JP6510315B2 - Thermal conductive grease composition, thermal conductive grease and heat dissipating member - Google Patents

Thermal conductive grease composition, thermal conductive grease and heat dissipating member Download PDF

Info

Publication number
JP6510315B2
JP6510315B2 JP2015098866A JP2015098866A JP6510315B2 JP 6510315 B2 JP6510315 B2 JP 6510315B2 JP 2015098866 A JP2015098866 A JP 2015098866A JP 2015098866 A JP2015098866 A JP 2015098866A JP 6510315 B2 JP6510315 B2 JP 6510315B2
Authority
JP
Japan
Prior art keywords
component
thermally conductive
conductive grease
composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015098866A
Other languages
Japanese (ja)
Other versions
JP2016216523A (en
Inventor
高士 堂本
高士 堂本
山縣 利貴
利貴 山縣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2015098866A priority Critical patent/JP6510315B2/en
Publication of JP2016216523A publication Critical patent/JP2016216523A/en
Application granted granted Critical
Publication of JP6510315B2 publication Critical patent/JP6510315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱伝導性グリース用組成物、熱伝導性グリースおよび放熱部材に関する。   The present invention relates to a thermally conductive grease composition, a thermally conductive grease and a heat dissipating member.

発熱性電子部品の小型化、高出力化に伴い、それらの電子部品から発生する単位面積当たりの熱量は非常に大きくなってきている。冷却には金属製のヒートシンクや筐体が使用され、さらに電子部品からヒートシンクや筐体などの冷却部へ効率よく熱を伝えるために放熱材が使用される。この放熱材を使用する理由として電子部品とヒートシンク等をそのまま接触させた場合、その界面には微視的にみると、空気が存在し熱伝導の障害となる。したがって、界面に存在する空気の代わりに放熱材を電子部品とヒートシンク等の間に存在させることによって、効率よく熱を伝えることができる。   With the miniaturization and high output of heat-generating electronic components, the amount of heat per unit area generated from the electronic components is becoming very large. A metal heat sink or a housing is used for cooling, and a heat dissipation material is used to efficiently transfer heat from the electronic component to a cooling unit such as the heat sink or the housing. As a reason for using the heat dissipating material, when the electronic component and the heat sink are brought into contact with each other as it is, air microscopically exists at the interface, which causes an obstacle to heat conduction. Therefore, heat can be efficiently conducted by causing the heat dissipating material to be present between the electronic component and the heat sink or the like instead of the air present at the interface.

また、電子部品動作前は電子機器の使用環境次第ではマイナス数十℃から、動作中は高温といったように、電子部品を使用する度に、放熱材は数百℃の冷熱衝撃を受け続ける。電子部品を長期にわたり故障しないようにするためには、発熱する電子部品を冷却し続ける必要があり、放熱材の放熱特性に劣化があってはならない。   Also, depending on the use environment of the electronic device, the heat radiating material continues to receive several hundred degrees C. of thermal shock every time the electronic component is used, such as from several tens of degrees C. depending on the use environment of the electronic device and high temperature during operation. In order to prevent failure of the electronic component over a long period of time, it is necessary to keep cooling the electronic component that generates heat, and the heat dissipation characteristics of the heat dissipation material should not be deteriorated.

放熱材としては、高分子量シリコーンや低分子量シリコーンに熱伝導性粉末を充填した硬化物からなる熱伝導性シート、低分子量シリコーンのようなやわらかいシリコーンに熱伝導性粉末が充填され、柔軟性を有する硬化物からなる熱伝導性パッド、液状シリコーンに熱伝導性粉末が充填された流動性のあるグリース、発熱電子部品の作動温度で軟化又は流動化する相変化型熱伝導性材料などがある。これらの中で、グリースが特に熱を伝えやすい。   As a heat dissipation material, a thermally conductive sheet made of a cured product of high molecular weight silicone or low molecular weight silicone filled with thermally conductive powder, or soft silicone such as low molecular weight silicone is filled with thermally conductive powder and has flexibility. There are a thermally conductive pad made of a cured product, a flowable grease in which a thermally conductive powder is filled in liquid silicone, and a phase change thermally conductive material which is softened or fluidized at the operating temperature of the heat-generating electronic component. Among these, grease is particularly easy to transfer heat.

グリースは、シリコーンオイル等の液状シリコーンである基油や、低分子量シリコーンなどの低粘度のシリコーンに熱伝導性粉末を含有させてなるものである。   The grease is obtained by adding a thermally conductive powder to a base oil which is a liquid silicone such as silicone oil, or a low viscosity silicone such as a low molecular weight silicone.

グリースは高熱伝導であるが流動性があるがゆえに冷熱衝撃を何回も繰り返されるところで使用すると、割れやポンプアウト(基材やグリース自身の熱膨張・収縮により、グリースが冷却部より外に流れ出てしまう現象)を生じ、熱抵抗が上昇する。一般的に割れは低温時のグリースの粘度が高いほど生じやすく、またポンプアウトは高温時のグリースの粘度が低いほど生じやすく、割れおよびポンプアウトのどちらも生じることがないグリースを開発することは極めて困難である。なお、本発明の割れ性とは、150℃以上の雰囲気下に長時間暴露した際に、グリースに欠陥部を生じる現象を意味する。   Grease has high thermal conductivity but is fluid, so if it is used where thermal shock is repeated many times, cracking and pumping out (grease flows out of the cooling section due to thermal expansion and contraction of the substrate and grease itself) And the thermal resistance rises. Generally, cracking is more likely to occur as the viscosity of the grease at higher temperatures becomes lower, and pump-out is more likely to occur as the viscosity of the grease at lower temperatures becomes lower, and it is possible to develop greases that neither crack nor pump-out occur. It is extremely difficult. In addition, the crack property of this invention means the phenomenon which produces a defect part in grease, when it exposes in a 150 degreeC or more atmosphere for a long time.

上記課題を解決するために、白金系触媒によるヒドロシリル化反応を利用したシリコーン組成物が提案されている(特許文献1〜4)が、何れも放熱材として用いた際の基板との接着性、耐熱性及び放熱樹脂材料としての機械的特性(引張強度)等に着目したものであり、冷熱衝撃過程における耐割れ性、耐ポンプアウト性に関しての効果は不十分と判断される。 In order to solve the above problems, silicone compositions using a hydrosilylation reaction with a platinum-based catalyst have been proposed (Patent Documents 1 to 4), but all of them have adhesion to a substrate when used as a heat dissipation material, It pays attention to heat resistance and mechanical properties (tensile strength) as a heat dissipation resin material, and it is judged that the effects on crack resistance and pumpout resistance in the thermal shock process are insufficient.

特開2014−162885号公報JP, 2014-162885, A W02010/010841W02010 / 010841 特開2012−102177号公報JP 2012-102177 A 特開2014−162886号公報JP, 2014-162886, A

発明者達は鋭意検討した結果、冷熱衝撃過程におけるグリースの割れ現象は、フィラーの再凝集に起因する現象であることを確認した。フィラーの再凝集を低減するには、シリコーン分子鎖中に、フィラー表面と相互作用を生じるシランカップリング剤を導入することが有効であることを見出した。さらにグリースのポンプアウト現象に関しては、シリコーン架橋体の構造制御が不可欠であることを確認した。このシリコーン架橋体の構造制御には特定の分子量、ビニル基数、分子中にある一定数量の平均ヒドロシリル基数を有するシリコーンが不可欠であることを見出した。
本発明は、上記問題と実状に鑑み、冷熱衝撃過程において、耐割れ性および耐ポンプアウト性に優れた熱伝導性グリース用組成物を提供することを目的とする。さらに、この熱伝導性グリース用組成物を用いて製造される、熱伝導性グリースおよび放熱部材を提供することを目的とする。
As a result of intensive investigations, the inventors confirmed that the grease cracking phenomenon in the thermal shock process is a phenomenon caused by reaggregation of the filler. In order to reduce filler reaggregation, it has been found that it is effective to introduce a silane coupling agent in the silicone molecular chain that interacts with the surface of the filler. Furthermore, with regard to the grease pump-out phenomenon, it was confirmed that structural control of the crosslinked silicone was essential. It has been found that a silicone having a specific molecular weight, the number of vinyl groups, and a certain number of average hydrosilyl groups in the molecule is essential for controlling the structure of the crosslinked silicone.
An object of the present invention is to provide a composition for thermal conductive grease excellent in cracking resistance and pumpout resistance in a thermal shock process in view of the above problems and actual situation. Further, another object of the present invention is to provide a thermally conductive grease and a heat dissipating member manufactured using this thermally conductive grease composition.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)(A)成分、(B)成分、(C)成分、(D)成分および(E)成分を含有する熱伝導性グリース用組成物であって、(A)成分、(B)成分、(C)成分および(D)成分の総和が6〜20質量%である、熱伝導性グリース用組成物。(A)両末端にビニル基を含有する質量平均分子量10000〜800000のシリコーン、(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーン、(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量10000〜40000のシリコーン、(D)反応性二重結合を含有するシランカップリング剤、(E)熱伝導性フィラー
)熱伝導性グリース用組成物中の、(A)成分が2.5〜15質量%、(B)成分が0.005〜0.1質量%、(C)成分が1〜10質量%(D)成分が0.01〜0.6質量%である(1)に記載の熱伝導性グリース用組成物。
)(E)成分が、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム及び酸化亜鉛から選択される1種以上である、(1)または(2)に記載の熱伝導性グリース用組成物。
)(E)成分が、平均粒子径が15〜100μmである粗粉、平均粒子径が2〜11μmである中粒粉および平均粒子径が0.5〜1μmである微粉からなる、(1)〜()の何れか一つに記載の熱伝導性グリース用組成物。
)(1)〜()に記載の何れか一つの熱伝導性グリース用組成物を硬化させてなる熱伝導性グリース。
)(5)に記載の熱伝導性グリースを介して電子部品とヒートシンクを接合した放熱部材。
The present invention adopts the following means in order to solve the problems described above.
(1) A composition for thermal conductive grease containing component (A), component (B), component (C), component (D) and component (E) , which is component (A), component (B) The composition for thermally conductive grease, wherein the total of the (C) component and the (D) component is 6 to 20% by mass. (A) Silicone having a weight average molecular weight of 10000 to 800,000 containing vinyl groups at both ends, (B) a weight average containing no vinyl group in the molecule and containing an average of 5 to 10 hydrosilyl groups in the molecule Silicone having a molecular weight of 2000 to 10000, (C) Silicone having a weight average molecular weight of 10000 to 40,000 containing vinyl groups at both ends and containing an average of 1 to 4 hydrosilyl groups in the molecule, (D) reactive double Silane coupling agent containing bond, (E) thermally conductive filler ( 2 ) 2.5 to 15% by mass of (A) component, 0.005 (B) component in the composition for thermally conductive grease The composition for thermal conductive grease according to (1) , in which the (C) component is 1 to 10% by mass and the (D) component is 0.01 to 0.6% by mass.
( 3 ) The composition for thermally conductive grease according to ( 1) or (2), wherein the component (E) is at least one selected from silica, alumina, boron nitride, aluminum nitride and zinc oxide.
( 4 ) The component (E) is composed of a coarse powder having an average particle size of 15 to 100 μm, a medium particle powder having an average particle size of 2 to 11 μm, and a fine powder having an average particle size of 0.5 to 1 μm The composition for thermally conductive grease as described in any one of 1)-( 3 ).
( 5 ) A thermally conductive grease obtained by curing the composition for thermally conductive grease according to any one of (1) to ( 4 ).
( 6 ) A heat dissipating member in which the electronic component and the heat sink are joined via the thermally conductive grease as described in ( 5) .

本発明では、特定のシリコーン、シランカプリング剤及び熱伝導性フィラーを含有する熱伝導性グリース用組成物が、冷熱衝撃過程後もグリースとしての特性を維持し、かつ耐割れ性および耐ポンプアウト性を両立することを見出した。   In the present invention, a composition for thermal conductive grease containing a specific silicone, silane coupling agent and thermal conductive filler maintains the property as a grease even after a thermal shock process, and is resistant to cracking and pumpout. It was found to be compatible.

実施例2の耐ポンプアウト性評価試験後の試験片である。It is a test piece after the pump out resistance evaluation test of Example 2. 比較例3の耐ポンプアウト性評価試験後の試験片である。It is a test piece after the pump out resistance evaluation test of comparative example 3. 実施例2の耐割れ性評価試験後の試験片である。It is a test piece after the crack resistance evaluation test of Example 2. 比較例2の耐割れ性評価試験後の試験片である。It is a test piece after the crack resistance evaluation test of comparative example 2. 比較例2の耐割れ性評価試験後の試験片を二値化した画像である。It is the image which binarized the test piece after the crack resistance evaluation test of Comparative Example 2.

本発明の熱伝導性グリース用組成物は、(A)両末端にビニル基を含有する質量平均分子量10000〜800000のシリコーン、(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーン、(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量10000〜40000のシリコーン、(D)ビニル基を含有するシランカップリング剤、(E)熱伝導性フィラーを含有する。   The composition for thermal conductive grease of the present invention comprises (A) silicone having a weight average molecular weight of 10000 to 800,000 containing vinyl groups at both ends, (B) no vinyl group in the molecule, and an average in the molecule. Silicone having a weight average molecular weight of 2000 to 10000 containing 5 to 10 hydrosilyl groups; (C) a weight average molecular weight of 10000 containing vinyl groups at both ends and containing an average of 1 to 4 hydrosilyl groups in the molecule ~ 40000 silicone, (D) silane coupling agent containing vinyl group, (E) thermally conductive filler.

熱伝導性グリース用組成物はシリコーンの付加反応により架橋反応を進ませるが、架橋度を最適化することにより流動性のある熱伝導性グリースが得られる。硬化方法としては熱伝導性グリース用組成物に白金系触媒を添加し、これを加熱する方法が挙げられる。また、熱伝導性グリース用組成物を二剤に分割し、一方に白金系触媒を添加し、常温にて硬化する方法も採用できる。   The composition for thermally conductive grease advances the crosslinking reaction by the addition reaction of silicone, but by optimizing the degree of crosslinking, a fluid thermally conductive grease can be obtained. As a curing method, a method of adding a platinum-based catalyst to a composition for thermal conductive grease and heating it is mentioned. Moreover, the method of dividing | segmenting the composition for thermally conductive grease into 2 agents, adding a platinum-type catalyst to one side, and hardening it at normal temperature is also employable.

(A)両末端にビニル基を含有するシリコーンは、質量平均分子量が10000〜800000であり、質量平均分子量が10000〜40000であることがより好ましい。質量平均分子量を10000以上とすることで、耐ポンプアウト性が良好となる。また、質量平均分子量を800000以下とすることで、耐割れ性が良好となる。これらの市販品としては、例えば東レ・ダウコーニング社製SE1885/A剤などを用いることができる。   (A) The silicone having a vinyl group at both ends has a weight average molecular weight of 10000 to 800,000, and more preferably a weight average molecular weight of 10000 to 40000. By setting the mass average molecular weight to 10000 or more, the pumpout resistance becomes good. Moreover, crack resistance becomes favorable by making a mass mean molecular weight 800000 or less. As these commercial products, for example, SE 1885 / A agent manufactured by Toray Dow Corning Co., Ltd. can be used.

(A)成分の熱伝導性グリース用組成物中の添加量は、2.5〜15質量%が好ましく、3〜5質量%がより好ましい。2.5質量%以上とすることで、耐割れ性が良好になる。また、15質量%以下とすることで、耐ポンプアウト性が良好となる。   2.5-15 mass% is preferable, and, as for the addition amount in the composition for heat conductive greases of (A) component, 3-5 mass% is more preferable. Crack resistance becomes favorable by setting it as 2.5 mass% or more. Moreover, pump-out resistance becomes favorable by setting it as 15 mass% or less.

(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーンは、熱伝導性グリース用組成物の硬化体の架橋度を調整するためのものである。分子中のヒドロシリル基数は平均5〜10個であり、平均5〜7個がより好ましい。ヒドロシリル基数を平均5以上とすることで、耐ポンプアウト性が良好となる。また平均10個以下とすることで、耐割れ性が良好となる。市販品としては、例えば東レ・ダウコーニング・シリコーン社製、商品名「RD−1」などが挙げられる。   (B) A silicone having a weight average molecular weight of 2000 to 10000 containing no vinyl group in the molecule and having an average of 5 to 10 hydrosilyl groups in the molecule is a crosslinker of the cured product of the composition for thermal conductive grease To adjust the degree. The number of hydrosilyl groups in the molecule is an average of 5 to 10, and an average of 5 to 7 is more preferable. When the number of hydrosilyl groups is 5 or more on average, the pumpout resistance becomes good. Moreover, crack resistance becomes favorable by setting it as 10 pieces or less on average. As a commercial item, Toray Dow Corning silicone company make, brand name "RD-1" etc. are mentioned, for example.

(B)成分の熱伝導性グリース用組成物中の添加量は、0.005〜0.1質量%が好ましく、0.005〜0.04質量%がより好ましい。0.005質量%以上とすることで、耐ポンプアウト性が良好となる。また、0.1質量%以下とすることで、耐割れ性が良好となる。   0.005-0.1 mass% is preferable, and, as for the addition amount in the composition for thermally conductive grease of (B) component, 0.005-0.04 mass% is more preferable. By setting it as 0.005 mass% or more, pump-out resistance becomes favorable. Moreover, crack resistance becomes favorable by setting it as 0.1 mass% or less.

(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量10000〜40000のシリコーンは、熱伝導性グリース用組成物の硬化体の架橋度を調整するためのものである。分子中のヒドロシリル基数は平均1〜4個であり、平均1〜2個がより好ましい。ヒドロシリル基数を平均1以上とすることで、耐割れ性が良好となる。また平均4個以下とすることで、耐ポンプアウト性が良好となる。   (C) A silicone having a weight average molecular weight of 10000 to 40000 containing a vinyl group at both ends and containing an average of 1 to 4 hydrosilyl groups in the molecule is the degree of crosslinking of the cured product of the thermally conductive grease composition To adjust the The number of hydrosilyl groups in the molecule is an average of 1 to 4, and an average of 1 to 2 is more preferable. By setting the number of hydrosilyl groups to 1 or more on average, cracking resistance is improved. Moreover, pump-out resistance becomes favorable by setting it as four pieces or less on average.

(C)成分の質量平均分子量は10000〜40000であり、10000〜25000がより好ましい。質量平均分子量を10000以上とすることで、耐ポンプアウト性が良好となる。また、40000以下とすることで耐割れ性が良好となる。   The mass average molecular weight of the component (C) is 10,000 to 40,000, and 10,000 to 25,000 are more preferable. By setting the mass average molecular weight to 10000 or more, the pumpout resistance becomes good. Moreover, crack resistance becomes favorable by setting it as 40000 or less.

(C)成分の熱伝導性グリース用組成物中の添加量は、1〜10質量%が好ましく、2.5〜5質量%がより好ましい。1質量%以上とすることで、耐ポンプアウト性が良好となる。また、10質量%以下とすることで、耐割れ性が良好となる。   1-10 mass% is preferable, and, as for the addition amount in the composition for heat conductive greases of (C) component, 2.5-5 mass% is more preferable. By setting the content to 1% by mass or more, the pumpout resistance becomes good. Moreover, crack resistance becomes favorable by setting it as 10 mass% or less.

(D)反応性二重結合を有するシランカップリング剤は、フィラーの再凝集を低減すべく、シリコーン分子鎖中に、フィラー表面と相互作用を生じるシランカップリング剤を導入するために用いる。シリコーン分子鎖にシランカップリング剤を導入するため、シランカップリング剤は反応性二重結合を有する。反応性二重結合としては、ビニル基またはアリル基を意味する。(D)反応性二重結合を含有するシランカップリング剤としては、アリルトリエトキシシラン、アリルクロロジメチルシラン、アリルトリメトキシシラン、アリルトリクロロシラン、クロロジメチルビニルシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリクロロビニルシラン、ビニルトリメトキシシラン、ジメチルエトキシビニルシラン、ビニルトリス(2−メトキシエトキシ)シラン等が挙げられる。市販品としては、東レ・ダウコーニング・シリコーン社製、商品名「Z6300」「Z6519」「Z6075」が挙げられる。これらの中ではフィラーとの反応性と、フィラーとの脱水縮合反応後の副産物として有害性の低いエタノールが発生する点で、Z6519(アリルトリエトキシシラン)が好ましい。   (D) A silane coupling agent having a reactive double bond is used to introduce a silane coupling agent in the silicone molecular chain that interacts with the surface of the filler in order to reduce filler reaggregation. The silane coupling agent has a reactive double bond in order to introduce a silane coupling agent into the silicone molecular chain. The reactive double bond means a vinyl group or an allyl group. (D) As a silane coupling agent containing a reactive double bond, allyltriethoxysilane, allylchlorodimethylsilane, allyltrimethoxysilane, allyltrichlorosilane, chlorodimethylvinylsilane, diethoxymethylvinylsilane, dimethoxymethylvinylsilane, Trichlorovinylsilane, vinyltrimethoxysilane, dimethylethoxyvinylsilane, vinyltris (2-methoxyethoxy) silane and the like can be mentioned. As a commercial item, Toray Dow Corning silicone company make, brand name "Z6300" "Z6519" "Z6075" is mentioned. Among these, Z6519 (allyl triethoxysilane) is preferable in that it is reactive with the filler and ethanol having low toxicity is generated as a by-product after dehydration condensation reaction with the filler.

(D)成分の熱伝導性グリース用組成物中の添加量は、0.01〜0.6質量%が好ましく、0.02〜0.3質量%がより好ましい。0.01質量%以上とすることで、耐割れ性が良好となる。また、0.60質量%以下とすることで、耐ポンプアウト性が良好となる。   0.01-0.6 mass% is preferable, and, as for the addition amount in the composition for heat conductive greases of (D) component, 0.02-0.3 mass% is more preferable. Crack resistance becomes favorable by setting it as 0.01 mass% or more. Moreover, pump-out resistance becomes favorable by setting it as 0.60 mass% or less.

熱伝導性グリース用組成物中の(A)成分、(B)成分、(C)成分および(D)成分の総和は6〜20質量%が好ましく、6〜10質量%がより好ましい。6質量%以上とすることで、熱伝導性が良好となる。また、20質量%以下とすることで、塗布する際の粘性が良好となる。   6-20 mass% is preferable, and, as for the sum total of (A) component, (B) component, (C) component, and (D) component in the composition for thermally conductive grease, 6-10 mass% is more preferable. Thermal conductivity becomes favorable by setting it as 6 mass% or more. Moreover, the viscosity at the time of apply | coating becomes favorable by setting it as 20 mass% or less.

本発明の熱伝導性グリース用組成物を二剤に分割して使用する場合、第一剤に(A)両末端にビニル基を含有する質量平均分子量10000〜800000のシリコーン、(D)反応性二重結合を含有するシランカップリング剤、および白金系触媒を、第二剤に(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーンおよび(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量1万〜4万のシリコーンを含むことが好ましい。これにより白金系触媒が存在しても、二剤の貯蔵安定性を向上することができる。   When the composition for thermal conductive grease of the present invention is used by dividing it into two agents, the first agent (A) silicone having a weight average molecular weight of 10000 to 800,000 containing vinyl groups at both ends, (D) reactivity Silane coupling agent containing a double bond, and platinum-based catalyst, the second agent (B) does not contain a vinyl group in the molecule and has an average weight of 5 to 10 hydrosilyl groups in the molecule It is preferable to contain silicone having an average molecular weight of 2,000 to 10,000 and (C) a silicone having a weight average molecular weight of 10,000 to 40,000 containing vinyl groups at both ends and containing an average of 1 to 4 hydrosilyl groups in the molecule. . Thereby, even if the platinum-based catalyst is present, the storage stability of the two agents can be improved.

(E)熱伝導性フィラーとしては、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム及び酸化亜鉛から選択される1種以上であることが好ましく、これらの中ではアルミナが充填性の点で好ましく、アルミナおよび窒化アルミニウムが熱伝導性の点で好ましい。   (E) The heat conductive filler is preferably at least one selected from silica, alumina, boron nitride, aluminum nitride and zinc oxide, and among these, alumina is preferable in terms of the filling property, alumina and alumina. Aluminum nitride is preferred in terms of thermal conductivity.

(E)熱伝導性フィラーは、平均粒子径が15〜100μmである粗粉、平均粒子径が2〜11μmである中粒粉および平均粒子径が0.5〜1μmである微粉からなることが好ましい。
粗粉の平均粒子径を15μm以上とすることで、熱伝導性および耐ポンプアウト性が良好となる。また粗粉の平均粒子径を100μm以下とすることで、絶縁性および耐割れ性が良好となる。また、中粒粉の平均粒子径を2〜11μmとすることで、熱伝導性フィラーの充填量が向上する。さらに、微粉の平均粒子径を0.5μm以上とすることで、熱伝導性および耐ポンプアウト性が良好となる。また微粉の平均粒子径を1μm以下とすることで、絶縁性および耐割れ性が良好となる。このように平均粒子径の異なる3種類の熱伝導性フィラーを用いることにより、塗布に好適な粘性を維持しつつ絶縁性、耐割れ性、熱伝導性及び耐ポンプアウト性を両立することができる。
(E) The thermally conductive filler may be composed of a coarse powder having an average particle size of 15 to 100 μm, a medium particle powder having an average particle size of 2 to 11 μm, and a fine powder having an average particle size of 0.5 to 1 μm. preferable.
By setting the average particle size of the coarse powder to 15 μm or more, the thermal conductivity and the pumpout resistance become good. In addition, by setting the average particle size of the coarse powder to 100 μm or less, the insulating property and the crack resistance become good. Moreover, the filling amount of a thermally conductive filler improves by making the average particle diameter of medium-sized powder 2-11 micrometers. Further, by setting the average particle size of the fine powder to 0.5 μm or more, the thermal conductivity and the pumpout resistance become good. In addition, by setting the average particle size of the fine powder to 1 μm or less, the insulating property and the crack resistance become good. Thus, by using three types of heat conductive fillers having different average particle sizes, it is possible to achieve both insulation, cracking resistance, thermal conductivity and pumpout resistance while maintaining a viscosity suitable for coating. .

熱伝導性グリース用組成物中の(E)熱伝導性フィラーは80質量%を超える量〜94質量%未満が好ましく、90〜94質量%がより好ましい。80質量%を越える量とすることで、熱伝導性が良好となる。また、94質量%未満とすることで、塗布する際の粘性が良好となる。   The amount of (E) the thermally conductive filler in the composition for thermally conductive grease is preferably more than 80% by mass to less than 94% by mass, and more preferably 90 to 94% by mass. By setting the amount to more than 80% by mass, the thermal conductivity becomes good. Moreover, the viscosity at the time of apply | coating becomes favorable by setting it as less than 94 mass%.

本発明では、例えばレジノカラー工業株式会社製「レジノブラック」などの着色剤を熱伝導性グリース用組成物100質量部に対して0.05〜0.2質量部、熱伝導性グリース用組成物としての物性に悪影響を及ぼさない程度に添加してもよい。また、必要に応じて酸化防止剤、金属腐食防止剤などを配合してもよい。   In the present invention, for example, 0.05 to 0.2 parts by mass of a coloring agent such as "Resino black" manufactured by Resilo Color Industries Ltd. with respect to 100 parts by mass of the composition for thermally conductive grease, a composition for thermally conductive grease It may be added to an extent that it does not adversely affect the physical properties of Moreover, you may mix | blend antioxidant, a metal corrosion inhibitor, etc. as needed.

本発明の熱伝導性グリース用組成物は、遊星攪拌機、万能混合攪拌機、ニーダー、ハイブリッドミキサー等で混練りすることによって製造することができる。   The composition for thermally conductive grease of the present invention can be produced by kneading using a planetary stirrer, a universal mixing stirrer, a kneader, a hybrid mixer or the like.

本発明の熱伝導性グリース用組成物は、予め25℃〜200℃で0.5時間〜24時間加熱して架橋反応を進ませた状態で放熱グリースとして使用することができる。また、電子部品とヒートシンクを接合後、同条件で加熱して使用しても良い。   The composition for thermally conductive grease of the present invention can be used as a heat release grease in a state where the crosslinking reaction is allowed to proceed by heating in advance at 25 ° C. to 200 ° C. for 0.5 hour to 24 hours. Moreover, after joining an electronic component and a heat sink, you may heat and use on the same conditions.

以下、本発明を実施例および比較例により具体的に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of Examples and Comparative Examples, but the present invention is not limited thereto.

<熱伝導性グリース用組成物の製造>
熱伝導性グリース用組成物の製造には以下の原料を用いた。
(A)両末端にビニル基を含有する質量平均分子量10000〜800000のシリコーン
Wacker社製、「Silgel613 A剤」、質量平均分子量10000、
Momentive社製、「XE14−B8530 A剤」、質量平均分子量25000、
Dow corning社製、「SE1885 A剤」、質量平均分子量40000、
Momentive社製、「TSE201」、質量平均分子量800000、
(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーン
Dow corning社製、「RD−1」、質量平均分子量2000、平均ヒドロシリル基数5個、
ブルースターシリコーン社製、「BLUESIL FLD 628 V12 H3.5」、質量平均分子量3000、平均ヒドロシリル基数7個、
ブルースターシリコーン社製、「BLUESIL FLD 626 V30 H2.5」、質量平均分子量5000、平均ヒドロシリル基数9個、
ブルースターシリコーン社製、「BLUESIL FLD 626 V70 H0.7」、質量平均分子量10000、平均ヒドロシリル基数10個
ブルースターシリコーン社製、「BLUESIL FLD 620 V3」、質量平均分子量2000、平均ヒドロシリル基数2個、
また、比較例用としてブルースターシリコーン社製、「BLUESIL FLD 626 V25 H7」、質量平均分子量3000、平均ヒドロシリル基数20個を用いた。
(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量10000〜40000のシリコーン
Wacker社製、「Silgel613 B剤」、質量平均分子量1万、平均ヒドロシリル基数1個、
Momentive社製、「XE14−B8530 B剤」、質量平均分子量25000、平均ヒドロシリル基数2個、
Dow corning社製、「SE1885 B剤」、質量平均分子量40000、平均ヒドロシリル基数4個
(D)ビニル基を含有するシランカップリング剤
ビニルトリエトキシシラン、Dow corning社製、「Z6519」
(E)熱伝導性フィラー
粗粉:アルミナ、電気化学工業社製、「DAW90」、平均粒子径90μm、
アルミナ、電気化学工業社製、「DAW70」、平均粒子径70μm、
アルミナ、電気化学工業社製、「DAW45」、平均粒子径45μm、
アルミナ、住友化学社製、「AA−18」、平均粒子径18μm、
窒化アルミニウム、電気化学工業社製、「SAN」、平均粒子径20μm、
中粒粉:アルミナ、電気化学工業社製、「DAS10」、平均粒子径10μm、
アルミナ、電気化学工業社製、「DAW05」、平均粒子径5μm、
アルミナ、住友化学社製、「AA−2」、平均粒子径2μm、
酸化亜鉛、堺化学社製、「ZIMC−11」、平均粒子径11μm、
微粉:アルミナ、住友化学社製、「AA−05」、平均粒子径0.5μm、
酸化亜鉛、本庄ケミカル社製、「一種」、平均粒子径0.5μm、
窒化アルミニウム、トクヤマ社製、「H」、平均粒子径1μm
白金系触媒: Momentive社製、「SFG−32」を、熱伝導性樹脂組成物に対し白金量換算で20ppm添加した。
<Production of composition for thermally conductive grease>
The following raw materials were used for manufacture of the composition for thermally conductive grease.
(A) Silicone-made Wacker company having a weight average molecular weight of 10000 to 800,000 containing a vinyl group at both ends, "Silgel 613 A agent", weight average molecular weight 10000,
Momentive, "XE14-B8530 A agent", weight average molecular weight 25,000,
Dow Corning, "SE 1885 agent A", weight average molecular weight 40000,
Manufactured by Momentive, "TSE 201", mass average molecular weight 800000,
(B) Silicone having a weight average molecular weight of 2000 to 10000 containing no vinyl group in the molecule and having an average of 5 to 10 hydrosilyl groups in the molecule, manufactured by Dow Corning, "RD-1", weight average molecular weight 2000, average of 5 hydrosilyl groups,
Blue Star Silicone Co., Ltd., "BLUESIL FLD 628 V 12 H 3.5", weight average molecular weight 3000, average number of hydrosilyl groups, 7
Blue Star Silicone Co., Ltd., "BLUESIL FLD 626 V30 H2.5", weight average molecular weight 5000, average number of hydrosilyl groups 9
Made by Blue Star Silicone Co., Ltd., "BLUESIL FLD 626 V70 H0.7", weight average molecular weight 10000, average hydrosilyl group number 10, made by Blue Star Silicone Co., Ltd. "BLUESIL FLD 620 V3", weight average molecular weight 2000, average hydrosilyl group number 2,
In addition, “BLUESIL FLD 626 V25 H7” manufactured by Bluestar Silicone Co., Ltd., a weight average molecular weight of 3000 and an average number of hydrosilyl groups of 20 were used for Comparative Example.
(C) A silicone having a weight average molecular weight of 10000 to 40000 containing vinyl groups at both ends and containing 1 to 4 hydrosilyl groups in the molecule, manufactured by Wacker, "Silgel 613 agent B", weight average molecular weight 10,000 , An average number of hydrosilyl groups,
Momentive, “XE14-B8530 agent B,” weight average molecular weight 25,000, average number of hydrosilyl groups: 2,
Dow corning "SE 1885 agent", weight average molecular weight 40000, average hydrosilyl group number 4 (D) Silane coupling agent containing vinyl group vinyltriethoxysilane, Dow corning, "Z6519"
(E) Thermally conductive filler coarse powder: Alumina, manufactured by Denki Kagaku Kogyo Co., Ltd., "DAW 90", average particle diameter 90 μm,
Alumina, manufactured by Denki Kagaku Kogyo Co., Ltd. "DAW 70", average particle diameter 70 μm,
Alumina, manufactured by Denki Kagaku Kogyo Co., Ltd. "DAW 45", average particle diameter 45 μm,
Alumina, manufactured by Sumitomo Chemical Co., Ltd., “AA-18”, average particle diameter 18 μm,
Aluminum nitride, manufactured by Denki Kagaku Kogyo Co., Ltd., "SAN", average particle diameter 20 μm,
Medium grain powder: Alumina, manufactured by Denki Kagaku Kogyo Co., Ltd., "DAS 10", average particle diameter 10 μm,
Alumina, manufactured by Denki Kagaku Kogyo Co., Ltd. "DAW 05", average particle diameter 5 μm,
Alumina, manufactured by Sumitomo Chemical Co., Ltd., “AA-2”, average particle diameter 2 μm,
Zinc oxide, manufactured by Sakai Chemical Co., Ltd., "ZIMC-11", average particle diameter 11 μm,
Fine powder: Alumina, manufactured by Sumitomo Chemical, "AA-05", average particle size 0.5 μm,
Zinc oxide, manufactured by Honjo Chemical Co., Ltd., "One kind", average particle diameter 0.5 μm,
Aluminum nitride, manufactured by Tokuyama "H", average particle size 1 μm
Platinum-based catalyst: "SFG-32" manufactured by Momentive, Inc. was added to the heat conductive resin composition in an amount of 20 ppm in terms of the amount of platinum.

表1〜表4に示す割合で各種原料を、150℃にて3時間、絶対圧100Pa以下で、真空加熱混練し、数種の熱伝導性グリースを製造した。なお、各配合原料の質量平均分子量、平均ヒドロシリル基数及び平均粒子径は以下の方法により測定した。   Various raw materials were vacuum heated and kneaded at 150 ° C. for 3 hours at an absolute pressure of 100 Pa or less at a ratio shown in Tables 1 to 4 to produce several types of thermally conductive greases. The mass average molecular weight, the average number of hydrosilyl groups and the average particle size of each of the compounding materials were measured by the following method.

[質量平均分子量]
GPC(ゲルパーミエーションクロマトグラフィー)を用いて標準ポリスチレン換算の質量平均分子量を求めた。溶媒はTHFを使用し、東ソー社製「HLC−8020」を用い測定した。ディテクターはRI(示差屈折率計)を用いた。
[Mass average molecular weight]
The mass average molecular weight in terms of standard polystyrene was determined using GPC (gel permeation chromatography). A solvent used THF and it measured using Tosoh "HLC-8020." The detector used RI (differential refractometer).

[平均ヒドロシリル基数]
JOEL社製「JOEL ECP−300」を用いて1H−NMR測定を行い、ビニル基数、メチル基数、ヒドロシリル基数の数比を定量した。両末端にビニル基を含有するヒドロシリル基含有シリコーンの場合は、ビニル基とヒドロシリル基の数比から平均ヒドロシリル基数を算出した。また、ビニル基を有さないヒドロシリル基含有シリコーンについては、東ソー社製「HLC−8020」を用いて質量平均分子量を測定してから、メチル基数とヒドロシリル基数の数比と質量平均分子量の測定値から平均ヒドロシリル基数を算出した。
[Average number of hydrosilyl groups]
1 H-NMR measurement was performed using “JOEL ECP-300” manufactured by JOEL, and the number ratio of the number of vinyl groups, the number of methyl groups, and the number of hydrosilyl groups was quantified. In the case of a hydrosilyl group-containing silicone containing vinyl groups at both ends, the average number of hydrosilyl groups was calculated from the number ratio of vinyl groups to hydrosilyl groups. Moreover, about the hydrosilyl group containing silicone which does not have a vinyl group, after measuring a mass mean molecular weight using Tosoh Corp. "HLC-8020", the measured value of the number ratio of the number of methyl groups and the number of hydrosilyl groups, and mass mean molecular weight The average number of hydrosilyl groups was calculated from

[平均粒子径]
島津製作所製「レーザー回折式粒度分布測定装置SALD−200」を用いて測定を行った。評価サンプルは、ガラスビーカーに50ccの純水と測定する熱伝導性フィラーを5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。分散処理を行った熱伝導性フィラーの分散液をスポイトを用いて、装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待った。このようにして吸光度が安定になった時点で測定を行なった。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算した。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を乗じ、相対粒子量の合計(100%)で割って求めた。
[Average particle size]
It measured using Shimadzu Corp. make "laser diffraction type particle size distribution measuring apparatus SALD-200". The evaluation sample added 5 g of a heat conductive filler to be measured to a glass beaker with 50 cc of pure water, was stirred using a spatula, and was then subjected to dispersion treatment for 10 minutes with an ultrasonic cleaning machine. The dispersion of the thermally conductive filler subjected to the dispersion treatment was added drop by drop to the sampler portion of the apparatus using a dropper, and it was waited until the absorbance became stable until it became measurable. The measurement was performed when the absorbance became stable in this way. In the laser diffraction type particle size distribution measuring apparatus, the particle size distribution was calculated from data of light intensity distribution of diffracted / scattered light by particles detected by the sensor. The average particle size was determined by multiplying the value of the particle size to be measured by the relative particle amount (difference%) and dividing by the total of the relative particle amounts (100%).





表1〜4の配合に記す熱伝導性グリースの物性は、以下の方法により測定した。   Physical properties of the thermally conductive grease described in the formulations of Tables 1 to 4 were measured by the following methods.

[粘度]
Thermo Scientific社製回転式レオメータMARSIIIにて、上部治具として35mmΦのパラレルプレートを用い、ペルチェ素子にて温度制御が可能な35mmΦ下部プレートの上に、熱伝導性グリースを載せ、上部治具で厚み1mmまで圧縮し、はみ出した部分はかきとり、測定を開始した。せん断速度0.0001〜100s−1の粘度を測定し、せん断速度10s−1の粘度を評価に用いた。粘度が400Pasより低い場合、メタルマスク・スクリーン印刷、スキージによる塗布が可能であり、作業性が良い。粘度が400Pas以上1200Pas未満である場合、メタルマスク・スクリーン印刷、スキージによる塗布は不可能であるが、自動塗布機によるシリンジからの吐出および塗布が可能である。1200Pas以上1500Pas未満においては、自動塗布機による吐出および塗布は、時間がかかるために困難である。1500Pasを超えた場合、自動塗布機による吐出および塗布も不可能である。
以上、評価に際しては、以下の指標を用いた。
優:粘度400Pas未満
良:粘度400Pas以上1200Pas未満
可:粘度1200Pas以上1500Pas未満
不可:粘度1500Pas以上
[viscosity]
The thermal conductive grease is placed on the 35 mm プ レ ー ト lower plate whose temperature can be controlled by a Peltier element using a 35 mm パ ラ レ ル parallel plate as the upper jig in the Thermo Scientific rotary rheometer MARS III, and the thickness is measured by the upper jig It was compressed to 1 mm, and the part that had run out was scraped off and measurement was started. The viscosity at a shear rate of 0.0001 to 100 s −1 was measured, and the viscosity at a shear rate of 10 s −1 was used for evaluation. When the viscosity is lower than 400 Pas, metal mask / screen printing, application by a squeegee are possible, and the workability is good. When the viscosity is 400 Pas or more and less than 1200 Pas, metal mask / screen printing and application by a squeegee are impossible, but ejection and application from a syringe by an automatic applicator are possible. In the range of 1200 Pas or more and less than 1500 Pas, discharge and application by an automatic coater are difficult because they take time. If it exceeds 1500 Pas, ejection and application by an automatic applicator are also impossible.
As mentioned above, the following indexes were used in the case of evaluation.
Excellent: viscosity less than 400 Pas Good: viscosity greater than 400 Pas and less than 1200 Pas Allowed: viscosity greater than 1200 Pas and less than 1500 Pas Impossible: viscosity greater than 1500 Pas

[熱伝導率]
ヒーターの埋め込まれた直方体の銅製治具で先端が100mm(10mm×10mm)と、冷却フィンを取り付けた直方体の銅製治具で先端が100mm(10mm×10mm)との間に、熱伝導性グリースを挟んで、隙間の厚みを0.05mm〜0.30mmの範囲で熱抵抗を測定し、熱抵抗と厚みの勾配から熱伝導率を算出して評価した。熱抵抗は、ヒーターに電力10Wをかけて30分間保持し、銅製治具同士の温度差(℃)を測定し、
熱抵抗(℃/W)={温度差(℃)/ 電力(W)}にて算出した。
熱伝導率としては、熱伝導性グリースの用途上1W/mK以上であれば問題なく使用される。
なお、評価に際しては、以下の指標を用いた。
優:熱伝導率2.5W/mK以上
良:熱伝導率1.0W/mK以上2.5W/mK未満
不可:熱伝導率1.0W/mK未満
[Thermal conductivity]
Thermal conductivity between 100 mm 2 (10 mm × 10 mm) at the tip by a rectangular copper jig with a heater embedded and at 100 mm 2 (10 mm × 10 mm) at the rectangular copper jig with cooling fins attached The thermal resistance was measured in the range of 0.05 mm to 0.30 mm for the thickness of the gap with the grease interposed, and the thermal conductivity was calculated and evaluated from the thermal resistance and the gradient of the thickness. The thermal resistance is maintained by applying 10 W of power to the heater for 30 minutes, and measuring the temperature difference (° C.) between the copper jigs,
Thermal resistance (° C./W)={temperature difference (° C.) / Power (W)}.
As thermal conductivity, if it is 1 W / mK or more in the use of thermal conductive grease, it will be used without problem.
The following indicators were used in the evaluation.
Excellent: Thermal conductivity of 2.5 W / mK or more Good: Thermal conductivity of 1.0 W / mK or more and less than 2.5 W / mK Impossible: Thermal conductivity of less than 1.0 W / mK

[耐ポンプアウト性]
アルミ板に大きさ60mm角で厚さ100μmに熱伝導性グリースを0.03cc×4点塗布し、真空脱泡を1時間処理した。この後、ガラス板をはさみ込み、熱伝導性グリースの直径が20mmの円形になるよう調整した。
次に、4kgの重りをガラス板上に乗せ1日放置後ガラス板両端をクリップで閉じ固定し、荷重にて変形した熱伝導性グリースの外周を油性マジックでマーキングした。−40℃から150℃の冷熱衝撃試験を実施し、耐ポンプアウト性を評価した。−40℃と150℃の保持時間は30分とし、−40℃から150℃、150から−40℃の昇降温は5分以内とし、300サイクル実施した。耐ポンプアウト性の評価において、ポンプアウト性の評価は以下に従った。
ポンプアウト率(%)
=(熱衝撃試験後の直径−熱衝撃試験前の直径)/冷熱衝撃試験前の直径×100
優:ポンプアウト率0%
良:ポンプアウト率1%以上5%未満
可:ポンプアウト率5%以上15%未満
不可:ポンプアウト率15%以上
[Pump-out resistance]
A heat conductive grease was applied to an aluminum plate in a size of 60 mm square and a thickness of 100 μm at 0.03 cc × 4 points, and vacuum degassing was performed for 1 hour. After this, the glass plate was sandwiched and adjusted so that the diameter of the thermally conductive grease became a circle of 20 mm.
Next, a 4 kg weight was placed on a glass plate and left for 1 day, and both ends of the glass plate were closed and fixed with clips, and the outer periphery of the thermally conductive grease deformed by load was marked with an oil mark. A thermal shock test at −40 ° C. to 150 ° C. was performed to evaluate the pumpout resistance. The holding time of -40 ° C and 150 ° C was 30 minutes, and the temperature rising and lowering temperature of -40 ° C to 150 ° C and 150 to -40 ° C was 5 minutes or less, and 300 cycles were performed. In the evaluation of pumpout resistance, the evaluation of pumpout was as follows.
Pump out rate (%)
= (Diameter after thermal shock test-diameter before thermal shock test) / diameter before thermal shock test × 100
Excellent: Pump-out rate 0%
Good: Pump out rate 1% or more and less than 5% Possible: Pump out rate 5% or more and less than 15% Impossible: Pump out rate 15% or more

[耐割れ性]
アルミ板に大きさ60mm角で厚さ100μmに熱伝導性グリースをスキージで塗布し、真空脱泡を1時間処理した後、ガラス板をはさみ込んだ。
次に、−40℃から150℃の冷熱衝撃試験を実施した。−40℃と150℃の保持時間はそれぞれ30分とし、−40℃から150℃、150から−40℃の昇降温は5分以内とし、300サイクル実施した。
耐割れ率の計算方法としては、図5に示すように、2値化ができる画像処理ソフト(ここではGIMP2.0)を用い2値化を行い、空隙の面積(黒色部)およびグリースの面積(白色部)を測定した。
優:割れ率0%
良:割れ率1%以上5%未満
可:割れ率5%以上15%未満
不可:割れ率15%以上
[Break resistance]
A thermally conductive grease was applied to an aluminum plate with a size of 60 mm square and a thickness of 100 μm with a squeegee, vacuum defoaming was performed for 1 hour, and then the glass plate was sandwiched.
Next, a thermal shock test at −40 ° C. to 150 ° C. was performed. The holding time of -40 ° C and 150 ° C was 30 minutes, and the temperature increase and decrease of -40 ° C to 150 ° C and 150 to -40 ° C was 5 minutes or less, and 300 cycles were performed.
As a calculation method of the crack resistance rate, as shown in FIG. 5, binarization is performed using image processing software (here, GIMP 2.0) capable of binarization, and the area of the void (black portion) and the area of the grease (White part) was measured.
Excellent: Crack rate 0%
Good: Cracking rate 1% or more and less than 5% Allowed: Cracking rate 5% or more and less than 15% Impossible: Cracking rate 15% or more

実施例および比較例に示すように、本発明の熱伝導性グリース用組成物を用いた熱伝導性グリースは、耐ポンプアウト性、耐割れ性に優れ、熱伝導率も高い結果となった。
As shown in Examples and Comparative Examples, the thermally conductive grease using the composition for thermally conductive grease of the present invention was excellent in the pump out resistance and the crack resistance, and the thermal conductivity was also high.

Claims (6)

(A)成分、(B)成分、(C)成分、(D)成分および(E)成分を含有する熱伝導性グリース用組成物であって、(A)成分、(B)成分、(C)成分および(D)成分の総和が6〜20質量%である、熱伝導性グリース用組成物。
(A)両末端にビニル基を含有する質量平均分子量10000〜800000のシリコーン
(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーン
(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量10000〜40000のシリコーン
(D)反応性二重結合を含有するシランカップリング剤
(E)熱伝導性フィラー
A composition for a thermally conductive grease comprising the (A) component, the (B) component, the (C) component, the (D) component and the (E) component , which is a component (A), (B) component, (C) The composition for thermally conductive grease, wherein the sum of the component (D) and the component (D) is 6 to 20% by mass.
(A) A silicone (B) having a weight average molecular weight of 10000 to 800.000 containing vinyl groups at both ends does not contain a vinyl group, and a weight average molecular weight containing an average of 5 to 10 hydrosilyl groups in the molecule Silicone (C) containing vinyl groups at both ends of 20000 to 10000 and containing silicone (D) reactive double bonds having a weight average molecular weight of 10000 to 40000 containing vinyl groups at an average of 1 to 4 hydrosilyl groups in the molecule Silane coupling agent (E) thermally conductive filler
熱伝導性グリース用組成物中の、
(A)成分が2.5〜15質量%
(B)成分が0.005〜0.1質量%
(C)成分が1〜10質量%
(D)成分が0.01〜0.6質量%である請求項1に記載の熱伝導性グリース用組成物。
In a composition for thermally conductive grease,
(A) component is 2.5 to 15% by mass
(B) component is 0.005 to 0.1% by mass
(C) component is 1 to 10% by mass
The composition for thermally conductive grease according to claim 1, wherein component (D) is 0.01 to 0.6% by mass.
(E)成分が、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム及び酸化亜鉛から選択される1種以上である、請求項1または2に記載の熱伝導性グリース用組成物。 The composition for thermally conductive grease according to claim 1 or 2, wherein the component (E) is at least one selected from silica, alumina, boron nitride, aluminum nitride and zinc oxide. (E)成分が、平均粒子径が15〜100μmである粗粉、平均粒子径が2〜11μmである中粒粉および平均粒子径が0.5〜1μmである微粉からなる、請求項1〜の何れか一項に記載の熱伝導性グリース用組成物。 The component (E) comprises a coarse powder having an average particle size of 15 to 100 μm, a medium particle powder having an average particle size of 2 to 11 μm, and a fine powder having an average particle size of 0.5 to 1 μm. The composition for thermally conductive grease as described in any one of 3 . 請求項1〜に記載の何れか一項の熱伝導性グリース用組成物を硬化させてなる熱伝導性グリース。 A thermally conductive grease obtained by curing the composition for thermally conductive grease according to any one of claims 1 to 4 . 請求項に記載の熱伝導性グリースを介して電子部品とヒートシンクを接合した放熱部材。
A heat radiating member in which an electronic component and a heat sink are joined via the thermally conductive grease according to claim 5 .
JP2015098866A 2015-05-14 2015-05-14 Thermal conductive grease composition, thermal conductive grease and heat dissipating member Active JP6510315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015098866A JP6510315B2 (en) 2015-05-14 2015-05-14 Thermal conductive grease composition, thermal conductive grease and heat dissipating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015098866A JP6510315B2 (en) 2015-05-14 2015-05-14 Thermal conductive grease composition, thermal conductive grease and heat dissipating member

Publications (2)

Publication Number Publication Date
JP2016216523A JP2016216523A (en) 2016-12-22
JP6510315B2 true JP6510315B2 (en) 2019-05-08

Family

ID=57579969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015098866A Active JP6510315B2 (en) 2015-05-14 2015-05-14 Thermal conductive grease composition, thermal conductive grease and heat dissipating member

Country Status (1)

Country Link
JP (1) JP6510315B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018033992A1 (en) * 2016-08-18 2019-06-13 デンカ株式会社 Thermal conductive grease composition, thermal conductive grease and heat dissipating member

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10501671B2 (en) * 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
FI3954719T3 (en) * 2019-04-11 2023-09-12 Denka Company Ltd Copolymer, dispersant, and resin composition
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
US20230374189A1 (en) * 2020-10-05 2023-11-23 Denka Company Limited Thermally conductive resin composition and electronic device
TW202227588A (en) * 2020-10-09 2022-07-16 日商陶氏東麗股份有限公司 Thermally conductive silicone composition and thermally conductive member
KR20230114183A (en) 2020-11-30 2023-08-01 가부시끼가이샤 도꾸야마 resin composition
WO2023008538A1 (en) * 2021-07-29 2023-02-02 積水ポリマテック株式会社 Thermally conductive composition and cured product
WO2023135857A1 (en) 2022-01-14 2023-07-20 富士高分子工業株式会社 Thermally conductive composition, thermally conductive sheet obtained from same, and production method therefor
WO2024042956A1 (en) * 2022-08-26 2024-02-29 デンカ株式会社 Heat-dissipating grease
WO2024042955A1 (en) * 2022-08-26 2024-02-29 デンカ株式会社 Heat dissipation grease

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580366B2 (en) * 2001-05-01 2004-10-20 信越化学工業株式会社 Thermal conductive silicone composition and semiconductor device
JP3928713B2 (en) * 2002-08-13 2007-06-13 信越化学工業株式会社 Manufacturing method of semiconductor device
JP2009138036A (en) * 2007-12-04 2009-06-25 Momentive Performance Materials Japan Kk Thermally-conductive silicone grease composition
JP5463116B2 (en) * 2009-10-14 2014-04-09 電気化学工業株式会社 Thermally conductive material
CN103221520A (en) * 2010-11-18 2013-07-24 电气化学工业株式会社 High durability thermally conductive composite and low pump-out grease
JP5648619B2 (en) * 2011-10-26 2015-01-07 信越化学工業株式会社 Thermally conductive silicone composition
JP5843368B2 (en) * 2013-05-07 2016-01-13 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018033992A1 (en) * 2016-08-18 2019-06-13 デンカ株式会社 Thermal conductive grease composition, thermal conductive grease and heat dissipating member

Also Published As

Publication number Publication date
JP2016216523A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6510315B2 (en) Thermal conductive grease composition, thermal conductive grease and heat dissipating member
JP4993135B2 (en) Thermally conductive silicone composition
JP5463116B2 (en) Thermally conductive material
JP5283346B2 (en) Thermally conductive cured product and method for producing the same
JP6884787B2 (en) Composition for heat conductive grease, heat conductive grease and heat dissipation member
TWI742114B (en) Thermal conductive polyorganosiloxane composition
TWI683859B (en) Thermally conductive polysiloxane composition and hardened material and composite sheet
JP2010155870A (en) Thermally conductive compound and method for producing the same
JP5472055B2 (en) Thermally conductive silicone grease composition
JP6705426B2 (en) Thermally conductive silicone composition
CN102555331A (en) Thermal-conductive silicon sheet and manufacturing method thereof
TW201905054A (en) Thermally conductive polyorganosiloxane composition
JP2015212318A (en) Thermal conductive silicone composition
JP2010120979A (en) Thermally conductive silicone gel cured product
KR20220112797A (en) High thermal conductivity flowable silicone composition
WO2012067247A1 (en) High durability thermally conductive composite and low pump-out grease
JP7276493B2 (en) Thermally conductive silicone composition and method for producing the same
WO2020116057A1 (en) Cured product of thermally conductive silicone composition
JP7015424B1 (en) Thermally conductive silicone grease composition and its manufacturing method
JP6791672B2 (en) Thermally conductive polysiloxane composition
CN100420006C (en) Heat radiating component
TWI716474B (en) Composition for thermally conductive paste, thermally conductive paste and heat dissipation member
TWI724156B (en) Thermally conductive composite sheet
JP2021195478A (en) Heat-conductive silicone composition, cured product thereof, and heat radiation sheet
CN101050356A (en) Composition object of heat conducting polusiloxane, and electronic component combination of using the composition object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190404

R150 Certificate of patent or registration of utility model

Ref document number: 6510315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250