JP5047505B2 - Electronic device excellent in heat dissipation and manufacturing method thereof - Google Patents

Electronic device excellent in heat dissipation and manufacturing method thereof Download PDF

Info

Publication number
JP5047505B2
JP5047505B2 JP2006030471A JP2006030471A JP5047505B2 JP 5047505 B2 JP5047505 B2 JP 5047505B2 JP 2006030471 A JP2006030471 A JP 2006030471A JP 2006030471 A JP2006030471 A JP 2006030471A JP 5047505 B2 JP5047505 B2 JP 5047505B2
Authority
JP
Japan
Prior art keywords
thermally conductive
heat
group
electronic device
conductive silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006030471A
Other languages
Japanese (ja)
Other versions
JP2007214224A (en
Inventor
邦弘 山田
晃洋 遠藤
弘明 木崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006030471A priority Critical patent/JP5047505B2/en
Publication of JP2007214224A publication Critical patent/JP2007214224A/en
Application granted granted Critical
Publication of JP5047505B2 publication Critical patent/JP5047505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、熱伝導性に優れた熱伝導性シリコーン組成物を利用する放熱性に優れる電子装置およびその製造方法に関する。   The present invention relates to an electronic device excellent in heat dissipation utilizing a thermally conductive silicone composition excellent in thermal conductivity and a method for manufacturing the same.

プリント基板上に実装されるCPU等の電子部品は使用時の発熱による温度上昇によって性能が低下したり破損したりすることがあるため、従来、電子部品と放熱フィン等の間に熱伝導性の良い放熱シートや放熱グリースが用いられている。放熱シートは手軽に取り付けることができる利点があるが、CPU、放熱フィン等の表面は一見平滑に見えてもミクロ的に観れば凸凹があるので、実際はそれらの被着面に放熱シートを確実に密着させることはできず、空気層が残存する結果放熱効果が期待通りに発揮されない不都合がある。それを解決するために放熱シートの表面に粘着層等を設けて密着性を向上させたものも提案されているが十分な結果が得られていない。放熱グリースはCPUや放熱フィン等の表面の凹凸に影響されることなくそれら被着面に良好に追随し密着性をもたらすが、他の部品を汚したり長時間使用するとオイルの流出等の問題が起こりがちである。そのため、液状シリコーンゴム組成物をポッティング剤や接着剤として用いる方法が提案されている(特許文献1、特許文献2)。   Since electronic components such as CPUs mounted on a printed circuit board may deteriorate or be damaged due to temperature rise due to heat generation during use, there is a conventional thermal conductivity between the electronic component and the heat radiation fin. Good heat dissipation sheet and heat dissipation grease are used. The heat-dissipating sheet has the advantage that it can be attached easily, but the surface of the CPU, heat-dissipating fins, etc. may appear smooth, but there are irregularities when viewed microscopically. There is an inconvenience that the heat radiation effect cannot be exhibited as expected as a result of the air layer remaining. In order to solve the problem, an adhesive layer or the like provided on the surface of the heat radiation sheet to improve the adhesion has been proposed, but sufficient results have not been obtained. Thermal grease follows the adherend surface well without being affected by unevenness on the surface of the CPU, radiating fins, etc., and brings about adhesion, but if other parts are soiled or used for a long time, problems such as oil spillage will occur. It tends to happen. Therefore, a method of using a liquid silicone rubber composition as a potting agent or an adhesive has been proposed (Patent Document 1, Patent Document 2).

ところで、一般的に、CPUなどの電子部品は、シリコンチップとオルガニック基板の間をエポキシ樹脂系のアンダーフィル剤等で封止するが、シリコンチップ及びオルガニック基板、アンダーフィル剤はそれぞれ熱膨張率が異なる。そのため、温度変化により各部品、部材の熱膨張率の違いからシリコンチップ及び基板が反ってしまう。シリコンチップの中央部に対して周辺部では数十ミクロン程度も反ってしまうこともある。しかし、シリコンチップ上に配置されるヒートスプレッダーあるいはヒートシンクは、構造体が大きく高強度であるため反ることはない。したがって、シリコンチップとヒートスプレッダーあるいはヒートシンクとの間に挟まれる放熱材料はシリコンチップの反りに追随できないと、剥離してしまう結果熱抵抗が上昇し所望する放熱性能が得られなくなる。そのため、使用される放熱材料にはシリコンチップの反りに追随できる柔軟性が必要となる。しかし、上記特許文献1、2に記載の組成物は、硬化後の硬化物が非常に硬いことからCPU動作時に起こるシリコンチップの反りに追随出来ずに基材等から剥がれてしまことがある。すると、所望する放熱性能が得られないため、経時で熱抵抗が上昇するなどの問題点があった。   By the way, in general, electronic parts such as CPU are sealed between the silicon chip and the organic substrate with an epoxy resin-based underfill agent, etc., but the silicon chip, the organic substrate, and the underfill agent are each thermally expanded. The rate is different. For this reason, the silicon chip and the substrate warp due to the difference in thermal expansion coefficient of each component and member due to temperature change. The center part of the silicon chip may be warped by several tens of microns in the peripheral part. However, the heat spreader or heat sink arranged on the silicon chip does not warp because the structure is large and has high strength. Therefore, if the heat dissipating material sandwiched between the silicon chip and the heat spreader or the heat sink cannot follow the warp of the silicon chip, it will peel off, resulting in an increase in thermal resistance and the desired heat dissipating performance cannot be obtained. Therefore, the heat dissipation material used needs to be flexible enough to follow the warp of the silicon chip. However, the compositions described in Patent Documents 1 and 2 may be peeled off from a substrate or the like without being able to follow the warpage of the silicon chip that occurs during CPU operation because the cured product after curing is very hard. Then, since the desired heat dissipation performance cannot be obtained, there is a problem that the thermal resistance increases with time.

特開昭61-157569号公報Japanese Unexamined Patent Publication No. 61-157569 特開平8-208993号公報JP-A-8-208993

そこで、本発明は上記欠点を克服し放熱性に優れ高信頼性の電子装置およびその製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a highly reliable electronic device having excellent heat dissipation and overcoming the above drawbacks and a method for manufacturing the same.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、ヒートスプレッダーあるいはヒートシンクと発熱性電子部品との間に介在させる熱伝導性シリコーン硬化物のずり弾性率を特定の範囲に抑えることにより本発明を完成に至った。   As a result of intensive studies to achieve the above object, the present inventors have determined that the shear modulus of the thermally conductive silicone cured product interposed between the heat spreader or the heat sink and the heat generating electronic component is within a specific range. The present invention has been completed by the suppression.

即ち、本発明は、
発熱性電子部品、
ヒートスプレッダーまたはヒートシンク、および、
前記ヒートスプレッダーまたはヒートシンクと前記発熱性電子部品との間に配置され、25℃におけるずり弾性率が200,000Pa以下で、少なくとも2W/mKの熱伝導率を有する熱伝導性シリコーン硬化物
を有してなる電子装置を提供する。
That is, the present invention
Exothermic electronic components,
Heat spreader or heat sink, and
A thermally conductive silicone cured material disposed between the heat spreader or heat sink and the heat-generating electronic component, having a shear modulus at 25 ° C. of 200,000 Pa or less and a thermal conductivity of at least 2 W / mK; An electronic device is provided.

また、本発明は上記の電子装置の製造方法として、
発熱性電子部品と、ヒートスプレッダーまたはヒートシンクとの間に、少なくとも2W/mKの熱伝導率を有する熱伝導性シリコーン組成物層を介在させ、
該シリコーン組成物層を加熱して、25℃におけるずり弾性率が200,000Pa以下で、少なくとも2W/mKの熱伝導率を有する熱伝導性シリコーン硬化物に転換させることを特徴とする電子装置の製造方法を提供するものである。
Further, the present invention provides a method for manufacturing the electronic device as described above.
A thermally conductive silicone composition layer having a thermal conductivity of at least 2 W / mK is interposed between the exothermic electronic component and the heat spreader or heat sink;
Manufacturing of an electronic device characterized in that the silicone composition layer is heated and converted into a thermally conductive silicone cured product having a shear elastic modulus at 25 ° C. of 200,000 Pa or less and a thermal conductivity of at least 2 W / mK. A method is provided.

本発明の電子装置によれば、発熱性電子部品とヒートシンクまたはヒートスプレッダーに介されるシリコーン硬化物は良好な熱伝導性を有するばかりでなく、柔軟性を有しずり弾性率が小さいためシリコンチップの反りに対する追随性が良好で、密着性が維持されるので放熱性能が維持される。この柔軟性、追随性は経時的にも安定で失われることがないので硬化シリコーン層は電子部品から剥がれたりせず、放熱効果の耐久性も高い。   According to the electronic device of the present invention, the silicon cured product interposed between the heat-generating electronic component and the heat sink or heat spreader not only has good thermal conductivity, but also has flexibility and low elastic modulus, so that the warpage of the silicon chip is reduced. Therefore, the heat dissipation performance is maintained. Since this flexibility and followability are stable and not lost over time, the cured silicone layer does not peel from the electronic component, and the durability of the heat dissipation effect is high.

また、本発明の上記電子装置の製造方法によれば、CPUなどの電子部品とヒートスプレッダーやヒートシンクなどの放熱体との間に介在させる熱伝導性シリコーン組成物がペースト状で伸展性があるためにその上から放熱体を圧接固定すると、電子部品及び放熱体の表面に凹凸が存在する場合でもその隙間を押圧により熱伝導性シリコーン組成物で隙間なく埋めることができる。さらに、アッセンブリー時の加熱工程またはCPUなどの電子部品による発熱等により硬化該組成物を硬化させると、上述の優れた放熱特性の電子装置が得られる。   In addition, according to the method for manufacturing an electronic device of the present invention, the thermally conductive silicone composition interposed between an electronic component such as a CPU and a heat radiator such as a heat spreader or a heat sink is pasty and extensible. When the heat radiator is pressed and fixed from above, even if there are irregularities on the surface of the electronic component and the heat radiator, the gap can be filled with the heat conductive silicone composition without any gap by pressing. Furthermore, when the composition is cured by a heating process at the time of assembly or heat generation by an electronic component such as a CPU, the above-described electronic device having excellent heat dissipation characteristics can be obtained.

以下にこれを詳述する。なお、本明細書において、ずり弾性率及び熱伝導率は25℃における測定値である。   This will be described in detail below. In this specification, the shear modulus and thermal conductivity are measured values at 25 ° C.

本発明に使用される熱伝導性シリコーン硬化物は25℃におけるずり弾性率が200,000Pa以下であり、好ましくは100,000Pa以下Paであり、より好ましくは10,000〜50,000Paの範囲である。このずり弾性率が200,000Paより大きいとCPUなどの発熱部品の動作時に発生する反りに追随できず所望の放熱特性が得られなくなる。一般的にシリコーンゴムのずり弾性率変化は、温度依存性が低いが、当然ながら温度が高くなるほどずり弾性率は低くなる傾向にある。したがって、25℃でのずり弾性率を200,000Paに抑えられれば電子部品が実働する25℃以上の温度範囲では当然200,000Pa以下となる。本発明は、便宜上、25℃のずり弾性のみを規定するが、電子部品が実働する温度範囲において200,000Pa以下であることが必要となる。   The thermally conductive silicone cured product used in the present invention has a shear modulus at 25 ° C. of 200,000 Pa or less, preferably 100,000 Pa or less Pa, more preferably in the range of 10,000 to 50,000 Pa. If this shear modulus is larger than 200,000 Pa, it is impossible to follow the warp generated during the operation of a heat-generating component such as a CPU, and desired heat dissipation characteristics cannot be obtained. Generally, the change in shear modulus of silicone rubber is low in temperature dependence, but naturally the shear modulus tends to decrease as the temperature increases. Accordingly, if the shear modulus at 25 ° C. can be suppressed to 200,000 Pa, the temperature will naturally be 200,000 Pa or lower in the temperature range of 25 ° C. or higher at which the electronic component actually operates. For the sake of convenience, the present invention defines only a shear elasticity of 25 ° C., but it is necessary to be 200,000 Pa or less in the temperature range in which the electronic component actually operates.

また、この熱伝導性シリコーン硬化物の熱伝導率が2W/mK以上であり、好ましくは2.5W/mK以上であり、通常2.5〜6W/mKの範囲である。小さすぎると所望する放熱特性が得られない。   Moreover, the heat conductivity of this heat conductive silicone hardened | cured material is 2 W / mK or more, Preferably it is 2.5 W / mK or more, Usually, it is the range of 2.5-6 W / mK. If it is too small, the desired heat dissipation characteristics cannot be obtained.

上記の熱伝導性シリコーン硬化物は、例えば、
(A)アルケニル基含有オルガノポリシロキサンと、
(B)オルガノハイドロジェンポリシロキサンと、
(C)熱伝導性フィラーと、
(D)白金系触媒と、
(E)反応制御剤
を含有する熱伝導性シリコーン組成物を硬化させることにより得られる。該組成物の熱伝導率は得られる硬化物の熱伝導率と実質的に同じである。以下、この組成物について説明する。
The thermally conductive silicone cured product is, for example,
(A) an alkenyl group-containing organopolysiloxane;
(B) an organohydrogenpolysiloxane;
(C) a thermally conductive filler;
(D) a platinum-based catalyst;
(E) It is obtained by curing a thermally conductive silicone composition containing a reaction control agent. The thermal conductivity of the composition is substantially the same as the thermal conductivity of the resulting cured product. Hereinafter, this composition will be described.

(A)アルケニル基含有オルガノポリシロキサン:
該オルガノポリシロキサンはケイ素原子に直結したアルケニル基を1分子中に少なくとも1個、好ましくは1〜5有するもので、分子構造は限定されず例えば直鎖状でも分岐していてもよい。また、これら構造の異なる2種以上の混合物でもよいし、粘度の異なる2種以上の混合物でもよいアルケニル基としては、ビニル基、アリル基、1−ブテニル基、1−ヘキセニル基などが例示されるが、合成のし易さ、コストの面からビニル基が好ましい。ケイ素原子に結合せる残余の有機基としては、メチル基、エチル基、プルピル基、ブチル基、ヘキシル基、ドデシル基などのアルキル基、フェニル基などのアリール基、2−フェニルエチル基、2-フェニルプロピル基などのアラルキル基が例示され、さらにクロロメチル基、3,3,3,−トリフルオロプロピル基などの置換炭化水素基も例として挙げられる。これらのうち、合成のし易さ、コストの面から90%以上メチル基が好ましい。ケイ素原子に結合せるアルケニル基は、オルガノポリシロキサンの分子鎖の末端、途中の何れにも存在してもよいが、柔軟性の面では両末端にのみ存在することが好ましい。25℃における粘度は、得られる組成物の保存安定性および組成物の進展性がともに望ましくなる点で、通常、10〜100,000 mm2/sの範囲が好ましく、このましくは100〜50,000 mm2/sである。
(A) Alkenyl group-containing organopolysiloxane:
The organopolysiloxane has at least one, preferably 1 to 5, alkenyl group directly bonded to a silicon atom, and the molecular structure is not limited. For example, the organopolysiloxane may be linear or branched. Further, the alkenyl group which may be a mixture of two or more different structures or may be a mixture of two or more different viscosities is exemplified by vinyl group, allyl group, 1-butenyl group, 1-hexenyl group and the like. However, a vinyl group is preferable from the viewpoint of ease of synthesis and cost. Examples of the remaining organic group bonded to the silicon atom include methyl groups, ethyl groups, propyl groups, butyl groups, hexyl groups, alkyl groups such as dodecyl groups, aryl groups such as phenyl groups, 2-phenylethyl groups, 2-phenylpropoxy groups. An aralkyl group such as a sulfur group is exemplified, and a substituted hydrocarbon group such as a chloromethyl group and a 3,3,3, -trifluoropropyl group is also exemplified. Of these, a methyl group of 90% or more is preferable from the viewpoint of ease of synthesis and cost. The alkenyl group bonded to the silicon atom may be present at either the terminal or the middle of the molecular chain of the organopolysiloxane, but in terms of flexibility, it is preferably present only at both terminals. The viscosity at 25 ° C. is usually preferably in the range of 10 to 100,000 mm 2 / s, preferably 100 to 50, in view of both the storage stability of the resulting composition and the progress of the composition becoming desirable. , 000 mm 2 / s.

(B)オルガノハイドロジェンポリシロキサン:
オルガノハイドロジェンポリシロキサンは、Si原子に水素原子が直結したSi-H基を1分子中少なくとも1個、好ましくは1〜10有するもので、直鎖状でも分岐状でもよく、またこれら構造の異なる2種以上の混合物でもよいし、粘度の異なる2種以上の混合物でもよい。Si-H基以外の基は、メチル基、エチル基、プルピル基、ブチル基、ヘキシル基、ドデシル基などのアルキル基、フェニル基などのアリール基、2−フェニルエチル基、2-フェニルプロピル基などのアラルキル基が例示され、さらにクロロメチル基、3,3,3−トリフルオロプロピル基などの置換炭化水素基も例として挙げられる。これらのうち、合成のし易さ、コストの面から90%以上メチル基が好ましい。ケイ素原子に結合したSi-H基は、オルガノポリシロキサンの分子鎖の末端、途中の何れにも存在してもよい。
(B) Organohydrogenpolysiloxane:
Organohydrogenpolysiloxane has at least one Si-H group in which one hydrogen atom is directly bonded to a Si atom, preferably 1 to 10, and may be linear or branched, and have different structures. Two or more kinds of mixtures may be used, or two or more kinds of mixtures having different viscosities may be used. Groups other than Si-H groups include methyl groups, ethyl groups, purpyl groups, butyl groups, hexyl groups, alkyl groups such as dodecyl groups, aryl groups such as phenyl groups, 2-phenylethyl groups, 2-phenylpropyl groups, etc. And substituted hydrocarbon groups such as chloromethyl group and 3,3,3-trifluoropropyl group. Of these, a methyl group of 90% or more is preferable from the viewpoint of ease of synthesis and cost. The Si—H group bonded to the silicon atom may be present at either the terminal or the middle of the molecular chain of the organopolysiloxane.

(C)熱伝導性フィラー:
熱伝導性フィラーは前記シリコーン硬化物に熱伝導性を付与するためのものである。例えば、アルミニウム、銀、銅、ニッケル、酸化亜鉛、アルミナ、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化珪素、ダイヤモンド、グラファイトまたはその組み合わせより選択される。これら熱伝導性フィラーの平均粒径は、通常、0.1〜50μm、好ましくは1〜20μmの範囲である。小さすぎると組成物の粘度が高くなりすぎて進展性の乏しいものとなるし、大きすぎるT得られる組成物が不均一となる易い。また、これら熱伝導性フィラーの形状は球状、不定形状どちらでもよい。
(C) Thermally conductive filler:
The thermally conductive filler is for imparting thermal conductivity to the silicone cured product. For example, it is selected from aluminum, silver, copper, nickel, zinc oxide, alumina, magnesium oxide, aluminum nitride, boron nitride, silicon nitride, diamond, graphite or combinations thereof. These heat conductive fillers usually have an average particle size in the range of 0.1 to 50 μm, preferably 1 to 20 μm. If it is too small, the viscosity of the composition will be too high and the progress will be poor, and the resulting composition will be non-uniform. Moreover, the shape of these heat conductive fillers may be either spherical or indefinite.

(D)白金系触媒:
白金系触媒は、白金および白金化合物から選ばれる。この触媒はSi原子に直結するアルケニル基と、同じくSi原子に直結するSi-H基との間の付加反応(ヒドロシリル化反応)を促進する。この成分は、従来公知のものを使用することができるが、例えば白金の単体、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金配位化合物などが挙げられる。
(D) Platinum-based catalyst:
The platinum-based catalyst is selected from platinum and a platinum compound. This catalyst promotes an addition reaction (hydrosilylation reaction) between an alkenyl group directly bonded to a Si atom and a Si—H group directly bonded to a Si atom. As this component, conventionally known components can be used, and examples thereof include platinum alone, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, and platinum coordination compounds.

(E)反応制御剤:
反応制御剤は、室温でのヒドロシリル化反応の進行を抑え、シェルフライフ、ポットライフを延長させるものである。反応制御剤としては公知のものを使用することができ、アセチレン化合物、各種窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物等が利用できる。これらはシリコーン樹脂への分散性を良くするためにトルエン、キシレン、イソプロピルアルコール等の有機溶剤で希釈して使用することもできる。
(E) Reaction control agent:
The reaction control agent suppresses the progress of the hydrosilylation reaction at room temperature and extends shelf life and pot life. Known reaction control agents can be used, and acetylene compounds, various nitrogen compounds, organic phosphorus compounds, oxime compounds, organic chloro compounds, and the like can be used. These can be used after being diluted with an organic solvent such as toluene, xylene or isopropyl alcohol in order to improve dispersibility in the silicone resin.

その他の成分:
上記組成物には必要に応じて上記の必須成分以外にもその他の成分を添加することができる。
Other ingredients:
In addition to the above essential components, other components can be added to the composition as necessary.

例えば、熱伝導性フィラーとシリコーン成分の濡れ性を向上させるために、一般式(1):
R1 a2 Si(OR34-a-b (1)
〔式中、Rは炭素原子数6-15のアルキル基であり、Rは炭素原子数1〜8の飽和または不飽和の1価の炭化水素基であり、Rは炭素原子数1〜6のアルキル基であり、aは1、2あるいは3の整数、bは0〜2の整数で、a+b=1〜3の整数である。〕
で表されるオルガノシランを必要に応じて用いても良い。一般式(1)中のR1で表される炭素原子数6-15のアルキル基の具体例としては、例えばヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。炭素原子数が小さすぎると充填剤との濡れ性が充分でなく、大きすぎると該オルガノシランが常温で固化するので取り扱いが不便な上、得られた組成物の低温特性が低下する。またaは1、2あるいは3であるが特に1であることが好ましい。また、上記式中のR2は炭素原子数1〜8の飽和または不飽和の1価の炭化水素基であり、例えばアルキル基、シクロアルキル基、アルケニル基等を挙げることができ、さらに具体的にはメチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基、3,3,3,-トリフロロプロピル基、2-(ナノフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基が挙げられるが、特にメチル基、エチル基が好ましい。 R3はメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などの炭素原子数1〜6の1種もしくは2種以上のアルキル基であり、特にメチル基、エチル基が好ましい。
For example, in order to improve the wettability of the thermally conductive filler and the silicone component, the general formula (1):
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
Wherein R 1 is an alkyl group having 6 to 15 carbon atoms, R 2 is a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 3 is 1 carbon atom. Is an alkyl group of -6, a is an integer of 1, 2 or 3, b is an integer of 0-2, and a + b = 1-3. ]
May be used as needed. Specific examples of the alkyl group having 6 to 15 carbon atoms represented by R 1 in the general formula (1) include hexyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group and the like. . If the number of carbon atoms is too small, the wettability with the filler is not sufficient, and if it is too large, the organosilane is solidified at room temperature, which is inconvenient to handle and the low temperature characteristics of the resulting composition deteriorate. Further, a is 1, 2 or 3, but is particularly preferably 1. R 2 in the above formula is a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms, and examples thereof include an alkyl group, a cycloalkyl group, and an alkenyl group. Are alkyl groups such as methyl, ethyl, propyl, hexyl and octyl, cycloalkyl such as cyclopentyl and cyclohexyl, alkenyl such as vinyl and allyl, aryl such as phenyl and tolyl Groups, aralkyl groups such as 2-phenylethyl group, 2-methyl-2-phenylethyl group, 3,3,3, -trifluoropropyl group, 2- (nanofluorobutyl) ethyl group, 2- (heptadecafluoro Examples thereof include halogenated hydrocarbon groups such as octyl) ethyl group and p-chlorophenyl group, and methyl group and ethyl group are particularly preferable. R 3 is one or more alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group and an ethyl group are particularly preferable.

前記一般式(1)で表されるオルガノシランの具体例としては、下記のものを挙げることができる。
C6H13 Si(OCH33、C10H21Si(OCH33、C12H25Si(OCH33、C12H25Si(OC2H53
C10H21Si(CH3)(OCH32、C10H21Si(C6H5)(OCH32、C10H21Si(CH3)(OC2H52
C10H21Si(CH=CH2)(OCH32、C10H21Si(CH2CH2CF3)(OCH32
その他の任意的に配合することができる成分としては、例えば、

Figure 0005047505
[式中、RはRと同じ意味を有し、Rは炭素原子数1〜4のアルコキシ基、cは5〜100の整数である。]
等が挙げられる。 Specific examples of the organosilane represented by the general formula (1) include the following.
C 6 H 13 Si (OCH 3 ) 3, C 10 H 21 Si (OCH 3 ) 3 , C 12 H 25 Si (OCH 3 ) 3 , C 12 H 25 Si (OC 2 H 5 ) 3 ,
C 10 H 21 Si (CH 3 ) (OCH 3 ) 2 , C 10 H 21 Si (C 6 H 5 ) (OCH 3 ) 2 , C 10 H 21 Si (CH 3 ) (OC 2 H 5 ) 2 ,
C 10 H 21 Si (CH = CH 2 ) (OCH 3 ) 2 , C 10 H 21 Si (CH 2 CH 2 CF 3 ) (OCH 3 ) 2
Other components that can be optionally blended include, for example,
Figure 0005047505
[Wherein, R 4 has the same meaning as R 3 , R 5 is an alkoxy group having 1 to 4 carbon atoms, and c is an integer of 5 to 100. ]
Etc.

上記の熱伝導性シリコーン組成物は、所要の成分を混合し1液型付加硬化型として低温にて長期にわたり保存できる。   The above heat conductive silicone composition can be stored for a long time at a low temperature as a one-component addition-curing type by mixing required components.

本発明の放熱方法の実施または電子装置の製造においては、上記組成物を例えば市販されているシリンジに詰めてCPU等の発熱性電子部品上に塗布し、得られた塗布層をヒートスプレッダーあるいはヒートシンクと貼り合わせる。このため、組成物の粘度は低すぎると塗布時に液垂れを起こしてしまうし、高すぎると塗布効率が悪くなるため、通常10〜1000 Pa・sの範囲が好ましく、より好ましくは50〜400 Pa・sである。   In the implementation of the heat dissipation method of the present invention or the manufacture of an electronic device, the composition is packed in, for example, a commercially available syringe and applied onto a heat-generating electronic component such as a CPU, and the obtained coating layer is applied to a heat spreader or heat sink. And paste together. For this reason, if the viscosity of the composition is too low, dripping occurs at the time of coating, and if it is too high, the coating efficiency is deteriorated. Therefore, the range of 10 to 1000 Pa · s is usually preferable, and more preferably 50 to 400 Pa. -S.

発熱性電子部品を組成物層を介してヒートスプレッダーまたはヒートシンクの被着面に貼りあわせた後、接着させるかあるいはクランプ等を用いで締め付けることにより、該電子部品とヒートスプレッダーあるいはヒートシンクとを固定し押圧する。その時に挟み込まれる熱伝導性シリコーン組成物層の厚さは、5μmより小さいとその押圧の僅かなズレにより電子部品と放熱体との間に隙間が生じてしまう恐れがあり、100μmより大きいとその厚みのため熱抵抗が大きくなり放熱効果が悪くなることから5〜100μmの範囲、好ましくは10〜50μmである。   After the exothermic electronic component is bonded to the surface of the heat spreader or heat sink through the composition layer, the electronic component and the heat spreader or heat sink are fixed by bonding or fastening with a clamp or the like. Press. If the thickness of the thermally conductive silicone composition layer sandwiched at that time is less than 5 μm, there is a risk that a gap will be generated between the electronic component and the heat sink due to slight displacement of the pressure, and if the thickness is greater than 100 μm, The thickness is in the range of 5 to 100 μm, preferably 10 to 50 μm, because the thermal resistance increases due to the thickness and the heat dissipation effect deteriorates.

組成物を電子部品上に塗布した後、積極的に加熱して硬化させてもよいし、電子部品の稼動の際の発熱により硬化させてもよい。硬化により生成する硬化物はずり弾性率が低いので電子部品の反りが起ってもそれに追随できるため電子部品からの剥離等は起こらず、経時的にも安定して優れた放熱特性を持続する。   After the composition is applied on the electronic component, it may be positively heated and cured, or may be cured by heat generation during operation of the electronic component. Cured product generated by curing has a low elastic modulus, so even if the electronic component warps, it can follow it, so it will not peel off from the electronic component and will continue to maintain excellent heat dissipation characteristics over time. .

以下、実施例により本発明をさらに詳述する。   Hereinafter, the present invention will be described in more detail by examples.

実施例、比較例で示す各測定は以下のようにして行った。
−粘度:スパイラル回転粘度計(株式会社マルコム社製、タイプPC-1TL使用)にて測定(25℃、10rpm)
−熱伝導率:JIS R2616の規定に準拠して加熱硬化させる前の熱伝導性シリコーン組成物を深さ3cmの型に流し込み、キッチン用ポリエチレンラップを被せて京都電子工業(株)社製のModel QTM-500で測定した。
Each measurement shown by an Example and a comparative example was performed as follows.
-Viscosity: Measured with a spiral rotational viscometer (Malcom Co., Ltd., type PC-1TL used) (25 ° C, 10 rpm)
-Thermal conductivity: A model made by Kyoto Electronics Industry Co., Ltd., poured into a 3 cm deep mold of a thermally conductive silicone composition before being heated and cured in accordance with the provisions of JIS R2616, and covered with a polyethylene wrap for kitchen. Measured with QTM-500.

−ずり弾性率:ISO6721-10の規定に準拠して、粘弾性測定装置(レオメトリック・サイエンティフィック社製、タイプRDAIII使用)を使用し、直径2.5cmの2枚のパラレルプレートを用いた(熱伝導性シリコーン組成物の厚みは2mmに設定)。測定は、まず室温から5℃/分で125℃まで昇温し、125℃になってから2時間その温度を保持し熱伝導性シリコーン組成物を完全に硬化させた。その後、25℃まで冷却し、硬化後の熱伝導性シリコーン組成物のずり弾性率を測定した(周波数:1.0Rad/sec、ストレイン(変位):10%に設定)。   -Shear elastic modulus: In accordance with the provisions of ISO6721-10, a viscoelasticity measuring device (Rheometric Scientific, using type RDAIII) was used, and two parallel plates with a diameter of 2.5 cm were used ( The thickness of the thermally conductive silicone composition is set to 2 mm). In the measurement, first, the temperature was raised from room temperature to 125 ° C. at 5 ° C./min, and after reaching 125 ° C., the temperature was maintained for 2 hours to completely cure the thermally conductive silicone composition. Then, it cooled to 25 degreeC and measured the shear elastic modulus of the heat conductive silicone composition after hardening (frequency: set to 1.0 Rad / sec, strain (displacement): 10%).

−熱抵抗測定:
<試験片の作成>
10mm角のシリコンプレート及びニッケルプレートに熱伝導性シリコーン組成物を挟み込み、140kPaの圧力を掛けながら125℃のオーブンにて90分間加熱硬化させた。
-Thermal resistance measurement:
<Creation of specimen>
The thermally conductive silicone composition was sandwiched between a 10 mm square silicon plate and a nickel plate, and was cured by heating in an oven at 125 ° C. for 90 minutes while applying a pressure of 140 kPa.

<熱抵抗測定方法>
上記のように作製した試験片の熱抵抗値をレーザーフラッシュ法にて測定し、その測定値を初期値とした。その後、その試験片を-40℃で30分間と+125℃で30分間の温度サイクルを繰り返す熱衝撃試験機内に入れ、500サイクル後、および1000サイクル後の試験片の熱抵抗を初期値と同様にして測定した。
<Thermal resistance measurement method>
The thermal resistance value of the test piece produced as described above was measured by a laser flash method, and the measured value was used as an initial value. After that, place the test piece in a thermal shock tester that repeats the temperature cycle of -40 ° C for 30 minutes and + 125 ° C for 30 minutes, and the thermal resistance of the test piece after 500 cycles and 1000 cycles is the same as the initial value And measured.

実施例1−4
下記に示す成分(A)〜(E)および濡れ性向上剤であるオルガノシランを以下のように混合して実施例1〜4および比較例1〜3に使用するシリコーン組成物を得た。
Example 1-4
Components (A) to (E) shown below and organosilane which is a wettability improver were mixed as follows to obtain silicone compositions used in Examples 1 to 4 and Comparative Examples 1 to 3.

即ち、5リットルゲートーミキサー(井上製作所(株)製、商品名:5リットルプラネタリミキサー)に成分(A)及び(C)を仕込み、必要に応じてオルガノシランを加え、70℃で1時間混合した。得られた混合物を常温になるまで冷却し、次に該混合物に成分(B)、(D)、(E)を表1(実施例)または表2(比較例)に示す配合量で加えて均一になるように混合した。   That is, components (A) and (C) are charged into a 5 liter gate mixer (trade name: 5 liter planetary mixer, manufactured by Inoue Seisakusho Co., Ltd.), organosilane is added as necessary, and mixed at 70 ° C. for 1 hour. did. The resulting mixture is cooled to room temperature, and then components (B), (D), and (E) are added to the mixture in the amounts shown in Table 1 (Example) or Table 2 (Comparative Example). Mixed to be uniform.

・成分(A):
A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における粘度が600mm/sのジメチルポリシロキサン
Ingredient (A):
A-1: Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a viscosity at 25 ° C. of 600 mm 2 / s

・成分(B)下記式で表されるオルガノハイドロジェンポリシロキサン
B-1
-Component (B) Organohydrogenpolysiloxane represented by the following formula
B-1

Figure 0005047505
B-2
Figure 0005047505
B-2

Figure 0005047505
B-3
Figure 0005047505
B-3

Figure 0005047505
B-4
Figure 0005047505
B-4

Figure 0005047505
Figure 0005047505

・成分(C):
C-1:平均粒径4.9μmのアルミニウム粉末
C-2:平均粒径15.0μmのアルミニウム粉末
C-3:平均粒径1.0μmの酸化亜鉛粉末
C-4:平均粒径70μmのアルミニウム粉末
C-5:平均粒径1.2μmのアルミニウム粉末
Ingredient (C):
C-1: Aluminum powder with an average particle size of 4.9μm
C-2: Aluminum powder with an average particle size of 15.0μm
C-3: Zinc oxide powder with an average particle size of 1.0μm
C-4: Aluminum powder with an average particle size of 70μm
C-5: Aluminum powder with an average particle size of 1.2μm

・成分(D):
D-1:白金-ジビニルテトラメチルジシロキサン錯体のA-1溶液、白金原子として1%含有
-Component (D):
D-1: A-1 solution of platinum-divinyltetramethyldisiloxane complex, containing 1% as platinum atoms

・成分(E):
E-1:1-エチニル-1-シクロヘキサノールの50%トルエン溶液
Ingredient (E):
E-1: 50% toluene solution of 1-ethynyl-1-cyclohexanol

・オルガノシラン:
オルガノシラン1:C6H13 Si(OCH33
オルガノシラン2:C10H21Si(OCH33
・ Organosilane:
Organosilane 1: C 6 H 13 Si (OCH 3 ) 3
Organosilane 2: C 10 H 21 Si (OCH 3 ) 3

Figure 0005047505
Figure 0005047505

Figure 0005047505
Figure 0005047505

実施例5
図1は本発明の電子装置の一例を示す半導体装置の縦断面図である。図1に示す様にこの半導体装置は基板1の上に実装されたCPU2と、CPU2の上に設けられた放熱体3と、これらのCPU2と放熱体3との間に設けられた熱伝導性シリコーン組成物の層4とから構成されている。放熱体3はアルミニウム製で、表面積を広くとって放熱作用を向上させるためにフィン付き構造となっている。また、放熱体3と基板1とはクランプ5で締め付けられ、固定されており、シリコーン組成物層4はCPU2と放熱体3との間で押圧されている。
Example 5
FIG. 1 is a longitudinal sectional view of a semiconductor device showing an example of an electronic device of the present invention. As shown in FIG. 1, this semiconductor device includes a CPU 2 mounted on a substrate 1, a radiator 3 provided on the CPU 2, and thermal conductivity provided between the CPU 2 and the radiator 3. And a layer 4 of the silicone composition. The radiator 3 is made of aluminum, and has a finned structure in order to increase the surface area and improve the heat radiation action. Further, the radiator 3 and the substrate 1 are clamped and fixed by a clamp 5, and the silicone composition layer 4 is pressed between the CPU 2 and the radiator 3.

CPU2の上面は2cm×2cmの平面であり、この上に実施例1の熱伝導性シリコーン組成物0.2gを塗布し、上記のようにして放熱体3で押圧した。このようにしてCPU2と放熱体3との間に挟み込まれた組成物層の厚みは30μmであった。   The upper surface of the CPU 2 is a 2 cm × 2 cm flat surface, on which 0.2 g of the heat conductive silicone composition of Example 1 was applied and pressed with the radiator 3 as described above. The thickness of the composition layer thus sandwiched between the CPU 2 and the radiator 3 was 30 μm.

このような構成を有する半導体装置を、ホストコンピュータ、パーソナルコンピュータ、ワードプロセッサ等使用したときの発熱温度である約100℃に置いたところ、前記組成物は使用環境下で硬化したが、安定した放熱と熱拡散を持続し、熱蓄積によるCPUの性能低下や破損を防止することができた。   When the semiconductor device having such a configuration was placed at about 100 ° C., which is a heat generation temperature when a host computer, a personal computer, a word processor, or the like was used, the composition was cured in the usage environment, but stable heat dissipation was achieved. Sustained heat diffusion and prevented CPU performance degradation and damage due to heat accumulation.

実施例6
図2は本発明の電子装置の別の例を示す半導体装置の縦断面図である。基板6の上に実装されたCPU7と、CPU7の上に熱伝導性シリコーン組成物層8を介して設けられた放熱体9とから構成されている。ここで放熱体9は銅製で表面にニッケルコーティングしたものである。
Example 6
FIG. 2 is a longitudinal sectional view of a semiconductor device showing another example of the electronic device of the present invention. The CPU 7 is mounted on the substrate 6, and the heat dissipating body 9 is provided on the CPU 7 via the heat conductive silicone composition layer 8. Here, the radiator 9 is made of copper and has a nickel coating on the surface.

CPU7の上面は1cm×1cmの平面であり、この上に実施例2の熱伝導性シリコーン組成物0.1gを塗布し、その上から放熱体9を被せて押圧した。このようにしてCPU7と放熱体9との間に挟み込まれた組成物層の厚みは25μmであった。   The upper surface of the CPU 7 is a 1 cm × 1 cm flat surface, on which 0.1 g of the heat conductive silicone composition of Example 2 was applied, and the heat radiating body 9 was placed thereon and pressed. Thus, the thickness of the composition layer sandwiched between the CPU 7 and the radiator 9 was 25 μm.

以上な構成を有する半導体装置を、ホストコンピュータ、パーソナルコンピュータ、ワードプロセッサ等に使用したときの発熱温度である約100℃に置いたところ、前記組成物は使用環境下で硬化したが、安定した放熱と熱拡散を持続し、熱蓄積によるCPUの性能低下や破損を防止することができた。   When the semiconductor device having the above configuration was placed at about 100 ° C., which is an exothermic temperature when used in a host computer, personal computer, word processor, etc., the composition cured in the environment of use, but stable heat dissipation. Sustained heat diffusion and prevented CPU performance degradation and damage due to heat accumulation.

半導体装置の縦断面図Longitudinal section of semiconductor device 別の半導体装置の縦断面図Vertical section of another semiconductor device

符号の説明Explanation of symbols

1.基板
2.CPU
3.放熱体(ヒートシンク)
4.熱伝導性シリコーン組成物層
5.クランプ
6.基板
7.CPU
8.熱伝導性シリコーン組成物層
9.放熱体
1. Substrate 2. CPU
3. Radiator (heat sink)
4). 4. Thermally conductive silicone composition layer Clamp 6. Substrate 7. CPU
8). 8. Thermally conductive silicone composition layer Radiator

Claims (2)

発熱性電子部品、
ヒートスプレッダーまたはヒートシンク、および、
前記ヒートスプレッダーまたはヒートシンクと前記発熱性電子部品との間に配置され、25℃における硬化後のずり弾性率が200,000Pa以下で、硬化前の下記組成物の状態で少なくとも2W/mKの熱伝導率を有する熱伝導性シリコーン硬化物
を有してなる電子装置であって、
前記の熱伝導性シリコーン硬化物が、
(A)アルケニル基含有オルガノポリシロキサンと、
(B)オルガノハイドロジェンポリシロキサンと、
(C)熱伝導性フィラーと、
(D)白金系触媒と、
(E)反応制御剤
を含有してなり、但し前記(C)成分の熱伝導性フィラーがアルミニウム、酸化亜鉛またはその組み合わせのみからなるフィラーである熱伝導性シリコーン組成物の硬化物である電子装置。
Exothermic electronic components,
Heat spreader or heat sink, and
Located between the heat spreader or heat sink and the heat-generating electronic component, the shear modulus after curing at 25 ° C. is 200,000 Pa or less, and the thermal conductivity is at least 2 W / mK in the following composition before curing. An electronic device comprising a thermally conductive silicone cured product having:
The thermally conductive silicone cured product is
(A) an alkenyl group-containing organopolysiloxane;
(B) an organohydrogenpolysiloxane;
(C) a thermally conductive filler;
(D) a platinum-based catalyst;
(E) An electronic device comprising a reaction control agent, wherein the thermally conductive filler of component (C) is a cured product of a thermally conductive silicone composition that is a filler made of only aluminum, zinc oxide, or a combination thereof. .
発熱性電子部品と、ヒートスプレッダーまたはヒートシンクとの間に、少なくとも2W/mKの熱伝導率を有する熱伝導性シリコーン組成物層を介在させ、
該シリコーン組成物層を加熱して、25℃におけるずり弾性率が200,000Pa以下である熱伝導性シリコーン硬化物に転換させる電子装置の製造方法であって、
前記の熱伝導性シリコーン組成物が、
(A)アルケニル基含有オルガノポリシロキサンと、
(B)オルガノハイドロジェンポリシロキサンと、
(C)熱伝導性フィラーと、
(D)白金系触媒と、
(E)反応制御剤
を含有し、少なくとも2W/mKの熱伝導率を有し、但し前記(C)成分の熱伝導性フィラーがアルミニウム、酸化亜鉛またはその組み合わせのみからなるフィラーである熱伝導性シリコーン組成物である請求項1に記載の電子装置の製造方法。
A thermally conductive silicone composition layer having a thermal conductivity of at least 2 W / mK is interposed between the exothermic electronic component and the heat spreader or heat sink;
A method for producing an electronic device, wherein the silicone composition layer is heated and converted to a thermally conductive silicone cured product having a shear modulus at 25 ° C. of 200,000 Pa or less,
The thermally conductive silicone composition is
(A) an alkenyl group-containing organopolysiloxane;
(B) an organohydrogenpolysiloxane;
(C) a thermally conductive filler;
(D) a platinum-based catalyst;
(E) Thermal conductivity containing a reaction control agent and having a thermal conductivity of at least 2 W / mK, provided that the thermal conductive filler of component (C) is a filler consisting of aluminum, zinc oxide or a combination thereof only . The method for manufacturing an electronic device according to claim 1, wherein the method is a silicone composition.
JP2006030471A 2006-02-08 2006-02-08 Electronic device excellent in heat dissipation and manufacturing method thereof Active JP5047505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030471A JP5047505B2 (en) 2006-02-08 2006-02-08 Electronic device excellent in heat dissipation and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030471A JP5047505B2 (en) 2006-02-08 2006-02-08 Electronic device excellent in heat dissipation and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007214224A JP2007214224A (en) 2007-08-23
JP5047505B2 true JP5047505B2 (en) 2012-10-10

Family

ID=38492411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030471A Active JP5047505B2 (en) 2006-02-08 2006-02-08 Electronic device excellent in heat dissipation and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5047505B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150110580A (en) 2013-01-22 2015-10-02 신에쓰 가가꾸 고교 가부시끼가이샤 Heat conductive silicone composition, heat conductive layer, and semiconductor device
US9481851B2 (en) 2012-04-24 2016-11-01 Shin-Etsu Chemical Co., Ltd. Thermally-curable heat-conductive silicone grease composition
US10023741B2 (en) 2013-05-24 2018-07-17 Shin-Etsu Chemical Co., Ltd. Heat-conductive silicone composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2543750B1 (en) 2010-02-04 2019-06-05 Nippon Precision Jewel Industry Co., Ltd Heat sink material
JP6957864B2 (en) * 2016-11-09 2021-11-02 信越化学工業株式会社 Thermally conductive silicone composition and its cured product, electronic device and its manufacturing method
KR102044188B1 (en) * 2019-03-15 2019-11-15 여학규 The manufacturing method of thermally conductive sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299534A (en) * 2001-04-02 2002-10-11 Denso Corp Heat radiation material and manufacturing method therefor
JP3803058B2 (en) * 2001-12-11 2006-08-02 信越化学工業株式会社 Thermally conductive silicone composition, cured product thereof, laying method, and heat dissipation structure of semiconductor device using the same
JP4551074B2 (en) * 2003-10-07 2010-09-22 信越化学工業株式会社 Curable organopolysiloxane composition and semiconductor device
JP4225945B2 (en) * 2004-05-17 2009-02-18 富士高分子工業株式会社 Thermally conductive sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9481851B2 (en) 2012-04-24 2016-11-01 Shin-Etsu Chemical Co., Ltd. Thermally-curable heat-conductive silicone grease composition
KR20150110580A (en) 2013-01-22 2015-10-02 신에쓰 가가꾸 고교 가부시끼가이샤 Heat conductive silicone composition, heat conductive layer, and semiconductor device
US9698077B2 (en) 2013-01-22 2017-07-04 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition based on combination of components, heat conductive layer, and semiconductor device
US10023741B2 (en) 2013-05-24 2018-07-17 Shin-Etsu Chemical Co., Ltd. Heat-conductive silicone composition

Also Published As

Publication number Publication date
JP2007214224A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP5182515B2 (en) Thermally conductive silicone grease composition
JP4656340B2 (en) Thermally conductive silicone grease composition
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
JP6079792B2 (en) Thermally conductive silicone composition, thermally conductive layer and semiconductor device
JP4993611B2 (en) Heat dissipation material and semiconductor device using the same
JP3580366B2 (en) Thermal conductive silicone composition and semiconductor device
JP5664563B2 (en) Thermally conductive silicone composition and cured product thereof
JP3803058B2 (en) Thermally conductive silicone composition, cured product thereof, laying method, and heat dissipation structure of semiconductor device using the same
JP3580358B2 (en) Thermal conductive silicone composition and semiconductor device
TWI822954B (en) Thermal conductive silicone composition and manufacturing method thereof, and thermally conductive silicone hardened material
JP5472055B2 (en) Thermally conductive silicone grease composition
JP7033047B2 (en) Thermally conductive silicone composition and its cured product
JP6981914B2 (en) Thermally conductive silicone composition and its cured product
JP2015212318A (en) Thermal conductive silicone composition
JP5047505B2 (en) Electronic device excellent in heat dissipation and manufacturing method thereof
JP2009292928A (en) Heat-conductive silicone composition having accelerated curing speed in low-temperature heating
JP7070320B2 (en) Thermally conductive silicone composition
JP2021176945A (en) Thermally conductive silicone composition and cured product thereof
JP4162955B2 (en) Adhesive silicone composition for heat dissipation member
JP2011138857A (en) Method of manufacturing electronic device with excellent heat dissipation and rework properties, and electronic device
JP7467017B2 (en) Thermally conductive silicone composition and cured product thereof
JP6957435B2 (en) Thermally conductive silicone composition and its cured product
JP7485634B2 (en) Thermally conductive silicone composition and cured product thereof
JP7496800B2 (en) Thermally conductive silicone composition and cured product thereof
WO2024048335A1 (en) Thermally conductive silicone composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110624

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110930

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5047505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150