JP6708005B2 (en) Thermally conductive silicone putty composition
CN111315825B (en) Thermally conductive silicone grease composition
JP2009096961A (en) Heat-conductive silicone grease composition excellent in reworkability
WO2020080256A1 (en) Two-pack curable composition set, thermally conductive cured product, and electronic device
JP6692512B1 (en) Thermally conductive composition and thermally conductive sheet using the same
JP6791672B2 (en) Thermally conductive polysiloxane composition
JP6884787B2 (en) Composition for heat conductive grease, heat conductive grease and heat dissipation member
JP5284655B2 (en) Thermally conductive grease
JP7015424B1 (en) Thermally conductive silicone grease composition and its manufacturing method
KR101775288B1 (en) Silicone composition having excellent long-term storage stability and heat-radiating function
KR20110121881A (en) Silicone composition having excellent long-term storage stability and heat-radiating function
JP6938808B1 (en) Thermally conductive silicone gel composition, thermally conductive silicone sheet and its manufacturing method
JP6008706B2 (en) Thermally conductive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5463116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees