JP2010150399A - Thermally conductive silicone grease composition - Google Patents

Thermally conductive silicone grease composition Download PDF

Info

Publication number
JP2010150399A
JP2010150399A JP2008330273A JP2008330273A JP2010150399A JP 2010150399 A JP2010150399 A JP 2010150399A JP 2008330273 A JP2008330273 A JP 2008330273A JP 2008330273 A JP2008330273 A JP 2008330273A JP 2010150399 A JP2010150399 A JP 2010150399A
Authority
JP
Japan
Prior art keywords
component
group
mass
parts
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008330273A
Other languages
Japanese (ja)
Other versions
JP5182515B2 (en
Inventor
Nobuaki Matsumoto
展明 松本
Kunihiro Yamada
邦弘 山田
Kenichi Tsuji
謙一 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008330273A priority Critical patent/JP5182515B2/en
Publication of JP2010150399A publication Critical patent/JP2010150399A/en
Application granted granted Critical
Publication of JP5182515B2 publication Critical patent/JP5182515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible thermally conductive silicone grease composition which can respond to a large warp of the IC package. <P>SOLUTION: The thermally conductive silicone grease composition includes (A) alkenyl group-containing organopolysiloxane, (B) organohydrogenpolysiloxane having an SiH group in a side chain, (C) organohydrogenpolysiloxane having an SiH group in both ends, (D) a thermally conductive filler, (E) a catalyst selected from the group consisting of platinum and platinum compounds, (F) a control agent, and (G) organopolysiloxane expressed by R<SP>3</SP><SB>a</SB>SiO<SB>(4-a)/2</SB>(wherein, R<SP>3</SP>is a monovalent hydrocarbon group and a is 1.8-2.2), wherein the amount of blend of (B) and (C) is such that äthe total number of SiH groups in (B) and (C)}/äthe number of alkenyl group in (A)} is 0.6-1.5, and the ratio of (B) to (C) is such that äthe number of SiH's derived from (C)}/äthe number of SiH's derived from (B)} is 1.0-10.0. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、特に反りの大きいICパッケージにも追従できるだけでなく、かつポンピング・アウト現象も起き難い熱伝導性シリコーングリース組成物に関する。   The present invention relates to a thermally conductive silicone grease composition that can not only follow an IC package having a particularly large warp, but also does not easily cause a pumping out phenomenon.

現在、半導体業界のみならず自動車業界や家電メーカーなどの様々な分野で電装化が進んでおり、半導体装置が分野に拘わらず導入され始めている。現在主流となっている半導体装置の構造は、ICパッケージとICパッケージの表面の熱を逃がすための放熱体とで構成されている。そして、その間に、熱伝導性シリコーン組成物を流し込み、圧力をかけた状態で熱硬化させて、ミクロ的に存在するICパッケージ表面や放熱体の表面にある凹凸を埋めながら発熱体と放熱体を接続している(特開2002−327116号公報:特許文献1)。この際、放熱シートや放熱グリースを用いることも可能である。しかしながら、放熱シートを用いた場合には、このミクロ的に存在する凹凸を完全には埋めることができないので、結果として断熱効果の大きい空気を一緒に挟み込んでしまうことになり、発熱量の大きいICパッケージでは十分な放熱効果は得られない。また、放熱シートの表面に粘着層を設けて、空気が入り込まないように工夫したものがあるが、これもまた発熱量の大きいICパッケージで使用される場合には同様な理由で不十分であると言える。このような空気を完全に排除するためには、液状である放熱グリースが向いているのであるが、この放熱グリースは上述した熱伝導性シリコーン組成物と異なり、装着後に硬化することはできないので、長時間使用すると成分であるシリコーンオイルが染み出てしまったり、最悪な場合には放熱グリース自体がICパッケージと放熱体の間から逃げ出してしまったりするという欠点がある。なお、このような問題を回避するために液状シリコーン組成物をポッティング剤や接着剤を用いて、発熱体と放熱体を接続する手法もあるが(特開昭61−157569号公報、特開平8−208993号公報:特許文献2,3)、この手法にも幾つか問題点がある。それは、熱伝導性を付与する充填剤含有量を上げることができないために組成物として熱伝導性が不足してしまうということや、硬化後に発熱体から受ける熱や外からの水分によって柔軟性を失い経時で剥離を起こしてしまうことなどである。このような上述した問題点を全て解決できる手法として現在主流となっているのが、液状の熱伝導性シリコーン組成物を発熱体と放熱体の間に流し込んだ後に硬化させるというものである。   Currently, not only in the semiconductor industry, but also in various fields such as the automobile industry and home appliance manufacturers, the introduction of semiconductor devices has begun regardless of the field. The structure of a semiconductor device which is currently mainstream is composed of an IC package and a heat radiating body for releasing heat from the surface of the IC package. And in the meantime, the heat conductive silicone composition is poured and thermoset in a state where pressure is applied, and the heating element and the heat radiating body are buried while filling the unevenness on the surface of the IC package and the heat radiating body that exist microscopically. They are connected (Japanese Patent Laid-Open No. 2002-327116: Patent Document 1). At this time, it is also possible to use a heat radiating sheet or heat radiating grease. However, when a heat dissipation sheet is used, the microscopic unevenness cannot be completely filled, and as a result, air having a large heat insulating effect is sandwiched together, resulting in an IC that generates a large amount of heat. The package cannot provide a sufficient heat dissipation effect. In addition, there is an adhesive layer provided on the surface of the heat dissipation sheet so that air does not enter, but this is also insufficient for the same reason when used in an IC package with a large amount of heat generation. It can be said. In order to completely eliminate such air, liquid heat dissipation grease is suitable, but unlike the above heat conductive silicone composition, this heat dissipation grease cannot be cured after mounting. When used for a long time, there is a disadvantage that silicone oil as a component oozes out, or in the worst case, the heat radiating grease itself escapes from between the IC package and the heat radiating body. In order to avoid such a problem, there is a method in which a liquid silicone composition is connected to a heat generator and a heat radiator using a potting agent or an adhesive (JP-A-61-157569, JP-A-8). -208993 gazette: Patent Documents 2 and 3), this method also has some problems. It is difficult to increase the filler content for imparting thermal conductivity, resulting in insufficient thermal conductivity as a composition, and flexibility due to heat received from the heating element after curing and moisture from the outside. For example, it is lost and peeling occurs over time. Currently, the mainstream method for solving all of the above-mentioned problems is to cure the liquid heat conductive silicone composition after pouring between the heat generator and the heat radiator.

しかしながら、近年ICパッケージの構造が変化してきており、既存の熱伝導性シリコーン組成物では対応し切れなくなってきている。例えば、CPUの全体の面積が大きくなり、かつCPUを貼り付けているオーガニック基板が薄くなってきている。つまり、このような構造変化が生じると、今まで以上に加熱時と室温時での反りが大きくなってしまう。その結果、極端な場合、熱伝導性シリコーン組成物とヒートスプレッダとの界面あるいはCPUとの界面で剥離が生じたり、追随できなくなった結果、界面とは剥離せずとも熱伝導性シリコーン組成物内部で凝集破壊を起こしてしまう。このような問題を解決するために、従来では、追随性を向上させる目的で熱伝導性シリコーン組成物を柔らかくしようとして、充填剤を減量したり、架橋材を減量したりしていた。しかしながら、前者の手法では放熱性能を犠牲にすることになり、後者の手法では、柔らかくなった結果、その分放熱グリースに近づくため、ICパッケージと放熱体の間から逃げ出してしまうという、所謂ポンピング・アウト現象が起こってしまい、根本的な解決にはならない。そこで、放熱性能を維持し、ポンピング・アウト現象も起こさないといった特性を維持したまま、反りにも追従できるような熱伝導性シリコーン組成物の開発が切に望まれていた。   However, in recent years, the structure of IC packages has changed, and existing thermal conductive silicone compositions have become unable to cope with them. For example, the total area of the CPU is increasing, and the organic substrate to which the CPU is attached is becoming thinner. That is, when such a structural change occurs, warpage at the time of heating and at room temperature becomes larger than ever. As a result, in an extreme case, peeling occurs at the interface between the heat conductive silicone composition and the heat spreader or the interface with the CPU, and it becomes impossible to follow. As a result, the heat conductive silicone composition does not peel off from the interface. It causes cohesive failure. In order to solve such a problem, conventionally, in order to improve the followability, the amount of the filler or the amount of the crosslinking material has been reduced in order to soften the thermally conductive silicone composition. However, in the former method, heat dissipation performance is sacrificed, and in the latter method, as a result of being softened, the heat dissipation grease approaches that amount, so that it escapes from between the IC package and the heat dissipation body. An out phenomenon occurs, which is not a fundamental solution. Accordingly, there has been a strong demand for the development of a thermally conductive silicone composition that can follow warpage while maintaining the properties of maintaining heat dissipation performance and preventing pumping out.

特開2002−327116号公報JP 2002-327116 A 特開昭61−157569号公報JP-A 61-157469 特開平8−208993号公報Japanese Patent Application Laid-Open No. 8-208993

本発明は、液状の熱伝導性シリコーングリース組成物を発熱体と放熱体の間に流し込んだ後に、硬化させた後も、従来通り、放熱性能を下げることなく、ポンピング・アウト現象を引き起こさない特性を維持しつつ、ICパッケージの大きな反りに追従できる柔軟な熱伝導性シリコーングリース組成物を提供することを目的とする。   The present invention is a characteristic that does not cause a pumping out phenomenon without lowering the heat radiation performance as usual even after the liquid heat conductive silicone grease composition is poured between the heat generator and the heat radiator and then cured. It is an object to provide a flexible thermally conductive silicone grease composition that can follow a large warp of an IC package while maintaining the above.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、可塑剤として下記成分(G)を添加することで、信頼性を落とすことなく、柔らかい材料を提供できることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a soft material can be provided without lowering reliability by adding the following component (G) as a plasticizer. Invented the invention.

従って、本発明は、下記熱伝導性シリコーングリース組成物を提供する。
請求項1:
成分(A):
1分子中に少なくとも2個のアルケニル基を有する25℃の動粘度が10〜100,000mm2/sのオルガノポリシロキサン 100質量部、
成分(B):
下記一般式(1)

Figure 2010150399

(式中、R1は互いに同一又は異種の炭素数1〜6のアルキル基、n、mは正数で、0.01≦n/(n+m)≦0.3を満足する。)
で示されるオルガノハイドロジェンポリシロキサン、
成分(C):
下記一般式(2)
Figure 2010150399

(式中、R2は互いに同一又は異種の炭素数1〜6のアルキル基、pは5〜1,000の範囲の正数である。)
で示されるオルガノハイドロジェンポリシロキサン、
成分(D):
10W/m℃以上の熱伝導率を有する熱伝導性充填剤 800〜2,000質量部、
成分(E):
白金及び白金化合物からなる群より選択される触媒
白金原子として成分(A)の0.1〜500ppmとなる配合量、
成分(F):
アセチレン化合物、窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物より選択される制御剤 0.01〜1質量部、
成分(G):
下記平均組成式(3)
3 aSiO(4-a)/2 (3)
(式中、R3は独立に非置換又は置換の炭素数1〜18の一価炭化水素基であり、aは1.8〜2.2の数である。)
で表される25℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサン 0.1〜100質量部
を含有し、上記成分(B)と成分(C)の配合量は{成分(B)と成分(C)を合わせたSi−H基の個数}/{成分(A)のアルケニル基の個数}が0.6〜1.5になる配合量であり、更には成分(B)と成分(C)の割合は、
{成分(C)由来のSi−Hの個数}/{成分(B)由来のSi−Hの個数}が1.0〜10.0になる割合であり、25℃の粘度が50〜1,000Pa・sであることを特徴とする熱伝導性シリコーングリース組成物。
請求項2:
更に、成分(H)として、下記一般式(4)で表されるオルガノシラン及び/又は下記一般式(5)で表されるオルガノポリシロキサンを成分(A)100質量部に対し0.01〜30質量部含有することを特徴とする請求項1記載の熱伝導性シリコーングリース組成物。
4 b5 cSi(OR64-b-c (4)
(式中、R4は炭素数6〜15のアルキル基、R5は炭素数1〜8の一価炭化水素基、R6は炭素数1〜6のアルキル基であり、bは1〜3の整数、cは0〜2の整数、b+cは1〜3の整数である。)
Figure 2010150399

(式中、R7は独立に非置換又は置換の一価炭化水素基であり、R8は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、qは5〜100の整数、dは1〜3の整数である。)
請求項3:
沸点80〜360℃の揮発性有機溶剤を成分(A)100質量部に対し0.1〜40質量部含有することを特徴とする請求項1又は2記載の熱伝導性シリコーングリース組成物。 Accordingly, the present invention provides the following thermally conductive silicone grease composition.
Claim 1:
Ingredient (A):
100 parts by mass of an organopolysiloxane having a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s having at least two alkenyl groups in one molecule,
Ingredient (B):
The following general formula (1)
Figure 2010150399

(Wherein R 1 is the same or different alkyl group having 1 to 6 carbon atoms, n and m are positive numbers and satisfy 0.01 ≦ n / (n + m) ≦ 0.3).
An organohydrogenpolysiloxane represented by
Component (C):
The following general formula (2)
Figure 2010150399

(In the formula, R 2 is the same or different alkyl group having 1 to 6 carbon atoms, and p is a positive number in the range of 5 to 1,000.)
An organohydrogenpolysiloxane represented by
Component (D):
800 to 2,000 parts by mass of a thermally conductive filler having a thermal conductivity of 10 W / m ° C. or higher,
Ingredient (E):
Catalyst selected from the group consisting of platinum and platinum compounds
Compounding amount of 0.1 to 500 ppm of component (A) as platinum atom,
Ingredient (F):
0.01 to 1 part by mass of a control agent selected from an acetylene compound, a nitrogen compound, an organic phosphorus compound, an oxime compound, and an organic chloro compound,
Ingredient (G):
The following average composition formula (3)
R 3 a SiO (4-a) / 2 (3)
(In the formula, R 3 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, and a is a number of 1.8 to 2.2.)
Containing 0.1 to 100 parts by mass of an organopolysiloxane having a kinematic viscosity of 10 to 100,000 mm 2 / s at 25 ° C., and the blending amount of the component (B) and the component (C) is {component ( B) and the number of Si-H groups combined with component (C) / {the number of alkenyl groups of component (A)} is 0.6 to 1.5, and further the component (B) And the ratio of component (C) is
{Number of Si—H derived from component (C)} / {Number of Si—H derived from component (B)} is a ratio of 1.0 to 10.0, and a viscosity at 25 ° C. is 50 to 1, 000 Pa · s, a thermally conductive silicone grease composition.
Claim 2:
Furthermore, as the component (H), an organosilane represented by the following general formula (4) and / or an organopolysiloxane represented by the following general formula (5) is added in an amount of 0.01 to 100 parts by mass with respect to 100 parts by mass of the component (A). The heat conductive silicone grease composition according to claim 1, comprising 30 parts by mass.
R 4 b R 5 c Si (OR 6 ) 4-bc (4)
Wherein R 4 is an alkyl group having 6 to 15 carbon atoms, R 5 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, R 6 is an alkyl group having 1 to 6 carbon atoms, and b is 1 to 3 C is an integer of 0 to 2, and b + c is an integer of 1 to 3.)
Figure 2010150399

Wherein R 7 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 8 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, q is an integer of 5 to 100, d is an integer of 1 to 3)
Claim 3:
The thermally conductive silicone grease composition according to claim 1 or 2, which contains 0.1 to 40 parts by mass of a volatile organic solvent having a boiling point of 80 to 360 ° C with respect to 100 parts by mass of the component (A).

本発明によれば、既存よりも遥かに反りの大きいICパッケージにおいても追従でき、かつ信頼性も高い熱伝導性シリコーングリース組成物を提供することができる。   According to the present invention, it is possible to provide a thermally conductive silicone grease composition that can follow even an IC package that warps much more than existing ones and has high reliability.

本発明を構成する成分(A)のオルガノポリシロキサンは、ケイ素原子に直結したアルケニル基を1分子中に少なくとも2個有するもので、直鎖状でも分岐状でもよく、またこれら2種以上の異なる粘度の混合物でもよい。アルケニル基としては、ビニル基、アリル基、1−ブテニル基、1−ヘキセニル基などが例示されるが、合成のし易さ、コストの面からビニル基が好ましい。ケイ素原子に結合する残余の有機基としては、脂肪族不飽和結合を有さないもので、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基などのアルキル基、フェニル基などのアリール基、2−フェニルエチル基、2−フェニルプロピル基などのアラルキル基が例示され、更にクロロメチル基、3,3,3−トリフルオロプロピル基などのハロゲン置換炭化水素基も例として挙げられる。これらのうち、合成のし易さ、コストの面からケイ素原子に結合する全有機基の90モル%以上がメチル基であることが好ましい。ケイ素原子に結合するアルケニル基は、オルガノポリシロキサンの分子鎖の末端、途中のいずれに存在してもよいが、柔軟性の面では両末端にのみ存在することが好ましい。25℃における粘度は10mm2/sより低いと組成物の保存安定性が悪くなるし、100,000mm2/sより大きくなると得られる組成物の伸展性が悪くなるため、10〜100,000mm2/sの範囲、好ましくは100〜50,000mm2/sがよい。なお、粘度はオストワルド粘度計による測定値である。 The organopolysiloxane of component (A) constituting the present invention has at least two alkenyl groups directly bonded to silicon atoms in one molecule, and may be linear or branched, and these two or more types are different. It may be a mixture of viscosities. Examples of the alkenyl group include a vinyl group, an allyl group, a 1-butenyl group, and a 1-hexenyl group, but a vinyl group is preferable from the viewpoint of ease of synthesis and cost. The remaining organic group bonded to the silicon atom has no aliphatic unsaturated bond, such as an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a dodecyl group, and a phenyl group. Examples include aralkyl groups such as an aryl group, 2-phenylethyl group, and 2-phenylpropyl group, and halogen-substituted hydrocarbon groups such as chloromethyl group and 3,3,3-trifluoropropyl group. Of these, 90 mol% or more of all organic groups bonded to the silicon atom are preferably methyl groups from the viewpoint of ease of synthesis and cost. The alkenyl group bonded to the silicon atom may be present at either the end or in the middle of the molecular chain of the organopolysiloxane, but in terms of flexibility, it is preferably present only at both ends. 25 to the storage stability of viscosity at ℃ is lower than 10 mm 2 / s composition is deteriorated, 100,000 mm 2 / s from increases because the extensibility of the composition is deteriorated obtained, 10~100,000mm 2 / S, preferably 100 to 50,000 mm 2 / s. The viscosity is a value measured with an Ostwald viscometer.

成分(B)は、下記一般式(1)で示されるオルガノハイドロジェンポリシロキサンである。

Figure 2010150399

(但し、nとmが0.01≦n/(n+m)≦0.3(n、mは正数)の範囲にあり、R1は炭素数1〜6のアルキル基である。) The component (B) is an organohydrogenpolysiloxane represented by the following general formula (1).
Figure 2010150399

(However, n and m are in the range of 0.01 ≦ n / (n + m) ≦ 0.3 (n and m are positive numbers), and R 1 is an alkyl group having 1 to 6 carbon atoms.)

成分(B)の式(1)で示されるオルガノハイドロジェンポリシロキサンにおいて、n、mは正数で、n/(n+m)は0.01より小さいと架橋により組成を網状化できないし、0.3より大きいと初期硬化後の未反応Si−H基残存量が多くなり、水分などにより余剰の架橋反応が経時で進んでしまい組成物の柔軟性が失われるため、0.01〜0.3の範囲、好ましくは0.05〜0.2がよい。   In the organohydrogenpolysiloxane represented by the formula (1) of the component (B), if n and m are positive numbers and n / (n + m) is less than 0.01, the composition cannot be reticulated by crosslinking, and If it is greater than 3, the amount of unreacted Si-H groups remaining after the initial curing increases, and excessive crosslinking reaction proceeds with time due to moisture and the like, so that the flexibility of the composition is lost. The range is preferably 0.05 to 0.2.

1としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等から選択されるアルキル基で、これらのうち、合成のし易さ、コストの面からR1の90モル%以上がメチル基であることが好ましい。 R 1 is an alkyl group selected from a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, etc., and among these, 90 mol% or more of R 1 is more preferable from the viewpoint of ease of synthesis and cost. A methyl group is preferred.

成分(C)は、下記一般式(2)で示されるオルガノハイドロジェンポリシロキサンである。

Figure 2010150399

(但し、pは正数で、5〜1,000の範囲であり、R2は炭素数1〜6のアルキル基である。) Component (C) is an organohydrogenpolysiloxane represented by the following general formula (2).
Figure 2010150399

(However, p is a positive number in the range of 5 to 1,000, and R 2 is an alkyl group having 1 to 6 carbon atoms.)

成分(C)の式(2)で示されるオルガノハイドロジェンポリシロキサンのpは5より小さいと揮発成分となり易く、電子部品に用いることは好ましくないし、1,000より大きいと粘度が高くなり、扱いが難しくなるため、5〜1,000の範囲、好ましくは10〜100の範囲がよい。   When the p of the organohydrogenpolysiloxane represented by the formula (2) of the component (C) is less than 5, it tends to be a volatile component and is not preferred for use in electronic parts. Is difficult, the range is 5 to 1,000, preferably 10 to 100.

2としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等から選択されるアルキル基で、これらのうち、合成のし易さ、コストの面からR2の90モル%以上がメチル基であることが好ましい。 R 2 is an alkyl group selected from a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and the like, and among these, 90 mol% or more of R 2 is present from the viewpoint of ease of synthesis and cost. A methyl group is preferred.

成分(B)と成分(C)を合わせた配合量は、成分(A)中のアルケニル基の数に対し、成分(B)及び成分(C)中のSi−H基の数、即ち{成分(B)と成分(C)を合わせたSi−H基の個数}/{成分(A)のアルケニル基の個数}が0.6より小さいと十分な網状構造をとれず、硬化後必要な硬さが得られず、1.5より大きいと未反応のSi−H基が水分などにより余剰の架橋反応を起こし硬くなり、組成物の柔軟性が失われるため、0.6〜1.5の範囲がよい。好ましくは0.7〜1.4である。   The blending amount of component (B) and component (C) is the number of Si—H groups in component (B) and component (C) relative to the number of alkenyl groups in component (A), ie {component If the number of Si-H groups in which (B) and component (C) are combined} / {number of alkenyl groups in component (A)} is less than 0.6, a sufficient network structure cannot be obtained, and the necessary hardness after curing. If the ratio is greater than 1.5, the unreacted Si-H group undergoes an excessive crosslinking reaction due to moisture or the like and becomes hard, and the flexibility of the composition is lost. The range is good. Preferably it is 0.7-1.4.

また、成分(B)と成分(C)の割合は、{成分(C)由来のSi−Hの個数}/{成分(B)由来のSi−Hの個数}が1.0より小さいと硬化後の適切な柔軟性が得られず、10.0より大きいと硬化が不十分となるため、1.0〜10.0の範囲、好ましくは1.5〜5.0である。   The ratio of component (B) to component (C) is such that {number of Si-H derived from component (C)} / {number of Si-H derived from component (B)} is less than 1.0. When appropriate flexibility afterward is not obtained and curing is insufficient when it is greater than 10.0, the range is 1.0 to 10.0, preferably 1.5 to 5.0.

成分(D)の充填剤は、本発明に熱伝導性を付与するためのものである。本発明の充填剤は、その充填剤のもつ熱伝導率が10W/m℃より小さいと、放熱用シリコーングリース組成物の熱伝導率そのものが小さくなるため、充填剤の熱伝導率は10W/m℃以上である。熱伝導性充填剤としては、アルミニウム粉末、銅粉末、銀粉末、ニッケル粉末、金粉末、アルミナ粉末、酸化亜鉛粉末、酸化マグネシム粉末、窒化アルミニム粉末、窒化ホウ素粉末、窒化珪素粉末、ダイヤモンド粉末、カーボン粉末、インジウム、ガリウムなどが挙げられるが、熱伝導率が10W/m℃以上であれば如何なる充填剤でもよく、1種あるいは2種以上を混ぜ合わせてもよい。   The filler of component (D) is for imparting thermal conductivity to the present invention. In the filler of the present invention, if the thermal conductivity of the filler is less than 10 W / m ° C., the thermal conductivity of the silicone grease composition for heat dissipation itself becomes small, so the thermal conductivity of the filler is 10 W / m. It is above ℃. Thermal conductive fillers include aluminum powder, copper powder, silver powder, nickel powder, gold powder, alumina powder, zinc oxide powder, magnesium oxide powder, aluminum nitride powder, boron nitride powder, silicon nitride powder, diamond powder, carbon Examples thereof include powder, indium, and gallium. Any filler may be used as long as the thermal conductivity is 10 W / m ° C. or more, and one or two or more may be mixed.

熱伝導性充填剤(D)の充填量は、成分(A)100質量部に対し、800質量部より少ないと所望する熱伝導率が得られないし、2,000質量部より大きいとグリース状にならず、伸展性の乏しいものとなるため、800〜2,000質量部の範囲、好ましくは1,000〜1,900質量部の範囲である。   When the amount of the thermally conductive filler (D) is less than 800 parts by mass with respect to 100 parts by mass of the component (A), the desired thermal conductivity cannot be obtained, and when it is greater than 2,000 parts by mass, it becomes a grease. However, since it becomes poor in extensibility, it is in the range of 800 to 2,000 parts by mass, preferably in the range of 1,000 to 1,900 parts by mass.

熱伝導性充填剤の平均粒径は、0.1μmより小さいとグリース状にならず伸展性に乏しいものとなる場合があるし、100μmより大きいと放熱グリースの均一性が乏しくなる場合があるため、0.1〜100μmの範囲がよい。充填剤の形状は、不定形でも球形でも如何なる形状でも構わない。なお、この平均粒径は、レーザー光回折法による粒度分布測定における体積平均値D50(即ち、累積体積が50%になるときの粒子径又はメジアン径)として測定することができる。 If the average particle size of the thermally conductive filler is less than 0.1 μm, it may not be in the form of grease and may have poor extensibility, and if it is greater than 100 μm, the uniformity of the heat dissipating grease may be poor. A range of 0.1 to 100 μm is preferable. The shape of the filler may be indefinite, spherical or any shape. The average particle diameter can be measured as a volume average value D 50 (that is, a particle diameter or a median diameter when the cumulative volume is 50%) in particle size distribution measurement by a laser light diffraction method.

成分(E)の白金及び白金化合物から選ばれる触媒は、成分(A)のアルケニル基と成分(B)及び成分(C)のSi−H基との間の付加反応の促進成分である。この成分(E)は例えば白金の単体、塩化白金酸、白金−オレフィン錯体、白金−アルコール錯体、白金配位化合物などが挙げられる。   The catalyst selected from platinum of component (E) and a platinum compound is a component for promoting the addition reaction between the alkenyl group of component (A) and the Si—H group of component (B) and component (C). Examples of this component (E) include platinum alone, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, and platinum coordination compounds.

成分(E)の配合量は、成分(A)の質量に対し、白金原子として0.1ppmより小さくても触媒としての効果がなく、500ppmを超えても特に硬化速度の向上は期待できないため、0.1〜500ppmの範囲である。   Since the compounding amount of the component (E) is less than 0.1 ppm as a platinum atom with respect to the mass of the component (A), there is no effect as a catalyst. It is in the range of 0.1 to 500 ppm.

成分(F)の制御剤は、室温でのヒドロシリル化反応の進行を抑え、シェルフライフ、ポットライフを延長させるものである。反応制御剤としては公知のものを使用することができ、アセチレン化合物、各種窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物等が利用できる。   The control agent of component (F) suppresses the progress of the hydrosilylation reaction at room temperature and extends shelf life and pot life. Known reaction control agents can be used, and acetylene compounds, various nitrogen compounds, organic phosphorus compounds, oxime compounds, organic chloro compounds, and the like can be used.

成分(F)の配合量は、成分(A)100質量部に対し、0.01質量部より小さいと十分なシェルフライフ、ポットライフが得られず、1質量部より大きいと硬化性が低下するため、0.01〜1質量部の範囲である。これらはシリコーン樹脂への分散性をよくするためにトルエン、キシレン、イソプロピルアルコール等の有機溶剤で希釈して使用することもできる。   If the blending amount of component (F) is less than 0.01 parts by mass with respect to 100 parts by mass of component (A), sufficient shelf life and pot life cannot be obtained, and if it is greater than 1 part by mass, curability decreases. Therefore, it is the range of 0.01-1 mass part. These can be used after being diluted with an organic solvent such as toluene, xylene, isopropyl alcohol or the like in order to improve dispersibility in the silicone resin.

成分(G)の可塑剤は、下記平均組成式(3)
3 aSiO(4-a)/2 (3)
(式中、R3は独立に非置換又は置換の炭素数1〜18の一価炭化水素基であり、aは1.8〜2.2の正数である。)
で表される25℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサンである。動粘度が10mm2/s未満であると、硬化後組成物から抜け易くなってしまい、柔らかさが維持できなくなって、追随性を保てなくなってしまい、また、100,000mm2/sを超えると組成物自身の粘度が高くなってしまい、吐出性が悪化してしまうため、25℃における動粘度は10〜100,000mm2/sであり、より好ましくは50〜10,000mm2/sのオルガノポリシロキサンがよい。
The plasticizer of component (G) has the following average composition formula (3)
R 3 a SiO (4-a) / 2 (3)
(In the formula, R 3 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, and a is a positive number of 1.8 to 2.2.)
Is an organopolysiloxane having a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s. If the kinematic viscosity is less than 10 mm 2 / s, it becomes easy to come out of the composition after curing, the softness cannot be maintained, the followability cannot be maintained, and it exceeds 100,000 mm 2 / s. The viscosity of the composition itself is increased and the dischargeability is deteriorated, so the kinematic viscosity at 25 ° C. is 10 to 100,000 mm 2 / s, more preferably 50 to 10,000 mm 2 / s. Organopolysiloxane is preferred.

成分(G)の配合量は、成分(A)100質量部に対し、0.1〜100質量部、好ましくは0.5〜90質量部、更に好ましくは1.0〜80質量部である。配合量が少なすぎると、ICパッケージの大きな反りに追従できなくなり、配合量が多すぎると、ポンピング・アウト現象が起きてしまう。   The compounding quantity of a component (G) is 0.1-100 mass parts with respect to 100 mass parts of components (A), Preferably it is 0.5-90 mass parts, More preferably, it is 1.0-80 mass parts. If the blending amount is too small, it will not be possible to follow the large warp of the IC package, and if the blending amount is too large, a pumping out phenomenon will occur.

本発明には、上記成分(A)〜(G)に加えて、必要により成分(H)として、充填剤とシリコーン成分の濡れ性を向上させる添加剤を用いることが有効である。濡れ性を向上させることができる添加剤ならいずれのものでもよいが、下記一般式(4)で表されるオルガノシランや下記一般式(5)で表されるオルガノポリシロキサンが特に有用である。
一般式(4)で示されるオルガノシラン:
4 b5 cSi(OR64-b-c (4)
(式中、R4は炭素数6〜15のアルキル基、R5は炭素数1〜8の一価炭化水素基、R6は炭素数1〜6のアルキル基であり、bは1〜3の整数、cは0〜2の整数、b+cは1〜3の整数である。)
一般式(5)で示されるオルガノポリシロキサン:

Figure 2010150399

(式中、R7は独立に非置換又は置換の一価炭化水素基であり、R8は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、qは5〜100の整数、dは1〜3の整数である。) In the present invention, in addition to the components (A) to (G), it is effective to use an additive for improving the wettability of the filler and the silicone component as the component (H) as necessary. Any additive that can improve wettability may be used, but organosilanes represented by the following general formula (4) and organopolysiloxanes represented by the following general formula (5) are particularly useful.
Organosilane represented by the general formula (4):
R 4 b R 5 c Si (OR 6 ) 4-bc (4)
Wherein R 4 is an alkyl group having 6 to 15 carbon atoms, R 5 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, R 6 is an alkyl group having 1 to 6 carbon atoms, and b is 1 to 3 C is an integer of 0 to 2, and b + c is an integer of 1 to 3.)
Organopolysiloxane represented by the general formula (5):
Figure 2010150399

(Wherein, R 7 is an unsubstituted or substituted monovalent hydrocarbon group independently, R 8 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, q is 5 to 100 integer, d is an integer of 1 to 3)

ここで、R4の具体例としては、例えばヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。炭素数が6より小さいと充填剤との濡れ性が十分でなく、15より大きいとオルガノシランが常温で固化するので、取扱いが不便な上、得られた組成物の低温特性が低下する。またbは1、2あるいは3であるが、特に1であることが好ましい。また、R5は炭素数1〜8、特に1〜6の飽和又は不飽和の一価炭化水素基であり、このような基としてはアルキル基、シクロアルキル基、アルケニル基等を挙げることができる。具体的にはメチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基、3,3,3−トリフロロプロピル基、2−(ナノフルオロブチル)エチル基、2−(ヘプタデカフルオロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基が挙げられるが、特にメチル基、エチル基が好ましい。R6は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などの炭素数1〜6の1種もしくは2種以上のアルキル基であり、特にメチル基、エチル基が好ましい。 Here, specific examples of R 4 include, for example, hexyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group and the like. If the carbon number is less than 6, the wettability with the filler is not sufficient, and if it is more than 15, the organosilane is solidified at room temperature, which is inconvenient to handle and the low temperature characteristics of the resulting composition are lowered. B is 1, 2 or 3, but 1 is particularly preferable. R 5 is a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms, particularly 1 to 6 carbon atoms. Examples of such groups include alkyl groups, cycloalkyl groups, and alkenyl groups. . Specifically, alkyl groups such as methyl group, ethyl group, propyl group, hexyl group, octyl group, cycloalkyl groups such as cyclopentyl group, cyclohexyl group, alkenyl groups such as vinyl group, allyl group, phenyl group, tolyl group, etc. Aryl groups, aralkyl groups such as 2-phenylethyl group, 2-methyl-2-phenylethyl group, 3,3,3-trifluoropropyl group, 2- (nanofluorobutyl) ethyl group, 2- (heptadeca Halogenated hydrocarbon groups such as fluorooctyl) ethyl group and p-chlorophenyl group are mentioned, and methyl group and ethyl group are particularly preferable. R 6 is one or more alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group and an ethyl group are particularly preferable.

上記一般式(4)で表されるオルガノシランの具体例としては、下記のものを挙げることができる。
613Si(OCH33、1021Si(OCH33、C1225Si(OCH33
1225Si(OC253、C1021Si(CH3)(OCH32
1021Si(C65)(OCH32、C1021Si(CH3)(OC252
1021Si(CH=CH2)(OCH32
1021Si(CH2CH2CF3)(OCH32
Specific examples of the organosilane represented by the general formula (4) include the following.
C 6 H 13 Si (OCH 3 ) 3, C 10 H 21 Si (OCH 3 ) 3 , C 12 H 25 Si (OCH 3 ) 3 ,
C 12 H 25 Si (OC 2 H 5 ) 3 , C 10 H 21 Si (CH 3 ) (OCH 3 ) 2 ,
C 10 H 21 Si (C 6 H 5) (OCH 3) 2, C 10 H 21 Si (CH 3) (OC 2 H 5) 2,
C 10 H 21 Si (CH═CH 2 ) (OCH 3 ) 2 ,
C 10 H 21 Si (CH 2 CH 2 CF 3 ) (OCH 3 ) 2

一方、濡れ性向上剤として用いられるオルガノポリシロキサンにおいて、上記一般式(5)のR7は、独立に非置換又は置換の一価炭化水素基であり、好ましくは炭素数が1〜18のもので、その例としては、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等が挙げられる。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert−ブチル基、2−エチルヘキシル基等が挙げられる。環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基等が挙げられる。アリール基としては、例えば、フェニル基、トリル基等が挙げられる。アラルキル基としては、例えば、2−フェニルエチル基、2−メチル−2−フェニルエチル基等が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3−トリフルオロプロピル基、2−(ノナフルオロブチル)エチル基、2−(ヘプタデカフルオロオクチル)エチル基等が挙げられる。R7は好ましくはメチル基、フェニル基である。R8は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基で、好ましくは炭素数1〜5である。アルキル基としては、例えば、R7について例示したのと同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基が挙げられる。アルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基が挙げられる。アシル基としては、例えば、アセチル基、オクタノイル基が挙げられる。R8はアルキル基であることが好ましく、特にはメチル基、エチル基であることが好ましい。qは5〜100の整数である。dは1〜3の整数であり、好ましくは3である。 On the other hand, in the organopolysiloxane used as the wettability improver, R 7 in the general formula (5) is independently an unsubstituted or substituted monovalent hydrocarbon group, preferably having 1 to 18 carbon atoms. Examples thereof include linear alkyl groups, branched alkyl groups, cyclic alkyl groups, alkenyl groups, aryl groups, aralkyl groups, and halogenated alkyl groups. Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group. Examples of the branched alkyl group include isopropyl group, isobutyl group, tert-butyl group, 2-ethylhexyl group and the like. Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group. Examples of the alkenyl group include a vinyl group and an allyl group. Examples of the aryl group include a phenyl group and a tolyl group. Examples of the aralkyl group include a 2-phenylethyl group and a 2-methyl-2-phenylethyl group. Examples of the halogenated alkyl group include 3,3,3-trifluoropropyl group, 2- (nonafluorobutyl) ethyl group, 2- (heptadecafluorooctyl) ethyl group, and the like. R 7 is preferably a methyl group or a phenyl group. R 8 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and preferably has 1 to 5 carbon atoms. Examples of the alkyl group include the same linear alkyl group, branched alkyl group, and cyclic alkyl group as those exemplified for R 7 . Examples of the alkoxyalkyl group include a methoxyethyl group and a methoxypropyl group. Examples of the acyl group include an acetyl group and an octanoyl group. R 8 is preferably an alkyl group, particularly preferably a methyl group or an ethyl group. q is an integer of 5 to 100. d is an integer of 1 to 3, preferably 3.

上記一般式(5)で表されるオルガノポリシロキサンの具体例としては、下記のものを挙げることができる。   Specific examples of the organopolysiloxane represented by the general formula (5) include the following.

Figure 2010150399
(Meはメチル基を示す。)
Figure 2010150399
(Me represents a methyl group.)

成分(H)の配合量は、成分(A)100質量部に対し、0.01質量部より少ないと濡れ性の乏しいものとなるし、30質量部より多くしても効果が増大することがなく、不経済であるので、0.01〜30質量部の範囲がよく、より好ましくは10〜25質量部である。   If the amount of component (H) is less than 0.01 parts by mass relative to 100 parts by mass of component (A), the wettability will be poor, and if it exceeds 30 parts by mass, the effect will increase. Since it is uneconomical, the range of 0.01 to 30 parts by mass is good, and more preferably 10 to 25 parts by mass.

また、前記成分(A)〜(G)、更に成分(H)を分散又は溶解する沸点80〜360℃の有機溶剤を配合し得、かかる溶剤としては特に制限はなく、例えば、トルエン、キシレン、イソパラフィンなどが挙げられるが、作業性の点から、イソパラフィン系の溶剤が好ましい。なおそのイソパラフィンの沸点は80〜360℃であるものが有効で、より好ましくは沸点260〜360℃、更に好ましくは沸点260〜300℃のものである。この場合、イソパラフィン系溶剤の沸点が80℃未満であると、揮発が速くなりすぎて作業中に組成物の粘度が上昇する不具合が生じる。一方、沸点が360℃を超えるとシリコーングリース組成物中に溶剤が残存し易くなり、ボイドが発生する等して熱特性が低下する。   Further, an organic solvent having a boiling point of 80 to 360 ° C. in which the components (A) to (G) and the component (H) are dispersed or dissolved can be blended, and the solvent is not particularly limited. For example, toluene, xylene, Although isoparaffin etc. are mentioned, the isoparaffin-type solvent is preferable from the point of workability | operativity. It is effective that the isoparaffin has a boiling point of 80 to 360 ° C, more preferably 260 to 360 ° C, and still more preferably 260 to 300 ° C. In this case, if the boiling point of the isoparaffinic solvent is less than 80 ° C., the volatilization becomes too fast and the viscosity of the composition increases during the operation. On the other hand, if the boiling point exceeds 360 ° C., the solvent tends to remain in the silicone grease composition, and voids are generated, resulting in deterioration of thermal characteristics.

上記溶剤の配合量は、成分(A)100質量部に対し、0.1〜40質量部であることが好ましく、より好ましくは10〜30質量部である。配合量が0.1質量部未満であると、シリコーングリース組成物の粘度を十分に下げることができない場合があり、40質量部を超えると、硬化しにくくなる場合がある。   It is preferable that the compounding quantity of the said solvent is 0.1-40 mass parts with respect to 100 mass parts of components (A), More preferably, it is 10-30 mass parts. If the blending amount is less than 0.1 parts by mass, the viscosity of the silicone grease composition may not be sufficiently lowered, and if it exceeds 40 parts by mass, it may be difficult to cure.

ところで、放熱用シリコーングリース組成物の熱伝導率は、基本的に熱伝導性充填剤の配合量と相関があり、熱伝導性充填剤の配合量を多くするほど熱伝導率が向上する。一方で、熱伝導性充填剤の配合量が多いと放熱用シリコーングリース組成物自体の粘度が高くなるため、作業性や取扱い性等を考慮すると、熱伝導性充填剤の配合量には上限がある。そこで、少量の溶剤成分を配合することで、放熱用シリコーングリース組成物の粘度を急激に下げ、従来の組成物より熱伝導性充填剤の配合量が多くても作業性、取扱い性を確保することができる。   By the way, the thermal conductivity of the silicone grease composition for heat dissipation basically has a correlation with the blending amount of the thermally conductive filler, and the thermal conductivity improves as the blending amount of the thermally conductive filler increases. On the other hand, since the viscosity of the heat-dissipating silicone grease composition itself increases when the amount of the thermally conductive filler is large, there is an upper limit to the amount of the thermally conductive filler in consideration of workability and handling properties. is there. Therefore, by blending a small amount of solvent component, the viscosity of the heat-dissipating silicone grease composition is drastically reduced, and workability and handling are ensured even if the amount of the thermally conductive filler is larger than that of the conventional composition. be able to.

また、本発明には、上記した成分(A)〜(G)、更には、成分(H)の一般式(4)のオルガノシランや一般式(5)のオルガノポリシロキサン及び揮発性溶剤以外に必要に応じて、CPUなどのICパッケージとヒートシンク等の放熱体とを化学的に接着、固定するために接着助剤等を入れてもよいし、劣化を防ぐために酸化防止剤等を入れてもよい。   In addition to the components (A) to (G) described above, the present invention includes an organosilane of the general formula (4), an organopolysiloxane of the general formula (5), and a volatile solvent. If necessary, an adhesion aid or the like may be added to chemically bond and fix an IC package such as a CPU and a heat sink such as a heat sink, or an antioxidant or the like may be added to prevent deterioration. Good.

本発明の熱伝導性シリコーン組成物は、上記成分(A)〜(G)、更には成分(H)、その他の任意成分を混合し、1液付加タイプとして長期低温保存できる。また、これらに揮発性溶剤を加えたものも同様に1液付加タイプとして長期低温保存できる。   The thermally conductive silicone composition of the present invention can be stored at a low temperature for a long period of time as a one-component addition type by mixing the above components (A) to (G), further the component (H) and other optional components. Moreover, what added the volatile solvent to these can also be stored at low temperature for a long time as a 1 liquid addition type.

本発明において、半導体装置組立て時には、この熱伝導性シリコーン組成物は市販されているシリンジに詰めてCPU等のICパッケージ表面上に塗布、貼り合わせられる。このため、粘度が50Pa・sより低いと塗布時に液垂れを起こしてしまうし、1,000Pa・sより高いと塗布効率が悪くなるため、50〜1,000Pa・sの範囲で使用可能であるが、好ましくは100〜400Pa・sがよい。なお、この粘度は、マルコム粘度計による測定値である。   In the present invention, at the time of assembling a semiconductor device, the thermally conductive silicone composition is packed in a commercially available syringe and applied and bonded onto the surface of an IC package such as a CPU. For this reason, if the viscosity is lower than 50 Pa · s, dripping occurs at the time of coating, and if it is higher than 1,000 Pa · s, the coating efficiency is deteriorated, so that it can be used in the range of 50 to 1,000 Pa · s. However, 100 to 400 Pa · s is preferable. This viscosity is a value measured with a Malcolm viscometer.

ディスペンスされた後、ICパッケージからの発熱によって硬化し、硬化後はこの組成物はタック性を有するので、基材からずれたり、また経時においても安定した柔軟性を持つことから基材から剥がれたりすることはない。またディスペンス後、積極的に加熱硬化させてもよく、硬化条件は、120℃で90分間加熱することが好ましい。   After being dispensed, it is cured by the heat generated from the IC package, and after curing, this composition has tackiness, so it may deviate from the base material and may peel off from the base material because of its stable flexibility over time. Never do. In addition, after dispensing, heat curing may be performed positively, and the curing condition is preferably heating at 120 ° C. for 90 minutes.

なお、製造方法は、ゲートミキサー(井上製作所(株)製、商品名:プラネタリミキサー)に成分(A)、(B)、(C)、(D)、(G)を取り、必要に応じて成分(H)のオルガノシランやオルガノポリシロキサンを加え、室温で1時間混合し、次に成分(F)を加え、例えば15分間室温にて混合し、その後更に成分(E)を加え、均一になるように例えば15分間室温にて混合する方法を採用し得るが、これに限定されるものではない。   In addition, a manufacturing method takes a component (A), (B), (C), (D), (G) to a gate mixer (The product name: Planetary mixer by Inoue Seisakusho Co., Ltd.), and as needed. Add component (H), organosilane or organopolysiloxane, mix for 1 hour at room temperature, then add component (F), for example, mix for 15 minutes at room temperature, then add component (E), and add For example, a method of mixing at room temperature for 15 minutes can be employed, but is not limited thereto.

以下、実施例を掲げて本発明を更に詳述するが、本発明は下記の実施例に限られるものではない。
まず、本発明組成物を形成する以下の各成分を用意した。なお、下記例中Meはメチル基を示す。
EXAMPLES Hereinafter, although an Example is hung up and this invention is further explained in full detail, this invention is not limited to the following Example.
First, the following components for forming the composition of the present invention were prepared. In the following examples, Me represents a methyl group.

成分(A):
A−1
両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm2/sのジメチルポリシロキサン
Ingredient (A):
A-1
Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25 ° C. of 600 mm 2 / s

成分(B):
下記式で表されるオルガノハイドロジェンポリシロキサン

Figure 2010150399
Ingredient (B):
Organohydrogenpolysiloxane represented by the following formula
Figure 2010150399

成分(C):
下記式で表されるオルガノハイドロジェンポリシロキサン

Figure 2010150399
Component (C):
Organohydrogenpolysiloxane represented by the following formula
Figure 2010150399

成分(D):
下記のアルミニウム粉末、アルミナ粉末及び酸化亜鉛粉末を、5リットルゲートミキサー(井上製作所(株)製、商品名:5リットルプラネタリミキサー)を用い、下記表1の混合比で室温にて15分間混合し、D−1〜3を得た。
平均粒径4.9μmのアルミニウム粉末
平均粒径15.0μmのアルミニウム粉末
平均粒径15.0μmのアルミナ粉末
平均粒径1.0μmの酸化亜鉛粉末
Component (D):
The following aluminum powder, alumina powder and zinc oxide powder were mixed at room temperature for 15 minutes at a mixing ratio shown in Table 1 below using a 5-liter gate mixer (trade name: 5-liter planetary mixer manufactured by Inoue Seisakusho Co., Ltd.). , D-1 to 3 were obtained.
Aluminum powder with an average particle size of 4.9 μm Aluminum powder with an average particle size of 15.0 μm Alumina powder with an average particle size of 15.0 μm Zinc oxide powder with an average particle size of 1.0 μm

Figure 2010150399
Figure 2010150399

成分(E):
E−1
白金−ジビニルテトラメチルジシロキサン錯体のA−1溶液、白金原子として1質量%含有
Ingredient (E):
E-1
A-1 solution of platinum-divinyltetramethyldisiloxane complex, containing 1% by mass as platinum atoms

成分(F):
F−1
1−エチニル−1−シクロヘキサノールの50質量%トルエン溶液
Ingredient (F):
F-1
50% by weight toluene solution of 1-ethynyl-1-cyclohexanol

成分(G):
G−1
動粘度500mm2/sのジメチルオルガノポリシロキサン
G−2(比較用)
動粘度5mm2/sのジメチルオルガノポリシロキサン
G−3(比較用)
動粘度1,000,000mm2/sのジメチルオルガノポリシロキサン
Ingredient (G):
G-1
Dimethylorganopolysiloxane G-2 with a kinematic viscosity of 500 mm 2 / s (for comparison)
Dimethylorganopolysiloxane G-3 with kinematic viscosity 5 mm 2 / s (for comparison)
Dimethylorganopolysiloxane with kinematic viscosity 1,000,000 mm 2 / s

成分(H):
(使用したオルガノシラン)
H−1
オルガノシラン〈1〉:C613Si(OCH33
H−2
オルガノシラン〈2〉:C1021Si(OCH33
(使用したオルガノポリシロキサン)
H−3
オルガノポリシロキサン〈1〉

Figure 2010150399
Ingredient (H):
(Organosilane used)
H-1
Organosilane <1>: C 6 H 13 Si (OCH 3 ) 3
H-2
Organosilane <2>: C 10 H 21 Si (OCH 3 ) 3
(Used organopolysiloxane)
H-3
Organopolysiloxane <1>
Figure 2010150399

(使用した溶剤)
IPソルベント2835(イソパラフィン系溶剤、出光興産(株)製、商品名)沸点270〜350℃
(Solvent used)
IP Solvent 2835 (Isoparaffinic solvent, Idemitsu Kosan Co., Ltd., trade name) Boiling point 270-350 ° C

上記成分を以下のように混合して実施例1〜9及び比較例1〜11の組成物を得た。
即ち、5リットルゲートミキサー(井上製作所(株)製、商品名:5リットルプラネタリミキサー)に成分(A)、(B)、(C)、(G)及び溶剤を取り、表2、表3に示す配合量で成分(D)を更に量り取り、必要に応じて成分(H)としてオルガノシランやオルガノポリシロキサンを加え、室温で1時間混合した。次に成分(F)をそれぞれ表2、表3に示す配合量で加え、15分間室温にて混合した。その後更に成分(E)をそれぞれ表2、表3に示す配合量で加え、均一になるように15分間室温にて混合した。
The said component was mixed as follows and the composition of Examples 1-9 and Comparative Examples 1-11 was obtained.
That is, the components (A), (B), (C), (G) and the solvent were taken in a 5 liter gate mixer (trade name: 5 liter planetary mixer manufactured by Inoue Seisakusho Co., Ltd.), and Tables 2 and 3 The component (D) was further weighed out at the blending amount shown, and organosilane or organopolysiloxane was added as the component (H) as necessary, and mixed at room temperature for 1 hour. Next, component (F) was added in the blending amounts shown in Tables 2 and 3, respectively, and mixed for 15 minutes at room temperature. Thereafter, the component (E) was further added in the amounts shown in Tables 2 and 3, respectively, and mixed for 15 minutes at room temperature so as to be uniform.

熱伝導率:
直径12.5mm×厚さ1.0mmの2枚のアルミニウム板に上記実施例及び比較例で得た組成物を挟んで試験片を作製し、試験片の厚みをマイクロメータ((株)ミツトヨ製)で測定し、予め測定してあったアルミニウム板2枚分の厚みを差し引いて、該組成物の厚みを算出した。このような方法で試験片の厚みが異なるサンプルをそれぞれ数点作製した。その後、それぞれのサンプルを125℃中で90分間放置することで硬化させ、よく冷えるのを待ってから再度該組成物の厚みを算出した。上記試験片を用いて該組成物の熱抵抗(単位:mm2−K/W)をレーザーフラッシュ法に基づく熱抵抗測定器(ネッチ社製、キセノンフラッシュアナライザー;LFA447 NanoFlash)により25℃において測定した。それぞれ厚みの異なる熱抵抗値を組成物ごとにプロットし、そこから得られた直線の傾きの逆数から熱伝導率を算出した。
Thermal conductivity:
A test piece was prepared by sandwiching the compositions obtained in the above Examples and Comparative Examples between two aluminum plates having a diameter of 12.5 mm and a thickness of 1.0 mm, and the thickness of the test piece was measured with a micrometer (manufactured by Mitutoyo Corporation). The thickness of the composition was calculated by subtracting the thickness of two aluminum plates measured in advance. Several samples each having a different specimen thickness were prepared by such a method. Thereafter, each sample was allowed to stand at 125 ° C. for 90 minutes to be cured, and after waiting to cool well, the thickness of the composition was calculated again. Using the above test piece, the thermal resistance (unit: mm 2 -K / W) of the composition was measured at 25 ° C. with a thermal resistance measuring instrument (manufactured by Netch, Xenon Flash Analyzer; LFA447 NanoFlash) based on the laser flash method. . The thermal resistance values with different thicknesses were plotted for each composition, and the thermal conductivity was calculated from the reciprocal of the slope of the straight line obtained therefrom.

粘度:
組成物の絶対粘度は25℃における値を示し、その測定はマルコム粘度計(タイプPC−1T)を用いた。
viscosity:
The absolute viscosity of the composition showed a value at 25 ° C., and a Malcolm viscometer (type PC-1T) was used for the measurement.

硬度測定(高分子計器(株)製AskerC使用(低硬さ用)):
組成物の経時での柔軟性を硬度測定することで評価した。10mm厚の型に流し込み、125℃で1時間加熱して、厚み10mmのシート状のゴム成形物を調製した。その後、25℃に戻して初期硬度を測定した。更に温度130℃、湿度100%、2気圧の条件下に100時間放置後、25℃に戻して再び硬度を測定した。
Hardness measurement (use of Asker C manufactured by Kobunshi Keiki Co., Ltd. (for low hardness)):
The flexibility of the composition over time was evaluated by measuring the hardness. Poured into a 10 mm thick mold and heated at 125 ° C. for 1 hour to prepare a sheet-like rubber molded product having a thickness of 10 mm. Then, it returned to 25 degreeC and measured initial hardness. Further, after standing for 100 hours under conditions of a temperature of 130 ° C., a humidity of 100%, and 2 atmospheres, the temperature was returned to 25 ° C. and the hardness was measured again.

信頼性評価:
シリコンウェーハー(2cm×2cm)とガラスの間に熱伝導性シリコーングリース組成物を挟み込んだ後、125℃中で90分間放置して硬化させた。その後、ヒートサイクル条件下[−45℃(30分)⇔125℃(30分)を1,000サイクル]に放置し、ポンピング・アウトが起こっているかどうかを確かめた。ポンピング・アウトが起こっていなかったものを信頼性○とし、起きてしまったものを×とした。
Reliability assessment:
The thermally conductive silicone grease composition was sandwiched between a silicon wafer (2 cm × 2 cm) and glass, and then allowed to cure at 125 ° C. for 90 minutes. Then, it was allowed to stand under heat cycle conditions [1,000 cycles of −45 ° C. (30 minutes) to 125 ° C. (30 minutes)] to check whether pumping out occurred. The case where the pumping out did not occur was defined as reliability ○, and the case where the pumping out occurred was defined as x.

Figure 2010150399
Figure 2010150399

Figure 2010150399
Figure 2010150399

Claims (3)

成分(A):
1分子中に少なくとも2個のアルケニル基を有する25℃の動粘度が10〜100,000mm2/sのオルガノポリシロキサン 100質量部、
成分(B):
下記一般式(1)
Figure 2010150399

(式中、R1は互いに同一又は異種の炭素数1〜6のアルキル基、n、mは正数で、0.01≦n/(n+m)≦0.3を満足する。)
で示されるオルガノハイドロジェンポリシロキサン、
成分(C):
下記一般式(2)
Figure 2010150399

(式中、R2は互いに同一又は異種の炭素数1〜6のアルキル基、pは5〜1,000の範囲の正数である。)
で示されるオルガノハイドロジェンポリシロキサン、
成分(D):
10W/m℃以上の熱伝導率を有する熱伝導性充填剤 800〜2,000質量部、
成分(E):
白金及び白金化合物からなる群より選択される触媒
白金原子として成分(A)の0.1〜500ppmとなる配合量、
成分(F):
アセチレン化合物、窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物より選択される制御剤 0.01〜1質量部、
成分(G):
下記平均組成式(3)
3 aSiO(4-a)/2 (3)
(式中、R3は独立に非置換又は置換の炭素数1〜18の一価炭化水素基であり、aは1.8〜2.2の数である。)
で表される25℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサン 0.1〜100質量部
を含有し、上記成分(B)と成分(C)の配合量は{成分(B)と成分(C)を合わせたSi−H基の個数}/{成分(A)のアルケニル基の個数}が0.6〜1.5になる配合量であり、更には成分(B)と成分(C)の割合は、
{成分(C)由来のSi−Hの個数}/{成分(B)由来のSi−Hの個数}が1.0〜10.0になる割合であり、25℃の粘度が50〜1,000Pa・sであることを特徴とする熱伝導性シリコーングリース組成物。
Ingredient (A):
100 parts by mass of an organopolysiloxane having a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s having at least two alkenyl groups in one molecule,
Ingredient (B):
The following general formula (1)
Figure 2010150399

(Wherein R 1 is the same or different alkyl group having 1 to 6 carbon atoms, n and m are positive numbers and satisfy 0.01 ≦ n / (n + m) ≦ 0.3).
An organohydrogenpolysiloxane represented by
Component (C):
The following general formula (2)
Figure 2010150399

(In the formula, R 2 is the same or different alkyl group having 1 to 6 carbon atoms, and p is a positive number in the range of 5 to 1,000.)
An organohydrogenpolysiloxane represented by
Component (D):
800 to 2,000 parts by mass of a thermally conductive filler having a thermal conductivity of 10 W / m ° C. or higher,
Ingredient (E):
Catalyst selected from the group consisting of platinum and platinum compounds
Compounding amount of 0.1 to 500 ppm of component (A) as platinum atom,
Ingredient (F):
0.01 to 1 part by mass of a control agent selected from an acetylene compound, a nitrogen compound, an organic phosphorus compound, an oxime compound, and an organic chloro compound,
Ingredient (G):
The following average composition formula (3)
R 3 a SiO (4-a) / 2 (3)
(In the formula, R 3 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, and a is a number of 1.8 to 2.2.)
Containing 0.1 to 100 parts by mass of an organopolysiloxane having a kinematic viscosity of 10 to 100,000 mm 2 / s at 25 ° C., and the blending amount of the component (B) and the component (C) is {component ( B) and the number of Si-H groups combined with component (C) / {the number of alkenyl groups of component (A)} is 0.6 to 1.5, and further the component (B) And the ratio of component (C) is
{Number of Si—H derived from component (C)} / {Number of Si—H derived from component (B)} is a ratio of 1.0 to 10.0, and a viscosity at 25 ° C. is 50 to 1, 000 Pa · s, a thermally conductive silicone grease composition.
更に、成分(H)として、下記一般式(4)で表されるオルガノシラン及び/又は下記一般式(5)で表されるオルガノポリシロキサンを成分(A)100質量部に対し0.01〜30質量部含有することを特徴とする請求項1記載の熱伝導性シリコーングリース組成物。
4 b5 cSi(OR64-b-c (4)
(式中、R4は炭素数6〜15のアルキル基、R5は炭素数1〜8の一価炭化水素基、R6は炭素数1〜6のアルキル基であり、bは1〜3の整数、cは0〜2の整数、b+cは1〜3の整数である。)
Figure 2010150399

(式中、R7は独立に非置換又は置換の一価炭化水素基であり、R8は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、qは5〜100の整数、dは1〜3の整数である。)
Furthermore, as the component (H), an organosilane represented by the following general formula (4) and / or an organopolysiloxane represented by the following general formula (5) is added in an amount of 0.01 to 100 parts by mass with respect to 100 parts by mass of the component (A). The heat conductive silicone grease composition according to claim 1, comprising 30 parts by mass.
R 4 b R 5 c Si (OR 6 ) 4-bc (4)
Wherein R 4 is an alkyl group having 6 to 15 carbon atoms, R 5 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, R 6 is an alkyl group having 1 to 6 carbon atoms, and b is 1 to 3 C is an integer of 0 to 2, and b + c is an integer of 1 to 3.)
Figure 2010150399

Wherein R 7 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 8 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, q is an integer of 5 to 100, d is an integer of 1 to 3)
沸点80〜360℃の揮発性有機溶剤を成分(A)100質量部に対し0.1〜40質量部含有することを特徴とする請求項1又は2記載の熱伝導性シリコーングリース組成物。   The thermally conductive silicone grease composition according to claim 1 or 2, which contains 0.1 to 40 parts by mass of a volatile organic solvent having a boiling point of 80 to 360 ° C with respect to 100 parts by mass of the component (A).
JP2008330273A 2008-12-25 2008-12-25 Thermally conductive silicone grease composition Active JP5182515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330273A JP5182515B2 (en) 2008-12-25 2008-12-25 Thermally conductive silicone grease composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330273A JP5182515B2 (en) 2008-12-25 2008-12-25 Thermally conductive silicone grease composition

Publications (2)

Publication Number Publication Date
JP2010150399A true JP2010150399A (en) 2010-07-08
JP5182515B2 JP5182515B2 (en) 2013-04-17

Family

ID=42569834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330273A Active JP5182515B2 (en) 2008-12-25 2008-12-25 Thermally conductive silicone grease composition

Country Status (1)

Country Link
JP (1) JP5182515B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084621A (en) * 2009-10-14 2011-04-28 Denki Kagaku Kogyo Kk Heat conductive material
JP2012102283A (en) * 2010-11-12 2012-05-31 Shin-Etsu Chemical Co Ltd Thermally conductive silicone grease composition
JP2013091683A (en) * 2011-10-24 2013-05-16 Shin-Etsu Chemical Co Ltd Room temperature and humidity thickening thermo-conductive silicone grease composition
JP2013091726A (en) * 2011-10-26 2013-05-16 Shin-Etsu Chemical Co Ltd Heat-conductive silicone composition
JP2013147633A (en) * 2011-12-20 2013-08-01 Jsr Corp Curable composition, cured product, and optical semiconductor device
WO2013161436A1 (en) * 2012-04-24 2013-10-31 信越化学工業株式会社 Thermally-curable heat-conductive silicone grease composition
JP2014079997A (en) * 2012-10-18 2014-05-08 Asahi Glass Co Ltd Method of manufacturing glass laminate and method of manufacturing electronic device
JP2014201627A (en) * 2013-04-02 2014-10-27 三菱化学株式会社 Thermosetting silicone resin composition, production method of silicone resin molded article, and silicone resin molded article
WO2014181657A1 (en) * 2013-05-07 2014-11-13 信越化学工業株式会社 Thermally conductive silicone composition and cured product of same
JP2015212318A (en) * 2014-05-01 2015-11-26 信越化学工業株式会社 Thermal conductive silicone composition
US9321950B2 (en) 2012-05-11 2016-04-26 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone grease composition
WO2017064976A1 (en) * 2015-10-16 2017-04-20 信越化学工業株式会社 Thermally conductive silicone grease composition
JP2018050011A (en) * 2016-09-14 2018-03-29 株式会社ジェイテクト Electronic control device
KR20190032518A (en) * 2016-08-03 2019-03-27 신에쓰 가가꾸 고교 가부시끼가이샤 Thermoconductive silicone composition
WO2019181713A1 (en) * 2018-03-23 2019-09-26 信越化学工業株式会社 Silicone composition
WO2020080256A1 (en) 2018-10-15 2020-04-23 デンカ株式会社 Two-pack curable composition set, thermally conductive cured product, and electronic device
WO2020179325A1 (en) * 2019-03-04 2020-09-10 信越化学工業株式会社 Non-curable thermally conductive silicone composition
WO2021053979A1 (en) * 2019-09-17 2021-03-25 信越化学工業株式会社 Silicone composition and cured product thereof
WO2021065243A1 (en) * 2019-10-04 2021-04-08 株式会社スリーボンド Electroconductive resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327116A (en) * 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd Thermoconductive silicone composition and semiconductor device
JP2006169343A (en) * 2004-12-15 2006-06-29 Shin Etsu Chem Co Ltd Method for producing heat-releasing silicone grease composition
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327116A (en) * 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd Thermoconductive silicone composition and semiconductor device
JP2006169343A (en) * 2004-12-15 2006-06-29 Shin Etsu Chem Co Ltd Method for producing heat-releasing silicone grease composition
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084621A (en) * 2009-10-14 2011-04-28 Denki Kagaku Kogyo Kk Heat conductive material
JP2012102283A (en) * 2010-11-12 2012-05-31 Shin-Etsu Chemical Co Ltd Thermally conductive silicone grease composition
JP2013091683A (en) * 2011-10-24 2013-05-16 Shin-Etsu Chemical Co Ltd Room temperature and humidity thickening thermo-conductive silicone grease composition
JP2013091726A (en) * 2011-10-26 2013-05-16 Shin-Etsu Chemical Co Ltd Heat-conductive silicone composition
JP2013147633A (en) * 2011-12-20 2013-08-01 Jsr Corp Curable composition, cured product, and optical semiconductor device
CN104245848A (en) * 2012-04-24 2014-12-24 信越化学工业株式会社 Thermally-curable heat-conductive silicone grease composition
WO2013161436A1 (en) * 2012-04-24 2013-10-31 信越化学工業株式会社 Thermally-curable heat-conductive silicone grease composition
JP2013227374A (en) * 2012-04-24 2013-11-07 Shin-Etsu Chemical Co Ltd Thermally-curable heat-conductive silicone grease composition
US9321950B2 (en) 2012-05-11 2016-04-26 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone grease composition
JP2014079997A (en) * 2012-10-18 2014-05-08 Asahi Glass Co Ltd Method of manufacturing glass laminate and method of manufacturing electronic device
JP2014201627A (en) * 2013-04-02 2014-10-27 三菱化学株式会社 Thermosetting silicone resin composition, production method of silicone resin molded article, and silicone resin molded article
JP2014218564A (en) * 2013-05-07 2014-11-20 信越化学工業株式会社 Heat conductive silicone composition and cured product of the same
CN105164208A (en) * 2013-05-07 2015-12-16 信越化学工业株式会社 Thermally conductive silicone composition and cured product of same
WO2014181657A1 (en) * 2013-05-07 2014-11-13 信越化学工業株式会社 Thermally conductive silicone composition and cured product of same
EP2995651A4 (en) * 2013-05-07 2016-12-21 Shinetsu Chemical Co Thermally conductive silicone composition and cured product of same
CN105164208B (en) * 2013-05-07 2017-09-19 信越化学工业株式会社 Heat conductive siloxanes composition and its solidfied material
JP2015212318A (en) * 2014-05-01 2015-11-26 信越化学工業株式会社 Thermal conductive silicone composition
WO2017064976A1 (en) * 2015-10-16 2017-04-20 信越化学工業株式会社 Thermally conductive silicone grease composition
JP2017075282A (en) * 2015-10-16 2017-04-20 信越化学工業株式会社 Thermally conductive silicone grease composition
KR20190032518A (en) * 2016-08-03 2019-03-27 신에쓰 가가꾸 고교 가부시끼가이샤 Thermoconductive silicone composition
KR102268543B1 (en) 2016-08-03 2021-06-23 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally Conductive Silicone Composition
JP2018050011A (en) * 2016-09-14 2018-03-29 株式会社ジェイテクト Electronic control device
WO2019181713A1 (en) * 2018-03-23 2019-09-26 信越化学工業株式会社 Silicone composition
US11773264B2 (en) 2018-03-23 2023-10-03 Shin-Etsu Chemical Co., Ltd. Silicone composition
JPWO2019181713A1 (en) * 2018-03-23 2021-02-25 信越化学工業株式会社 Silicone composition
WO2020080256A1 (en) 2018-10-15 2020-04-23 デンカ株式会社 Two-pack curable composition set, thermally conductive cured product, and electronic device
US11915993B2 (en) 2018-10-15 2024-02-27 Denka Company Limited Two-pack curable composition set, thermally conductive cured product, and electronic device
CN113597452A (en) * 2019-03-04 2021-11-02 信越化学工业株式会社 Non-curable heat-conductive silicone composition
CN113597452B (en) * 2019-03-04 2023-03-31 信越化学工业株式会社 Non-curable heat-conductive silicone composition
JP2020143178A (en) * 2019-03-04 2020-09-10 信越化学工業株式会社 Non-curable thermally conductive silicone composition
TWI818154B (en) * 2019-03-04 2023-10-11 日商信越化學工業股份有限公司 Non-hardening thermally conductive silicone composition
US11912869B2 (en) 2019-03-04 2024-02-27 Shin-Etsu Chemical Co., Ltd. Non-curable thermal-conductive silicone composition
WO2020179325A1 (en) * 2019-03-04 2020-09-10 信越化学工業株式会社 Non-curable thermally conductive silicone composition
JP2021046464A (en) * 2019-09-17 2021-03-25 信越化学工業株式会社 Silicone composition, and cured product of the same
WO2021053979A1 (en) * 2019-09-17 2021-03-25 信越化学工業株式会社 Silicone composition and cured product thereof
JP7196802B2 (en) 2019-09-17 2022-12-27 信越化学工業株式会社 Silicone composition and cured product thereof
WO2021065243A1 (en) * 2019-10-04 2021-04-08 株式会社スリーボンド Electroconductive resin composition
CN114450352A (en) * 2019-10-04 2022-05-06 三键有限公司 Conductive resin composition
CN114450352B (en) * 2019-10-04 2023-12-26 三键有限公司 Conductive resin composition
JP7541247B2 (en) 2019-10-04 2024-08-28 株式会社スリーボンド Conductive resin composition

Also Published As

Publication number Publication date
JP5182515B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5182515B2 (en) Thermally conductive silicone grease composition
JP4656340B2 (en) Thermally conductive silicone grease composition
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
JP5843368B2 (en) Thermally conductive silicone composition and cured product thereof
TWI755437B (en) One-liquid curable thermal conductive silicone grease composition and electric/electronic article
JP5640945B2 (en) Curable organopolysiloxane composition and semiconductor device
JP3580366B2 (en) Thermal conductive silicone composition and semiconductor device
JP3580358B2 (en) Thermal conductive silicone composition and semiconductor device
JP4551074B2 (en) Curable organopolysiloxane composition and semiconductor device
JP5565758B2 (en) Curable, grease-like thermally conductive silicone composition and semiconductor device
US20080213578A1 (en) Heat conductive silicone grease composition and cured product thereof
JP4913874B2 (en) Curable organopolysiloxane composition and semiconductor device
JP5434795B2 (en) Thermally conductive silicone grease composition
JP2008038137A (en) Heat conductive silicone grease composition and cured product thereof
JP5472055B2 (en) Thermally conductive silicone grease composition
JP2010013521A (en) Heat conductive silicone composition
JP2009292928A (en) Heat-conductive silicone composition having accelerated curing speed in low-temperature heating
JP2010006923A (en) Thermoconductive silicone composition
JP2015212318A (en) Thermal conductive silicone composition
JP6981914B2 (en) Thermally conductive silicone composition and its cured product
JP2009235279A (en) Heat-conductive molding and manufacturing method therefor
WO2022230600A1 (en) Curable organopolysiloxane composition and semiconductor device
JP5047505B2 (en) Electronic device excellent in heat dissipation and manufacturing method thereof
WO2018025502A1 (en) Thermally conductive silicone composition
JP4162955B2 (en) Adhesive silicone composition for heat dissipation member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130101

R150 Certificate of patent or registration of utility model

Ref document number: 5182515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3