JP2015212318A - Thermal conductive silicone composition - Google Patents

Thermal conductive silicone composition Download PDF

Info

Publication number
JP2015212318A
JP2015212318A JP2014094614A JP2014094614A JP2015212318A JP 2015212318 A JP2015212318 A JP 2015212318A JP 2014094614 A JP2014094614 A JP 2014094614A JP 2014094614 A JP2014094614 A JP 2014094614A JP 2015212318 A JP2015212318 A JP 2015212318A
Authority
JP
Japan
Prior art keywords
silicone composition
component
group
elastic modulus
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014094614A
Other languages
Japanese (ja)
Inventor
山田 邦弘
Kunihiro Yamada
邦弘 山田
岩田 充弘
Mitsuhiro Iwata
充弘 岩田
謙一 辻
Kenichi Tsuji
謙一 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2014094614A priority Critical patent/JP2015212318A/en
Publication of JP2015212318A publication Critical patent/JP2015212318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal conductive silicone composition capable of being cured without generating air bubble in the composition during heat curing and excellent in radiation performance.SOLUTION: There is provided a thermal conductive silicone composition containing (A) organopolysiloxane having at least two aliphatic unsaturated hydrocarbon group and kinetic viscosity at 25°C of 60 to 100,000 mm/s:100 pts.mass, (B) a thermal conductive filler having a thermal conductivity of 10 W/mK or more:300 to 3,000 pts.mass, (C) organohydrogen polysiloxane having two or more hydrogen atoms bound to a silicon atom in a molecule:the amount so that the number of SiH group in the (C) component to the total of the number of the aliphatic unsaturated hydrocarbon group in the component is 0.5 to 2.0 and (D) a platinum group metal catalyst:the blended amount so that the platinum atom is 0.1 to 500 ppm of the (A) component.

Description

本発明は、組成物中に気泡が発生せずに硬化できる、放熱性能に優れた熱伝導性シリコーン組成物に関する。   The present invention relates to a thermally conductive silicone composition excellent in heat dissipation performance that can be cured without generating bubbles in the composition.

プリント基板上に実装されるCPU等の電子部品は使用時の発熱による温度上昇によって性能が低下したり破損したりすることがあるため、従来、電子部品と放熱フィン等の間に熱伝導性の良い放熱シートや放熱グリースが用いられてきた。放熱シートは手軽に取り付けることができる利点があるが、CPU、放熱フィン等の表面は一見平滑に見えてもミクロ的に観れば凸凹があるので、実際はそれらの被着面に放熱シートを確実に密着させることはできず、空気層が残存する結果、放熱効果が期待通りに発揮されない不都合がある。それを解決するために放熱シートの表面に粘着層等を設けて密着性を向上させたものも提案されているが十分な結果が得られていない。放熱グリースはCPUや放熱フィン等の表面の凹凸に影響されることなくそれら被着面に良好に追随し密着性をもたらすが、他の部品を汚したり長時間使用するとオイルの流出等の問題が起こりがちである。そのため、液状シリコーンゴム組成物をポッティング剤や接着剤として用いる方法が提案されている(特許文献1、特許文献2)。   Since electronic components such as CPUs mounted on a printed circuit board may deteriorate or be damaged due to temperature rise due to heat generation during use, there is a conventional thermal conductivity between the electronic component and the heat radiation fin. Good heat dissipation sheets and heat dissipation grease have been used. The heat-dissipating sheet has the advantage that it can be attached easily, but the surface of the CPU, heat-dissipating fins, etc. may appear smooth, but there are irregularities when viewed microscopically. As a result of the air layer remaining, the heat dissipation effect cannot be exhibited as expected. In order to solve the problem, an adhesive layer or the like provided on the surface of the heat radiation sheet to improve the adhesion has been proposed, but sufficient results have not been obtained. Thermal grease follows the adherend surface well without being affected by unevenness on the surface of the CPU, radiating fins, etc., and brings about adhesion, but if other parts are soiled or used for a long time, problems such as oil spillage will occur. It tends to happen. Therefore, a method of using a liquid silicone rubber composition as a potting agent or an adhesive has been proposed (Patent Document 1, Patent Document 2).

ところで、一般的に、CPUなどの電子部品は、シリコンチップとオルガニック基板の間をエポキシ樹脂系のアンダーフィル剤等で封止するが、シリコンチップ及びオルガニック基板、アンダーフィル剤はそれぞれ熱膨張率が異なる。そのため、温度変化により各部品、部材の熱膨張率の違いからシリコンチップ及び基板が反ってしまう。時には、シリコンチップの中央部に対して周辺部では数十ミクロン程度も反ってしまうこともある。しかし、シリコンチップ上に配置されるヒートスプレッダーあるいはヒートシンクは、構造体が大きく高強度であるため反ることはない。したがって、シリコンチップとヒートスプレッダーあるいはヒートシンクとの間に挟まれる放熱材料はシリコンチップの反りに追随できないと、剥離してしまう結果、熱抵抗が上昇し、所望する放熱性能が得られなくなる。そのため、使用される放熱材料にはシリコンチップの反りに追随できる柔軟性が必要となる。しかし、上記特許文献1、2に記載の組成物は、硬化後の硬化物が非常に硬いことからCPU動作時に起こるシリコンチップの反りに追随出来ずに基材等から剥がれてしまことがある。すると、所望する放熱性能が得られないため、経時で熱抵抗が上昇するなどの問題点が生じていた。
このような問題点を解決するため、硬化後の弾性率を低く抑えたものも提案されているが(特許文献3)、弾性率を低く抑えると組成物の加熱硬化中に、組成物中に気泡が発生しやすくなり、特にCPUの面積が大きくなるとそれが顕在化してしまう。気泡が発生すると所望する放熱性能が得られないなどの問題が生じる。
By the way, in general, electronic parts such as CPU are sealed between the silicon chip and the organic substrate with an epoxy resin-based underfill agent, etc., but the silicon chip, the organic substrate, and the underfill agent are each thermally expanded. The rate is different. For this reason, the silicon chip and the substrate warp due to the difference in thermal expansion coefficient of each component and member due to temperature change. Sometimes, the center part of the silicon chip is warped by several tens of microns in the peripheral part. However, the heat spreader or heat sink arranged on the silicon chip does not warp because the structure is large and has high strength. Therefore, if the heat dissipating material sandwiched between the silicon chip and the heat spreader or the heat sink cannot follow the warp of the silicon chip, it peels off, resulting in an increase in thermal resistance and a desired heat dissipating performance cannot be obtained. Therefore, the heat dissipation material used needs to be flexible enough to follow the warp of the silicon chip. However, the compositions described in Patent Documents 1 and 2 may be peeled off from a substrate or the like without being able to follow the warpage of the silicon chip that occurs during CPU operation because the cured product after curing is very hard. Then, since the desired heat dissipation performance cannot be obtained, problems such as an increase in thermal resistance over time have occurred.
In order to solve such a problem, there has been proposed one having a low elastic modulus after curing (Patent Document 3). However, if the elastic modulus is kept low, Bubbles are likely to occur, especially when the CPU area increases. When bubbles are generated, there arises a problem that a desired heat dissipation performance cannot be obtained.

特開昭61-157569号公報Japanese Unexamined Patent Publication No. 61-157569 特開平8-208993号公報JP-A-8-208993 特許5047505号Patent 50475505

そこで、本発明は、上記欠点を克服し、組成物の加熱硬化中に、組成物中に気泡が発生せず、放熱性に優れ高信頼性の熱伝導性シリコーン組成物を提供することを目的とする。   Therefore, the present invention has an object to provide a highly reliable heat conductive silicone composition that overcomes the above-mentioned drawbacks and does not generate bubbles in the composition during heat-curing of the composition and has excellent heat dissipation and high reliability. And

斯かる実情に鑑み本発明者は鋭意研究を行った結果、ずり弾性が測定可能な粘弾性測定装置を用い、特定なプログラムを組んで、貯蔵弾性率G’と損失弾性率G”を測定した際、貯蔵弾性率G’と損失弾性率G”の交差する時間が、測定開始から特定の範囲内であるシリコーン組成物が、上記課題を解決することを見出し、本発明を完成した。   In view of such circumstances, the present inventor has conducted intensive research, and as a result, the storage elastic modulus G ′ and the loss elastic modulus G ″ were measured by using a viscoelasticity measuring apparatus capable of measuring shear elasticity and by building a specific program. At this time, it was found that a silicone composition in which the time at which the storage elastic modulus G ′ and the loss elastic modulus G ″ intersect is within a specific range from the start of the measurement solves the above problems, and the present invention has been completed.

すなわち本発明は、次の熱伝導性シリコーン組成物を提供するものである。
<1>(A)1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60〜100,000mm/sであるオルガノポリシロキサン:100質量部、
(B)熱伝導率が10W/mK以上である熱伝導性充填剤:300〜3,000質量部、
(C)1分子中に2個以上の、ケイ素原子に結合した水素原子(即ち、SiH基)を有するオルガノハイドロジェンポリシロキサン:(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対する(C)成分中のSiH基の個数が0.5〜2.0となる量、及び、
(D)白金族金属触媒:白金原子として(A)成分の0.1〜500ppmとなる配合量
を含有する熱伝導性シリコーン組成物であって、
ずり弾性が測定可能な粘弾性測定装置を用い、試料を25℃から105℃まで8℃/分、105℃から120℃まで1.5℃/分、120℃から125℃まで0.5℃/分で昇温した後、125℃で7,200秒維持するプログラムを組んで、貯蔵弾性率G’と損失弾性率G”を測定した際、貯蔵弾性率G’と損失弾性率G”の交差する時間が、測定開始から400〜900秒の範囲内であることを特徴とする熱伝導性シリコーン組成物。
That is, this invention provides the following heat conductive silicone composition.
<1> (A) Organopolysiloxane having at least two aliphatic unsaturated hydrocarbon groups in one molecule and having a kinematic viscosity at 25 ° C. of 60 to 100,000 mm 2 / s: 100 parts by mass
(B) Thermally conductive filler having a thermal conductivity of 10 W / mK or more: 300 to 3,000 parts by mass,
(C) Organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms (that is, SiH groups) in one molecule: the total number of aliphatic unsaturated hydrocarbon groups in component (A) The amount of SiH groups in the component (C) to 0.5 to 2.0, and
(D) platinum group metal catalyst: a thermally conductive silicone composition containing a blending amount of 0.1 to 500 ppm of component (A) as a platinum atom,
Using a viscoelasticity measuring apparatus capable of measuring shear elasticity, the sample was 8 ° C / min from 25 ° C to 105 ° C, 1.5 ° C / min from 105 ° C to 120 ° C, 0.5 ° C / min from 120 ° C to 125 ° C. When the storage elastic modulus G ′ and the loss elastic modulus G ″ are measured by setting a program for maintaining the temperature at 125 ° C. for 7,200 seconds after the temperature is raised in minutes, the intersection of the storage elastic modulus G ′ and the loss elastic modulus G ″ The heat conducting silicone composition is characterized in that the time to be measured is within a range of 400 to 900 seconds from the start of measurement.

<2> ずり弾性が測定可能な粘弾性測定装置を用い、試料を25℃から105℃まで8℃/分、105℃から120℃まで1.5℃/分、120℃から125℃まで0.5℃/分で昇温した後、125℃で7,200秒維持するプログラムを組んで、測定開始から7,200秒後の貯蔵弾性率G’の値が、5,000〜500,000Paであることを特徴とする、<1>記載の熱伝導性シリコーン組成物。 <2> Using a viscoelasticity measuring apparatus capable of measuring shear elasticity, the sample was set at 8 ° C / min from 25 ° C to 105 ° C, 1.5 ° C / min from 105 ° C to 120 ° C, and 0.1 ° C from 120 ° C to 125 ° C. A program for maintaining the temperature at 5 ° C./min and then maintaining at 125 ° C. for 7,200 seconds is set, and the value of the storage elastic modulus G ′ after 7,200 seconds from the start of measurement is 5,000 to 500,000 Pa. The thermally conductive silicone composition according to <1>, which is characterized in that it exists.

<3> 前記シリコーン組成物が、更に、(E)アセチレン化合物、窒素化合物、有機リン化合物、オキシム化合物および有機クロロ化合物からなる群より選択される1種以上の付加反応硬化型シリコーン組成物用付加反応制御剤を、前記(A)成分100質量部に対して0.05〜5.0質量部となる量で含有するものであることを特徴とする<1>又は<2>記載の熱伝導性シリコーン組成物。 <3> The addition for one or more addition reaction curable silicone compositions selected from the group consisting of (E) an acetylene compound, a nitrogen compound, an organic phosphorus compound, an oxime compound, and an organic chloro compound, wherein the silicone composition is further <1> or <2>, wherein the reaction control agent is contained in an amount of 0.05 to 5.0 parts by mass with respect to 100 parts by mass of the component (A). Silicone composition.

<4> 25度での性状が液状であり、25℃での粘度が、10〜300Pa・sである<1>〜<3>の何れか1項記載の熱伝導性シリコーン組成物。 <4> The thermally conductive silicone composition according to any one of <1> to <3>, wherein the property at 25 degrees is liquid and the viscosity at 25 ° C. is 10 to 300 Pa · s.

<5> 熱伝導率が、少なくとも1.5W/mKである<1>〜<4>の何れか1項記載の熱伝導性シリコーン組成物。 <5> The thermal conductive silicone composition according to any one of <1> to <4>, wherein the thermal conductivity is at least 1.5 W / mK.

本発明の熱伝導性シリコーン組成物は、組成物の加熱硬化中に、組成物中に気泡が発生せず、放熱性に優れる。   The heat conductive silicone composition of the present invention is excellent in heat dissipation without generating bubbles in the composition during heat curing of the composition.

実施例の組成物の貯蔵弾性率G’と損失弾性率G”の変化を示す図である。It is a figure which shows the change of the storage elastic modulus G 'and loss elastic modulus G "of the composition of an Example.

以下本発明を詳細に説明する。
(A)成分
(A)成分は、1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度60〜100,000mm/sを有するオルガノポリシロキサンである。
脂肪族不飽和炭化水素基は、好ましくは、脂肪族不飽和結合を有する、炭素数2〜8、更に好ましくは炭素数2〜6の1価炭化水素基であり、より好ましくはアルケニル基である。例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、及びオクテニル基等のアルケニル基が挙げられる。特に好ましくはビニル基である。脂肪族不飽和炭化水素基は、分子鎖末端のケイ素原子、分子鎖途中のケイ素原子のいずれに結合していてもよく、両者に結合していてもよい。
The present invention will be described in detail below.
Component (A) Component (A) is an organopolysiloxane having at least two aliphatic unsaturated hydrocarbon groups per molecule and a kinematic viscosity at 25 ° C. of 60 to 100,000 mm 2 / s. .
The aliphatic unsaturated hydrocarbon group is preferably a monovalent hydrocarbon group having 2 to 8, more preferably 2 to 6 carbon atoms, and more preferably an alkenyl group having an aliphatic unsaturated bond. . Examples thereof include alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group, and octenyl group. Particularly preferred is a vinyl group. The aliphatic unsaturated hydrocarbon group may be bonded to either a silicon atom at the end of the molecular chain or a silicon atom in the middle of the molecular chain, or may be bonded to both.

(A)成分のオルガノポリシロキサンは25℃での動粘度60〜100,000mm/s、好ましくは100〜30,000mm/sを有するものが好ましい。該動粘度が60mm/s未満であれば、シリコーン組成物の物理的特性が低下する虞があり、100,000mm/sを超えると、シリコーン組成物の伸展性が乏しいものとなる虞がある。本発明において、動粘度は、ウベローデ型オストワルド粘度計により測定した25℃における値である。動粘度が上記範囲のものは、同業者であれば容易に合成することが出来るし、また市販されているものを使用してもよい。 The organopolysiloxane as component (A) has a kinematic viscosity at 25 ° C. of 60 to 100,000 mm 2 / s, preferably 100 to 30,000 mm 2 / s. If the kinematic viscosity is less than 60 mm 2 / s, the physical properties of the silicone composition may be reduced, and if it exceeds 100,000 mm 2 / s, the extensibility of the silicone composition may be poor. is there. In the present invention, the kinematic viscosity is a value at 25 ° C. measured by an Ubbelohde Ostwald viscometer. Those having a kinematic viscosity in the above range can be easily synthesized by those skilled in the art, or commercially available ones may be used.

(A)成分のオルガノポリシロキサンは、上記性質を有するものであればその分子構造は特に限定されず、直鎖状、分岐鎖状、一部分岐または環状構造を有する直鎖状等であってもよい。特に、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状構造を有するものが好ましい。該直鎖状構造を有するオルガノポリシロキサンは、部分的に分岐状構造、又は環状構造を有していてもよい。該オルガノポリシロキサンは、1種を単独で又は2種以上を組み合わせて使用することができる。
(A)成分のオルガノポリシロキサンは、オルガノポリシロキサンのケイ素原子に脂肪族不飽和炭化水素基以外の有機基が結合していてもよい。このような脂肪族不飽和炭化水素基以外の有機基としては、炭素数1〜18、好ましくは炭素数1〜10、更に好ましくは1〜8の、非置換又は置換の1価炭化水素基が挙げられ、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、又は、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基等が挙げられる。就中、メチル基が好ましい。
The molecular structure of the (A) component organopolysiloxane is not particularly limited as long as it has the above properties, and may be linear, branched, partially branched, or linear having a cyclic structure. Good. In particular, those having a linear structure in which the main chain is composed of repeating diorganosiloxane units and both ends of the molecular chain are blocked with triorganosiloxy groups are preferred. The organopolysiloxane having a linear structure may partially have a branched structure or a cyclic structure. These organopolysiloxanes can be used alone or in combination of two or more.
In the organopolysiloxane of component (A), an organic group other than the aliphatic unsaturated hydrocarbon group may be bonded to the silicon atom of the organopolysiloxane. Examples of the organic group other than the aliphatic unsaturated hydrocarbon group include an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 8 carbon atoms. For example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group, etc. An alkyl group; an aryl group such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group; an aralkyl group such as a benzyl group, a phenylethyl group, a phenylpropyl group, or a part or all of hydrogen atoms of these groups; Substituted by halogen atoms such as bromine and chlorine, cyano groups, etc., such as chloromethyl group, chloropropyl group, bromoethyl group, trifluoropropyl Propyl group, cyanoethyl group and the like. Of these, a methyl group is preferred.

(B)成分
(B)成分の熱伝導性充填剤は、本発明の熱伝導性シリコーン組成物に熱伝導性を付与するためのものである。熱伝導性充填剤としては、例えば、アルミニウム、銀、銅、ニッケル、酸化亜鉛、アルミナ、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化珪素、ダイヤモンド、グラファイトが挙げられ、これらは1種でも2種以上を組合わせて用いてもよい。これら熱伝導性充填剤の平均粒径は、0.1〜50μmが好ましく、特に1〜30μmが好ましい。平均粒径が小さすぎると組成物の粘度が高くなりすぎて進展性の乏しいものとなるし、大きすぎると得られる組成物が不均一となる易い。また、これら熱伝導性充填剤の形状は球状、不定形状どちらでもよい。
本発明において「平均粒径」は、レーザー回折・散乱法によって求めた体積基準の粒度分布における積算値50%での粒径を意味する。レーザー回折・散乱法による測定は、例えば、マイクロトラック粒度分析計MT3300EX(日機装(株)社製)により行えばよい。
Component (B) The thermally conductive filler of component (B) is for imparting thermal conductivity to the thermally conductive silicone composition of the present invention. Examples of the thermally conductive filler include aluminum, silver, copper, nickel, zinc oxide, alumina, magnesium oxide, aluminum nitride, boron nitride, silicon nitride, diamond, and graphite. These may be used alone or in combination of two or more. May be used in combination. The average particle size of these thermally conductive fillers is preferably 0.1 to 50 μm, particularly preferably 1 to 30 μm. If the average particle size is too small, the viscosity of the composition will be too high and the progress will be poor, and if it is too large, the resulting composition will tend to be non-uniform. Moreover, the shape of these heat conductive fillers may be either spherical or indefinite.
In the present invention, the “average particle size” means a particle size at an integrated value of 50% in a volume-based particle size distribution obtained by a laser diffraction / scattering method. The measurement by the laser diffraction / scattering method may be performed by, for example, a microtrack particle size analyzer MT3300EX (manufactured by Nikkiso Co., Ltd.).

(B)成分の配合量は、(A)成分100質量部に対して300質量部より小さいと、得られる熱伝導率が低いものとなるし、3000質量部より大きいと粘度が高くなりすぎるため、300〜3,000質量部の範囲が好ましい。より好ましくは(A)成分100質量部に対して500〜2,500質量部である。   When the blending amount of the component (B) is less than 300 parts by mass with respect to 100 parts by mass of the component (A), the resulting thermal conductivity is low, and when it is greater than 3000 parts by mass, the viscosity becomes too high. The range of 300 to 3,000 parts by mass is preferable. More preferably, it is 500-2,500 mass parts with respect to 100 mass parts of (A) component.

(C)成分
(C)成分は、ケイ素原子に結合した水素原子(即ち、SiH基)を1分子中に2個以上、好ましくは3個以上、特には3〜100個、更には3〜20個有するオルガノハイドロジェンポリシロキサンである。該オルガノハイドロジェンポリシロキサンは、分子中のSiH基が、上述した(A)成分が有する脂肪族不飽和炭化水素基と後述する白金族金属触媒の存在下に付加反応し、架橋構造を形成できるものであればよい。
(C)成分のオルガノハイドロジェンポリシロキサンは、上記性質を有するものであればその分子構造は特に限定されず、直鎖状、分岐鎖状、環状、一部分岐または環状構造を有する直鎖状等であってもよい。好ましくは直鎖状、環状である。
Component (C) The component (C) is composed of 2 or more, preferably 3 or more, particularly 3 to 100, more preferably 3 to 20 hydrogen atoms bonded to silicon atoms (that is, SiH groups) in one molecule. This is an organohydrogenpolysiloxane. In the organohydrogenpolysiloxane, a SiH group in the molecule can undergo an addition reaction in the presence of the aliphatic unsaturated hydrocarbon group of the component (A) described above and a platinum group metal catalyst described later to form a crosslinked structure. Anything is acceptable.
The molecular structure of the organohydrogenpolysiloxane of component (C) is not particularly limited as long as it has the above-mentioned properties, and linear, branched, cyclic, partially branched or linear having a cyclic structure, etc. It may be. Preferably it is linear or cyclic.

該オルガノハイドロジェンポリシロキサンの25℃の動粘度は、1.0〜1,000mm/sが好ましく、特に10〜100mm/sが好ましい。
前記動粘度が1.0mm/s以上であれば、シリコーン組成物の物理的特性が低下する虞がなく、1,000mm/s以下であれば、シリコーン組成物の伸展性が乏しいものとなる虞がない。本発明において、動粘度は、ウベローデ型オストワルド粘度計により測定した25℃における値である。
Kinematic viscosity at 25 ° C. of the organohydrogenpolysiloxane is preferably 1.0~1,000mm 2 / s, in particular 10 to 100 mm 2 / s are preferred.
If the kinematic viscosity is 1.0 mm 2 / s or more, there is no fear that the physical properties of the silicone composition will decrease, and if it is 1,000 mm 2 / s or less, the extensibility of the silicone composition will be poor. There is no fear of becoming. In the present invention, the kinematic viscosity is a value at 25 ° C. measured by an Ubbelohde Ostwald viscometer.

(C)成分のオルガノハイドロジェンポリシロキサンは、ケイ素原子に結合する有機基を有していてもよい。該有機基としては、脂肪族不飽和炭化水素基以外の1価炭化水素基が挙げられる。このうち、炭素数1〜12、特に1〜10の、非置換又は置換の1価炭化水素基が好ましい。該有機基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基、フェニル基等のアリール基、2−フェニルエチル基、2−フェニルプロピル基等のアラルキル基、これらの水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基等、及び、2−グリシドキシエチル基、3−グリシドキシプロピル基、4−グリシドキシブチル基等のエポキシ環含有有機基(グリシジル基又はグリシジルオキシ基置換アルキル基)が挙げられる。該オルガノハイドロジェンポリシロキサンは、1種単独でも、2種以上を混合して使用してもよい。
(C)オルガノハイドロジェンポリシロキサンの量は、(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対する(C)成分中のSiH基の個数が0.5〜2.0となる量である。(C)成分の量が0.5未満では硬化反応が十分に進まず、グリースの流れ出しなどが起こることがあるため信頼性が悪くなり、また、2.0を超えても、未反応のSiH基が2次的な反応を引き起こし、組成物が硬くなるため、これも信頼性が悪くなる。より好ましくは、0.7〜1.5である。
The organohydrogenpolysiloxane of component (C) may have an organic group bonded to a silicon atom. Examples of the organic group include monovalent hydrocarbon groups other than aliphatic unsaturated hydrocarbon groups. Among these, an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, particularly 1 to 10 carbon atoms is preferable. Examples of the organic group include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a dodecyl group, an aryl group such as a phenyl group, a 2-phenylethyl group, and a 2-phenylpropyl group. Aralkyl groups, those in which some or all of these hydrogen atoms are substituted with halogen atoms such as fluorine, bromine and chlorine, cyano groups, such as chloromethyl group, chloropropyl group, bromoethyl group, trifluoropropyl group, cyanoethyl group And epoxy ring-containing organic groups (glycidyl group or glycidyloxy group-substituted alkyl group) such as 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4-glycidoxybutyl group, and the like. The organohydrogenpolysiloxane may be used alone or in combination of two or more.
The amount of (C) organohydrogenpolysiloxane is such that the number of SiH groups in component (C) is 0.5 to 2.0 with respect to the total number of aliphatic unsaturated hydrocarbon groups in component (A). Amount. If the amount of the component (C) is less than 0.5, the curing reaction does not proceed sufficiently and the grease may flow out, resulting in poor reliability. Even if it exceeds 2.0, unreacted SiH This is also unreliable because the group causes a secondary reaction and the composition becomes hard. More preferably, it is 0.7-1.5.

(D)成分
(D)成分は白金族金属触媒であり、上述した付加反応を促進するために機能する。白金族金属触媒は、付加反応に用いられる従来公知のものを使用することができる。例えば白金系、パラジウム系、ロジウム系の触媒が挙げられるが、中でも比較的入手しやすい白金または白金化合物が好ましい。より具体的には、例えば、白金の単体、白金黒、塩化白金酸、白金−オレフィン錯体、白金−アルコール錯体、白金配位化合物等が挙げられる。白金系触媒は1種単独でも2種以上を組み合わせて使用してもよい。
(D)成分の配合量は(A)成分に対し、白金族金属原子に換算した質量基準で0.1〜500ppm、より好ましくは1.0〜100ppmである。触媒の量が0.1ppmより小さいと触媒としての効果が得られない恐れがある。また500ppmを超えても触媒効果が増大することはなく不経済であるため好ましくない。
(D) component (D) A component is a platinum group metal catalyst, and functions in order to accelerate | stimulate the addition reaction mentioned above. A conventionally well-known thing used for an addition reaction can be used for a platinum group metal catalyst. For example, platinum-based, palladium-based, and rhodium-based catalysts may be mentioned. Among them, platinum or platinum compounds that are relatively easily available are preferable. More specifically, for example, platinum alone, platinum black, chloroplatinic acid, platinum-olefin complex, platinum-alcohol complex, platinum coordination compound, and the like can be mentioned. A platinum-type catalyst may be used individually by 1 type or in combination of 2 or more types.
(D) The compounding quantity of a component is 0.1-500 ppm with respect to (A) component on the mass basis converted into a platinum group metal atom, More preferably, it is 1.0-100 ppm. If the amount of the catalyst is less than 0.1 ppm, the effect as a catalyst may not be obtained. Moreover, even if it exceeds 500 ppm, since a catalyst effect does not increase and it is uneconomical, it is not preferable.

本発明では、成分(A)〜(D)を含有し、ずり弾性が測定可能な粘弾性測定装置を用い、試料を25℃から105℃まで8℃/分、105℃から120℃まで1.5℃/分、120℃から125℃まで0.5℃/分で昇温した後、125℃で7,200秒維持するプログラムを組んで、貯蔵弾性率G’と損失弾性率G”を測定した際、貯蔵弾性率G’と損失弾性率G”の交差する時間が、測定開始から400〜900秒の範囲内であることが必要である。400秒より小さいと、それはポットライフが短いことを意味し、取り扱いが難しくなり、実用的ではない。900より大きいと組成物の硬化中に気泡が入りやすくなるため400〜900秒の範囲が好ましい。さらに好ましくは500〜800秒である。
貯蔵弾性率G’と損失弾性率G”の交差する時間は、(C)成分の水素原子の個数や、(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対する(C)成分中のSiH基の個数、また成分(D)の配合量などを好適に調整することで達成できるが、これらに限定されるものではない。
In the present invention, a viscoelasticity measuring apparatus containing components (A) to (D) and capable of measuring shear elasticity is used, and the sample is subjected to 8 ° C / min from 25 ° C to 105 ° C, and 1. Measure storage elastic modulus G ′ and loss elastic modulus G ″ by building a program that raises the temperature from 5 ° C./min from 120 ° C. to 125 ° C. at 0.5 ° C./min and then maintains the temperature at 125 ° C. for 7,200 seconds. In this case, it is necessary that the time at which the storage elastic modulus G ′ and the loss elastic modulus G ″ intersect is within a range of 400 to 900 seconds from the start of measurement. If it is less than 400 seconds, it means that the pot life is short, it becomes difficult to handle and is not practical. If it is greater than 900, bubbles are likely to enter during the curing of the composition, so the range of 400 to 900 seconds is preferred. More preferably, it is 500 to 800 seconds.
The time at which the storage elastic modulus G ′ and the loss elastic modulus G ″ intersect is the component (C) relative to the total number of hydrogen atoms in the component (C) and the number of aliphatic unsaturated hydrocarbon groups in the component (A). Although it can achieve by adjusting suitably the number of SiH groups in it, the compounding quantity of a component (D), etc., it is not limited to these.

また、ずり弾性が測定可能な粘弾性測定装置を用い、試料を25℃から105℃まで8℃/分、105℃から120℃まで1.5℃/分、120℃から125℃まで0.5℃/分で昇温した後、125℃で7,200秒維持するプログラムを組んで、測定開始から7,200秒後の貯蔵弾性率G’の値が、5,000〜500,000Paであるものが好ましい。5,000Paより低いと、柔らかすぎて、CPU上からはみ出てしまう虞がある(ポンピングアウト現象)。500,000Paより大きいと柔軟性が失われるため信頼性に乏しくなることがあるので、5,000〜500,000の範囲が好ましい。より好ましくは、10,000〜300,000Paの範囲である。貯蔵弾性率G’の値は(C)成分の水素原子の個数や、(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対する(C)成分中のSiH基の個数を好適に調整することで達成できるがこれらに限定されるものではない。   In addition, using a viscoelasticity measuring device capable of measuring shear elasticity, the sample was 8 ° C / min from 25 ° C to 105 ° C, 1.5 ° C / min from 105 ° C to 120 ° C, and 0.5 ° C from 120 ° C to 125 ° C. A program for maintaining the temperature at 125 ° C. for 7,200 seconds after assembling the temperature at 125 ° C./min is set, and the value of the storage elastic modulus G ′ after 7,200 seconds from the start of measurement is 5,000 to 500,000 Pa. Those are preferred. If it is lower than 5,000 Pa, it may be too soft and protrude from the CPU (pumping out phenomenon). If it exceeds 500,000 Pa, flexibility is lost and reliability may be poor, so the range of 5,000 to 500,000 is preferred. More preferably, it is the range of 10,000-300,000 Pa. The value of the storage elastic modulus G ′ is preferably the number of Si atoms in the component (C) relative to the total number of hydrogen atoms in the component (C) and the number of aliphatic unsaturated hydrocarbon groups in the component (A). Although it can achieve by adjusting, it is not limited to these.

(E)成分
本発明のシリコーン組成物はさらに付加反応硬化型シリコーン組成物用付加反応制御剤である(E)成分を含有せしめてもよい。この制御剤は、室温でのヒドロシリル化反応の進行を抑え、シェルフライフ、ポットライフを延長させる為に添加する。該制御剤は、付加硬化型シリコーン組成物に使用される従来公知の制御剤を使用することができる。例えば、アセチレンアルコール類(例えば、1−エチニル−1−シクロヘキサノール、3,5−ジメチル−1−ヘキシン−3−オール)等のアセチレン化合物、トリブチルアミン、テトラメチルエチレンジアミン、ベンゾトリアゾール等の各種窒素化合物、トリフェニルホスフィン等の有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。
(E) component The silicone composition of this invention may contain the (E) component which is an addition reaction control agent for addition reaction hardening type silicone compositions further. This control agent is added to suppress the progress of the hydrosilylation reaction at room temperature and prolong the shelf life and pot life. As the control agent, a conventionally known control agent used in addition-curable silicone compositions can be used. For example, acetylene compounds such as acetylene alcohols (for example, 1-ethynyl-1-cyclohexanol, 3,5-dimethyl-1-hexyn-3-ol), various nitrogen compounds such as tributylamine, tetramethylethylenediamine, and benzotriazole And organic phosphorus compounds such as triphenylphosphine, oxime compounds, and organic chloro compounds.

(E)成分の量は、(A)成分100質量部に対し、0.05〜5.0質量部、好ましくは0.1〜1.0質量部である。制御剤の量が0.05質量部以上であれば、所望とする十分なシェルフライフ、ポットライフが得られ、また、5.0質量部以下であれば、シリコーン組成物の硬化性が低下する虞がないため好ましい。
制御剤は、シリコーン組成物への分散性を良くするために、トルエン等で希釈して使用してもよい。
(E) The quantity of a component is 0.05-5.0 mass parts with respect to 100 mass parts of (A) component, Preferably it is 0.1-1.0 mass part. If the amount of the control agent is 0.05 parts by mass or more, the desired sufficient shelf life and pot life can be obtained, and if it is 5.0 parts by mass or less, the curability of the silicone composition decreases. This is preferable because there is no fear.
The control agent may be used after diluted with toluene or the like in order to improve dispersibility in the silicone composition.

また、本発明のシリコーン組成物は、組成物の弾性率や粘度を調整するためにメチルポリシロキサン等の反応性を有さないオルガノ(ポリ)シロキサンを含有してもよい。
更に、シリコーン組成物の劣化を防ぐために、2,6−ジ−t−ブチル−4−メチルフェノール等の、従来公知の酸化防止剤を必要に応じて含有してもよい。更に、染料、顔料、難燃剤、沈降防止剤、又はチクソ性向上剤等を、必要に応じて配合することができる
In addition, the silicone composition of the present invention may contain an organo (poly) siloxane having no reactivity such as methylpolysiloxane in order to adjust the elastic modulus and viscosity of the composition.
Furthermore, in order to prevent deterioration of the silicone composition, a conventionally known antioxidant such as 2,6-di-t-butyl-4-methylphenol may be contained as necessary. Further, dyes, pigments, flame retardants, anti-settling agents, thixotropic agents, etc. can be blended as necessary.

本発明の熱伝導性シリコーン組成物は、25℃での性状が液状であり、25度での粘度が、10〜300Pa・sであるものが好ましい。粘度が10Pa・sより低いと取り扱い性が悪くなり、300Pa・sより高いと、本組成物がディスペンス塗布されたときなど、泡噛みをしやすくなるため、10〜300Pa・sの範囲、より好ましくは50〜250Pa・sが良い。この粘度は、上述した各成分の配合を調整することにより得ることができる。本発明において、粘度はマルコム粘度計により測定した25℃の値である(ロータAで10rpm、ズリ速度6[1/s])。   The thermally conductive silicone composition of the present invention preferably has a liquid state at 25 ° C. and a viscosity at 25 degrees of 10 to 300 Pa · s. When the viscosity is lower than 10 Pa · s, the handleability is deteriorated. When the viscosity is higher than 300 Pa · s, it is easy to chew foam when the composition is applied by dispensing. Is preferably 50 to 250 Pa · s. This viscosity can be obtained by adjusting the blending of each component described above. In the present invention, the viscosity is a value of 25 ° C. measured with a Malcolm viscometer (rotor A: 10 rpm, displacement speed: 6 [1 / s]).

また、本発明のシリコーン組成物の熱伝導率は、少なくとも1.5W/mK以上とすることが望ましい。熱伝導率が1.5W/mKより小さいと、所望する放熱性能が得られないためである。より好ましくは、2.0W/mK以上が好ましい。前期、熱伝導率は、シリコーン組成物をキッチンラップで包み、京都電子工業(株)製TPA−501で測定した値である。   The thermal conductivity of the silicone composition of the present invention is desirably at least 1.5 W / mK or more. This is because if the thermal conductivity is less than 1.5 W / mK, the desired heat dissipation performance cannot be obtained. More preferably, it is 2.0 W / mK or more. In the previous term, the thermal conductivity is a value measured with TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd., with the silicone composition wrapped in a kitchen wrap.

また、本発明の熱伝導性シリコーン組成物の中に、以下(F)成分を含んでも良い。
(F)成分
下記式(1)で示される加水分解性メチルポリシロキサン
Moreover, the following (F) component may be included in the heat conductive silicone composition of this invention.
(F) Component Hydrolyzable methylpolysiloxane represented by the following formula (1)

(式中、R1は同一もしくは異種の一価の炭化水素基であり、R2はアルキル基、アルコキシル基、アルケニル基又はアシル基であり、aは5〜100の整数であり、bは1〜3の整数である。)
で表される、分子鎖の片末端が加水分解性基で封鎖されたポリシロキサンであり、25℃における動粘度が10〜10,000mm2/sである。なお、この動粘度はオストワルド粘度計により測定することができる。
(F)成分の量は、(A)成分100質量部に対して0〜200質量部となる量であり、好ましくは0〜180質量部、より好ましくは0〜150質量部となる量である。
成分(F)は200質量部以上であると、硬化反応十分に進まない虞があるためである。
Wherein R 1 is the same or different monovalent hydrocarbon group, R 2 is an alkyl group, an alkoxyl group, an alkenyl group or an acyl group, a is an integer of 5 to 100, and b is 1 It is an integer of ~ 3.)
Represented by a polysiloxane having one end of a molecular chain blocked with a hydrolyzable group, and a kinematic viscosity at 25 ° C. of 10 to 10,000 mm 2 / s. This kinematic viscosity can be measured with an Ostwald viscometer.
The amount of the component (F) is 0 to 200 parts by mass, preferably 0 to 180 parts by mass, more preferably 0 to 150 parts by mass with respect to 100 parts by mass of the component (A). .
It is because there exists a possibility that hardening reaction may not fully advance that a component (F) is 200 mass parts or more.

本発明のシリコーン組成物の製造方法は、従来のシリコーングリース組成物の製造方法に従えばよく、特に制限されるものでない。例えば、上記(A)〜(F)成分、及び必要に応じてその他の成分をトリミックス、ツウィンミックス、プラネタリミキサー(いずれも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機にて混合する方法により製造することができる。   The method for producing the silicone composition of the present invention is not particularly limited as long as it follows the conventional method for producing a silicone grease composition. For example, the above components (A) to (F), and other components as necessary, are trimix, twin mix, planetary mixer (all are registered trademarks of the mixer manufactured by Inoue Seisakusho Co., Ltd.), ultra mixer (Mizuho Industry Co., Ltd.) It can be manufactured by a method of mixing with a mixer such as a registered trademark of a mixer manufactured by (Co., Ltd.), Hibis Disper Mix (registered trademark of a mixer manufactured by Special Machine Industries Co., Ltd.).

以下、実施例および比較例を挙げて、本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。なお、本発明に係わる効果に関する試験は次のように行った。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to the following Example. In addition, the test regarding the effect concerning this invention was done as follows.

[貯蔵弾性率G’と損失弾性率G”が交差する時間の測定]
直径2.5cmの2枚のパラレルプレートの間に、シリコーン組成物を厚み2mmで塗布した試料を25℃から105℃まで8℃/分、105℃から120℃まで1.5℃/分、120℃から125℃まで0.5℃/分で昇温した後、125℃で7,200秒維持するプログラムを組んで、貯蔵弾性率G’と損失弾性率G”を測定した際、貯蔵弾性率G’と損失弾性率G”が測定開始から最初に交差するまでの時間を測定した。
なお測定には、粘弾性測定装置(タイプRDAIII:レオメトリック・サイエンティフィック社製)を用いた。
(実際に測定した、測定結果例を図1に示す。貯蔵弾性率G’と損失弾性率G”が交差するまでの時間を読み取る。)
[Measurement of time at which storage elastic modulus G ′ and loss elastic modulus G ″ intersect]
A sample coated with a silicone composition with a thickness of 2 mm between two parallel plates with a diameter of 2.5 cm was 8 ° C./min from 25 ° C. to 105 ° C., 1.5 ° C./min from 105 ° C. to 120 ° C., 120 When the storage elastic modulus G ′ and the loss elastic modulus G ″ were measured by setting a program to raise the temperature from 0.5 ° C. to 125 ° C. at 0.5 ° C./min and then maintain at 125 ° C. for 7,200 seconds, The time from the start of measurement to the first intersection of G ′ and the loss modulus G ″ was measured.
For the measurement, a viscoelasticity measuring device (type RDAIII: manufactured by Rheometric Scientific) was used.
(A measurement result example actually measured is shown in FIG. 1. The time until the storage elastic modulus G ′ and the loss elastic modulus G ″ intersect is read.)

[貯蔵弾性率G’の値]
直径2.5cmの2枚のパラレルプレートの間に、シリコーン組成物を厚み2mmで塗布した。塗布したプレートを25℃から105℃まで8℃/分、105℃から120℃まで1.5℃/分、120℃から125℃まで0.5℃/分で昇温した後、125℃で7,200秒維持するプログラムを作成し、測定開始から7,200秒後の貯蔵弾性率G’を読みとった。なお測定には、粘弾性測定装置(タイプRDAIII:レオメトリック・サイエンティフィック社製)を用いた。
(実際に測定した、測定結果例を図1に示す。貯蔵弾性率G’の7200秒の時点の値を読み取る。)
[Value of storage elastic modulus G ']
The silicone composition was applied in a thickness of 2 mm between two parallel plates having a diameter of 2.5 cm. The coated plate was heated from 25 ° C. to 105 ° C. at 8 ° C./min, from 105 ° C. to 120 ° C. at 1.5 ° C./min, from 120 ° C. to 125 ° C. at 0.5 ° C./min, and then at 125 ° C. for 7 , A program for 200 seconds was created, and the storage elastic modulus G ′ after 7,200 seconds from the start of measurement was read. For the measurement, a viscoelasticity measuring device (type RDAIII: manufactured by Rheometric Scientific) was used.
(A measurement result example actually measured is shown in FIG. 1. A value of the storage elastic modulus G ′ at 7200 seconds is read.)

[粘度]
シリコーン組成物の絶対粘度は、マルコム粘度計(タイプPC−1T)を用いて25℃で測定した。
[viscosity]
The absolute viscosity of the silicone composition was measured at 25 ° C. using a Malcolm viscometer (type PC-1T).

[熱伝導率]
シリコーン組成物をキッチンラップで包み、京都電子工業(株)製TPA−501で測定した。
[Thermal conductivity]
The silicone composition was wrapped with kitchen wrap and measured with TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd.

[熱抵抗測定]
<試験片の作成>
10mm角のシリコンプレート及びニッケルプレートに熱伝導性シリコーン組成物を挟み込み、140kPaの圧力を掛けながら125℃のオーブンにて90分間加熱硬化させた。
[Thermal resistance measurement]
<Creation of specimen>
The thermally conductive silicone composition was sandwiched between a 10 mm square silicon plate and a nickel plate, and was cured by heating in an oven at 125 ° C. for 90 minutes while applying a pressure of 140 kPa.

<熱抵抗測定方法>
上記のように作製した試験片の熱抵抗値をレーザーフラッシュ法にて測定し、その測定値を初期値とした。その後、その試験片を-40℃で30分間と+125℃で30分間の温度サイクルを繰り返す熱衝撃試験機内に入れ、500サイクル後、および1000サイクル後の試験片の熱抵抗を初期値と同様にして測定した。
<Thermal resistance measurement method>
The thermal resistance value of the test piece produced as described above was measured by a laser flash method, and the measured value was used as an initial value. After that, place the test piece in a thermal shock tester that repeats the temperature cycle of -40 ° C for 30 minutes and + 125 ° C for 30 minutes, and the thermal resistance of the test piece after 500 cycles and 1000 cycles is the same as the initial value And measured.

[気泡試験]
2枚のガラスプレートに、熱伝導性シリコーン組成物を0.1g挟み込み、ガラスプレートの両端をクリップで挟みこむ(スペーサーなどは用いない)。この状態で、150℃の乾燥機に投入し、60分間、熱伝導性シリコーン組成物を硬化させる。60分後、乾燥機から取り出し、材料中の気泡の占める割合(%)を、測定した。測定機は、(株)キーエンス社製の、デジタルマイクロスコープVNX-500Fにて、材料中の気泡の占める面積%を測定した。
[Bubble test]
0.1 g of the thermally conductive silicone composition is sandwiched between two glass plates, and both ends of the glass plate are sandwiched between clips (no spacer or the like is used). In this state, it is put into a dryer at 150 ° C., and the thermally conductive silicone composition is cured for 60 minutes. After 60 minutes, it was removed from the dryer and the proportion (%) of bubbles in the material was measured. The measuring instrument was a digital microscope VNX-500F manufactured by Keyence Corporation, and the area% occupied by bubbles in the material was measured.

実施例及び比較例で使用した各成分を以下に記載する。下記において動粘度はウベローデ型オストワルド粘度計(柴田科学社製)により25℃で測定した値である。   Each component used in the examples and comparative examples is described below. In the following, the kinematic viscosity is a value measured at 25 ° C. with an Ubbelohde Ostwald viscometer (manufactured by Shibata Kagaku Co., Ltd.).

(A)成分
A−1:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm/sのジメチルポリシロキサン
(A) Component A-1: Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25 ° C. of 600 mm 2 / s

(B)成分
B−1:平均粒径7.0μmのアルミニウム粉末(熱伝導率:237W/m・℃)
B−2:平均粒径10.0μmのアルミナ粉末(熱伝導率:30W/m・℃)
B−3:平均粒径1.0μmの酸化亜鉛粉末(熱伝導率:25W/m・℃)
(B) Component B-1: Aluminum powder having an average particle size of 7.0 μm (thermal conductivity: 237 W / m · ° C.)
B-2: Alumina powder having an average particle diameter of 10.0 μm (thermal conductivity: 30 W / m · ° C.)
B-3: Zinc oxide powder having an average particle size of 1.0 μm (thermal conductivity: 25 W / m · ° C.)

(C)成分
C−1:
(C) Component C-1:

C−2: C-2:

C−3: C-3:

(D)成分
D−1:白金−ジビニルテトラメチルジシロキサン錯体を上記A−1と同じジメチルポリシロキサンに溶解した溶液(白金原子含有量:1質量%)
(D) Component D-1: Solution in which a platinum-divinyltetramethyldisiloxane complex is dissolved in the same dimethylpolysiloxane as A-1 above (platinum atom content: 1% by mass)

(E)成分
E−1:1−エチニル−1−シクロヘキサノールの50質量%トルエン溶液
(E) 50 mass% toluene solution of component E-1: 1-ethynyl-1-cyclohexanol

(F)成分
F−1:
(F) Component F-1:

[実施例1〜7、比較例1〜4]
(A)〜(F)成分を以下のように混合して、実施例1〜7及び比較例1〜4の組成物を製造した。
即ち、5リットルのプラネタリミキサー(井上製作所(株)製)に表1,2に示す配合量(質量部)で(A)、(B)、場合によっては(F)成分を加え、150℃で1時間混合した。室温まで冷却後、次に(E)、(D)、(C)の順に成分を加えて、均一になるように混合した。得られた組成物について、貯蔵弾性率G’と損失弾性率G”が交差する時間の測定、貯蔵弾性率G’の値、粘度、熱伝導率、熱抵抗、気泡試験の結果を表1,2に併記する。
[Examples 1 to 7, Comparative Examples 1 to 4]
(A)-(F) component was mixed as follows and the composition of Examples 1-7 and Comparative Examples 1-4 was manufactured.
That is, to a 5 liter planetary mixer (Inoue Seisakusho Co., Ltd.), add the components (A), (B), and (F) in some cases as shown in Tables 1 and 2 at 150 ° C. Mix for 1 hour. After cooling to room temperature, components were then added in the order of (E), (D), and (C) and mixed to be uniform. Table 1 shows the results of measurement of the time at which the storage elastic modulus G ′ and the loss elastic modulus G ″ intersect, the value of the storage elastic modulus G ′, the viscosity, the thermal conductivity, the thermal resistance, and the bubble test for the obtained composition. It is written together in 2.

測定1;貯蔵弾性率G’と損失弾性率G”が交差する時間の測定(秒)
測定2;熱抵抗<初期>(mm2・K/W)
測定3;熱抵抗<500サイクル>(mm2・/W)
測定4;熱抵抗<1000サイクル>(mm2・K/W)
Measurement 1: Measurement of the time at which the storage elastic modulus G ′ and the loss elastic modulus G ″ intersect (seconds)
Measurement 2: Thermal resistance <Initial> (mm 2 · K / W)
Measurement 3: Thermal resistance <500 cycles> (mm 2 / W)
Measurement 4: Thermal resistance <1000 cycles> (mm 2 · K / W)

測定1;貯蔵弾性率G’と損失弾性率G”が交差する時間の測定(秒)
測定2;熱抵抗<初期>(mm2・K/W)
測定3;熱抵抗<500サイクル>(mm2・K/W)
測定4;熱抵抗<1000サイクル>(mm2・K/W)
Measurement 1: Measurement of the time at which the storage elastic modulus G ′ and the loss elastic modulus G ″ intersect (seconds)
Measurement 2: Thermal resistance <Initial> (mm 2 · K / W)
Measurement 3: Thermal resistance <500 cycles> (mm 2 · K / W)
Measurement 4: Thermal resistance <1000 cycles> (mm 2 · K / W)

Claims (5)

(A)1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60〜100,000mm/sであるオルガノポリシロキサン:100質量部、
(B)熱伝導率が10W/mK以上である熱伝導性充填剤:300〜3,000質量部、
(C)1分子中に2個以上の、ケイ素原子に結合した水素原子(即ち、SiH基)を有するオルガノハイドロジェンポリシロキサン:(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対する(C)成分中のSiH基の個数が0.5〜2.0となる量、及び、
(D)白金族金属触媒:白金原子として(A)成分の0.1〜500ppmとなる配合量
を含有する熱伝導性シリコーン組成物であって、
ずり弾性が測定可能な粘弾性測定装置を用い、試料を25℃から105℃まで8℃/分、105℃から120℃まで1.5℃/分、120℃から125℃まで0.5℃/分で昇温した後、125℃で7,200秒維持するプログラムを組んで、貯蔵弾性率G’と損失弾性率G”を測定した際、貯蔵弾性率G’と損失弾性率G”の交差する時間が、測定開始から400〜900秒の範囲内であることを特徴とする熱伝導性シリコーン組成物。
(A) Organopolysiloxane having at least two aliphatic unsaturated hydrocarbon groups in one molecule and a kinematic viscosity at 25 ° C. of 60 to 100,000 mm 2 / s: 100 parts by mass
(B) Thermally conductive filler having a thermal conductivity of 10 W / mK or more: 300 to 3,000 parts by mass,
(C) Organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms (that is, SiH groups) in one molecule: the total number of aliphatic unsaturated hydrocarbon groups in component (A) The amount of SiH groups in the component (C) to 0.5 to 2.0, and
(D) platinum group metal catalyst: a thermally conductive silicone composition containing a blending amount of 0.1 to 500 ppm of component (A) as a platinum atom,
Using a viscoelasticity measuring apparatus capable of measuring shear elasticity, the sample was 8 ° C / min from 25 ° C to 105 ° C, 1.5 ° C / min from 105 ° C to 120 ° C, 0.5 ° C / min from 120 ° C to 125 ° C. When the storage elastic modulus G ′ and the loss elastic modulus G ″ are measured by setting a program for maintaining the temperature at 125 ° C. for 7,200 seconds after the temperature is raised in minutes, the intersection of the storage elastic modulus G ′ and the loss elastic modulus G ″ The heat conducting silicone composition is characterized in that the time to be measured is within a range of 400 to 900 seconds from the start of measurement.
ずり弾性が測定可能な粘弾性測定装置を用い、試料を25℃から105℃まで8℃/分、105℃から120℃まで1.5℃/分、120℃から125℃まで0.5℃/分で昇温した後、125℃で7,200秒維持するプログラムを組んで、測定開始から7,200秒後の貯蔵弾性率G’の値が、5,000〜500,000Paであることを特徴とする、請求項1記載の熱伝導性シリコーン組成物。   Using a viscoelasticity measuring apparatus capable of measuring shear elasticity, the sample was 8 ° C / min from 25 ° C to 105 ° C, 1.5 ° C / min from 105 ° C to 120 ° C, 0.5 ° C / min from 120 ° C to 125 ° C. After a temperature increase in minutes, a program for maintaining the temperature at 125 ° C. for 7,200 seconds is set, and the value of the storage elastic modulus G ′ after 7,200 seconds from the start of measurement is 5,000 to 500,000 Pa. The thermally conductive silicone composition according to claim 1, characterized in that it is characterized in that 前記シリコーン組成物が、更に、(E)アセチレン化合物、窒素化合物、有機リン化合物、オキシム化合物および有機クロロ化合物からなる群より選択される1種以上の付加反応硬化型シリコーン組成物用付加反応制御剤を、前記(A)成分100質量部に対して0.05〜5.0質量部となる量で含有するものであることを特徴とする請求項1又は2記載の熱伝導性シリコーン組成物。   The silicone composition further includes (E) one or more addition reaction curable silicone composition addition reaction control agents selected from the group consisting of acetylene compounds, nitrogen compounds, organic phosphorus compounds, oxime compounds and organic chloro compounds. The heat conductive silicone composition according to claim 1, wherein the amount of the heat conductive silicone composition is 0.05 to 5.0 parts by mass with respect to 100 parts by mass of the component (A). 25度での性状が液状であり、25℃での粘度が、10〜300Pa・sである請求項1〜3の何れか1項記載の熱伝導性シリコーン組成物。   The thermally conductive silicone composition according to any one of claims 1 to 3, wherein the property at 25 degrees is liquid and the viscosity at 25 ° C is 10 to 300 Pa · s. 熱伝導率が、少なくとも1.5W/mKである請求項1〜4の何れか1項記載の熱伝導性シリコーン組成物。
The thermal conductivity silicone composition according to any one of claims 1 to 4, wherein the thermal conductivity is at least 1.5 W / mK.
JP2014094614A 2014-05-01 2014-05-01 Thermal conductive silicone composition Pending JP2015212318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014094614A JP2015212318A (en) 2014-05-01 2014-05-01 Thermal conductive silicone composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014094614A JP2015212318A (en) 2014-05-01 2014-05-01 Thermal conductive silicone composition

Publications (1)

Publication Number Publication Date
JP2015212318A true JP2015212318A (en) 2015-11-26

Family

ID=54696768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014094614A Pending JP2015212318A (en) 2014-05-01 2014-05-01 Thermal conductive silicone composition

Country Status (1)

Country Link
JP (1) JP2015212318A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072051A (en) * 2016-03-08 2018-12-21 霍尼韦尔国际公司 phase-change material
KR20190011743A (en) * 2016-05-24 2019-02-07 신에쓰 가가꾸 고교 가부시끼가이샤 Thermoconductive silicone composition and its cured product
CN110408212A (en) * 2019-06-21 2019-11-05 李新根 A kind of preparation method of heat resistant type heat-conducting silicone grease
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US11215604B2 (en) 2018-03-27 2022-01-04 Toyota Jidosha Kabushiki Kaisha Method for predicting deterioration of grease, grease, and method for manufacturing grease
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
WO2022210422A1 (en) * 2021-03-31 2022-10-06 積水ポリマテック株式会社 Heat-conductive composition, heat-conductive member, and battery module
CN115838535A (en) * 2022-12-22 2023-03-24 广州市白云化工实业有限公司 Bi-component heat-conducting gel and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129710A (en) * 1997-07-10 1999-02-02 Toray Dow Corning Silicone Co Ltd Silicone gel composition and silicone gel for sealing and filling electrical and electronic component
JP2005281509A (en) * 2004-03-30 2005-10-13 Denki Kagaku Kogyo Kk Curable resin composition and metal-based circuit substrate by using the same
JP2009209230A (en) * 2008-03-03 2009-09-17 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition
JP2009292928A (en) * 2008-06-04 2009-12-17 Shin-Etsu Chemical Co Ltd Heat-conductive silicone composition having accelerated curing speed in low-temperature heating
JP2010150399A (en) * 2008-12-25 2010-07-08 Shin-Etsu Chemical Co Ltd Thermally conductive silicone grease composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129710A (en) * 1997-07-10 1999-02-02 Toray Dow Corning Silicone Co Ltd Silicone gel composition and silicone gel for sealing and filling electrical and electronic component
JP2005281509A (en) * 2004-03-30 2005-10-13 Denki Kagaku Kogyo Kk Curable resin composition and metal-based circuit substrate by using the same
JP2009209230A (en) * 2008-03-03 2009-09-17 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition
JP2009292928A (en) * 2008-06-04 2009-12-17 Shin-Etsu Chemical Co Ltd Heat-conductive silicone composition having accelerated curing speed in low-temperature heating
JP2010150399A (en) * 2008-12-25 2010-07-08 Shin-Etsu Chemical Co Ltd Thermally conductive silicone grease composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072051A (en) * 2016-03-08 2018-12-21 霍尼韦尔国际公司 phase-change material
JP2019515968A (en) * 2016-03-08 2019-06-13 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Phase change material
CN109072051B (en) * 2016-03-08 2023-12-26 霍尼韦尔国际公司 Phase change material
US10781349B2 (en) 2016-03-08 2020-09-22 Honeywell International Inc. Thermal interface material including crosslinker and multiple fillers
KR20190011743A (en) * 2016-05-24 2019-02-07 신에쓰 가가꾸 고교 가부시끼가이샤 Thermoconductive silicone composition and its cured product
KR102257273B1 (en) 2016-05-24 2021-05-27 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition and cured product thereof
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US11215604B2 (en) 2018-03-27 2022-01-04 Toyota Jidosha Kabushiki Kaisha Method for predicting deterioration of grease, grease, and method for manufacturing grease
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
CN110408212A (en) * 2019-06-21 2019-11-05 李新根 A kind of preparation method of heat resistant type heat-conducting silicone grease
WO2022210422A1 (en) * 2021-03-31 2022-10-06 積水ポリマテック株式会社 Heat-conductive composition, heat-conductive member, and battery module
CN115838535A (en) * 2022-12-22 2023-03-24 广州市白云化工实业有限公司 Bi-component heat-conducting gel and preparation method thereof
CN115838535B (en) * 2022-12-22 2023-09-01 广州市白云化工实业有限公司 Two-component heat-conducting gel and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6079792B2 (en) Thermally conductive silicone composition, thermally conductive layer and semiconductor device
JP5898139B2 (en) Thermally conductive silicone composition
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
JP2015212318A (en) Thermal conductive silicone composition
JP6388072B2 (en) Thermally conductive silicone composition
JP5832983B2 (en) Silicone composition
JP5472055B2 (en) Thermally conductive silicone grease composition
JP6614362B2 (en) Thermally conductive silicone composition
JP2013147600A (en) Heat-conductive silicone composition and cured product thereof
JP5947267B2 (en) Silicone composition and method for producing thermally conductive silicone composition
TWI822954B (en) Thermal conductive silicone composition and manufacturing method thereof, and thermally conductive silicone hardened material
JP7070320B2 (en) Thermally conductive silicone composition
JP2009292928A (en) Heat-conductive silicone composition having accelerated curing speed in low-temperature heating
JP6981914B2 (en) Thermally conductive silicone composition and its cured product
JP2014037460A (en) Heat-conductive composition
TW202200711A (en) Thermally conductive silicone composition and cured product of same
JP2009235279A (en) Heat-conductive molding and manufacturing method therefor
JP6314710B2 (en) Thermally conductive silicone composition
JP5047505B2 (en) Electronic device excellent in heat dissipation and manufacturing method thereof
JP2011138857A (en) Method of manufacturing electronic device with excellent heat dissipation and rework properties, and electronic device
WO2021241097A1 (en) Thermally conductive addition curing-type silicone composition
TW201940596A (en) Silicone composition
JP7485634B2 (en) Thermally conductive silicone composition and cured product thereof
WO2024048335A1 (en) Thermally conductive silicone composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170718