JP2010155870A - Thermally conductive compound and method for producing the same - Google Patents
Thermally conductive compound and method for producing the same Download PDFInfo
- Publication number
- JP2010155870A JP2010155870A JP2007111106A JP2007111106A JP2010155870A JP 2010155870 A JP2010155870 A JP 2010155870A JP 2007111106 A JP2007111106 A JP 2007111106A JP 2007111106 A JP2007111106 A JP 2007111106A JP 2010155870 A JP2010155870 A JP 2010155870A
- Authority
- JP
- Japan
- Prior art keywords
- thermally conductive
- conductive compound
- heat
- curing
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
- C09K5/14—Solid materials, e.g. powdery or granular
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Thermal Sciences (AREA)
- Medicinal Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
本発明は、発熱性電子部品からヒートシンクや筐体等の冷却部へ熱を効率良く伝える熱伝導部材として用いられる熱伝導性コンパウンドおよびその製造方法に関する。 The present invention relates to a heat conductive compound used as a heat conductive member for efficiently transferring heat from a heat-generating electronic component to a cooling part such as a heat sink or a housing, and a method for manufacturing the same.
パソコンのCPU(中央処理装置)やチップセット等の発熱性電子部品の小型化、高出力化に伴い、それらの電子部品から発生する単位面積当たりの熱量は非常に大きくなってきている。この発熱性の電子部品を長期にわたり故障しないようにするためには、発熱する電子部品の冷却が必要とされる。冷却には金属製のヒートシンクや筐体が使用され、さらに発熱性電子部品からヒートシンクや筐体などの冷却部へ効率よく熱を伝えるために熱伝導性材料が使用される。この熱伝導性材料を使用する理由として発熱性電子部品とヒートシンク等をそのまま接触させた場合、その界面には微視的にみると、空気が存在し熱伝導の障害となる。したがって、界面に存在する空気の代わりに熱伝導性材料を発熱性電子部品とヒートシンク等の間に存在させることによって、効率よく熱を伝えることができる。 With the miniaturization and high output of heat-generating electronic components such as CPUs (central processing units) and chip sets of personal computers, the amount of heat per unit area generated from these electronic components has become very large. In order to prevent the heat-generating electronic component from failing for a long period of time, it is necessary to cool the heat-generating electronic component. A metal heat sink or casing is used for cooling, and a heat conductive material is used to efficiently transfer heat from the heat-generating electronic component to a cooling part such as the heat sink or casing. As a reason for using this heat conductive material, when the heat-generating electronic component and the heat sink are brought into direct contact with each other, air is present at the interface, which hinders heat conduction. Therefore, heat can be efficiently transferred by allowing a heat conductive material to exist between the heat-generating electronic component and the heat sink in place of the air present at the interface.
熱伝導性材料としては、シリコーンゴムに熱伝導性粉末を充填した硬化物からなる熱伝導性シート、シリコーンゲルのようなやわらかいシリコーンに熱伝導性粉末が充填され、柔軟性を有する硬化物からなる熱伝導性パッド、液状シリコーンに熱伝導性粉末が充填された流動性のある熱伝導性コンパウンド、発熱電子部品の作動温度で軟化又は流動化する相変化型熱伝導性材料などがある。これらの中で熱伝導性コンパウンドが特に熱を伝えやすい。 As the heat conductive material, a heat conductive sheet made of a cured product obtained by filling a silicone rubber with a heat conductive powder, or a soft material such as a silicone gel filled with a heat conductive powder and made of a cured product having flexibility. There are thermal conductive pads, fluid thermal conductive compounds filled with thermal conductive powder in liquid silicone, and phase change thermal conductive materials that soften or fluidize at the operating temperature of the heat generating electronic components. Among these, the heat conductive compound is particularly easy to conduct heat.
熱伝導性コンパウンドは、シリコーンオイル等の液状シリコーンである基油に熱伝導性粉末を含有させてなるものである。この場合、低温と高温でのヒートサイクルが長期間繰り返されるところで使用すると、基油であるシリコーンオイル成分が分離するいわゆる「離油」を生じ、熱抵抗が上昇する。 The thermally conductive compound is obtained by adding a thermally conductive powder to a base oil that is a liquid silicone such as silicone oil. In this case, when used in a place where heat cycles at low and high temperatures are repeated for a long period of time, so-called “oil removal” occurs in which the silicone oil component as the base oil is separated, and the thermal resistance increases.
基油であるシリコーンオイル成分の分離を解決するために、例えば、ゲル化処理を行うと弾力性のあるゲル状となるシリコーン樹脂に熱伝導性の良好な粉末を混合した物(特許文献1)、特殊な熱伝導性粉末を増調剤として使用した物(特許文献2)、特殊なシリコーンを用いた物(特許文献3)が提案されている。しかし、特許文献1では、所望の場所に塗布後に硬化処理が必要であり、又特許文献2及び3は、離油が完全になくなる事は無く、更に流動性が良すぎる為、例えば0.5mm以上の様な隙間の厚い箇所には使用できないという課題があった。
本発明者らは、上記欠点を解決すべく鋭意検討した結果、マトリックスとなるベースポリマーに熱硬化性液状シリコーンを使用し、熱伝導性粉末と混合した樹脂組成物を一度反応硬化させた後、該樹脂組成物の硬化物を混練処理して低粘度化させることにより流動性を有し、得られた熱伝導性コンパウンドをさらに加熱しても硬化することがないことを見出し本発明に到達した。従って本発明の目的は、低熱抵抗を示し、耐熱性が良く、離油が無く、隙間の厚い箇所にも使用できる保型性があり、使用後に硬化処理等の必要の無い熱伝導性コンパウンド、特に発熱性電子部品の熱伝導性材料に適した熱伝導性コンパウンドを提供することである。 As a result of intensive studies to solve the above-mentioned drawbacks, the present inventors have used a thermosetting liquid silicone as a base polymer as a matrix, and once reaction-cured a resin composition mixed with a thermally conductive powder, The present inventors have found that the cured product of the resin composition has fluidity by kneading to lower the viscosity, and that the obtained thermal conductive compound does not cure even when heated, and has reached the present invention. . Accordingly, the object of the present invention is to exhibit a low thermal resistance, good heat resistance, no oil separation, a shape-retaining property that can be used even in a thick space, and a heat conductive compound that does not require a curing treatment after use, In particular, it is to provide a heat conductive compound suitable for a heat conductive material of a heat generating electronic component.
本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)A)熱硬化性液状シリコーン30〜60体積%、B)酸化アルミニウム、水酸化アルミニウム、酸化亜鉛、シリカ、窒化ケイ素および窒化ホウ素粉末の群から選ばれる1種又は2種以上の熱伝導性粉末40〜70体積%からなる樹脂組成物を反応硬化した後に混練、又は反応硬化と同時に混練することにより得られる熱伝導性コンパウンド。
(2)熱伝導性粉末の平均粒径が5〜70μmである前記(1)記載の熱伝導性コンパウンド。
(3)前記(1)又は前記(2)に記載の熱伝導性コンパウンドを用いた電子回路部品および電子回路部品を組み込んだ家庭用電気製品、OA機器、または自動車。
(4)熱伝導性粉末と熱硬化性液状シリコーンからなる樹脂組成物を反応硬化した後に混練、又は反応硬化と同時に混練することにより得られる熱伝導性コンパウンドの製造方法。
(5)A)熱硬化性液状シリコーン30〜60体積%、B)酸化アルミニウム、水酸化アルミニウム、酸化亜鉛、シリカ、窒化ケイ素および窒化ホウ素粉末の群から選ばれる1種又は2種以上の熱伝導性粉末40〜70体積%からなる樹脂組成物を反応硬化した後に混練、又は反応硬化と同時に混練することにより得られる熱伝導性コンパウンドの製造方法。
(6)熱伝導性粉末の平均粒径が5〜70μmである前記(5)に記載の熱伝導性コンパウンドの製造方法。
The present invention employs the following means in order to solve the above problems.
(1) A) Thermosetting liquid silicone 30-60% by volume, B) One or two or more kinds of heat conduction selected from the group of aluminum oxide, aluminum hydroxide, zinc oxide, silica, silicon nitride and boron nitride powder Conductive compound obtained by kneading a resin composition comprising 40 to 70% by volume of conductive powder after kneading, or kneading simultaneously with reaction curing.
(2) The heat conductive compound according to (1), wherein the heat conductive powder has an average particle size of 5 to 70 μm.
(3) An electronic circuit component using the heat conductive compound according to (1) or (2) and an electric appliance for home use, an OA device, or an automobile incorporating the electronic circuit component.
(4) A method for producing a thermally conductive compound obtained by reacting and curing a resin composition comprising a thermally conductive powder and a thermosetting liquid silicone, or kneading simultaneously with reaction curing.
(5) A) Thermosetting liquid silicone 30-60% by volume, B) One or more heat conduction selected from the group of aluminum oxide, aluminum hydroxide, zinc oxide, silica, silicon nitride and boron nitride powder A method for producing a thermally conductive compound obtained by reacting and curing a resin composition comprising 40 to 70% by volume of a conductive powder, or kneading simultaneously with reaction curing.
(6) The manufacturing method of the heat conductive compound as described in said (5) whose average particle diameter of heat conductive powder is 5-70 micrometers.
本発明の熱伝導性コンパウンドは、低熱抵抗を示し、耐熱性が良く、離油が無く、隙間の厚い箇所にも使用できる保型性があり、放熱材料として優れた性能を発揮できる。本発明の熱伝導性コンパウンドは、電子部品から発生した熱に対して放熱性を向上させ、特にCPU(中央処理装置)やチップセット等の発熱性電子部品の放熱材料として最適である。 The thermally conductive compound of the present invention exhibits low thermal resistance, good heat resistance, no oil separation, and has a shape-retaining property that can be used even in a thick gap, and can exhibit excellent performance as a heat dissipation material. The thermally conductive compound of the present invention improves heat dissipation against heat generated from electronic components, and is particularly suitable as a heat dissipation material for heat-generating electronic components such as CPU (central processing unit) and chipsets.
本発明で用いられる熱硬化性液状シリコーンは、常温で液状である公知の熱硬化性液状シリコーンであり、例えば、オルガノポリシロキサン、オルガノポリシルアルキレン、オルガノポリシラン及びそれらの共重合体等の中から適宜選択して使用することが出来るが、耐熱性、安定性、電気絶縁性等の観点からオルガノポリシロキサンが好ましく、特に、平均組成式 R1nSiO(4−n)/2(式中、R1は1価の有機基の中から選択される少なくとも1種の基であり、nは1.9〜2.1である。)で示されるオルガノポリシロキサンであることが好ましい。 The thermosetting liquid silicone used in the present invention is a known thermosetting liquid silicone that is liquid at room temperature, and examples thereof include organopolysiloxane, organopolysilalkylene, organopolysilane, and copolymers thereof. Although it can be appropriately selected and used, organopolysiloxane is preferred from the viewpoints of heat resistance, stability, electrical insulation and the like, and in particular, average composition formula R1nSiO (4-n) / 2 (wherein R1 is 1). It is preferably at least one group selected from valent organic groups, and n is 1.9 to 2.1.)
R1基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等のアルキル基類、シクロヘキシル基等のシクロアルキル基類、ビニル基、アリル基等のアルケニル基類、フェニル基、ナフチル基、トリル基等のアリール基類、又は、これらの基の炭素原子に結合した水素原子の一部又は全部をハロゲン原子、シアノ基、水酸基等で置換した同一又は異種の非置換又は置換の1価炭化水素基、アミノ基含有有機基、ポリエーテル基含有有機基、エポキシ基含有有機基等が挙げられるが、本発明においては、メチル基、ビニル基、フェニル基が好ましい。 Examples of the R1 group include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group and a dodecyl group, a cycloalkyl group such as a cyclohexyl group, and a vinyl group. , Alkenyl groups such as allyl groups, aryl groups such as phenyl groups, naphthyl groups, and tolyl groups, or some or all of the hydrogen atoms bonded to carbon atoms of these groups are halogen atoms, cyano groups, hydroxyl groups, etc. The same or different unsubstituted or substituted monovalent hydrocarbon group substituted with, amino group-containing organic group, polyether group-containing organic group, epoxy group-containing organic group, etc., in the present invention, methyl group, A vinyl group and a phenyl group are preferable.
オルガノポリシロキサンは、直鎖状、分岐状および環状のいずれの構造のものでも良く、さらにこれらを選択する際には、1種類に限定されることはなく、2種類以上の併用も可能である。nは、1.9〜2.1であることが好ましいが、特に直鎖状、若しくは、直鎖状に近いものである1.98〜2.02であることがより好ましい。また、このような熱硬化性液状シリコーン自体の硬度は、通常、針入度が50〜120mm/10であるが、本発明で使用される熱硬化性液状シリコーンの針入度は80〜100mm/10であることが好ましい。 The organopolysiloxane may have any of linear, branched, and cyclic structures, and when these are selected, the organopolysiloxane is not limited to one type, and two or more types can be used in combination. . n is preferably from 1.9 to 2.1, and more preferably from 1.98 to 2.02, which is particularly linear or close to linear. Further, the hardness of such thermosetting liquid silicone itself is usually 50 to 120 mm / 10 penetration, but the penetration of the thermosetting liquid silicone used in the present invention is 80 to 100 mm / 10 is preferable.
また、上記の熱硬化性液状シリコーンには、必要に応じて硬化剤、遅延剤、難燃剤等を添加することも出来る。 In addition, a curing agent, a retarder, a flame retardant, etc. can be added to the thermosetting liquid silicone as necessary.
熱伝導性粉末は、酸化アルミニウム、水酸化アルミニウム、酸化亜鉛、シリカ、窒化ケイ素および窒化ホウ素粉末の群から選ばれる1種又は2種以上の熱伝導性粉末である。その形状としては、球状、破砕状、繊維状、針状、鱗片状、ウィスカー状等がある。これらの熱伝導性粉末は、熱伝導性粉末含有量の向上、熱伝導性コンパウンドのちょう度、熱伝導率等の諸特性の調整を目的としており、熱伝導性粉末を1種又は2種以上を混合して使用することができる。
シリカとしては、結晶性シリカを用いるのが好ましい。
The thermally conductive powder is one or more thermally conductive powders selected from the group consisting of aluminum oxide, aluminum hydroxide, zinc oxide, silica, silicon nitride and boron nitride powder. Examples of the shape include a spherical shape, a crushed shape, a fiber shape, a needle shape, a scale shape, and a whisker shape. These heat conductive powders are intended to improve the content of the heat conductive powder, to adjust various properties such as the consistency of the heat conductive compound and the thermal conductivity. Can be used in combination.
As silica, it is preferable to use crystalline silica.
熱伝導性粉末の平均粒径としては、5〜70μmであることが好ましい。5μm未満であると、熱伝導性コンパウンドが硬くなり、熱伝導率を向上させることが難しくなる。一方、70μmを超えると、熱伝導性コンパウンドが柔らかくなり、保型性を維持することが難しくなる。 The average particle size of the heat conductive powder is preferably 5 to 70 μm. If it is less than 5 μm, the thermal conductive compound becomes hard and it becomes difficult to improve the thermal conductivity. On the other hand, if it exceeds 70 μm, the heat conductive compound becomes soft and it becomes difficult to maintain the shape retention.
熱伝導性コンパウンド中の熱伝導性粉末の合計量は40〜70体積%であることが必要であり、特に50〜60体積%であることが好ましい。70体積%を超えると、熱伝導性コンパウンドが硬くなり、熱伝導率を向上させることが難しくなる。また、40体積%より小さくなると、熱伝導性粉末の充填量が小さいため、熱が伝わりにくくなり、熱伝導率を向上させることが難しくなる。 The total amount of the heat conductive powder in the heat conductive compound needs to be 40 to 70% by volume, and particularly preferably 50 to 60% by volume. When it exceeds 70 volume%, a heat conductive compound will become hard and it will become difficult to improve heat conductivity. On the other hand, if the volume is less than 40% by volume, the amount of heat conductive powder filling is small, so that heat is hardly transmitted and it is difficult to improve the thermal conductivity.
熱伝導性コンパウンドの製造方法としては、熱硬化性液状シリコーンと熱伝導性粉末を万能混合攪拌機やニーダー、ハイブリッドミキサー等の混合機で十分に混練を行い、スラリー状の樹脂組成物を得る。次に、混練したスラリー状の樹脂組成物をドクターブレード法、押出し法等でシート化し、その後遠赤外乾燥機等で加熱して反応硬化させる。この時の加熱温度は、一般的に公知なシリコーン樹脂の加熱温度であり、例えば120〜150℃の範囲である。この様にして得られた樹脂組成物の硬化物を混練しやすいように、例えばハサミやカッターナイフ、包丁等を使用して混練機に投入し易いサイズに裁断後、上記の混合機等で固形物やダマ等が無くなるまで再度混練して製造することができる。他の方法としては、得られたスラリー状の樹脂組成物を混合機にて加熱させながら混練することで、目的のコンパウンドを製造することが出来る。樹脂組成物は、熱硬化性液状シリコーンと熱伝導性粉末を混練後に硬化させた方が好ましいが、熱硬化性液状シリコーンを単独で硬化させ、硬化した熱硬化性液状シリコーンと熱伝導性粉末を混練する事でも目的の熱伝導性コンパウンドを得る事が出来る。なお、いずれの場合においても、生産性を考慮して樹脂組成物の硬化反応を促進させるために加熱させているが、急激に熱を加えなくとも樹脂組成物の硬化反応は徐々に進行していくため、最終的には加熱した場合と同様の樹脂組成物の硬化物を得ることが出来る。なお、熱硬化性液状シリコーン樹脂の硬化反応率は、90%以上であることが好ましい。また、熱硬化性液状シリコーンの硬化反応率は、90%以上終了しているので、得られた熱伝導性コンパウンドをさらに加熱処理してもさらに硬化することはない。 As a method for producing a heat conductive compound, a thermosetting liquid silicone and a heat conductive powder are sufficiently kneaded with a mixer such as a universal mixing stirrer, kneader or hybrid mixer to obtain a slurry-like resin composition. Next, the kneaded slurry-like resin composition is formed into a sheet by a doctor blade method, an extrusion method, or the like, and then heated and reacted and cured by a far infrared dryer or the like. The heating temperature at this time is a generally known heating temperature of a silicone resin, for example, in the range of 120 to 150 ° C. In order to easily knead the cured product of the resin composition obtained in this way, for example, using a scissor, a cutter knife, a knife, etc. The product can be kneaded again until there are no objects or lumps. As another method, the desired compound can be produced by kneading the obtained slurry-like resin composition while heating it with a mixer. The resin composition is preferably cured after kneading the thermosetting liquid silicone and the heat conductive powder, but the thermosetting liquid silicone and the heat conductive powder are cured by curing the thermosetting liquid silicone alone. The desired heat conductive compound can also be obtained by kneading. In any case, heating is performed in order to promote the curing reaction of the resin composition in consideration of productivity, but the curing reaction of the resin composition proceeds gradually without applying heat suddenly. Therefore, finally, a cured product of the same resin composition as when heated can be obtained. The curing reaction rate of the thermosetting liquid silicone resin is preferably 90% or more. Further, since the curing reaction rate of the thermosetting liquid silicone is 90% or more, it is not further cured even if the obtained heat conductive compound is further heat-treated.
熱伝導性コンパウンドの柔軟性は、JIS K 2220で測定されたちょう度が200〜400である事が好ましい。ちょう度が200未満であると形状追従性が悪く、熱抵抗が大きくなり、400を超えると熱伝導性コンパウンドが流れ出す危険性がある。また、熱伝導性コンパウンドの熱抵抗としては、1.0℃/W以下である事が好ましい。 The flexibility of the thermally conductive compound is preferably 200 to 400 as measured by JIS K 2220. If the consistency is less than 200, the shape followability is poor and the thermal resistance is increased. In addition, the thermal resistance of the heat conductive compound is preferably 1.0 ° C./W or less.
熱伝導性コンパウンドの熱抵抗の測定方法は、ヒーターの埋め込まれた直方体の銅製治具で、先端が1cm2(1cm×1cm)と、冷却フィンを取り付けた直方体の銅製治具で、先端が1cm2(1cm×1cm)との間に、熱伝導性コンパウンドを挟んで、1平方センチメートル当たり4kgの荷重をかけて、試料と銅製治具を密着させた。試料量は、密着面全体を埋める状態とした。ヒーターに電力20Wをかけて30分間保持し、銅製治具同士の温度差(℃)を測定し、次式、熱抵抗(℃/W)={温度差(℃)/ 電力(W)}、にて算出した。 The method of measuring the thermal resistance of the thermal conductive compound is a rectangular parallelepiped copper jig in which a heater is embedded, with a 1 cm 2 (1 cm × 1 cm) tip, and a rectangular parallelepiped copper jig with a cooling fin attached, and a 1 cm tip. 2 (1 cm × 1 cm), a heat conductive compound was sandwiched between them, and a load of 4 kg per square centimeter was applied to bring the sample and the copper jig into close contact. The sample amount was set to fill the entire adhesion surface. Hold the heater with power of 20W and hold for 30 minutes, measure the temperature difference (° C) between the copper jigs, the following formula, thermal resistance (° C / W) = {temperature difference (° C) / power (W)}, It calculated in.
以下、本発明を実施例によって、詳細に説明するが、本発明はこれらによって限定されるものではない。
(実施例1〜12)
SE−1885(2液性の付加反応型液状シリコーンゲル、ちょう度:90)、硬化剤(東レ・ダウコーンング社製、RD−1)、遅延剤(関東化学社製、マレイン酸ジメチル)を0.01〜0.10wt%の範囲で添加して硬化時間を約10分程度に調節した。各材料を表1及び表2に記載した配合で、万能混合攪拌機で30分間混練してスラリーを得た。これをドクターブレード法で3mm厚に塗工後、遠赤外乾燥機で150℃、10分間加熱硬化し、シートを得た。得られたシートを、幅30mm、長さ100mm程度に切断し、更に万能混合攪拌機で30分間混練して、熱伝導性コンパウンドを得た。熱伝導性コンパウンドの熱抵抗とちょう度を評価した結果を表1に示した。また、上記スラリーを金属カップに流し込んだ後、オーブンで150℃、20分間加熱硬化して得られた硬化物のちょう度についても表1に示した。
ちょう度の測定は、JISK 2220:2003に基づいて行った。
熱伝導性粉末の粒度分布及び頻度極大値については、島津製作所製、レーザー回折式粒度分布測定装置「SALD−2200」を用いて測定した。評価サンプルは、ガラスビーカーに50ccの純水と測定する熱伝導性粉末を5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。分散処理を行った熱伝導性粉末の溶液を、スポイトを用いて、装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待った。このようにして吸光度が安定になった時点で測定を行った。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布の計算を行う。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を掛けて、相対粒子量の合計(100%)で割って求められる。また、平均粒子径は粒子の直径である。
表1に実施例、表2に比較例で使用した、熱伝導性粉末及び熱硬化性液状シリコーンの配合比率を示した。使用した各材料を下記に示す。
1)酸化アルミニウム粉末
DAW−05(平均粒径: 5μm、形状:球状、電気化学工業社製)
DAW−70(平均粒径:70μm、形状:球状、電気化学工業社製)
AA−05 (平均粒径;0.6μm、住友化学社製)
2)水酸化アルミニウム粉末(日本軽金属社製)
B−303(平均粒径:30μm、形状:破砕状)
B−73 (平均粒径:87μm)
3)窒化ホウ素粉末(電気化学工業社製)
GP(平均粒径:15μm(長手方向)、形状:鱗片状)
4)シリコーン
SE−1885(2液性の付加反応型液状シリコーンゲル、東レダウコーニング社製)
KF96―100CS(シリコーンオイル、信越シリコーン社製、)比較用
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by these.
(Examples 1-12)
SE-1885 (two-component addition-reaction type liquid silicone gel, consistency: 90), curing agent (manufactured by Toray Dowkong, RD-1), retarder (manufactured by Kanto Chemical Co., dimethyl maleate) The curing time was adjusted to about 10 minutes by adding in the range of 01 to 0.10 wt%. Each material was kneaded with a universal mixing stirrer for 30 minutes with the formulation described in Table 1 and Table 2 to obtain a slurry. This was coated with a doctor blade method to a thickness of 3 mm, and then heat-cured with a far-infrared dryer at 150 ° C. for 10 minutes to obtain a sheet. The obtained sheet was cut into a width of about 30 mm and a length of about 100 mm, and further kneaded for 30 minutes with a universal mixing stirrer to obtain a thermally conductive compound. Table 1 shows the results of evaluating the thermal resistance and consistency of the thermally conductive compound. Table 1 also shows the consistency of a cured product obtained by pouring the slurry into a metal cup and then heat curing in an oven at 150 ° C. for 20 minutes.
The penetration was measured based on JISK 2220: 2003.
The particle size distribution and the frequency maximum value of the heat conductive powder were measured using a laser diffraction particle size distribution measuring device “SALD-2200” manufactured by Shimadzu Corporation. As an evaluation sample, 5 g of 50 cc of pure water and a heat conductive powder to be measured were added to a glass beaker, stirred using a spatula, and then subjected to a dispersion treatment for 10 minutes using an ultrasonic cleaner. The solution of the thermally conductive powder that had been subjected to the dispersion treatment was added dropwise to the sampler portion of the apparatus using a dropper, and waited until the absorbance became measurable. Measurement was performed when the absorbance was stabilized in this way. In the laser diffraction particle size distribution measuring apparatus, the particle size distribution is calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor. The average particle size is obtained by multiplying the value of the measured particle size by the relative particle amount (difference%) and dividing by the total relative particle amount (100%). The average particle diameter is the diameter of the particles.
Table 1 shows the blending ratio of the heat conductive powder and the thermosetting liquid silicone used in the examples and Table 2 in the comparative example. Each material used is shown below.
1) Aluminum oxide powder DAW-05 (average particle size: 5 μm, shape: spherical, manufactured by Denki Kagaku Kogyo Co., Ltd.)
DAW-70 (average particle size: 70 μm, shape: spherical, manufactured by Denki Kagaku Kogyo)
AA-05 (average particle size; 0.6 μm, manufactured by Sumitomo Chemical Co., Ltd.)
2) Aluminum hydroxide powder (manufactured by Nippon Light Metal Co., Ltd.)
B-303 (average particle size: 30 μm, shape: crushed)
B-73 (Average particle diameter: 87 μm)
3) Boron nitride powder (manufactured by Denki Kagaku Kogyo)
GP (average particle size: 15 μm (longitudinal direction), shape: scaly)
4) Silicone SE-1885 (two-component addition reaction type liquid silicone gel, manufactured by Toray Dow Corning)
For comparison with KF96-100CS (silicone oil, manufactured by Shin-Etsu Silicone)
比較例1〜4は、表2に示す配合とした以外は他の実施例と同様にした。比較例5〜8は、マトリックスとなるベースポリマーとして、シリコーンオイル(信越シリコーン社製、商品名「KF96―100CS」)を表2に示す配合で、万能混合攪拌機で30分間混練して熱伝導性コンパウンドを得た。なお、比較例5〜8においては、得られた熱伝導性コンパウンドを金属カップに流し込んだ後、オーブンで150℃、20分間以上加熱しても硬化物が得られない為、表2の硬化物のちょう度の欄は空欄とした。また、比較例7〜8については、熱伝導性コンパウンドのちょう度測定において検出限界(475)を超えた為、測定不能とした。 Comparative Examples 1 to 4 were the same as the other examples except that the formulations shown in Table 2 were used. In Comparative Examples 5 to 8, silicone oil (manufactured by Shin-Etsu Silicone Co., Ltd., trade name “KF96-100CS”) is blended as shown in Table 2 as a base polymer serving as a matrix, and kneaded for 30 minutes with a universal mixing stirrer for thermal conductivity. I got a compound. In Comparative Examples 5 to 8, since the obtained heat conductive compound was poured into a metal cup and then cured at 150 ° C. for 20 minutes or more in an oven, a cured product could not be obtained. The consistency field is blank. Moreover, about Comparative Examples 7-8, since the detection limit (475) was exceeded in the consistency measurement of the heat conductive compound, it was set as measurement impossible.
本発明の熱伝導性コンパウンドは、低熱抵抗を示し、耐熱性が良く、離油が無く、隙間の厚い箇所にも使用できる保型性があり、発熱性電子部品からヒートシンクや筐体等の冷却部へ熱を効率良く伝えることができる。 The heat conductive compound of the present invention exhibits low thermal resistance, good heat resistance, no oil separation, and has a shape-retaining property that can be used even in thick gaps. Heat can be transferred efficiently to the part.
Claims (6)
The method for producing a thermally conductive compound according to claim 5, wherein the average particle size of the thermally conductive powder is 5 to 70 µm.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007111106A JP2010155870A (en) | 2007-04-20 | 2007-04-20 | Thermally conductive compound and method for producing the same |
PCT/JP2008/057619 WO2008133211A1 (en) | 2007-04-20 | 2008-04-18 | Thermally conductive compound and process for producing the same |
TW97114561A TW200911924A (en) | 2007-04-20 | 2008-04-18 | Thermally conductive compound and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007111106A JP2010155870A (en) | 2007-04-20 | 2007-04-20 | Thermally conductive compound and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010155870A true JP2010155870A (en) | 2010-07-15 |
Family
ID=39925665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007111106A Pending JP2010155870A (en) | 2007-04-20 | 2007-04-20 | Thermally conductive compound and method for producing the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2010155870A (en) |
TW (1) | TW200911924A (en) |
WO (1) | WO2008133211A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011178821A (en) * | 2010-02-26 | 2011-09-15 | Shin-Etsu Chemical Co Ltd | Heat conductive silicone composition and cured product of the same |
WO2016190189A1 (en) * | 2015-05-22 | 2016-12-01 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive composition |
WO2016190188A1 (en) * | 2015-05-22 | 2016-12-01 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive composition |
JP2020003532A (en) * | 2018-06-25 | 2020-01-09 | 株式会社リコー | Light source module, optical device, and method for manufacturing light source module |
WO2020213348A1 (en) * | 2019-04-18 | 2020-10-22 | 信越化学工業株式会社 | Thermally conductive resin composition and thermally conductive resin cured product |
JP2021088621A (en) * | 2019-12-02 | 2021-06-10 | 信越化学工業株式会社 | Heat-conductive resin composition using boron nitride aggregate powder and heat-conductive resin cured product |
JP6938808B1 (en) * | 2020-09-03 | 2021-09-22 | 富士高分子工業株式会社 | Thermally conductive silicone gel composition, thermally conductive silicone sheet and its manufacturing method |
WO2022049815A1 (en) * | 2020-09-03 | 2022-03-10 | 富士高分子工業株式会社 | Thermally conductive silicone gel composition, thermally conductive silicone sheet, and production methods therefor |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4899137B2 (en) * | 2008-07-17 | 2012-03-21 | ニホンハンダ株式会社 | Thermally conductive oil composition, heat radiation agent and electronic device |
DE102009000888B4 (en) * | 2009-02-16 | 2011-03-24 | Semikron Elektronik Gmbh & Co. Kg | A semiconductor device |
CN102648501A (en) * | 2009-12-04 | 2012-08-22 | Abb研究有限公司 | A high voltage surge arrester |
TWI522423B (en) * | 2010-08-31 | 2016-02-21 | 道康寧東麗股份有限公司 | Polysiloxane composition and cured product thereof |
CN103333494B (en) * | 2013-05-28 | 2015-08-05 | 东莞上海大学纳米技术研究院 | A kind of Thermal-conductive insulation silicone rubber thermal interface material and preparation method thereof |
CN107841282A (en) * | 2016-09-19 | 2018-03-27 | 阿特斯(中国)投资有限公司 | A kind of heat conduction casting glue and preparation method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3464752B2 (en) * | 1997-07-02 | 2003-11-10 | 電気化学工業株式会社 | Molded polymer material and its use |
JPH1121387A (en) * | 1997-07-02 | 1999-01-26 | Denki Kagaku Kogyo Kk | Polymeric material molding and its use |
JP3354087B2 (en) * | 1997-09-11 | 2002-12-09 | 電気化学工業株式会社 | Method of manufacturing heat-radiating spacer having high flexibility and high thermal conductivity |
JP3183502B2 (en) * | 1997-09-11 | 2001-07-09 | 電気化学工業株式会社 | Heat radiation spacer |
JP3178805B2 (en) * | 1997-10-16 | 2001-06-25 | 電気化学工業株式会社 | Heat radiation spacer |
JP4357064B2 (en) * | 2000-02-17 | 2009-11-04 | 電気化学工業株式会社 | Heat dissipation member |
JP3838994B2 (en) * | 2003-06-04 | 2006-10-25 | 電気化学工業株式会社 | Heat dissipation member |
JP4481019B2 (en) * | 2004-01-21 | 2010-06-16 | 電気化学工業株式会社 | Mixed powder and its use |
-
2007
- 2007-04-20 JP JP2007111106A patent/JP2010155870A/en active Pending
-
2008
- 2008-04-18 WO PCT/JP2008/057619 patent/WO2008133211A1/en active Application Filing
- 2008-04-18 TW TW97114561A patent/TW200911924A/en unknown
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011178821A (en) * | 2010-02-26 | 2011-09-15 | Shin-Etsu Chemical Co Ltd | Heat conductive silicone composition and cured product of the same |
US10683444B2 (en) | 2015-05-22 | 2020-06-16 | Momentive Performance Materials Japan Llc | Thermally conductive composition |
WO2016190188A1 (en) * | 2015-05-22 | 2016-12-01 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive composition |
JPWO2016190189A1 (en) * | 2015-05-22 | 2017-06-15 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive composition |
JPWO2016190188A1 (en) * | 2015-05-22 | 2017-06-15 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive composition |
WO2016190189A1 (en) * | 2015-05-22 | 2016-12-01 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive composition |
EP3299419B1 (en) * | 2015-05-22 | 2021-07-07 | Momentive Performance Materials Japan LLC | Thermally conductive composition |
JP2020003532A (en) * | 2018-06-25 | 2020-01-09 | 株式会社リコー | Light source module, optical device, and method for manufacturing light source module |
JP7070146B2 (en) | 2018-06-25 | 2022-05-18 | 株式会社リコー | Light source module and optical device |
WO2020213348A1 (en) * | 2019-04-18 | 2020-10-22 | 信越化学工業株式会社 | Thermally conductive resin composition and thermally conductive resin cured product |
JP2020176201A (en) * | 2019-04-18 | 2020-10-29 | 信越化学工業株式会社 | Heat-conductive resin composition and heat-conductive resin cured product |
JP2021088621A (en) * | 2019-12-02 | 2021-06-10 | 信越化学工業株式会社 | Heat-conductive resin composition using boron nitride aggregate powder and heat-conductive resin cured product |
JP6938808B1 (en) * | 2020-09-03 | 2021-09-22 | 富士高分子工業株式会社 | Thermally conductive silicone gel composition, thermally conductive silicone sheet and its manufacturing method |
WO2022049815A1 (en) * | 2020-09-03 | 2022-03-10 | 富士高分子工業株式会社 | Thermally conductive silicone gel composition, thermally conductive silicone sheet, and production methods therefor |
Also Published As
Publication number | Publication date |
---|---|
WO2008133211A1 (en) | 2008-11-06 |
TW200911924A (en) | 2009-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010155870A (en) | Thermally conductive compound and method for producing the same | |
TWI780100B (en) | Thermally conductive resin composition, heat dissipation sheet, heat dissipation member, and manufacturing method thereof | |
WO2020137086A1 (en) | Heat-conductive composition and heat-conductive sheet employing same | |
KR101696485B1 (en) | Thermal interface materials | |
KR102132243B1 (en) | Thermal conductive silicone composition and cured product, and composite sheet | |
JP5463116B2 (en) | Thermally conductive material | |
JP3290127B2 (en) | Heat conductive silicone rubber composition and heat dissipation sheet comprising the heat conductive silicone rubber composition | |
JP4987496B2 (en) | Manufacturing method of heat dissipation material | |
JP6884787B2 (en) | Composition for heat conductive grease, heat conductive grease and heat dissipation member | |
JP6692512B1 (en) | Thermally conductive composition and thermally conductive sheet using the same | |
JP2009096961A (en) | Heat-conductive silicone grease composition excellent in reworkability | |
JP2022141720A (en) | Thermally conductive sheet and method for manufacturing the same | |
JP5472055B2 (en) | Thermally conductive silicone grease composition | |
JP7082563B2 (en) | Cured product of thermally conductive silicone composition | |
JP2009203373A (en) | Thermoconductive silicone composition | |
JP2007277406A (en) | Highly heat-conductive resin compound, highly heat-conductive resin molded article, compounding particle for heat-releasing sheet, highly heat-conductive resin compound, highly heat-conductive resin molded article, heat-releasing sheet, and method for producing the same | |
JP7303159B2 (en) | Silicone composition and cured thermally conductive silicone having high thermal conductivity | |
JP2010120979A (en) | Thermally conductive silicone gel cured product | |
JP7276493B2 (en) | Thermally conductive silicone composition and method for producing the same | |
TW201943768A (en) | Heat-conductive silicone composition and cured product thereof | |
JP2018053260A (en) | Thermal conductive silicone composition, cured article and composite sheet | |
JPWO2019031458A1 (en) | Low dielectric constant heat conductive heat dissipation member | |
JPWO2020100482A1 (en) | Thermal conductivity sheet and its manufacturing method | |
JP5284655B2 (en) | Thermally conductive grease | |
JP6125303B2 (en) | Thermally conductive sheet |