JP4656340B2 - Thermally conductive silicone grease composition - Google Patents

Thermally conductive silicone grease composition Download PDF

Info

Publication number
JP4656340B2
JP4656340B2 JP2008051926A JP2008051926A JP4656340B2 JP 4656340 B2 JP4656340 B2 JP 4656340B2 JP 2008051926 A JP2008051926 A JP 2008051926A JP 2008051926 A JP2008051926 A JP 2008051926A JP 4656340 B2 JP4656340 B2 JP 4656340B2
Authority
JP
Japan
Prior art keywords
group
component
mass
carbon atoms
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008051926A
Other languages
Japanese (ja)
Other versions
JP2009209230A (en
Inventor
展明 松本
憲一 磯部
敬 三好
郁男 櫻井
邦弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008051926A priority Critical patent/JP4656340B2/en
Priority to KR1020090017475A priority patent/KR20090094761A/en
Priority to TW098106693A priority patent/TWI437049B/en
Priority to CN200910118234A priority patent/CN101525489A/en
Publication of JP2009209230A publication Critical patent/JP2009209230A/en
Application granted granted Critical
Publication of JP4656340B2 publication Critical patent/JP4656340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/50Lubricating compositions characterised by the base-material being a macromolecular compound containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、揮発性溶剤を含有した熱伝導性シリコーングリース組成物に関する。   The present invention relates to a thermally conductive silicone grease composition containing a volatile solvent.

現在、半導体業界のみならず自動車業界や家電メーカーなどの様々な分野で電装化が進んでおり、半導体装置が分野に拘わらず導入され始めている。現在主流となっている半導体装置の構造は、ICパッケージとICパッケージの表面の熱を逃がすための放熱体とで構成されている。そして、その間に、熱伝導性シリコーン組成物を流し込み、圧力をかけた状態で熱硬化させて、ミクロ的に存在するICパッケージ表面や放熱体の表面にある凹凸を埋めながら発熱体と放熱体を接続している(特開2002−327116号公報:特許文献1)。この際、放熱シートや放熱グリースを用いることも可能である。しかしながら、放熱シートを用いた場合には、このミクロ的に存在する凹凸を完全には埋めることができないので、結果として断熱効果の大きい空気を一緒に挟み込んでしまうことになり、発熱量の大きいICパッケージでは十分な放熱効果は得られない。また放熱シートの表面に粘着層を設けて、空気が入り込まないように工夫したものがあるが、これもまた発熱量の大きいICパッケージで使用される場合には同様な理由で不十分であると言える。   Currently, not only in the semiconductor industry, but also in various fields such as the automobile industry and home appliance manufacturers, the introduction of semiconductor devices has begun regardless of the field. The structure of a semiconductor device which is currently mainstream is composed of an IC package and a heat radiating body for releasing heat from the surface of the IC package. And in the meantime, the heat conductive silicone composition is poured and thermoset in a state where pressure is applied, and the heating element and the heat radiating body are buried while filling the unevenness on the surface of the IC package and the heat radiating body that exist microscopically. They are connected (Japanese Patent Laid-Open No. 2002-327116: Patent Document 1). At this time, it is also possible to use a heat radiating sheet or heat radiating grease. However, when a heat dissipation sheet is used, the microscopic unevenness cannot be completely filled, and as a result, air having a large heat insulating effect is sandwiched together, resulting in an IC that generates a large amount of heat. The package cannot provide a sufficient heat dissipation effect. In addition, there is an adhesive layer on the surface of the heat-dissipating sheet that has been devised to prevent air from entering, but this is also insufficient for the same reason when used in an IC package with a large amount of heat generation. I can say that.

このような空気を完全に排除するためには、液状である放熱グリースが向いているのであるが、この放熱グリースは上述した熱伝導性シリコーン組成物と異なり、装着後に硬化することはできないので、長時間使用すると成分であるシリコーンオイルが染み出てしまったり、最悪な場合には放熱グリース自体がICパッケージと放熱体の間から逃げ出してしまったりするという欠点がある。なお、このような問題を回避するために液状シリコーン組成物をポッティング剤や接着剤を用いて、発熱体と放熱体を接続する手法もあるが(特開昭61−157569号公報、特開平8−208993号公報:特許文献2,3)、この手法にも幾つか問題点がある。それは、熱伝導性を付与する充填剤含有量を上げることができないために組成物として熱伝導性が不足してしまうということや、硬化後に発熱体から受ける熱や外からの水分によって柔軟性を失い、経時で剥離を起こしてしまうことなどである。   In order to completely eliminate such air, liquid heat dissipation grease is suitable, but unlike the above heat conductive silicone composition, this heat dissipation grease cannot be cured after mounting. When used for a long time, there is a disadvantage that silicone oil as a component oozes out, or in the worst case, the heat radiating grease itself escapes from between the IC package and the heat radiating body. In order to avoid such a problem, there is a method in which a liquid silicone composition is connected to a heat generator and a heat radiator using a potting agent or an adhesive (JP-A-61-157569, JP-A-8). -208993 gazette: Patent Documents 2 and 3), this method also has some problems. It is difficult to increase the filler content for imparting thermal conductivity, resulting in insufficient thermal conductivity as a composition, and flexibility due to heat received from the heating element after curing and moisture from the outside. Loss and peeling off over time.

このような上述した問題点を全て解決できる手法として現在主流となっているのが、液状の熱伝導性シリコーン組成物を発熱体と放熱体の間に流し込んだ後に硬化させるというものである。しかしながら、この熱伝導性シリコーン組成物の高熱伝導性をもってしてもなお不足するという状況になってきている。これは時代の要求に応えるために、半導体装置中のICチップの性能を更に進化させなくてはならないという背景に拠る。つまり、これが意味することはICチップの性能が向上するのに伴い、その発熱量も非常に大きなものとなってくるということである。そこで、当然のことであるがそのICパッケージから生じた熱を以前にも増して更に効率よく逃がさなければICパッケージの性能の低下や破壊を引き起こしてしまうことになる。このような状況を防ぐためにも、発熱体と放熱体とを接続する材料の熱伝導性を更に高めることが益々肝要になってきた訳である。   Currently, the mainstream method for solving all of the above-mentioned problems is to cure the liquid heat conductive silicone composition after pouring between the heat generator and the heat radiator. However, even with the high thermal conductivity of this thermally conductive silicone composition, the situation is still insufficient. This is based on the background that the performance of IC chips in semiconductor devices must be further evolved to meet the demands of the times. In other words, this means that as the performance of an IC chip improves, the amount of heat generation becomes very large. Therefore, as a matter of course, if the heat generated from the IC package is increased more than before and is not released more efficiently, the performance and destruction of the IC package will be caused. In order to prevent such a situation, it has become increasingly important to further increase the thermal conductivity of the material connecting the heating element and the radiator.

熱伝導率を高める手法の中の一つに、熱伝導性フィラーの充填率を上げるという手法があるが、この手法を単純に適用しても、シリコーン組成物の粘度が急激に上昇してしまい、ディスペンス性を急激に悪化させてしまうという問題が生じてしまう。そこで、熱伝導性を向上させつつも、ディスペンス性も良好なままに保った熱硬化性熱伝導性シリコーングリース組成物の開発が切に望まれていた。   One of the methods to increase the thermal conductivity is to increase the filling rate of the thermal conductive filler, but even if this method is simply applied, the viscosity of the silicone composition will increase rapidly. As a result, there arises a problem that the dispensing property is rapidly deteriorated. Accordingly, there has been a strong demand for the development of a thermosetting thermally conductive silicone grease composition that improves the thermal conductivity while maintaining good dispensing properties.

特開2002−327116号公報JP 2002-327116 A 特開昭61−157569号公報JP-A 61-157469 特開平8−208993号公報Japanese Patent Application Laid-Open No. 8-208993

本発明は、上記事情に鑑みなされたもので、液状の熱伝導性シリコーングリース組成物を発熱体と放熱体の間に流し込んだ後に硬化させるという手法を更に発展させ、熱伝導率を向上させつつも、ディスペンス性能を維持した熱伝導性シリコーングリース組成物を提供することを目的とする。   The present invention has been made in view of the above circumstances, and further develops a method of curing a liquid heat conductive silicone grease composition after pouring between a heat generating body and a heat radiating body, while improving the heat conductivity. Another object of the present invention is to provide a thermally conductive silicone grease composition that maintains dispensing performance.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、揮発性溶剤を少量併用することで、充填剤の充填量を今まで以上に増量させ、その組成物の熱伝導率も向上させることができ、なお且つ熱伝導性シリコーングリース組成物の粘度を低いままに維持することができることを見出し、本発明をなすに至った。
本発明の熱伝導性シリコーングリース組成物は、高熱伝導率を有しながらも吐出性能も高く、更には硬化後も柔らかく、長時間の環境試験後もそのままその柔らかさを維持できる特徴を有する。
As a result of intensive studies to achieve the above object, the present inventors have increased the filling amount of the filler more than ever by using a small amount of a volatile solvent, and the thermal conductivity of the composition. It was also found that the viscosity of the thermally conductive silicone grease composition can be kept low, and the present invention has been made.
The thermally conductive silicone grease composition of the present invention has the characteristics that it has high thermal conductivity and high discharge performance, is soft after curing, and can maintain its softness even after a long-term environmental test.

従って、本発明は、下記に示す熱伝導性シリコーングリース組成物を提供する。
〔1〕 (A)1分子中に少なくとも2個のアルケニル基を有する、25℃の動粘度が10〜100,000mm2/sのオルガノポリシロキサン: 100質量部、
(B)下記一般式(1)

Figure 0004656340
(式中、R1は独立に炭素数1〜6のアルキル基である。n,mは0.01≦n/(n+m)≦0.3を満足する正数である。)
で示されるオルガノハイドロジェンポリシロキサン、
(C)下記一般式(2)
Figure 0004656340
(式中、R2は独立に炭素数1〜6のアルキル基である。pは5〜1,000の範囲の正数である。)
で示されるオルガノハイドロジェンポリシロキサン:
{成分(B)と成分(C)の合わせたSi−H基の個数}/{成分(A)のアルケニ
ル基の個数}が0.6〜1.5の範囲であり、かつ{成分(C)由来のSi−Hの個
数}/{成分(B)由来のSi−Hの個数}が1.0〜10.0の範囲となる量、
(D)10W/m℃以上の熱伝導率を有する熱伝導性充填剤:
800〜2,000質量部、
(E)白金及び白金化合物からなる群より選択される触媒:
白金原子として成分(A)の0.1〜500ppmとなる配合量、
(F)アセチレン化合物、窒素化合物、有機りん化合物、オキシム化合物及び有機クロロ化合物より選択される制御剤: 0.01〜1質量部、
(G)前記成分(A)〜(F)を分散又は溶解できる沸点が270〜350℃のイソパラフィン系溶剤: 0.1〜40.0質量部
を含有してなり、25℃の粘度が50〜1,000Pa・sである熱伝導性シリコーングリース組成物。
〔2〕 更に、下記一般式(3)
3 a4 bSi(OR54-a-b (3)
(式中、R3は炭素数6〜15のアルキル基、R4は炭素数1〜8の1価炭化水素基、R5は独立に炭素数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数、かつa+bは1〜3の整数である。)
で示されるオルガノシランを(A)成分100質量部に対して0.01〜30.0質量部含む〔1〕記載の熱伝導性シリコーングリース組成物。
〔3〕 更に、下記一般式(4)
Figure 0004656340
(式中、R6は独立に非置換又は置換の1価炭化水素基であり、R7は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、qは5〜100の整数であり、cは1〜3の整数である。)
で示されるオルガノポリシロキサンを(A)成分100質量部に対して0.01〜30.0質量部含む〔1〕又は〔2〕記載の熱伝導性シリコーングリース組成物。 Accordingly, the present invention provides the following thermally conductive silicone grease composition.
[1] (A) Organopolysiloxane having at least two alkenyl groups in one molecule and a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s: 100 parts by mass
(B) The following general formula (1)
Figure 0004656340
(In the formula, R 1 is independently an alkyl group having 1 to 6 carbon atoms. N and m are positive numbers satisfying 0.01 ≦ n / (n + m) ≦ 0.3.)
An organohydrogenpolysiloxane represented by
(C) The following general formula (2)
Figure 0004656340
(In the formula, R 2 is independently an alkyl group having 1 to 6 carbon atoms. P is a positive number in the range of 5 to 1,000.)
Organohydrogenpolysiloxane represented by:
{The number of Si-H groups combined of component (B) and component (C)} / {the number of alkenyl groups of component (A)} is in the range of 0.6 to 1.5, and {component ( C) the number of Si—H derived} / {the number of Si—H derived from component (B)} is in the range of 1.0 to 10.0,
(D) Thermally conductive filler having a thermal conductivity of 10 W / m ° C. or higher:
800 to 2,000 parts by mass,
(E) a catalyst selected from the group consisting of platinum and platinum compounds:
Compounding amount of 0.1 to 500 ppm of component (A) as platinum atom,
(F) A control agent selected from an acetylene compound, a nitrogen compound, an organic phosphorus compound, an oxime compound and an organic chloro compound: 0.01 to 1 part by mass,
(G) Isoparaffinic solvent having a boiling point of 270 to 350 ° C. capable of dispersing or dissolving the components (A) to (F): 0.1 to 40.0 parts by mass, and a viscosity at 25 ° C. of 50 to 50 ° C. A thermally conductive silicone grease composition having a viscosity of 1,000 Pa · s.
[2] Furthermore, the following general formula (3)
R 3 a R 4 b Si (OR 5 ) 4-ab (3)
(Wherein R 3 is an alkyl group having 6 to 15 carbon atoms, R 4 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, R 5 is independently an alkyl group having 1 to 6 carbon atoms, and a is 1 An integer of .about.3, b is an integer of 0 to 2, and a + b is an integer of 1 to 3.)
The heat conductive silicone grease composition according to [1], comprising 0.01 to 30.0 parts by mass of the organosilane represented by the formula (A) with respect to 100 parts by mass of the component (A).
[3] Furthermore, the following general formula (4)
Figure 0004656340
Wherein R 6 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 7 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and q is an integer of 5 to 100 And c is an integer of 1 to 3.)
The heat conductive silicone grease composition according to [1] or [2], comprising 0.01 to 30.0 parts by mass of the organopolysiloxane represented by formula (A) with respect to 100 parts by mass of the component (A).

本発明によれば、揮発性溶剤を少量併用することで、組成物の粘度を低いままに維持しつつも、充填剤の充填量を今まで以上に増加させ、その組成物の硬化物の熱伝導率も向上させることができる熱伝導性シリコーングリース組成物が得られる。
本発明の熱伝導性シリコーングリース組成物は、ペースト状で伸展性があるために、ICパッケージと放熱体との間に介在させ、その上から放熱体を圧接固定した際に、ICパッケージ及び放熱体の表面に凹凸が存在する場合でも、その隙間を押圧により該組成物で均一に埋めることができる。更に、ICパッケージによる発熱等により硬化密着し、また経時で柔軟性が失われることがないため、剥がれたりすることなく、放熱効果を確実に発揮することができ、電子部品全体の信頼性を向上させることができる。
According to the present invention, by using a small amount of a volatile solvent, the filling amount of the filler is increased more than ever while maintaining the viscosity of the composition low, and the heat of the cured product of the composition is increased. A thermally conductive silicone grease composition that can also improve conductivity is obtained.
Since the thermally conductive silicone grease composition of the present invention is paste-like and extensible, it is interposed between the IC package and the heat radiating body, and when the heat radiating body is pressed and fixed from above, the IC package and the heat radiating composition are disposed. Even when unevenness exists on the surface of the body, the gap can be uniformly filled with the composition by pressing. In addition, it is hardened and adhered by heat generated by the IC package, and the flexibility is not lost over time, so the heat dissipation effect can be demonstrated reliably without peeling, improving the reliability of the entire electronic component Can be made.

以下にこれを詳述する。
本発明の熱伝導性シリコーングリース組成物は、
(A)1分子中に少なくとも2個のアルケニル基を有する、25℃の動粘度が10〜100,000mm2/sのオルガノポリシロキサン、
(B)下記一般式(1)

Figure 0004656340
(式中、R1は独立に炭素数1〜6のアルキル基である。n,mは0.01≦n/(n+m)≦0.3を満足する正数である。)
で示されるオルガノハイドロジェンポリシロキサン、
(C)下記一般式(2)
Figure 0004656340
(式中、R2は独立に炭素数1〜6のアルキル基である。pは5〜1,000の範囲の正数である。)
で示されるオルガノハイドロジェンポリシロキサン、
(D)10W/m℃以上の熱伝導率を有する熱伝導性充填剤、
(E)白金及び白金化合物からなる群より選択される触媒、
(F)アセチレン化合物、窒素化合物、有機りん化合物、オキシム化合物及び有機クロロ化合物より選択される制御剤、
(G)前記成分(A)〜(F)を分散又は溶解できる沸点が80〜360℃の揮発性溶剤
を含有してなり、25℃の粘度が50〜1,000Pa・sのものである。 This will be described in detail below.
The thermally conductive silicone grease composition of the present invention comprises:
(A) an organopolysiloxane having at least two alkenyl groups in one molecule and having a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s,
(B) The following general formula (1)
Figure 0004656340
(In the formula, R 1 is independently an alkyl group having 1 to 6 carbon atoms. N and m are positive numbers satisfying 0.01 ≦ n / (n + m) ≦ 0.3.)
An organohydrogenpolysiloxane represented by
(C) The following general formula (2)
Figure 0004656340
(In the formula, R 2 is independently an alkyl group having 1 to 6 carbon atoms. P is a positive number in the range of 5 to 1,000.)
An organohydrogenpolysiloxane represented by
(D) a thermally conductive filler having a thermal conductivity of 10 W / m ° C. or higher,
(E) a catalyst selected from the group consisting of platinum and platinum compounds;
(F) a control agent selected from acetylene compounds, nitrogen compounds, organic phosphorus compounds, oxime compounds and organic chloro compounds,
(G) A volatile solvent having a boiling point of 80 to 360 ° C. capable of dispersing or dissolving the components (A) to (F) is contained, and a viscosity at 25 ° C. is 50 to 1,000 Pa · s.

成分(A)のオルガノポリシロキサンは、ケイ素原子に直結したアルケニル基を1分子中に少なくとも2個有するもので、直鎖状でも分岐状でもよく、またこれら2種以上の異なる粘度の混合物でもよい。アルケニル基としては、ビニル基、アリル基、1−ブテニル基、1−ヘキセニル基などが例示されるが、合成のし易さ、コストの面からビニル基が好ましい。ケイ素原子に結合するアルケニル基は、オルガノポリシロキサンの分子鎖の末端、途中のいずれに存在してもよいが、柔軟性の面では両末端にのみ存在することが好ましい。   The organopolysiloxane of component (A) has at least two alkenyl groups directly bonded to silicon atoms in one molecule, and may be linear or branched, or a mixture of two or more different viscosities. . Examples of the alkenyl group include a vinyl group, an allyl group, a 1-butenyl group, and a 1-hexenyl group, but a vinyl group is preferable from the viewpoint of ease of synthesis and cost. The alkenyl group bonded to the silicon atom may be present at either the end or in the middle of the molecular chain of the organopolysiloxane, but in terms of flexibility, it is preferably present only at both ends.

ケイ素原子に結合する残余の有機基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基などのアルキル基、フェニル基などのアリール基、2−フェニルエチル基、2−フェニルプロピル基などのアラルキル基が例示され、更にクロロメチル基、3,3,3−トリフルオロプロピル基などの置換炭化水素基も例として挙げられる。これらのうち、合成のし易さ、コストの面から90モル%以上がメチル基であることが好ましい。   Examples of the remaining organic group bonded to the silicon atom include methyl groups, ethyl groups, propyl groups, butyl groups, hexyl groups, alkyl groups such as dodecyl groups, aryl groups such as phenyl groups, 2-phenylethyl groups, 2-phenylpropoxy groups. An aralkyl group such as a sulfur group is exemplified, and a substituted hydrocarbon group such as a chloromethyl group and a 3,3,3-trifluoropropyl group is also exemplified. Of these, 90 mol% or more is preferably a methyl group from the viewpoint of ease of synthesis and cost.

オルガノポリシロキサンの25℃における動粘度は、10mm2/sより低いと組成物の保存安定性が悪くなるし、100,000mm2/sより大きくなると得られる組成物の伸展性が悪くなるため、10〜100,000mm2/sの範囲であることが好ましく、より好ましくは100〜50,000mm2/sの範囲である。なお、本発明において、動粘度はオストワルド粘度計により測定した25℃における値である。 Since the kinematic viscosity at 25 ° C. of the organopolysiloxane to the storage stability of the lower with the compositions than 10 mm 2 / s is deteriorated, extensibility of the resulting composition is larger than 100,000 mm 2 / s is deteriorated, is preferably in the range of 10~100,000mm 2 / s, more preferably from 100~50,000mm 2 / s. In the present invention, the kinematic viscosity is a value at 25 ° C. measured with an Ostwald viscometer.

成分(B)のオルガノハイドロジェンポリシロキサンは、下記一般式(1)で示されるものである。

Figure 0004656340
(式中、R1は独立に炭素数1〜6のアルキル基である。n,mは0.01≦n/(n+m)≦0.3を満足する正数である。) The organohydrogenpolysiloxane of component (B) is represented by the following general formula (1).
Figure 0004656340
(In the formula, R 1 is independently an alkyl group having 1 to 6 carbon atoms. N and m are positive numbers satisfying 0.01 ≦ n / (n + m) ≦ 0.3.)

上記一般式(1)で示されるオルガノハイドロジェンポリシロキサンのn/(n+m)は0.01より小さいと架橋により組成を網状化できないし、0.3より大きいと初期硬化後の未反応Si−H基残存が多くなり、水分などにより余剰の架橋反応が経時で進んでしまい、組成物の柔軟性が失われるため、0.01〜0.3の範囲、好ましくは0.05〜0.2の範囲がよい。   If n / (n + m) of the organohydrogenpolysiloxane represented by the general formula (1) is smaller than 0.01, the composition cannot be reticulated by crosslinking, and if it is larger than 0.3, unreacted Si- after the initial curing. Since the H group remains and the excess crosslinking reaction proceeds with time due to moisture and the like, and the flexibility of the composition is lost, it is in the range of 0.01 to 0.3, preferably 0.05 to 0.2. The range is good.

1は、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等から選択される炭素数1〜6のアルキル基であり、これらのうち、合成のし易さ、コストの面から90モル%以上がメチル基であることが好ましい。 R 1 is an alkyl group having 1 to 6 carbon atoms selected from a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and the like, and among these, 90 mol in terms of ease of synthesis and cost. % Or more is preferably a methyl group.

成分(C)のオルガノハイドロジェンポリシロキサンは、下記一般式(2)で示されるものである。

Figure 0004656340
(式中、R2は独立に炭素数1〜6のアルキル基である。pは5〜1,000の範囲の正数である。) The organohydrogenpolysiloxane of component (C) is represented by the following general formula (2).
Figure 0004656340
(In the formula, R 2 is independently an alkyl group having 1 to 6 carbon atoms. P is a positive number in the range of 5 to 1,000.)

上記一般式(2)で示されるオルガノハイドロジェンポリシロキサンのpは5より小さいと揮発成分となりやすく、電子部品に用いることは好ましくないし、1,000より大きいと粘度が高くなり、扱いが難しくなるため、5〜1,000の範囲、好ましくは10〜100の範囲がよい。   When the p of the organohydrogenpolysiloxane represented by the general formula (2) is less than 5, it tends to be a volatile component and is not preferred for use in electronic parts. Therefore, the range of 5 to 1,000, preferably the range of 10 to 100 is good.

2は、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等から選択される炭素数1〜6のアルキル基であり、これらのうち、合成のし易さ、コストの面から90モル%以上がメチル基であることが好ましい。 R 2 is an alkyl group having 1 to 6 carbon atoms selected from a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and the like, and among these, 90 mol in terms of ease of synthesis and cost. % Or more is preferably a methyl group.

成分(B)及び成分(C)の配合量は、成分(A)中のアルケニル基の数に対し、成分(B)及び成分(C)中のSi−H基の数、即ち{成分(B)と成分(C)の合わせたSi−H基の個数}/{成分(A)のアルケニル基の個数}が、0.6〜1.5の範囲がよく、好ましくは0.7〜1.4の範囲がよい。0.6より小さいと十分な網状構造をとれず、硬化後に必要な硬さが得られず、1.5より大きいと未反応のSi−H基が水分などにより余剰の架橋反応を起こして硬くなり、組成物の柔軟性が失われる。
また、成分(B)と成分(C)の割合は、{成分(C)由来のSi−Hの個数}/{成分(B)由来のSi−Hの個数}が、1.0〜10.0の範囲がよく、好ましくは1.2〜8.0の範囲がよい。上記割合が10.0より大きいと硬化が不十分となる。
The blending amount of the component (B) and the component (C) is the number of Si—H groups in the component (B) and the component (C) with respect to the number of alkenyl groups in the component (A), that is, {component (B ) And the number of Si-H groups of component (C)} / {number of alkenyl groups of component (A)} is preferably in the range of 0.6 to 1.5, preferably 0.7 to 1. A range of 4 is good. If it is less than 0.6, a sufficient network structure cannot be obtained, and the required hardness cannot be obtained after curing. If it is more than 1.5, unreacted Si-H groups are hardened due to excessive crosslinking reaction due to moisture or the like. The flexibility of the composition is lost.
The ratio of the component (B) and the component (C) is such that {number of Si—H derived from the component (C)} / {number of Si—H derived from the component (B)} is 1.0 to 10. A range of 0 is good, and a range of 1.2 to 8.0 is preferred. If the ratio is greater than 10.0, curing will be insufficient.

成分(D)の熱伝導性充填剤は、本発明に熱伝導性を付与するためのものである。本発明の充填剤は、その充填剤のもつ熱伝導率が10W/m℃より小さいと、熱伝導性シリコーングリース組成物の熱伝導率そのものが小さくなるため、充填剤の熱伝導率は10W/m℃以上、特に15〜10,000W/m℃が好ましい。   The thermally conductive filler of component (D) is for imparting thermal conductivity to the present invention. In the filler of the present invention, when the thermal conductivity of the filler is less than 10 W / m ° C., the thermal conductivity of the thermally conductive silicone grease composition itself becomes small. Therefore, the thermal conductivity of the filler is 10 W / m. m ° C. or higher, particularly 15 to 10,000 W / m ° C. is preferable.

熱伝導性充填剤としては、アルミニウム粉末、銅粉末、銀粉末、ニッケル粉末、金粉末、アルミナ粉末、酸化亜鉛粉末、酸化マグネシム粉末、窒化アルミニウム粉末、窒化ホウ素粉末、窒化珪素粉末、ダイヤモンド粉末、カーボン粉末、インジウム、ガリウムなどが挙げられるが、熱伝導率が10W/m℃以上であれば如何なる充填剤でもよく、1種単独で用いても2種以上を混ぜ合わせてもよい。   Thermal conductive fillers include aluminum powder, copper powder, silver powder, nickel powder, gold powder, alumina powder, zinc oxide powder, magnesium oxide powder, aluminum nitride powder, boron nitride powder, silicon nitride powder, diamond powder, carbon Examples thereof include powder, indium, and gallium, but any filler may be used as long as the thermal conductivity is 10 W / m ° C. or more, and one kind may be used alone, or two or more kinds may be mixed.

熱伝導性充填剤の平均粒径は、0.1μmより小さいとグリース状にならず伸展性に乏しいものとなる場合があるし、100μmより大きいと放熱グリースの均一性が乏しくなる場合があるため、0.1〜100μmの範囲が好ましく、より好ましく1〜80μmの範囲がよい。充填剤の形状は、不定形でも球形でも如何なる形状でも構わない。なお、この平均粒径は、レーザー光回折法による粒度分布測定における体積平均値D50(即ち、累積体積が50%になるときの粒子径又はメジアン径)として測定することができる。 If the average particle size of the thermally conductive filler is less than 0.1 μm, it may not be in the form of grease and may have poor extensibility, and if it is greater than 100 μm, the uniformity of the heat dissipating grease may be poor. The range of 0.1 to 100 μm is preferable, and the range of 1 to 80 μm is more preferable. The shape of the filler may be indefinite, spherical or any shape. The average particle diameter can be measured as a volume average value D 50 (that is, a particle diameter or a median diameter when the cumulative volume is 50%) in particle size distribution measurement by a laser light diffraction method.

熱伝導性充填剤の充填量は、800質量部より少ないと所望する熱伝導率が得られないし、2,000質量部より大きいとグリース状にならず、伸展性の乏しいものとなるため、800〜2,000質量部の範囲であり、好ましくは1,000〜1,900質量部の範囲である。   If the amount of the heat conductive filler is less than 800 parts by mass, the desired thermal conductivity cannot be obtained, and if it is greater than 2,000 parts by mass, it does not become grease and has poor extensibility. It is the range of -2,000 mass parts, Preferably it is the range of 1,000-1,900 mass parts.

成分(E)の白金及び白金化合物から選ばれる触媒は、成分(A)のアルケニル基と成分(B)及び成分(C)のSi−H基との間の付加反応の促進成分である。この成分(E)は、例えば白金の単体、塩化白金酸、白金−オレフィン錯体、白金−アルコール錯体、白金配位化合物などが挙げられる。
成分(E)の配合量は、成分(A)の質量に対し白金原子として0.1ppmより小さくても触媒としての効果がなく、500ppmを超えても特に硬化速度の向上は期待できないため、0.1〜500ppmの範囲であり、特に10〜400ppmの範囲が好ましい。
The catalyst selected from platinum of component (E) and a platinum compound is a component for promoting the addition reaction between the alkenyl group of component (A) and the Si—H group of component (B) and component (C). Examples of this component (E) include platinum alone, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, platinum coordination compounds, and the like.
If the amount of component (E) is less than 0.1 ppm as platinum atoms with respect to the mass of component (A), there is no effect as a catalyst. The range is from 1 to 500 ppm, and the range from 10 to 400 ppm is particularly preferable.

成分(F)の制御剤は、成分(E)の触媒活性を抑制し、室温でのヒドロシリル化反応の進行を抑え、シェルフライフ、ポットライフを延長させるものである。反応制御剤としては公知のものを使用することができ、アセチレン化合物、各種窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物等が利用できる。
成分(F)の配合量は、成分(A)100質量部に対して0.01質量部より小さいと十分なシェルフライフ、ポットライフが得られず、1質量部より大きいと硬化性が低下するため、0.01〜1質量部の範囲であり、特に0.1〜0.8質量部の範囲が好ましい。これらはシリコーン樹脂への分散性をよくするためにトルエン、キシレン、イソプロピルアルコール等の有機溶剤で希釈して使用することもできる。
The control agent of component (F) suppresses the catalytic activity of component (E), suppresses the progress of the hydrosilylation reaction at room temperature, and extends shelf life and pot life. Known reaction control agents can be used, and acetylene compounds, various nitrogen compounds, organic phosphorus compounds, oxime compounds, organic chloro compounds, and the like can be used.
If the blending amount of component (F) is less than 0.01 parts by mass with respect to 100 parts by mass of component (A), sufficient shelf life and pot life cannot be obtained, and if it is greater than 1 part by mass, curability decreases. Therefore, it is in the range of 0.01 to 1 part by mass, and particularly preferably in the range of 0.1 to 0.8 part by mass. These can be used after being diluted with an organic solvent such as toluene, xylene, isopropyl alcohol or the like in order to improve dispersibility in the silicone resin.

成分(G)の揮発性溶剤は、前記成分(A)、(B)、(C)、(D)、(E)及び(F)を分散又は溶解する沸点270〜350℃で、作業性、健康面の観点から、イソパラフィン系の溶剤が好ましい。
なお、揮発性溶剤の沸点は、270〜350℃であるものとする。揮発性溶剤の沸点が80℃未満であると、揮発が速くなりすぎて作業中に組成物の粘度が上昇する不具合が生じる。一方、沸点が360℃を超えるとシリコーングリース組成物中に溶剤が残存しやすくなり、ボイドが発生する等して熱特性が低下する。
The volatile solvent of the component (G) has a boiling point of 270 to 350 ° C. for dispersing or dissolving the components (A), (B), (C), (D), (E) and (F). From the viewpoint of health, an isoparaffin solvent is preferred.
Incidentally, the boiling point of the volatile solvent is Noto also at 270 to 350 ° C.. If the boiling point of the volatile solvent is less than 80 ° C., the volatilization becomes too fast and the viscosity of the composition increases during operation. On the other hand, when the boiling point exceeds 360 ° C., the solvent tends to remain in the silicone grease composition, and voids are generated, and the thermal characteristics are deteriorated.

上記揮発性溶剤の配合量は、成分(A)100質量部に対して0.1〜40質量部であり、好ましくは10〜30質量部である。配合量が0.1質量部未満であると、シリコーングリース組成物の粘度を十分に下げることができず、40質量部を超えると、硬化しにくくなる。   The compounding quantity of the said volatile solvent is 0.1-40 mass parts with respect to 100 mass parts of component (A), Preferably it is 10-30 mass parts. If the blending amount is less than 0.1 parts by mass, the viscosity of the silicone grease composition cannot be lowered sufficiently, and if it exceeds 40 parts by mass, it is difficult to cure.

ところで、熱伝導性シリコーングリース組成物の熱伝導率は、基本的に熱伝導性充填剤の配合量と相関があり、熱伝導性充填剤の配合量を多くするほど熱伝導率が向上する。一方で、熱伝導性充填剤の配合量が多いと熱伝導性シリコーングリース組成物自体の粘度が高くなるため、作業性や取扱い性等を考慮すると、熱伝導性充填剤の配合量には上限がある。そこで、少量の成分(G)を配合することで、熱伝導性シリコーングリース組成物の粘度を急激に下げ、従来の組成物より熱伝導性充填剤の配合量が多くても作業性、取扱い性を確保することができる。   By the way, the thermal conductivity of the thermally conductive silicone grease composition is basically correlated with the blending amount of the thermally conductive filler, and the thermal conductivity is improved as the blending amount of the thermally conductive filler is increased. On the other hand, since the viscosity of the thermally conductive silicone grease composition itself increases when the blending amount of the thermally conductive filler is large, the upper limit is imposed on the blending amount of the thermally conductive filler in consideration of workability and handling properties. There is. Therefore, by blending a small amount of component (G), the viscosity of the thermally conductive silicone grease composition is drastically lowered, and workability and handling are improved even if the blended amount of the thermally conductive filler is larger than that of the conventional composition. Can be secured.

本発明の組成物には、充填剤とシリコーン成分の濡れ性を向上させる下記一般式(3)
3 a4 bSi(OR54-a-b (3)
(式中、R3は炭素数6〜15のアルキル基、R4は炭素数1〜8の1価炭化水素基、R5は独立に炭素数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数、a+bは1〜3の整数である。)
で表されるオルガノシランを付加的に用いることが更に有効である。
The composition of the present invention has the following general formula (3) which improves the wettability of the filler and the silicone component.
R 3 a R 4 b Si (OR 5 ) 4-ab (3)
(Wherein R 3 is an alkyl group having 6 to 15 carbon atoms, R 4 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, R 5 is independently an alkyl group having 1 to 6 carbon atoms, and a is 1 An integer of -3, b is an integer of 0-2, and a + b is an integer of 1-3.)
It is more effective to additionally use an organosilane represented by

濡れ性向上剤として用いられるオルガノシランの上記一般式(3)のR3の具体例としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等の炭素数6〜15のアルキル基が挙げられる。炭素数が6より小さいと充填剤との濡れ性が十分でなく、15より大きいとオルガノシランが常温で固化するので、取扱いが不便な上、得られた組成物の低温特性が低下する。 Specific examples of R 3 in the above general formula (3) of the organosilane used as the wettability improver include, for example, hexyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group and the like having 6 to 6 carbon atoms. There are 15 alkyl groups. If the carbon number is less than 6, the wettability with the filler is not sufficient, and if it is more than 15, the organosilane is solidified at room temperature, which is inconvenient to handle and the low temperature characteristics of the resulting composition are lowered.

また、上記式中のR4は、炭素数1〜8の飽和又は不飽和の1価炭化水素基であり、このような基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、2−フェニルエチル基等のアラルキル基、3,3,3−トリフロロプロピル基、2−(ノナフルオロブチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基などが挙げられるが、特にメチル基、エチル基が好ましい。
R 4 in the above formula is a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms. Examples of such a group include a methyl group, an ethyl group, a propyl group, a hexyl group, Alkyl groups such as octyl group, cycloalkyl groups such as cyclopentyl group and cyclohexyl group, alkenyl groups such as vinyl group and allyl group, aryl groups such as phenyl group and tolyl group, aralkyl groups such as 2-phenylethyl group, 3, Halogenated hydrocarbon groups such as 3,3-trifluoropropyl group, 2- (nonafluorobutyl) ethyl group , p -chlorophenyl group and the like can be mentioned, and methyl group and ethyl group are particularly preferable.

5は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などの炭素数1〜6のアルキル基であり、特にメチル基、エチル基が好ましい。
また、aは1、2又は3であるが、特に1であることが好ましい。
R 5 is an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or a hexyl group, and a methyl group or an ethyl group is particularly preferable.
Moreover, although a is 1, 2, or 3, it is especially preferable that it is 1.

前記一般式(3)で表されるオルガノシランの具体例としては、下記のものを挙げることができる。
613Si(OCH33
1021Si(OCH33
1225Si(OCH33
1225Si(OC253
1021Si(CH3)(OCH32
1021Si(C65)(OCH32
1021Si(CH3)(OC252
1021Si(CH=CH2)(OCH32
1021Si(CH2CH2CF3)(OCH32
Specific examples of the organosilane represented by the general formula (3) include the following.
C 6 H 13 Si (OCH 3 ) 3 ,
C 10 H 21 Si (OCH 3 ) 3 ,
C 12 H 25 Si (OCH 3 ) 3 ,
C 12 H 25 Si (OC 2 H 5 ) 3 ,
C 10 H 21 Si (CH 3 ) (OCH 3 ) 2 ,
C 10 H 21 Si (C 6 H 5 ) (OCH 3 ) 2 ,
C 10 H 21 Si (CH 3 ) (OC 2 H 5 ) 2 ,
C 10 H 21 Si (CH═CH 2 ) (OCH 3 ) 2 ,
C 10 H 21 Si (CH 2 CH 2 CF 3 ) (OCH 3 ) 2

このオルガノシランを使用する場合の配合量は、成分(A)100質量部に対して0.01質量部より少ないと濡れ性の乏しいものとなる場合があるし、30質量部より多くしても効果が増大することがなく、不経済であるので、0.01〜30質量部の範囲が好ましく、より好ましくは10〜25質量部である。   When this organosilane is used, the blending amount is less than 0.01 parts by weight with respect to 100 parts by weight of the component (A), and the wettability may be poor. Since the effect does not increase and it is uneconomical, the range of 0.01 to 30 parts by mass is preferable, and 10 to 25 parts by mass is more preferable.

本発明の組成物には、充填剤とシリコーン成分の濡れ性を向上させる、下記一般式(4)で表されるオルガノポリシロキサンを付加的に用いることも有効である。

Figure 0004656340
(式中、R6は独立に非置換又は置換の1価炭化水素基であり、R7は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、qは5〜100の整数であり、cは1〜3の整数である。) In the composition of the present invention, it is also effective to additionally use an organopolysiloxane represented by the following general formula (4) that improves the wettability of the filler and the silicone component.
Figure 0004656340
(Wherein, R 6 is an unsubstituted or substituted monovalent hydrocarbon group independently, R 7 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, q is an integer of 5 to 100 And c is an integer of 1 to 3.)

濡れ性向上剤として用いられるオルガノポリシロキサンの上記一般式のR6は、独立に非置換又は置換の1価炭化水素基であり、好ましくは炭素数が1〜18のもので、その例としては、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等が挙げられる。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert−ブチル基、2−エチルヘキシル基等が挙げられる。環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基等が挙げられる。アリール基としては、例えば、フェニル基、トリル基等が挙げられる。アラルキル基としては、例えば、2−フェニルエチル基、2−メチル−2−フェニルエチル基等が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3−トリフルオロプロピル基、2−(ノナフルオロブチル)エチル基、2−(ヘプタデカフルオロオクチル)エチル基等が挙げられる。好ましくはメチル基、フェニル基である。 R 6 in the above general formula of the organopolysiloxane used as the wettability improver is independently an unsubstituted or substituted monovalent hydrocarbon group, preferably having 1 to 18 carbon atoms. A linear alkyl group, a branched alkyl group, a cyclic alkyl group, an alkenyl group, an aryl group, an aralkyl group, a halogenated alkyl group, and the like. Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group. Examples of the branched alkyl group include isopropyl group, isobutyl group, tert-butyl group, 2-ethylhexyl group and the like. Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group. Examples of the alkenyl group include a vinyl group and an allyl group. Examples of the aryl group include a phenyl group and a tolyl group. Examples of the aralkyl group include a 2-phenylethyl group and a 2-methyl-2-phenylethyl group. Examples of the halogenated alkyl group include 3,3,3-trifluoropropyl group, 2- (nonafluorobutyl) ethyl group, 2- (heptadecafluorooctyl) ethyl group, and the like. A methyl group and a phenyl group are preferable.

上記R7は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基で、好ましくは炭素数1〜5である。アルキル基としては、例えば、R6について例示したのと同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基が挙げられる。アルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基が挙げられる。アシル基としては、例えば、アセチル基、オクタノイル基が挙げられる。R7はアルキル基であることが好ましく、特にはメチル基、エチル基であることが好ましい。
qは5〜100の整数である。cは1〜3の整数であり、好ましくは3である。
R 7 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and preferably has 1 to 5 carbon atoms. Examples of the alkyl group include linear alkyl groups, branched alkyl groups, and cyclic alkyl groups similar to those exemplified for R 6 . Examples of the alkoxyalkyl group include a methoxyethyl group and a methoxypropyl group. Examples of the acyl group include an acetyl group and an octanoyl group. R 7 is preferably an alkyl group, and particularly preferably a methyl group or an ethyl group.
q is an integer of 5 to 100. c is an integer of 1 to 3, and is preferably 3.

前記一般式で表されるオルガノポリシロキサンの具体例としては、下記のものを挙げることができる。

Figure 0004656340
Specific examples of the organopolysiloxane represented by the general formula include the following.
Figure 0004656340

このオルガノポリシロキサンを使用する場合の配合量は、成分(A)100質量部に対して0.01質量部より少ないと濡れ性の乏しいものとなる場合があるし、30質量部より多くしても効果が増大することがなく、不経済であるので、0.01〜30質量部の範囲が好ましく、より好ましくは10〜25質量部である。   When this organopolysiloxane is used, the blending amount is less than 0.01 parts by weight with respect to 100 parts by weight of the component (A), and the wettability may be poor, and the blending amount may be more than 30 parts by weight. The effect is not increased and it is uneconomical, so the range of 0.01 to 30 parts by mass is preferable, and 10 to 25 parts by mass is more preferable.

また、本発明には、上記した成分以外に、必要に応じて、CPUなどのICパッケージとヒートシンク等の放熱体とを化学的に接着、固定するために接着助剤等を入れてもよいし、劣化を防ぐために酸化防止剤等を入れてもよい。   In addition to the above-described components, the present invention may contain an adhesion aid or the like for chemically bonding and fixing an IC package such as a CPU and a heat sink such as a heat sink, if necessary. In order to prevent deterioration, an antioxidant or the like may be added.

本発明の熱伝導性シリコーングリース組成物は、上記成分(A)〜(G)、及び必要に応じて一般式(3)のオルガノシラン、一般式(4)のオルガノポリシロキサン、その他の添加剤等を常法に準じて混合することにより調製でき、1液付加タイプとして長期低温保存できる。   The thermally conductive silicone grease composition of the present invention comprises the above components (A) to (G) and, if necessary, an organosilane of the general formula (3), an organopolysiloxane of the general formula (4), and other additives. Etc. can be prepared by mixing according to a conventional method, and can be stored at a low temperature for a long time as a one-component addition type.

本発明の半導体装置組立て時には、この熱伝導性シリコーングリース組成物は市販されているシリンジに詰めてCPU等のICパッケージ表面上に塗布、貼り合わせられる。このため、25℃における粘度が50Pa・sより低いと塗布時に液垂れを起こしてしまうし、1,000Pa・sより高いと塗布効率が悪くなるため、50〜1,000Pa・sの範囲で使用可能であるが、好ましくは100〜400Pa・sがよい。なお、本発明において、粘度は回転粘度計により25℃で測定した値である。   At the time of assembling the semiconductor device of the present invention, this thermally conductive silicone grease composition is packed in a commercially available syringe and applied and bonded onto the surface of an IC package such as a CPU. For this reason, if the viscosity at 25 ° C. is lower than 50 Pa · s, dripping will occur at the time of application, and if it is higher than 1,000 Pa · s, the application efficiency will deteriorate, so it is used in the range of 50 to 1,000 Pa · s. Although possible, it is preferably 100 to 400 Pa · s. In the present invention, the viscosity is a value measured at 25 ° C. with a rotational viscometer.

ディスペンスされた後、ICパッケージからの発熱によって硬化し、硬化後はこの組成物はタック性を有するのでずれたり、また経時においても安定した柔軟性を有することから基材から剥がれたりすることはない。更に、ディスペンス後、積極的に加熱硬化させてもよい。この場合、加熱硬化条件としては特に限定されるものではなく、例えば100〜150℃、10〜120分間程度とすることができる。   After being dispensed, it is cured by heat generated from the IC package, and after curing, this composition has tackiness so that it does not slip and does not peel off from the substrate because it has a stable flexibility over time. . Further, after dispensing, the resin may be positively heated and cured. In this case, the heat curing conditions are not particularly limited, and can be, for example, 100 to 150 ° C. and about 10 to 120 minutes.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記においてMeはメチル基を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following, Me represents a methyl group.

[実施例1〜9、比較例1〜9]
まず、本発明組成物を形成する以下の各成分を用意した。
成分(A)
A−1:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm2/sのジメチルポリシロキサン
[Examples 1-9, Comparative Examples 1-9]
First, the following components for forming the composition of the present invention were prepared.
Ingredient (A)
A-1: Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25 ° C. of 600 mm 2 / s

成分(B)下記式で表されるオルガノハイドロジェンポリシロキサン
B−1:

Figure 0004656340
B−2:
Figure 0004656340
B−3(比較用):
Figure 0004656340
B−4(比較用):
Figure 0004656340
Component (B) Organohydrogenpolysiloxane B-1 represented by the following formula:
Figure 0004656340
B-2:
Figure 0004656340
B-3 (for comparison):
Figure 0004656340
B-4 (for comparison):
Figure 0004656340

成分(C)下記式で表されるオルガノハイドロジェンポリシロキサン
C−1:

Figure 0004656340
C−2:
Figure 0004656340
Component (C) Organohydrogenpolysiloxane C-1 represented by the following formula:
Figure 0004656340
C-2:
Figure 0004656340

成分(D)
下記のアルミニウム粉末、アルミナ粉末及び酸化亜鉛粉末を、5リットルゲートミキサー(井上製作所(株)製、商品名:5リットルプラネタリミキサー)を用い、下記表1の混合比で室温にて15分間混合し、D−1〜5を得た。
平均粒径4.9μmのアルミニウム粉末(熱伝導率:237W/m℃(300K))
平均粒径15.0μmのアルミニウム粉末(熱伝導率:237W/m℃(300K))
平均粒径15.0μmのアルミナ粉末(熱伝導率:36W/m℃(300K))
平均粒径1.0μmの酸化亜鉛粉末(熱伝導率:116W/m℃(300K))
Ingredient (D)
The following aluminum powder, alumina powder and zinc oxide powder were mixed at room temperature for 15 minutes at a mixing ratio shown in Table 1 below using a 5-liter gate mixer (trade name: 5-liter planetary mixer, manufactured by Inoue Seisakusho Co., Ltd.). , D-1 to 5 were obtained.
Aluminum powder with an average particle size of 4.9 μm (thermal conductivity: 237 W / m ° C. (300 K))
Aluminum powder with an average particle size of 15.0 μm (thermal conductivity: 237 W / m ° C. (300 K))
Alumina powder with an average particle size of 15.0 μm (thermal conductivity: 36 W / m ° C. (300 K))
Zinc oxide powder with an average particle size of 1.0 μm (thermal conductivity: 116 W / m ° C. (300 K))

Figure 0004656340
Figure 0004656340

成分(E)
E−1:白金−ジビニルテトラメチルジシロキサン錯体のA−1溶液、白金原子として1質量%含有
Ingredient (E)
E-1: A-1 solution of platinum-divinyltetramethyldisiloxane complex, containing 1% by mass as platinum atoms

成分(F)
F−1:1−エチニル−1−シクロヘキサノールの50質量%トルエン溶液
Ingredient (F)
F-1: 50 mass% toluene solution of 1-ethynyl-1-cyclohexanol

成分(G)
G−1:IPソルベント2835(イソパラフィン系溶剤、出光興産株式会社製商品名) 沸点270−350℃
Ingredient (G)
G-1: IP solvent 2835 (isoparaffin solvent, trade name, manufactured by Idemitsu Kosan Co., Ltd.) Boiling point 270-350 ° C

(使用したオルガノシラン)
オルガノシラン(1):C613Si(OCH33
オルガノシラン(2):C1021Si(OCH33
(Organosilane used)
Organosilane (1): C 6 H 13 Si (OCH 3 ) 3
Organosilane (2): C 10 H 21 Si (OCH 3 ) 3

(使用したオルガノポリシロキサン)
オルガノポリシロキサン(1):

Figure 0004656340
(Used organopolysiloxane)
Organopolysiloxane (1):
Figure 0004656340

成分(A)〜(G)を以下のように混合してシリコーン組成物を得た。
即ち、5リットルゲートミキサー(井上製作所(株)製、商品名:5リットルプラネタリミキサー)に、表2、3に示す配合量で成分(A)、(B)、(C)、(G)を量り取り、更に成分(D)を量り取り、必要に応じてオルガノシランやオルガノポリシロキサンを加え、室温で1時間混合した。次に、成分(F)をそれぞれ表2、3に示す配合量で加え、15分室温にて混合した。その後、更に成分(E)をそれぞれ表2、3に示す配合量で加え、均一になるように15分室温混合した。
Components (A) to (G) were mixed as follows to obtain a silicone composition.
That is, the components (A), (B), (C), and (G) were added to a 5 liter gate mixer (trade name: 5 liter planetary mixer manufactured by Inoue Seisakusho Co., Ltd.) in the blending amounts shown in Tables 2 and 3. Weighed out and further weighed out component (D), added organosilane and organopolysiloxane as needed, and mixed at room temperature for 1 hour. Next, component (F) was added in the blending amounts shown in Tables 2 and 3, respectively, and mixed for 15 minutes at room temperature. Thereafter, the component (E) was further added in the amounts shown in Tables 2 and 3, respectively, and mixed at room temperature for 15 minutes so as to be uniform.

得られた組成物を用いて、熱伝導率、粘度、塗布性、硬度を下記に示す評価方法により測定した。これらの結果を表2,3に示す。   Using the obtained composition, the thermal conductivity, viscosity, applicability, and hardness were measured by the evaluation methods shown below. These results are shown in Tables 2 and 3.

熱伝導率:
試験片の厚みをマイクロメータ(株式会社ミツトヨ製)で測定し、予め測定してあったアルミニウム板2枚分の厚みを差し引いて、該組成物の厚みを算出した。このような方法で試験片の厚みが異なるサンプルをそれぞれ数点作製した。その後、それぞれのサンプルを125℃中で90分放置することで硬化させ、よく冷えるのを待ってから再度該組成物の厚みを算出した。上記試験片を用いて該組成物の熱抵抗(単位:mm2−K/W)をレーザーフラッシュ法に基づく熱抵抗測定器(ネッチ社製、キセノンフラッシュアナライザー;LFA447 NanoFlash)により25℃において測定した。それぞれ厚みの異なる熱抵抗値を組成物ごとにプロットし、そこから得られた直線の傾きの逆数から熱伝導率を算出した。
Thermal conductivity:
The thickness of the test piece was measured with a micrometer (manufactured by Mitutoyo Corporation), and the thickness of the two aluminum plates that had been measured in advance was subtracted to calculate the thickness of the composition. Several samples each having a different specimen thickness were prepared by such a method. Thereafter, each sample was allowed to stand at 125 ° C. for 90 minutes to be cured, and after waiting to cool well, the thickness of the composition was calculated again. Using the above test piece, the thermal resistance (unit: mm 2 -K / W) of the composition was measured at 25 ° C. with a thermal resistance measuring instrument (manufactured by Netch, Xenon Flash Analyzer; LFA447 NanoFlash) based on the laser flash method. . The thermal resistance values with different thicknesses were plotted for each composition, and the thermal conductivity was calculated from the reciprocal of the slope of the straight line obtained therefrom.

粘度:
組成物の絶対粘度は25℃における値を示し、その測定はマルコム粘度計(タイプPC−1T)を用いた。
viscosity:
The absolute viscosity of the composition showed a value at 25 ° C., and a Malcolm viscometer (type PC-1T) was used for the measurement.

塗布性:
製造した熱伝導性シリコーングリース組成物をEFDシリンジ30ccに詰めた。その後、ディスペンサーとしてMUSASHI ENGINEERING,INC.製のML606−GXを使用し、吐出圧は0.50MPaとして、吐出試験を行った。「吐出性能が良好なもの」は○、「吐出が難しいもの」は×として評価結果を示す。
Applicability:
The manufactured heat conductive silicone grease composition was packed in 30 cc of an EFD syringe. Then, as a dispenser, MUSASHI ENGINEERING, INC. ML606-GX made from this company was used, the discharge pressure was 0.50 MPa, and the discharge test was done. Evaluation results are shown as “Good” in “Discharge performance”, and “No” in “Discharge difficult”.

硬度測定:
組成物の硬化物の経時での柔軟性を硬度測定することで評価した。10mm厚の型に流し込み、125℃で1時間加熱して、厚み10mmのシート状のゴム成形物を作製した。この成形物を25℃に戻し、初期硬度を測定した。次いで、温度130℃、湿度100%、2気圧の条件下に100時間放置した後、25℃に戻し、再び硬度を測定した。なお、硬度の測定は、高分子計器(株)製AskerC(低硬さ用)を使用した。
Hardness measurement:
The flexibility of the cured product of the composition over time was evaluated by measuring the hardness. Poured into a 10 mm thick mold and heated at 125 ° C. for 1 hour to produce a 10 mm thick sheet-like rubber molded product. The molded product was returned to 25 ° C. and the initial hardness was measured. Subsequently, after being left for 100 hours under conditions of a temperature of 130 ° C., a humidity of 100%, and 2 atmospheres, the temperature was returned to 25 ° C. and the hardness was measured again. The hardness was measured using Asker C (for low hardness) manufactured by Kobunshi Keiki Co., Ltd.

Figure 0004656340
Figure 0004656340

Figure 0004656340
Figure 0004656340

Claims (3)

(A)1分子中に少なくとも2個のアルケニル基を有する、25℃の動粘度が10〜100,000mm2/sのオルガノポリシロキサン: 100質量部、
(B)下記一般式(1)
Figure 0004656340
(式中、R1は独立に炭素数1〜6のアルキル基である。n,mは0.01≦n/(n+m)≦0.3を満足する正数である。)
で示されるオルガノハイドロジェンポリシロキサン、
(C)下記一般式(2)
Figure 0004656340
(式中、R2は独立に炭素数1〜6のアルキル基である。pは5〜1,000の範囲の正数である。)
で示されるオルガノハイドロジェンポリシロキサン:
{成分(B)と成分(C)の合わせたSi−H基の個数}/{成分(A)のアルケニ
ル基の個数}が0.6〜1.5の範囲であり、かつ{成分(C)由来のSi−Hの個
数}/{成分(B)由来のSi−Hの個数}が1.0〜10.0の範囲となる量、
(D)10W/m℃以上の熱伝導率を有する熱伝導性充填剤:
800〜2,000質量部、
(E)白金及び白金化合物からなる群より選択される触媒:
白金原子として成分(A)の0.1〜500ppmとなる配合量、
(F)アセチレン化合物、窒素化合物、有機りん化合物、オキシム化合物及び有機クロロ化合物より選択される制御剤: 0.01〜1質量部、
(G)前記成分(A)〜(F)を分散又は溶解できる沸点が270〜350℃のイソパラフィン系溶剤: 0.1〜40.0質量部
を含有してなり、25℃の粘度が50〜1,000Pa・sである熱伝導性シリコーングリース組成物。
(A) Organopolysiloxane having at least two alkenyl groups in one molecule and a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s: 100 parts by mass
(B) The following general formula (1)
Figure 0004656340
(In the formula, R 1 is independently an alkyl group having 1 to 6 carbon atoms. N and m are positive numbers satisfying 0.01 ≦ n / (n + m) ≦ 0.3.)
An organohydrogenpolysiloxane represented by
(C) The following general formula (2)
Figure 0004656340
(In the formula, R 2 is independently an alkyl group having 1 to 6 carbon atoms. P is a positive number in the range of 5 to 1,000.)
Organohydrogenpolysiloxane represented by:
{The number of Si-H groups combined of component (B) and component (C)} / {the number of alkenyl groups of component (A)} is in the range of 0.6 to 1.5, and {component ( C) the number of Si—H derived} / {the number of Si—H derived from component (B)} is in the range of 1.0 to 10.0,
(D) Thermally conductive filler having a thermal conductivity of 10 W / m ° C. or higher:
800 to 2,000 parts by mass,
(E) a catalyst selected from the group consisting of platinum and platinum compounds:
Compounding amount of 0.1 to 500 ppm of component (A) as platinum atom,
(F) A control agent selected from an acetylene compound, a nitrogen compound, an organic phosphorus compound, an oxime compound and an organic chloro compound: 0.01 to 1 part by mass,
(G) Isoparaffinic solvent having a boiling point of 270 to 350 ° C. capable of dispersing or dissolving the components (A) to (F): 0.1 to 40.0 parts by mass, and a viscosity at 25 ° C. of 50 to 50 ° C. A thermally conductive silicone grease composition having a viscosity of 1,000 Pa · s.
更に、下記一般式(3)
3 a4 bSi(OR54-a-b (3)
(式中、R3は炭素数6〜15のアルキル基、R4は炭素数1〜8の1価炭化水素基、R5は独立に炭素数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数、かつa+bは1〜3の整数である。)
で示されるオルガノシランを(A)成分100質量部に対して0.01〜30.0質量部含む請求項1記載の熱伝導性シリコーングリース組成物。
Furthermore, the following general formula (3)
R 3 a R 4 b Si (OR 5 ) 4-ab (3)
(Wherein R 3 is an alkyl group having 6 to 15 carbon atoms, R 4 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, R 5 is independently an alkyl group having 1 to 6 carbon atoms, and a is 1 An integer of .about.3, b is an integer of 0 to 2, and a + b is an integer of 1 to 3.)
The heat conductive silicone grease composition of Claim 1 which contains 0.01-30.0 mass parts with respect to 100 mass parts of (A) component.
更に、下記一般式(4)
Figure 0004656340
(式中、R6は独立に非置換又は置換の1価炭化水素基であり、R7は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、qは5〜100の整数であり、cは1〜3の整数である。)
で示されるオルガノポリシロキサンを(A)成分100質量部に対して0.01〜30.0質量部含む請求項1又は2記載の熱伝導性シリコーングリース組成物。
Furthermore, the following general formula (4)
Figure 0004656340
Wherein R 6 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 7 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and q is an integer of 5 to 100 And c is an integer of 1 to 3.)
The heat conductive silicone grease composition of Claim 1 or 2 which contains 0.01-30.0 mass parts with respect to 100 mass parts of (A) component for the organopolysiloxane shown by these.
JP2008051926A 2008-03-03 2008-03-03 Thermally conductive silicone grease composition Expired - Fee Related JP4656340B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008051926A JP4656340B2 (en) 2008-03-03 2008-03-03 Thermally conductive silicone grease composition
KR1020090017475A KR20090094761A (en) 2008-03-03 2009-03-02 Thermal conductive silicone grease composition
TW098106693A TWI437049B (en) 2008-03-03 2009-03-02 Thermal conductive silicone grease composition
CN200910118234A CN101525489A (en) 2008-03-03 2009-03-03 Organosilicon lubricating grease composition with heat conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051926A JP4656340B2 (en) 2008-03-03 2008-03-03 Thermally conductive silicone grease composition

Publications (2)

Publication Number Publication Date
JP2009209230A JP2009209230A (en) 2009-09-17
JP4656340B2 true JP4656340B2 (en) 2011-03-23

Family

ID=41093565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051926A Expired - Fee Related JP4656340B2 (en) 2008-03-03 2008-03-03 Thermally conductive silicone grease composition

Country Status (4)

Country Link
JP (1) JP4656340B2 (en)
KR (1) KR20090094761A (en)
CN (1) CN101525489A (en)
TW (1) TWI437049B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181657A1 (en) 2013-05-07 2014-11-13 信越化学工業株式会社 Thermally conductive silicone composition and cured product of same
KR20160012137A (en) 2013-05-24 2016-02-02 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition
KR20160028965A (en) 2014-09-04 2016-03-14 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone composition
KR20160058801A (en) 2013-09-20 2016-05-25 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone composition and method for producing thermally conductive silicone composition
US9481851B2 (en) 2012-04-24 2016-11-01 Shin-Etsu Chemical Co., Ltd. Thermally-curable heat-conductive silicone grease composition
US9698077B2 (en) 2013-01-22 2017-07-04 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition based on combination of components, heat conductive layer, and semiconductor device
WO2018079215A1 (en) 2016-10-31 2018-05-03 東レ・ダウコーニング株式会社 One-pack curable type thermally conductive silicone grease composition and electronic/electrical component
WO2019138991A1 (en) 2018-01-15 2019-07-18 信越化学工業株式会社 Silicone composition
WO2020075411A1 (en) 2018-10-12 2020-04-16 信越化学工業株式会社 Addition curing silicone composition and method for manufacturing same
WO2020179325A1 (en) 2019-03-04 2020-09-10 信越化学工業株式会社 Non-curable thermally conductive silicone composition
WO2020202800A1 (en) 2019-04-01 2020-10-08 信越化学工業株式会社 Heat-conducting silicone composition, method for manufacturing same, and semiconductor device
KR20200135992A (en) 2018-03-23 2020-12-04 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone composition
WO2021059936A1 (en) 2019-09-27 2021-04-01 信越化学工業株式会社 Thermally conductive silicone composition, production method thereof, and semiconductor device
US11041072B2 (en) 2014-11-25 2021-06-22 Shin-Etsu Chemical Co., Ltd. One-pack addition curable silicone composition, method for storing same, and method for curing same
WO2021131212A1 (en) 2019-12-23 2021-07-01 信越化学工業株式会社 Heat-conductive silicone composition
WO2021235259A1 (en) 2020-05-22 2021-11-25 信越化学工業株式会社 Thermally conductive silicone composition, production method for same, and semiconductor device
WO2023171353A1 (en) 2022-03-08 2023-09-14 信越化学工業株式会社 Two-component thermally-conductive addition-curable silicone composition and cured product thereof
WO2023171352A1 (en) 2022-03-08 2023-09-14 信越化学工業株式会社 Thermally-conductive addition-curable silicone composition and cured product thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365572B2 (en) * 2010-04-13 2013-12-11 信越化学工業株式会社 Room temperature moisture thickening type thermally conductive silicone grease composition
JP5434795B2 (en) * 2010-05-25 2014-03-05 信越化学工業株式会社 Thermally conductive silicone grease composition
CN101880578B (en) * 2010-06-24 2012-11-28 福州三辰新材料有限公司 Grease special for plastic and preparation method thereof
JP5553006B2 (en) * 2010-11-12 2014-07-16 信越化学工業株式会社 Thermally conductive silicone grease composition
JP5640945B2 (en) * 2011-10-11 2014-12-17 信越化学工業株式会社 Curable organopolysiloxane composition and semiconductor device
JP5621819B2 (en) * 2011-12-20 2014-11-12 Jsr株式会社 Curable composition, cured product, and optical semiconductor device
CN103827277B (en) 2012-05-11 2016-07-06 信越化学工业株式会社 Heat conductivity silicone grease composition
JP2014201627A (en) * 2013-04-02 2014-10-27 三菱化学株式会社 Thermosetting silicone resin composition, production method of silicone resin molded article, and silicone resin molded article
JP2015212318A (en) * 2014-05-01 2015-11-26 信越化学工業株式会社 Thermal conductive silicone composition
JP6323398B2 (en) * 2015-06-10 2018-05-16 信越化学工業株式会社 Thermally conductive silicone putty composition
US10781349B2 (en) 2016-03-08 2020-09-22 Honeywell International Inc. Thermal interface material including crosslinker and multiple fillers
JP6879690B2 (en) 2016-08-05 2021-06-02 スリーエム イノベイティブ プロパティズ カンパニー Resin composition for heat dissipation, its cured product, and how to use them
KR102625362B1 (en) 2017-07-24 2024-01-18 다우 도레이 캄파니 리미티드 Thermal conductive silicone gel composition, thermally conductive member and heat dissipation structure
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
JP2019077845A (en) * 2017-10-27 2019-05-23 信越化学工業株式会社 Thermally conductive silicone potting composition
US11072706B2 (en) * 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
WO2019198377A1 (en) 2018-04-13 2019-10-17 株式会社Moresco Lubricating oil composition and lubricating agent using same
CN110128830A (en) * 2019-03-22 2019-08-16 中国科学院工程热物理研究所 A kind of high heat conductance heat conductive silica gel gasket and preparation method thereof
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
CN117120518A (en) 2021-03-31 2023-11-24 积水化学工业株式会社 Side chain type alkyl modified organic silicon resin
WO2022210782A1 (en) 2021-03-31 2022-10-06 積水化学工業株式会社 Side-chain alkyl-modified silicone resin
JP2023111110A (en) 2022-01-31 2023-08-10 信越化学工業株式会社 Thermally conductive addition-curable silicone composition and cured product of the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139818A (en) * 1999-11-12 2001-05-22 Dow Corning Toray Silicone Co Ltd Thermally conductive silicone rubber composition
JP2001348483A (en) * 2000-06-08 2001-12-18 Dow Corning Toray Silicone Co Ltd Heat-conductive silicone rubber composition
JP2002327116A (en) * 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd Thermoconductive silicone composition and semiconductor device
JP2003292781A (en) * 2002-04-03 2003-10-15 Dow Corning Toray Silicone Co Ltd Electroconductive silicone rubber composition
JP2004176016A (en) * 2002-11-29 2004-06-24 Shin Etsu Chem Co Ltd Thermal conductive silicone composition and molding therefrom
JP2004533515A (en) * 2001-02-28 2004-11-04 ダウ・コーニング・コーポレイション Silicone composition and thermally conductive cured silicone product
JP2005035264A (en) * 2003-06-27 2005-02-10 Shin Etsu Chem Co Ltd Heat conductive silicone shaped body and its manufacturing process
JP2006169343A (en) * 2004-12-15 2006-06-29 Shin Etsu Chem Co Ltd Method for producing heat-releasing silicone grease composition
JP2007051227A (en) * 2005-08-18 2007-03-01 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition and cured product thereof
JP2007177001A (en) * 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition
JP2007277387A (en) * 2006-04-06 2007-10-25 Shin Etsu Chem Co Ltd Heat-conductive silicone grease composition
JP2008019426A (en) * 2006-06-16 2008-01-31 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition
JP2009138036A (en) * 2007-12-04 2009-06-25 Momentive Performance Materials Japan Kk Thermally-conductive silicone grease composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139818A (en) * 1999-11-12 2001-05-22 Dow Corning Toray Silicone Co Ltd Thermally conductive silicone rubber composition
JP2001348483A (en) * 2000-06-08 2001-12-18 Dow Corning Toray Silicone Co Ltd Heat-conductive silicone rubber composition
JP2004533515A (en) * 2001-02-28 2004-11-04 ダウ・コーニング・コーポレイション Silicone composition and thermally conductive cured silicone product
JP2002327116A (en) * 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd Thermoconductive silicone composition and semiconductor device
JP2003292781A (en) * 2002-04-03 2003-10-15 Dow Corning Toray Silicone Co Ltd Electroconductive silicone rubber composition
JP2004176016A (en) * 2002-11-29 2004-06-24 Shin Etsu Chem Co Ltd Thermal conductive silicone composition and molding therefrom
JP2005035264A (en) * 2003-06-27 2005-02-10 Shin Etsu Chem Co Ltd Heat conductive silicone shaped body and its manufacturing process
JP2006169343A (en) * 2004-12-15 2006-06-29 Shin Etsu Chem Co Ltd Method for producing heat-releasing silicone grease composition
JP2007051227A (en) * 2005-08-18 2007-03-01 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition and cured product thereof
JP2007177001A (en) * 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition
JP2007277387A (en) * 2006-04-06 2007-10-25 Shin Etsu Chem Co Ltd Heat-conductive silicone grease composition
JP2008019426A (en) * 2006-06-16 2008-01-31 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition
JP2009138036A (en) * 2007-12-04 2009-06-25 Momentive Performance Materials Japan Kk Thermally-conductive silicone grease composition

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9481851B2 (en) 2012-04-24 2016-11-01 Shin-Etsu Chemical Co., Ltd. Thermally-curable heat-conductive silicone grease composition
US9698077B2 (en) 2013-01-22 2017-07-04 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition based on combination of components, heat conductive layer, and semiconductor device
KR20160006689A (en) 2013-05-07 2016-01-19 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition and cured product of same
WO2014181657A1 (en) 2013-05-07 2014-11-13 信越化学工業株式会社 Thermally conductive silicone composition and cured product of same
US9481818B2 (en) 2013-05-07 2016-11-01 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition and a cured product of same
KR20160012137A (en) 2013-05-24 2016-02-02 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition
US10023741B2 (en) 2013-05-24 2018-07-17 Shin-Etsu Chemical Co., Ltd. Heat-conductive silicone composition
KR20160058801A (en) 2013-09-20 2016-05-25 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone composition and method for producing thermally conductive silicone composition
US9969919B2 (en) 2013-09-20 2018-05-15 Shin-Etsu Chemical Co., Ltd. Silicone composition and method for manufacturing heat-conductive silicone composition
US10202529B2 (en) 2013-09-20 2019-02-12 Shin-Etsu Chemical Co., Ltd. Silicone composition and method for manufacturing heat-conductive silicone composition
US9394470B2 (en) 2014-09-04 2016-07-19 Shin-Etsu Chemical Co., Ltd. Silicone composition
KR20160028965A (en) 2014-09-04 2016-03-14 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone composition
US11041072B2 (en) 2014-11-25 2021-06-22 Shin-Etsu Chemical Co., Ltd. One-pack addition curable silicone composition, method for storing same, and method for curing same
WO2018079215A1 (en) 2016-10-31 2018-05-03 東レ・ダウコーニング株式会社 One-pack curable type thermally conductive silicone grease composition and electronic/electrical component
KR20190075081A (en) 2016-10-31 2019-06-28 다우 도레이 캄파니 리미티드 1-cure type thermally conductive silicone grease composition and electronic / electric component
US11319412B2 (en) 2016-10-31 2022-05-03 Dow Toray Co., Ltd. Thermally conductive silicone compound
WO2019138991A1 (en) 2018-01-15 2019-07-18 信越化学工業株式会社 Silicone composition
US11591470B2 (en) 2018-01-15 2023-02-28 Shin-Etsu Chemical Co., Ltd. Silicone composition
KR20200135992A (en) 2018-03-23 2020-12-04 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone composition
US11773264B2 (en) 2018-03-23 2023-10-03 Shin-Etsu Chemical Co., Ltd. Silicone composition
WO2020075411A1 (en) 2018-10-12 2020-04-16 信越化学工業株式会社 Addition curing silicone composition and method for manufacturing same
KR20210076046A (en) 2018-10-12 2021-06-23 신에쓰 가가꾸 고교 가부시끼가이샤 Addition curable silicone composition and method for preparing same
US11912869B2 (en) 2019-03-04 2024-02-27 Shin-Etsu Chemical Co., Ltd. Non-curable thermal-conductive silicone composition
KR20210135235A (en) 2019-03-04 2021-11-12 신에쓰 가가꾸 고교 가부시끼가이샤 Non-Curable Thermally Conductive Silicone Composition
WO2020179325A1 (en) 2019-03-04 2020-09-10 信越化学工業株式会社 Non-curable thermally conductive silicone composition
WO2020202800A1 (en) 2019-04-01 2020-10-08 信越化学工業株式会社 Heat-conducting silicone composition, method for manufacturing same, and semiconductor device
KR20210148140A (en) 2019-04-01 2021-12-07 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition, manufacturing method thereof, and semiconductor device
KR20220074901A (en) 2019-09-27 2022-06-03 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition, manufacturing method thereof, and semiconductor device
WO2021059936A1 (en) 2019-09-27 2021-04-01 信越化学工業株式会社 Thermally conductive silicone composition, production method thereof, and semiconductor device
US12104113B2 (en) 2019-09-27 2024-10-01 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition, production method thereof, and semiconductor device
KR20220121805A (en) 2019-12-23 2022-09-01 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally Conductive Silicone Composition
WO2021131212A1 (en) 2019-12-23 2021-07-01 信越化学工業株式会社 Heat-conductive silicone composition
KR20230015374A (en) 2020-05-22 2023-01-31 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition, method for producing the same, and semiconductor device
WO2021235259A1 (en) 2020-05-22 2021-11-25 信越化学工業株式会社 Thermally conductive silicone composition, production method for same, and semiconductor device
WO2023171353A1 (en) 2022-03-08 2023-09-14 信越化学工業株式会社 Two-component thermally-conductive addition-curable silicone composition and cured product thereof
WO2023171352A1 (en) 2022-03-08 2023-09-14 信越化学工業株式会社 Thermally-conductive addition-curable silicone composition and cured product thereof

Also Published As

Publication number Publication date
CN101525489A (en) 2009-09-09
KR20090094761A (en) 2009-09-08
TW200940654A (en) 2009-10-01
TWI437049B (en) 2014-05-11
JP2009209230A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP4656340B2 (en) Thermally conductive silicone grease composition
JP5182515B2 (en) Thermally conductive silicone grease composition
JP5843368B2 (en) Thermally conductive silicone composition and cured product thereof
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
JP5640945B2 (en) Curable organopolysiloxane composition and semiconductor device
JP3803058B2 (en) Thermally conductive silicone composition, cured product thereof, laying method, and heat dissipation structure of semiconductor device using the same
CA2896300C (en) Heat conductive silicone composition, heat conductive layer, and semiconductor device
US20080213578A1 (en) Heat conductive silicone grease composition and cured product thereof
KR101244566B1 (en) Heat conductive silicone grease composition and cured products thereof
JP5565758B2 (en) Curable, grease-like thermally conductive silicone composition and semiconductor device
JP4913874B2 (en) Curable organopolysiloxane composition and semiconductor device
JP2008038137A (en) Heat conductive silicone grease composition and cured product thereof
JP2002327116A (en) Thermoconductive silicone composition and semiconductor device
JP5304623B2 (en) Selection method of high thermal conductivity potting material
JP5105308B2 (en) Thermally conductive silicone composition with accelerated cure rate during low temperature heating
JP5472055B2 (en) Thermally conductive silicone grease composition
JP7070320B2 (en) Thermally conductive silicone composition
TW202208604A (en) Two-pack curable heat conductive grease composition, heat conductive grease and electronic device
JP6579272B2 (en) Thermally conductive silicone composition
WO2022230600A1 (en) Curable organopolysiloxane composition and semiconductor device
JP5047505B2 (en) Electronic device excellent in heat dissipation and manufacturing method thereof
JP6314710B2 (en) Thermally conductive silicone composition
JP6943028B2 (en) Thermally conductive silicone composition
WO2023162636A1 (en) Thermally conductive silicone composition
JP7467017B2 (en) Thermally conductive silicone composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees