JP6884787B2 - Composition for heat conductive grease, heat conductive grease and heat dissipation member - Google Patents

Composition for heat conductive grease, heat conductive grease and heat dissipation member Download PDF

Info

Publication number
JP6884787B2
JP6884787B2 JP2018534246A JP2018534246A JP6884787B2 JP 6884787 B2 JP6884787 B2 JP 6884787B2 JP 2018534246 A JP2018534246 A JP 2018534246A JP 2018534246 A JP2018534246 A JP 2018534246A JP 6884787 B2 JP6884787 B2 JP 6884787B2
Authority
JP
Japan
Prior art keywords
conductive grease
component
mass
composition
heat conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018534246A
Other languages
Japanese (ja)
Other versions
JPWO2018033992A1 (en
Inventor
高士 堂本
高士 堂本
山縣 利貴
利貴 山縣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Publication of JPWO2018033992A1 publication Critical patent/JPWO2018033992A1/en
Application granted granted Critical
Publication of JP6884787B2 publication Critical patent/JP6884787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Lubricants (AREA)

Description

本発明は、熱伝導性グリース用組成物、熱伝導性グリース及び放熱部材に関する。 The present invention relates to a composition for thermally conductive grease, a thermally conductive grease, and a heat radiating member.

発熱性電子部品の小型化及び高出力化に伴い、電子部品から発生する単位面積当たりの熱量は非常に大きくなってきている。電子部品の冷却には、金属製のヒートシンク、筐体等が冷却部として使用され、さらに電子部品から冷却部へ効率よく熱を伝えるために放熱材が使用される。この放熱材を使用する理由として電子部品と冷却部とをそのまま接触させた場合、その界面には微視的にみると、空気が存在し熱伝導の障害となる。したがって、界面に存在する空気の代わりに放熱材を電子部品と冷却部との間に存在させることによって、効率よく熱を伝えることができる。 With the miniaturization and high output of heat-generating electronic components, the amount of heat generated from the electronic components per unit area has become extremely large. A metal heat sink, a housing, or the like is used as a cooling unit for cooling the electronic components, and a heat radiating material is used to efficiently transfer heat from the electronic components to the cooling unit. The reason for using this heat radiating material is that when the electronic component and the cooling unit are brought into contact with each other as they are, air is present at the interface microscopically, which hinders heat conduction. Therefore, heat can be efficiently transferred by having a heat radiating material exist between the electronic component and the cooling portion instead of the air existing at the interface.

また、電子部品動作前は使用環境次第でマイナス数十℃の低温となり、動作中は高温となるといったように、放熱材は、電子部品を使用する度に大きな冷熱衝撃を受け続ける。電子部品を長期にわたり故障しないようにするためには、発熱する電子部品を冷却し続ける必要があり、放熱材の放熱特性が十分に維持される必要がある。 Further, the heat radiating material continues to receive a large thermal shock every time the electronic component is used, such that the temperature becomes low at minus several tens of degrees Celsius depending on the usage environment before the operation of the electronic component and the temperature becomes high during the operation. In order to prevent the electronic components from failing for a long period of time, it is necessary to keep cooling the heat-generating electronic components, and it is necessary to sufficiently maintain the heat dissipation characteristics of the heat radiating material.

従来から、電子部品と他の部材との間に介在する樹脂材料としてシリコーン系材料が利用されている(例えば、特許文献1〜4)。 Conventionally, a silicone-based material has been used as a resin material interposed between an electronic component and another member (for example, Patent Documents 1 to 4).

特開2014−162885号公報Japanese Unexamined Patent Publication No. 2014-162858 国際公開第2010/010841号International Publication No. 2010/010841 特開2012−102177号公報Japanese Unexamined Patent Publication No. 2012-102177 特開2014−162886号公報Japanese Unexamined Patent Publication No. 2014-162886

放熱性に優れる放熱材として、例えば、シリコーンオイル等の液状シリコーン又は低分子量シリコーン等の低粘度シリコーンに熱伝導性フィラーを添加した、流動性のあるグリースが知られている。しかし、グリースは高熱伝導であるが流動性があるがゆえに冷熱衝撃を何回も繰り返させるところで使用すると、割れ(高温下に暴露した際に、グリースに欠陥部を生じる現象)又はポンプアウト(基材やグリース自身の熱膨張・収縮により、グリースが冷却部より外に流れ出てしまう現象)が生じ、熱抵抗が上昇する場合がある。 As a heat radiating material having excellent heat radiating properties, for example, a fluid grease in which a heat conductive filler is added to a liquid silicone such as silicone oil or a low viscosity silicone such as a low molecular weight silicone is known. However, since grease has high thermal conductivity but is fluid, if it is used in a place where cold shock is repeated many times, it will crack (a phenomenon that causes defects in grease when exposed to high temperature) or pump out (base). Due to the thermal expansion and contraction of the material and the grease itself, the grease may flow out of the cooling part), and the thermal resistance may increase.

ポンプアウトは高温時のグリースの粘度が低いほど生じやすく、割れ及びポンプアウトの両方を抑制したグリースの開発は極めて難しい。 Pump-out is more likely to occur as the viscosity of grease at high temperature is lower, and it is extremely difficult to develop grease that suppresses both cracking and pump-out.

発明者達は鋭意検討した結果、冷熱衝撃過程におけるグリースの割れ現象は、フィラーの再凝集に起因する現象であることを確認した。また、フィラーの再凝集を低減するには、シリコーン分子鎖中に、フィラー表面と相互作用を生じるシランカップリング剤を導入することが有効であることを見出した。さらにグリースのポンプアウト現象に関しては、シリコーン架橋体の構造制御が不可欠であることを確認した。また、このシリコーン架橋体の構造制御には特定の分子量、ビニル基数、分子中にある一定数量の平均ヒドロシリル基数を有するシリコーンが不可欠であることを見出した。 As a result of diligent studies, the inventors have confirmed that the grease cracking phenomenon in the thermal shock process is a phenomenon caused by the reaggregation of the filler. It was also found that it is effective to introduce a silane coupling agent that interacts with the filler surface into the silicone molecular chain in order to reduce the reaggregation of the filler. Furthermore, it was confirmed that structural control of the silicone crosslinked product is indispensable for the grease pump-out phenomenon. It was also found that a silicone having a specific molecular weight, a vinyl group number, and a certain number of average hydrosilyl groups in the molecule is indispensable for structural control of this silicone crosslinked product.

本発明は、上記問題と実状に鑑み、冷熱衝撃過程において、耐割れ性及び耐ポンプアウト性に優れた熱伝導性グリースを提供することを目的とする。さらに、本発明は、この熱伝導性グリースを形成可能な熱伝導性グリース用組成物、及び、この熱伝導性グリースを含む放熱部材を提供することを目的とする。 An object of the present invention is to provide a thermally conductive grease having excellent crack resistance and pump-out resistance in a thermal shock process in view of the above problems and actual conditions. Furthermore, an object of the present invention is to provide a composition for a heat conductive grease capable of forming the heat conductive grease, and a heat radiating member containing the heat conductive grease.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)(A)両末端にビニル基を含有する質量平均分子量10000〜800000のシリコーン、(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーン、(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量10000〜40000のシリコーン、(D)反応性二重結合を含有するシランカップリング剤、及び(E)熱伝導性フィラーを含有する、熱伝導性グリース用組成物。
(2)前記(A)成分、前記(B)成分、前記(C)成分及び前記(D)成分の総和が、前記熱伝導性グリース用組成物の総量基準で6〜20質量%である、(1)に記載の熱伝導性グリース用組成物。
(3)前記熱伝導性グリース用組成物の総量基準で、前記(A)成分の含有量が2.5〜15質量%、前記(B)成分の含有量が0.005〜0.1質量%、前記(C)成分の含有量が1〜10質量%、前記(D)成分の含有量が0.01〜0.6質量%である、(1)又は(2)に記載の熱伝導性グリース用組成物。
(4)前記(E)成分が、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム及び酸化亜鉛からなる群より選択される1種以上を含む、(1)〜(3)のいずれかに記載の熱伝導性グリース用組成物。
(5)前記(E)成分が、平均粒子径が15〜100μmである粗粉、平均粒子径が2〜11μmである中粒粉、及び平均粒子径が0.5〜1μmである微粉を含む(1)〜(4)のいずれかに記載の熱伝導性グリース用組成物。
(6)(1)〜(5)のいずれかに記載の熱伝導性グリース用組成物の硬化物を含む、熱伝導性グリース。
(7)(6)に記載の熱伝導性グリースを含む放熱材と、前記放熱材を介して電子部品と接合される冷却部と、を備える、放熱部材。
The present invention employs the following means in order to solve the above problems.
(1) (A) Silicone having a mass average molecular weight of 1000 to 800,000 containing vinyl groups at both ends, (B) No vinyl group in the molecule and an average of 5 to 10 hydrosilyl groups in the molecule Silicone with a mass average molecular weight of 2000 to 10000, (C) Silicone with a mass average molecular weight of 1000 to 40,000 containing vinyl groups at both ends and an average of 1 to 4 hydrosilyl groups in the molecule, (D) Reaction A composition for a heat conductive grease containing a silane coupling agent containing a sex double bond and (E) a heat conductive filler.
(2) The sum of the component (A), the component (B), the component (C) and the component (D) is 6 to 20% by mass based on the total amount of the composition for heat conductive grease. The composition for thermally conductive grease according to (1).
(3) Based on the total amount of the composition for heat conductive grease, the content of the component (A) is 2.5 to 15% by mass, and the content of the component (B) is 0.005 to 0.1% by mass. %, The content of the component (C) is 1 to 10% by mass, and the content of the component (D) is 0.01 to 0.6% by mass, according to (1) or (2). Composition for sex grease.
(4) The heat conduction according to any one of (1) to (3), wherein the component (E) contains at least one selected from the group consisting of silica, alumina, boron nitride, aluminum nitride and zinc oxide. Composition for sex grease.
(5) The component (E) includes a coarse powder having an average particle size of 15 to 100 μm, a medium particle powder having an average particle size of 2 to 11 μm, and a fine powder having an average particle size of 0.5 to 1 μm. The composition for thermally conductive grease according to any one of (1) to (4).
(6) A thermally conductive grease containing a cured product of the composition for thermally conductive grease according to any one of (1) to (5).
(7) A heat radiating member including a heat radiating material containing the heat conductive grease according to (6) and a cooling portion bonded to an electronic component via the heat radiating material.

本発明では、特定のシリコーン、シランカップリング剤及び熱伝導性フィラーを含有する熱伝導性グリース用組成物が、冷熱衝撃過程後もグリースとしての特性を維持し、かつ耐割れ性及び耐ポンプアウト性を両立する熱伝導性グリースを形成できることを見出した。 In the present invention, a composition for a thermally conductive grease containing a specific silicone, a silane coupling agent and a thermally conductive filler maintains the properties as a grease even after a thermal shock process, and has crack resistance and pump-out resistance. We have found that it is possible to form a thermally conductive grease that has both properties.

実施例2の耐ポンプアウト性評価試験後の試験片である。It is a test piece after the pump-out resistance evaluation test of Example 2. 比較例3の耐ポンプアウト性評価試験後の試験片である。It is a test piece after the pump-out resistance evaluation test of Comparative Example 3. 実施例2の耐割れ性評価試験後の試験片である。It is a test piece after the crack resistance evaluation test of Example 2. 比較例2の耐割れ性評価試験後の試験片である。It is a test piece after the crack resistance evaluation test of Comparative Example 2. 比較例2の耐割れ性評価試験後の試験片を二値化した画像である。It is a binarized image of the test piece after the crack resistance evaluation test of Comparative Example 2. 放熱部材の一実施形態を示す模式断面図である。It is a schematic cross-sectional view which shows one Embodiment of a heat radiating member.

以下、本発明の好適な実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described.

本実施形態の熱伝導性グリース用組成物は、(A)両末端にビニル基を含有する質量平均分子量10000〜800000のシリコーン((A)成分)、(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーン((B)成分)、(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量10000〜40000のシリコーン((C)成分)、(D)反応性二重結合を含有するシランカップリング剤((D)成分)、及び(E)熱伝導性フィラー((E)成分)を含有する。 The composition for heat conductive grease of the present embodiment contains (A) a silicone (component (A)) having a mass average molecular weight of 1000 to 800,000 containing vinyl groups at both ends, and (B) containing a vinyl group in the molecule. Silicone (component (B)) having a mass average molecular weight of 2000 to 10000 containing an average of 5 to 10 hydrosilyl groups in the molecule, and (C) containing vinyl groups at both ends and an average of 1 in the molecule. Silicone (component (C)) having a mass average molecular weight of 1000 to 40,000 containing up to 4 hydrosilyl groups, (D) a silane coupling agent containing a reactive double bond (component (D)), and (E). Contains a thermally conductive filler (component (E)).

熱伝導性グリース用組成物はシリコーンの付加反応(架橋反応)により架橋され、架橋度を最適化することにより流動性のある熱伝導性グリースが得られる。なお、本明細書中、熱伝導性グリース用組成物の架橋反応を進行させることを硬化といい、架橋反応は場合により硬化反応ともいう。硬化方法としては熱伝導性グリース用組成物に付加反応触媒を添加し、これを加熱する方法が挙げられる。また、熱伝導性グリース用組成物を二剤に分割し、一方に付加反応触媒を添加し、常温にて硬化する方法も採用できる。すなわち、熱伝導性グリース用組成物は付加反応触媒を更に含有していてよい。付加反応触媒は、例えば白金系触媒であってよい。 The composition for thermally conductive grease is crosslinked by an addition reaction (crosslinking reaction) of silicone, and a fluid thermally conductive grease can be obtained by optimizing the degree of crosslinking. In the present specification, advancing the cross-linking reaction of the composition for thermally conductive grease is referred to as curing, and the cross-linking reaction is also referred to as a curing reaction in some cases. Examples of the curing method include a method of adding an addition reaction catalyst to the composition for thermally conductive grease and heating the composition. Further, a method can also be adopted in which the composition for thermally conductive grease is divided into two agents, an addition reaction catalyst is added to one of them, and the composition is cured at room temperature. That is, the composition for thermally conductive grease may further contain an addition reaction catalyst. The addition reaction catalyst may be, for example, a platinum-based catalyst.

(A)両末端にビニル基を含有するシリコーンは、質量平均分子量が10000〜800000であり、質量平均分子量が10000〜40000であることがより好ましい。質量平均分子量を10000以上とすることで、耐ポンプアウト性が良好となる。また、質量平均分子量を800000以下とすることで、耐割れ性が良好となる。これらの市販品としては、例えば東レ・ダウコーニング社製SE1885/A剤などを用いることができる。 (A) Silicone containing vinyl groups at both ends preferably has a mass average molecular weight of 1000 to 800,000, and more preferably a mass average molecular weight of 1000 to 40,000. By setting the mass average molecular weight to 10,000 or more, the pump-out resistance becomes good. Further, by setting the mass average molecular weight to 800,000 or less, the crack resistance becomes good. As these commercially available products, for example, SE1885 / A agent manufactured by Toray Dow Corning Co., Ltd. can be used.

(A)成分は、分子中のヒドロシリル基が平均1個未満のシリコーンであってよく、ヒドロキシル基を含有しないシリコーンであることが好ましい。 The component (A) may be a silicone having an average of less than one hydrosilyl group in the molecule, and is preferably a silicone containing no hydroxyl group.

(A)成分の熱伝導性グリース用組成物中の添加量は、熱伝導性グリース用組成物の総量基準で、2.5〜15質量%が好ましく、3〜5質量%がより好ましい。2.5質量%以上とすることで、耐割れ性がより良好になる。また、15質量%以下とすることで、耐ポンプアウト性がより良好になる。 The amount of the component (A) added to the composition for heat conductive grease is preferably 2.5 to 15% by mass, more preferably 3 to 5% by mass, based on the total amount of the composition for heat conductive grease. When it is 2.5% by mass or more, the crack resistance becomes better. Further, when the content is 15% by mass or less, the pump-out resistance becomes better.

(B)成分は、熱伝導性グリース用組成物の硬化体の架橋度を調整するためのものである。分子中のヒドロシリル基数は平均5〜10個であり、平均5〜7個がより好ましい。ヒドロシリル基数を平均5個以上とすることで、耐ポンプアウト性が良好となる。また平均10個以下とすることで、耐割れ性が良好となる。(B)成分の市販品としては、例えば東レ・ダウコーニング・シリコーン社製、商品名「RD−1」などが挙げられる。 The component (B) is for adjusting the degree of cross-linking of the cured product of the composition for heat conductive grease. The average number of hydrosilyl groups in the molecule is 5 to 10, with an average of 5 to 7 being more preferred. By setting the average number of hydrosilyl groups to 5 or more, the pump-out resistance is improved. Further, when the average number is 10 or less, the crack resistance is improved. Examples of commercially available products of the component (B) include Toray Dow Corning Silicone Co., Ltd. and the trade name "RD-1".

(B)成分の熱伝導性グリース用組成物中の添加量は、熱伝導性グリース用組成物の総量基準で、0.005〜0.1質量%が好ましく、0.005〜0.04質量%がより好ましい。0.005質量%以上とすることで、耐ポンプアウト性がより良好となる。また、0.1質量%以下とすることで、耐割れ性がより良好となる。 The amount of the component (B) added to the composition for heat conductive grease is preferably 0.005 to 0.1% by mass, preferably 0.005 to 0.04% by mass, based on the total amount of the composition for heat conductive grease. % Is more preferable. When the content is 0.005% by mass or more, the pump-out resistance becomes better. Further, when the content is 0.1% by mass or less, the crack resistance becomes better.

(C)成分は、熱伝導性グリース用組成物の硬化体の架橋度を調整するためのものである。分子中のヒドロシリル基数は平均1〜4個であり、平均1〜2個がより好ましい。ヒドロシリル基数を平均1以上とすることで、耐割れ性が良好となる。また平均4個以下とすることで、耐ポンプアウト性が良好となる。 The component (C) is for adjusting the degree of cross-linking of the cured product of the composition for heat conductive grease. The number of hydrosilyl groups in the molecule is 1 to 4 on average, more preferably 1 to 2 on average. By setting the number of hydrosilyl groups to 1 or more on average, the crack resistance is improved. Further, when the average number is 4 or less, the pump-out resistance is improved.

(C)成分の質量平均分子量は10000〜40000であり、10000〜25000がより好ましい。質量平均分子量を10000以上とすることで、耐ポンプアウト性が良好となる。また、40000以下とすることで耐割れ性が良好となる。 The mass average molecular weight of the component (C) is 1000 to 40,000, more preferably 1000 to 25000. By setting the mass average molecular weight to 10,000 or more, the pump-out resistance becomes good. Further, when the content is 40,000 or less, the crack resistance is improved.

(C)成分の熱伝導性グリース用組成物中の添加量は、熱伝導性グリース用組成物の総量基準で、1〜10質量%が好ましく、2.5〜5質量%がより好ましい。1質量%以上とすることで、耐ポンプアウト性がより良好となる。また、10質量%以下とすることで、耐割れ性がより良好となる。 The amount of the component (C) added to the composition for heat conductive grease is preferably 1 to 10% by mass, more preferably 2.5 to 5% by mass, based on the total amount of the composition for heat conductive grease. When the content is 1% by mass or more, the pump-out resistance becomes better. Further, when the content is 10% by mass or less, the crack resistance becomes better.

(D)成分は、フィラーの再凝集を低減すべく、シリコーン分子鎖中に、フィラー表面と相互作用を生じるシランカップリング剤を導入するために用いる。シリコーン分子鎖にシランカップリング剤を導入するため、シランカップリング剤は反応性二重結合を有する。反応性二重結合としては、ビニル基、アリル基等が挙げられる。(D)成分としては、アリルトリエトキシシラン、アリルクロロジメチルシラン、アリルトリメトキシシラン、アリルトリクロロシラン、クロロジメチルビニルシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリクロロビニルシラン、ビニルトリメトキシシラン、ジメチルエトキシビニルシラン、ビニルトリス(2−メトキシエトキシ)シラン等が挙げられる。(D)成分の市販品としては、例えば、東レ・ダウコーニング・シリコーン社製、商品名「Z6300」「Z6519」「Z6075」が挙げられる。これらの中ではフィラーとの反応性と、フィラーとの脱水縮合反応後の副産物として有害性の低いエタノールが発生する点で、Z6519(アリルトリエトキシシラン)が好ましい。 The component (D) is used to introduce a silane coupling agent that interacts with the filler surface into the silicone molecular chain in order to reduce the reaggregation of the filler. Since the silane coupling agent is introduced into the silicone molecular chain, the silane coupling agent has a reactive double bond. Examples of the reactive double bond include a vinyl group and an allyl group. The component (D) includes allyltriethoxysilane, allylchlorodimethylsilane, allyltrimethoxysilane, allyltrichlorosilane, chlorodimethylvinylsilane, diethoxymethylvinylsilane, dimethoxymethylvinylsilane, trichlorovinylsilane, vinyltrimethoxysilane, and dimethylethoxyvinylsilane. , Vinyltris (2-methoxyethoxy)silane and the like. Examples of commercially available products of the component (D) include trade names "Z6300", "Z6519", and "Z6075" manufactured by Toray Dow Corning Silicone Co., Ltd. Among these, Z6519 (allyltriethoxysilane) is preferable in terms of reactivity with the filler and generation of less harmful ethanol as a by-product after the dehydration condensation reaction with the filler.

(D)成分の熱伝導性グリース用組成物中の添加量は、熱伝導性グリース用組成物の総量基準で、0.01〜0.6質量%が好ましく、0.02〜0.3質量%がより好ましい。0.01質量%以上とすることで、耐割れ性がより良好となる。また、0.60質量%以下とすることで、耐ポンプアウト性がより良好となる。 The amount of the component (D) added to the composition for heat conductive grease is preferably 0.01 to 0.6% by mass, preferably 0.02 to 0.3% by mass, based on the total amount of the composition for heat conductive grease. % Is more preferable. When it is 0.01% by mass or more, the crack resistance becomes better. Further, when the content is 0.60% by mass or less, the pump-out resistance becomes better.

熱伝導性グリース用組成物中の(A)成分、(B)成分、(C)成分及び(D)成分の総和は、熱伝導性グリース用組成物の総量基準で、6〜20質量%が好ましく、6〜10質量%がより好ましい。6質量%以上とすることで、熱伝導性がより良好となる。また、20質量%以下とすることで、塗布する際の粘性がより良好となる。 The sum of the components (A), (B), (C) and (D) in the composition for thermally conductive grease is 6 to 20% by mass based on the total amount of the composition for thermally conductive grease. It is preferable, and 6 to 10% by mass is more preferable. When it is 6% by mass or more, the thermal conductivity becomes better. Further, when the content is 20% by mass or less, the viscosity at the time of coating becomes better.

本実施形態の熱伝導性グリース用組成物を二剤に分割して使用する場合、第一剤に(A)成分、(D)成分及び付加反応触媒を、第二剤に(B)成分及び(C)成分を含むことが好ましい。これにより付加反応触媒が存在しても、二剤の貯蔵安定性を向上することができる。 When the composition for heat conductive grease of the present embodiment is divided into two agents and used, the first agent is the component (A), the component (D) and the addition reaction catalyst, and the second agent is the component (B). It is preferable to contain the component (C). As a result, the storage stability of the two agents can be improved even in the presence of the addition reaction catalyst.

(E)成分は、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム及び酸化亜鉛からなる群より選択される1種以上であることが好ましい。また、(E)成分としては、アルミナが充填性の点で好ましく、アルミナ及び窒化アルミニウムが熱伝導性の点で好ましい。 The component (E) is preferably one or more selected from the group consisting of silica, alumina, boron nitride, aluminum nitride and zinc oxide. As the component (E), alumina is preferable in terms of filling property, and alumina and aluminum nitride are preferable in terms of thermal conductivity.

(E)成分は、平均粒子径が15〜100μmである粗粉、平均粒子径が2〜11μmである中粒粉及び平均粒子径が0.5〜1μmである微粉からなることが好ましい。粗粉の平均粒子径を15μm以上とすることで、熱伝導性及び耐ポンプアウト性がより良好となる。また粗粉の平均粒子径を100μm以下とすることで、絶縁性及び耐割れ性がより良好となる。また、中粒粉の平均粒子径を2〜11μmとすることで、熱伝導性フィラーの充填量が向上する。さらに、微粉の平均粒子径を0.5μm以上とすることで、熱伝導性及び耐ポンプアウト性がより良好となる。また微粉の平均粒子径を1μm以下とすることで、絶縁性及び耐割れ性がより良好となる。このように平均粒子径の異なる3種類の熱伝導性フィラーを用いることにより、塗布に好適な粘性を維持しつつ、より高水準で絶縁性、耐割れ性、熱伝導性及び耐ポンプアウト性を両立することができる。 The component (E) is preferably composed of a coarse powder having an average particle size of 15 to 100 μm, a medium particle powder having an average particle size of 2 to 11 μm, and a fine powder having an average particle size of 0.5 to 1 μm. By setting the average particle size of the coarse powder to 15 μm or more, the thermal conductivity and pump-out resistance become better. Further, by setting the average particle size of the coarse powder to 100 μm or less, the insulating property and the crack resistance become better. Further, by setting the average particle size of the medium-grained powder to 2 to 11 μm, the filling amount of the heat conductive filler is improved. Further, by setting the average particle size of the fine powder to 0.5 μm or more, the thermal conductivity and the pump-out resistance are further improved. Further, by setting the average particle size of the fine powder to 1 μm or less, the insulating property and the crack resistance become better. By using three types of thermally conductive fillers with different average particle sizes in this way, insulation, crack resistance, thermal conductivity, and pump-out resistance can be achieved at a higher level while maintaining a viscosity suitable for coating. It can be compatible.

熱伝導性グリース用組成物中の(E)成分の量は、熱伝導性グリース用組成物の総量基準で、80質量%を超える量〜94質量%未満が好ましく、90〜94質量%がより好ましい。80質量%を越える量とすることで、熱伝導性がより良好となる。また、94質量%未満とすることで、塗布する際の粘性がより良好となる。 The amount of the component (E) in the composition for heat conductive grease is preferably more than 80% by mass to less than 94% by mass, more preferably 90 to 94% by mass, based on the total amount of the composition for heat conductive grease. preferable. When the amount exceeds 80% by mass, the thermal conductivity becomes better. Further, when it is less than 94% by mass, the viscosity at the time of coating becomes better.

本実施形態では、例えばレジノカラー工業株式会社製「レジノブラック」などの着色剤を熱伝導性グリース用組成物100質量部に対して0.05〜0.2質量部、熱伝導性グリース用組成物としての物性に悪影響を及ぼさない程度に添加してもよい。また、必要に応じて酸化防止剤、金属腐食防止剤などを配合してもよい。 In the present embodiment, for example, a colorant such as "Regino Black" manufactured by Regino Color Industry Co., Ltd. is used in an amount of 0.05 to 0.2 parts by mass with respect to 100 parts by mass of the composition for thermally conductive grease. It may be added to the extent that it does not adversely affect the physical properties of the product. Further, if necessary, an antioxidant, a metal corrosion inhibitor, or the like may be blended.

本実施形態の熱伝導性グリース用組成物は、遊星攪拌機、万能混合攪拌機、ニーダー、ハイブリッドミキサー等で混練りすることによって製造することができる。 The composition for heat conductive grease of the present embodiment can be produced by kneading with a planetary stirrer, a universal mixing stirrer, a kneader, a hybrid mixer or the like.

本実施形態の熱伝導性グリース用組成物は、例えば、予め25℃〜200℃で0.5時間〜24時間加熱して架橋反応を進ませた状態で放熱グリース(熱伝導性グリース)として使用することができる。また、電子部品とヒートシンクを接合後、同条件で加熱して使用してもよい。 The composition for heat conductive grease of the present embodiment is used as heat-dissipating grease (heat conductive grease) in a state where the cross-linking reaction is allowed to proceed by preheating at 25 ° C to 200 ° C for 0.5 to 24 hours, for example. can do. Further, after joining the electronic component and the heat sink, the electronic component and the heat sink may be heated under the same conditions for use.

本実施形態の熱伝導性グリース用組成物は、架橋により熱伝導性グリースを形成できる。すなわち、本実施形態の熱伝導性グリースは、熱伝導性グリース用組成物の硬化物(架橋物)ということができる。熱伝導性グリースは、例えば、熱伝導性グリース用組成物の各成分を加熱混練して形成してもよい。 The composition for heat conductive grease of the present embodiment can form heat conductive grease by cross-linking. That is, the thermally conductive grease of the present embodiment can be said to be a cured product (crosslinked product) of the composition for thermally conductive grease. The heat conductive grease may be formed, for example, by heating and kneading each component of the composition for heat conductive grease.

本実施形態の放熱部材は、熱伝導性グリースを含む放熱材と、放熱材を介して電子部品と接合される冷却部と、を備える。冷却部は、例えば、金属製筐体、ヒートシンク等の放熱性に優れた部材であってよく、ウォータージャケット等の冷媒により冷却する部材であってもよい。 The heat radiating member of the present embodiment includes a heat radiating material containing heat conductive grease and a cooling unit joined to an electronic component via the heat radiating material. The cooling unit may be, for example, a member having excellent heat dissipation such as a metal housing or a heat sink, or a member such as a water jacket that is cooled by a refrigerant.

図6は、放熱部材の一実施形態を示す模式断面図である。図6に示す放熱部材1は、熱伝導性グリース10と、冷却部20と、を備えている。冷却部20は、冷却筐体21と、冷却筐体21内に冷却水を循環させる循環ライン22とを備えており、冷却筐体21上に熱伝導性グリース10を介して発熱素子2が設置されている。電子部品である発熱素子2は冷却筐体20上に固定具3によって固定されている。冷却筐体20上には複数の発熱素子2が、それぞれ熱伝導性グリース10を介して設置されている。 FIG. 6 is a schematic cross-sectional view showing an embodiment of the heat radiating member. The heat radiating member 1 shown in FIG. 6 includes a heat conductive grease 10 and a cooling unit 20. The cooling unit 20 includes a cooling housing 21 and a circulation line 22 for circulating cooling water in the cooling housing 21, and a heat generating element 2 is installed on the cooling housing 21 via the heat conductive grease 10. Has been done. The heat generating element 2 which is an electronic component is fixed on the cooling housing 20 by a fixture 3. A plurality of heat generating elements 2 are installed on the cooling housing 20 via the heat conductive grease 10, respectively.

以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

<熱伝導性グリース用組成物の製造>
熱伝導性グリース用組成物の製造には以下の原料を用いた。
(A)成分
・Wacker社製、「Silgel613 A剤」、質量平均分子量10000
・Momentive社製、「XE14−B8530 A剤」、質量平均分子量25000
・Dow corning社製、「SE1885 A剤」、質量平均分子量40000
・Momentive社製、「TSE201」、質量平均分子量800000
(B)成分
・Dow corning社製、「RD−1」、質量平均分子量2000、平均ヒドロシリル基数5個
・ブルースターシリコーン社製、「BLUESIL FLD 628 V12 H3.5」、質量平均分子量3000、平均ヒドロシリル基数7個
・ブルースターシリコーン社製、「BLUESIL FLD 626 V30 H2.5」、質量平均分子量5000、平均ヒドロシリル基数9個
・ブルースターシリコーン社製、「BLUESIL FLD 626 V70 H0.7」、質量平均分子量10000、平均ヒドロシリル基数10個
・ブルースターシリコーン社製、「BLUESIL FLD 620 V3」、質量平均分子量2000、平均ヒドロシリル基数2個
・ブルースターシリコーン社製、「BLUESIL FLD 626 V25 H7」、質量平均分子量3000、平均ヒドロシリル基数20個(比較例用)
(C)成分
・Wacker社製、「Silgel613 B剤」、質量平均分子量1万、平均ヒドロシリル基数1個
・Momentive社製、「XE14−B8530 B剤」、質量平均分子量25000、平均ヒドロシリル基数2個
・Dow corning社製、「SE1885 B剤」、質量平均分子量40000、平均ヒドロシリル基数4個
(D)成分
・ビニルトリエトキシシラン、Dow corning社製、「Z6519」
(E)成分
(E−1)粗粉
・アルミナ、電気化学工業社製、「DAW90」、平均粒子径90μm
・アルミナ、電気化学工業社製、「DAW70」、平均粒子径70μm
・アルミナ、電気化学工業社製、「DAW45」、平均粒子径45μm
・アルミナ、住友化学社製、「AA−18」、平均粒子径18μm
・窒化アルミニウム、電気化学工業社製、「SAN」、平均粒子径20μm
(E−2)中粒粉
・アルミナ、電気化学工業社製、「DAS10」、平均粒子径10μm
・アルミナ、電気化学工業社製、「DAW05」、平均粒子径5μm
・アルミナ、住友化学社製、「AA−2」、平均粒子径2μm
・酸化亜鉛、堺化学社製、「ZIMC−11」、平均粒子径11μm
(E−3)微粉
・アルミナ、住友化学社製、「AA−05」、平均粒子径0.5μm、
・酸化亜鉛、本庄ケミカル社製、「一種」、平均粒子径0.5μm、
・窒化アルミニウム、トクヤマ社製、「H」、平均粒子径1μm
(F)その他
・白金系触媒、Momentive社製、「SFG−32」
<Manufacturing of compositions for thermally conductive grease>
The following raw materials were used in the production of the composition for thermally conductive grease.
(A) Ingredients-Wacker, "Silgel 613 A agent", mass average molecular weight 10000
-Momentive, "XE14-B8530 A agent", mass average molecular weight 25000
-Dow Corning, "SE1885 A agent", mass average molecular weight 40,000
-Momentive, "TSE201", mass average molecular weight 800,000
(B) Ingredients-Dow corning, "RD-1", mass average molecular weight 2000, average number of hydrosilyl groups 5-Bluestar Silicone, "BLUESIL FLD 628 V12 H3.5", mass average molecular weight 3000, average hydrosilyl 7 groups, manufactured by Blue Star Silicone, "BLUESIL FLD 626 V30 H2.5", mass average molecular weight 5000, average number of hydrosilyl groups 9, manufactured by Blue Star Silicone, "BLUESIL FLD 626 V70 H0.7", mass average molecular weight 10000, average number of hydrosilyl groups 10 / Blue Star Silicone, "BLUESIL FLD 620 V3", mass average molecular weight 2000, average number of hydrosilyl groups 2 / Blue Star Silicone, "BLUESIL FLD 626 V25 H7", mass average molecular weight 3000 , Average number of hydrosilyl groups 20 (for comparative example)
(C) Ingredients-Wacker, "Silgel 613 B agent", mass average molecular weight 10,000, average number of hydrosilyl groups 1-Momentive, "XE14-B8530 B agent", mass average molecular weight 25000, average hydrosilyl groups 2 "SE1885 B agent" manufactured by Dow Corning, mass average molecular weight 40,000, average number of hydrosilyl groups 4 (D) component-vinyltriethoxysilane, manufactured by Dow Corning, "Z6519"
(E) Component (E-1) Coarse powder / alumina, manufactured by Denki Kagaku Kogyo Co., Ltd., "DAW90", average particle size 90 μm
-Alumina, manufactured by Denki Kagaku Kogyo Co., Ltd., "DAW70", average particle size 70 μm
-Alumina, manufactured by Denki Kagaku Kogyo Co., Ltd., "DAW45", average particle size 45 μm
-Alumina, manufactured by Sumitomo Chemical Co., Ltd., "AA-18", average particle size 18 μm
-Aluminum nitride, manufactured by Denki Kagaku Kogyo Co., Ltd., "SAN", average particle size 20 μm
(E-2) Medium grain powder / alumina, manufactured by Denki Kagaku Kogyo Co., Ltd., "DAS10", average particle size 10 μm
-Alumina, manufactured by Denki Kagaku Kogyo Co., Ltd., "DAW05", average particle size 5 μm
-Alumina, manufactured by Sumitomo Chemical Co., Ltd., "AA-2", average particle size 2 μm
-Zinc oxide, manufactured by Sakai Chemical Co., Ltd., "ZIMC-11", average particle size 11 μm
(E-3) Fine powder / alumina, manufactured by Sumitomo Chemical Co., Ltd., "AA-05", average particle size 0.5 μm,
-Zinc oxide, manufactured by Honjo Chemical Co., Ltd., "type", average particle size 0.5 μm,
-Aluminum nitride, manufactured by Tokuyama Corporation, "H", average particle size 1 μm
(F) Others-Platinum-based catalyst, manufactured by Momentive, "SFG-32"

表1〜表6に示す割合で各種原料を、150℃にて3時間、絶対圧100Pa以下で、真空加熱混練し、数種の熱伝導性グリースを製造した。なお、各配合原料の質量平均分子量、平均ヒドロシリル基数及び平均粒子径は以下の方法により測定した。 Various raw materials were kneaded by vacuum heating at 150 ° C. for 3 hours at an absolute pressure of 100 Pa or less at the ratios shown in Tables 1 to 6 to produce several kinds of thermally conductive greases. The mass average molecular weight, average number of hydrosilyl groups, and average particle size of each compounded raw material were measured by the following methods.

[質量平均分子量]
GPC(ゲルパーミエーションクロマトグラフィー)を用いて標準ポリスチレン換算の質量平均分子量を求めた。溶媒はTHFを使用し、東ソー社製「HLC−8020」を用い測定した。ディテクターはRI(示差屈折率計)を用いた。
[Mass average molecular weight]
The mass average molecular weight in terms of standard polystyrene was determined using GPC (gel permeation chromatography). THF was used as a solvent, and the measurement was carried out using "HLC-8020" manufactured by Tosoh Corporation. An RI (differential refractometer) was used as the detector.

[平均ヒドロシリル基数]
JOEL社製「JOEL ECP−300」を用いてH−NMR測定を行い、ビニル基数、メチル基数、ヒドロシリル基数の数比を定量した。両末端にビニル基を含有するヒドロシリル基含有シリコーンの場合は、ビニル基とヒドロシリル基の数比から平均ヒドロシリル基数を算出した。また、ビニル基を有さないヒドロシリル基含有シリコーンについては、東ソー社製「HLC−8020」を用いて質量平均分子量を測定してから、メチル基数とヒドロシリル基数の数比と質量平均分子量の測定値から平均ヒドロシリル基数を算出した。
[Average number of hydrosilyl groups]
1 H-NMR measurement was carried out using "JOEL ECP-300" manufactured by JOEL, and the number ratios of the number of vinyl groups, the number of methyl groups and the number of hydrosilyl groups were quantified. In the case of a hydrosilyl group-containing silicone containing vinyl groups at both ends, the average number of hydrosilyl groups was calculated from the number ratio of vinyl groups to hydrosilyl groups. For hydrosilyl group-containing silicones that do not have vinyl groups, the mass average molecular weight is measured using "HLC-8020" manufactured by Toso Co., Ltd., and then the ratio of the number of methyl groups to the number of hydrosilyl groups and the measured value of the mass average molecular weight. The average number of hydrosilyl groups was calculated from.

[平均粒子径]
島津製作所製「レーザー回折式粒度分布測定装置SALD−200」を用いて測定を行った。評価サンプルは、ガラスビーカーに50ccの純水と測定する熱伝導性フィラーを5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。分散処理を行った熱伝導性フィラーの分散液をスポイトを用いて、装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待った。このようにして吸光度が安定になった時点で測定を行なった。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算した。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を乗じ、相対粒子量の合計(100%)で割って求めた。
[Average particle size]
The measurement was performed using a "laser diffraction type particle size distribution measuring device SALD-200" manufactured by Shimadzu Corporation. For the evaluation sample, 50 cc of pure water and 5 g of a heat conductive filler to be measured were added to a glass beaker, stirred with a spatula, and then dispersed with an ultrasonic cleaner for 10 minutes. Using a dropper, the dispersion liquid of the heat conductive filler that had been subjected to the dispersion treatment was added drop by drop to the sampler portion of the apparatus, and the mixture was waited for stabilization until the absorbance became measurable. The measurement was performed when the absorbance became stable in this way. In the laser diffraction type particle size distribution measuring device, the particle size distribution was calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor. The average particle size was obtained by multiplying the measured particle size value by the relative particle amount (difference%) and dividing by the total relative particle amount (100%).

Figure 0006884787
Figure 0006884787

Figure 0006884787
Figure 0006884787

Figure 0006884787
Figure 0006884787

Figure 0006884787
Figure 0006884787

Figure 0006884787
Figure 0006884787

Figure 0006884787
Figure 0006884787

表1〜表6に示す熱伝導性グリースの物性は、以下の方法により測定した。 The physical characteristics of the thermally conductive grease shown in Tables 1 to 6 were measured by the following methods.

[粘度]
Thermo Scientific社製回転式レオメータMARSIIIにて、上部治具として35mmΦのパラレルプレートを用い、ペルチェ素子にて温度制御が可能な35mmΦ下部プレートの上に、熱伝導性グリースを載せ、上部治具で厚み1mmまで圧縮し、はみ出した部分はかきとり、測定を開始した。せん断速度0.0001〜100s−1の粘度を測定し、せん断速度10s−1の粘度を評価に用いた。粘度が400Pasより低い場合、メタルマスク・スクリーン印刷、スキージによる塗布が可能であり、作業性が良い。粘度が400Pas以上1200Pas未満である場合、メタルマスク・スクリーン印刷、スキージによる塗布は不可能であるが、自動塗布機によるシリンジからの吐出及び塗布が可能である。1200Pas以上1500Pas未満においては、自動塗布機による吐出及び塗布は、時間がかかるために困難である。1500Pasを超えた場合、自動塗布機による吐出及び塗布も不可能である。
以上、評価に際しては、以下の指標を用いた。
A:粘度400Pas未満
B:粘度400Pas以上1200Pas未満
C:粘度1200Pas以上1500Pas未満
D:粘度1500Pas以上
[viscosity]
In the rotary rheometer MARSIII manufactured by Thermo Scientific, a 35 mmΦ parallel plate is used as the upper jig, and the heat conductive grease is placed on the 35 mmΦ lower plate whose temperature can be controlled by the Peltier element, and the thickness is increased by the upper jig. It was compressed to 1 mm, the protruding part was scraped off, and the measurement was started. The viscosities of shear rates 0.0001 to 100s -1 were measured, and the viscosities of shear rates 10s -1 were used for evaluation. When the viscosity is lower than 400 Pas, metal mask / screen printing and squeegee coating are possible, and workability is good. When the viscosity is 400 Pas or more and less than 1200 Pas, metal mask screen printing and coating by squeegee are not possible, but ejection and coating from a syringe by an automatic coating machine are possible. At 1200 Pas or more and less than 1500 Pas, ejection and coating by an automatic coating machine are difficult because it takes time. If it exceeds 1500 Pas, it is impossible to discharge and apply by an automatic coating machine.
As mentioned above, the following indexes were used in the evaluation.
A: Viscosity less than 400 Pas B: Viscosity 400 Pas or more and less than 1200 Pas C: Viscosity 1200 Pas or more and less than 1500 Pas D: Viscosity 1500 Pas or more

[熱伝導率]
ヒーターの埋め込まれた直方体の銅製治具で先端が100mm(10mm×10mm)と、冷却フィンを取り付けた直方体の銅製治具で先端が100mm(10mm×10mm)との間に、熱伝導性グリースを挟んで、隙間の厚みを0.05mm〜0.30mmの範囲で熱抵抗を測定し、熱抵抗と厚みの勾配から熱伝導率を算出して評価した。熱抵抗は、ヒーターに電力10Wをかけて30分間保持し、銅製治具同士の温度差(℃)を測定し、熱抵抗(℃/W)={温度差(℃)/電力(W)}
にて算出した。
熱伝導率としては、熱伝導性グリースの用途上1W/mK以上であれば問題なく使用される。
なお、評価に際しては、以下の指標を用いた。
A:熱伝導率2.5W/mK以上
B:熱伝導率1.0W/mK以上2.5W/mK未満
D:熱伝導率1.0W/mK未満
[Thermal conductivity]
Thermal conductivity between a square copper jig with a heater embedded and a tip of 100 mm 2 (10 mm x 10 mm) and a rectangular copper jig with cooling fins and a tip of 100 mm 2 (10 mm x 10 mm). The thermal resistance was measured in the range of 0.05 mm to 0.30 mm in the thickness of the gap with the grease sandwiched between them, and the thermal conductivity was calculated and evaluated from the gradient of the thermal resistance and the thickness. For the thermal resistance, apply 10 W of electric power to the heater and hold it for 30 minutes, measure the temperature difference (° C) between the copper jigs, and measure the thermal resistance (° C / W) = {temperature difference (° C) / electric power (W)}.
Calculated in.
As for the thermal conductivity, if it is 1 W / mK or more due to the use of the thermally conductive grease, it can be used without any problem.
The following indicators were used in the evaluation.
A: Thermal conductivity 2.5 W / mK or more B: Thermal conductivity 1.0 W / mK or more and less than 2.5 W / mK D: Thermal conductivity less than 1.0 W / mK

[耐ポンプアウト性]
アルミ板に大きさ60mm角で厚さ100μmに熱伝導性グリースを0.03cc×4点塗布し、真空脱泡を1時間処理した。この後、ガラス板をはさみ込み、熱伝導性グリースの直径が20mmの円形になるよう調整した。
次に、4kgの重りをガラス板上に乗せ1日放置後ガラス板両端をクリップで閉じ固定し、荷重にて変形した熱伝導性グリースの外周を油性マジックでマーキングした。−40℃から150℃の冷熱衝撃試験を実施し、耐ポンプアウト性を評価した。−40℃と150℃の保持時間は30分とし、−40℃から150℃、150から−40℃の昇降温は5分以内とし、300サイクル実施した。図1は実施例2の耐ポンプアウト性評価試験後の試験片を示す図であり、図2は比較例3の耐ポンプアウト性評価試験後の試験片を示す図である。
耐ポンプアウト性の評価において、ポンプアウト性の評価は以下に従った。
ポンプアウト率(%)=(熱衝撃試験後の直径−熱衝撃試験前の直径)/冷熱衝撃試験前の直径×100
A:ポンプアウト率0%
B:ポンプアウト率1%以上5%未満
C:ポンプアウト率5%以上15%未満
D:ポンプアウト率15%以上
[Pump out resistance]
A heat conductive grease was applied to an aluminum plate at a size of 60 mm square and a thickness of 100 μm at 0.03 cc × 4 points, and vacuum defoaming was performed for 1 hour. After that, a glass plate was sandwiched and the diameter of the heat conductive grease was adjusted to be a circle of 20 mm.
Next, a 4 kg weight was placed on the glass plate, left for one day, and then both ends of the glass plate were closed and fixed with clips, and the outer periphery of the thermally conductive grease deformed by the load was marked with an oil-based magic. A thermal shock test at -40 ° C to 150 ° C was carried out to evaluate the pump-out resistance. The holding time at −40 ° C. and 150 ° C. was 30 minutes, the elevating temperature from −40 ° C. to 150 ° C. and 150 to −40 ° C. was within 5 minutes, and 300 cycles were carried out. FIG. 1 is a diagram showing a test piece after the pump-out resistance evaluation test of Example 2, and FIG. 2 is a diagram showing a test piece after the pump-out resistance evaluation test of Comparative Example 3.
In the evaluation of pump-out resistance, the evaluation of pump-out resistance was as follows.
Pump-out rate (%) = (Diameter after thermal impact test-Diameter before thermal impact test) / Diameter before cold impact test x 100
A: Pump out rate 0%
B: Pump-out rate 1% or more and less than 5% C: Pump-out rate 5% or more and less than 15% D: Pump-out rate 15% or more

[耐割れ性]
アルミ板に大きさ60mm角で厚さ100μmに熱伝導性グリースをスキージで塗布し、真空脱泡を1時間処理した後、ガラス板をはさみ込んだ。
次に、−40℃から150℃の冷熱衝撃試験を実施した。−40℃と150℃の保持時間はそれぞれ30分とし、−40℃から150℃、150から−40℃の昇降温は5分以内とし、300サイクル実施した。図3は実施例2の耐割れ性評価試験後の試験片を示す図であり、図4は比較例2の耐割れ性評価試験後の試験片を示す図である。また、図5は、比較例2の耐割れ性試験後の試験片を二値化した画像を示す図である。
耐割れ率の計算方法としては、図5に示すように、2値化ができる画像処理ソフト(ここではGIMP2.0)を用い2値化を行い、空隙の面積(黒色部)及びグリースの面積(白色部)を測定した。
A:割れ率0%
B:割れ率1%以上5%未満
C:割れ率5%以上15%未満
D:割れ率15%以上
[Crack resistance]
Thermally conductive grease was applied to an aluminum plate with a size of 60 mm square and a thickness of 100 μm with a squeegee, vacuum defoamed for 1 hour, and then a glass plate was sandwiched.
Next, a thermal shock test at −40 ° C. to 150 ° C. was carried out. The holding time at -40 ° C and 150 ° C was 30 minutes, respectively, and the elevating temperature from -40 ° C to 150 ° C and 150 to -40 ° C was within 5 minutes, and 300 cycles were carried out. FIG. 3 is a diagram showing a test piece after the crack resistance evaluation test of Example 2, and FIG. 4 is a diagram showing a test piece after the crack resistance evaluation test of Comparative Example 2. Further, FIG. 5 is a diagram showing a binarized image of the test piece after the crack resistance test of Comparative Example 2.
As a method of calculating the crack resistance, as shown in FIG. 5, binarization is performed using image processing software (here, GIMP2.0) that can be binarized, and the area of voids (black part) and the area of grease. (White part) was measured.
A: Crack rate 0%
B: Cracking rate 1% or more and less than 5% C: Cracking rate 5% or more and less than 15% D: Cracking rate 15% or more

実施例及び比較例に示すように、本発明の熱伝導性グリース用組成物を用いた熱伝導性グリースは、耐ポンプアウト性、耐割れ性に優れ、熱伝導率も高い結果となった。 As shown in Examples and Comparative Examples, the thermally conductive grease using the composition for thermally conductive grease of the present invention was excellent in pump-out resistance and crack resistance, and also had high thermal conductivity.

Claims (7)

(A)両末端にビニル基を含有する質量平均分子量10000〜800000のシリコーン、(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーン、(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量10000〜40000のシリコーン、(D)反応性二重結合を含有するシランカップリング剤、及び(E)熱伝導性フィラーを含有し、
前記(E)成分の量が、80質量%を超え、94質量%未満である、熱伝導性グリース用組成物。
(A) Silicone having a mass average molecular weight of 1000 to 800,000 containing vinyl groups at both ends, (B) Mass average containing no vinyl groups in the molecule and an average of 5 to 10 hydrosilyl groups in the molecule Silicone with a molecular weight of 2000 to 10000, (C) Silicone with a mass average molecular weight of 1000 to 40,000 containing vinyl groups at both ends and an average of 1 to 4 hydrosilyl groups in the molecule, (D) Reactive double Contains a silane coupling agent containing a bond and (E) a thermally conductive filler,
A composition for thermally conductive grease, wherein the amount of the component (E) is more than 80% by mass and less than 94% by mass.
前記(A)成分、前記(B)成分、前記(C)成分及び前記(D)成分の総和が、前記熱伝導性グリース用組成物の総量基準で6〜20質量%である、請求項1に記載の熱伝導性グリース用組成物。 Claim 1 that the sum of the component (A), the component (B), the component (C) and the component (D) is 6 to 20% by mass based on the total amount of the composition for heat conductive grease. The composition for heat conductive grease according to. 前記熱伝導性グリース用組成物の総量基準で、前記(A)成分の含有量が2.5〜15質量%、前記(B)成分の含有量が0.005〜0.1質量%、前記(C)成分の含有量が1〜10質量%、前記(D)成分の含有量が0.01〜0.6質量%である、請求項1又は2に記載の熱伝導性グリース用組成物。 Based on the total amount of the composition for heat conductive grease, the content of the component (A) is 2.5 to 15% by mass, the content of the component (B) is 0.005 to 0.1% by mass, and the above. The composition for heat conductive grease according to claim 1 or 2, wherein the content of the component (C) is 1 to 10% by mass, and the content of the component (D) is 0.01 to 0.6% by mass. .. 前記(E)成分が、アルミナ及び窒化アルミニウムからなる群より選択される1種以上を含む、請求項1〜3のいずれか一項に記載の熱伝導性グリース用組成物。 The component (E) comprises one or more selected from the alumina and aluminum nitride or Ranaru group, the thermally conductive grease composition according to any one of claims 1 to 3. 前記(E)成分が、平均粒子径が15〜100μmである粗粉、平均粒子径が2〜11μmである中粒粉、及び平均粒子径が0.5〜1μmである微粉を含む、請求項1〜4のいずれか一項に記載の熱伝導性グリース用組成物。 The claim that the component (E) includes a coarse powder having an average particle size of 15 to 100 μm, a medium particle powder having an average particle size of 2 to 11 μm, and a fine powder having an average particle size of 0.5 to 1 μm. The composition for thermally conductive grease according to any one of 1 to 4. 請求項1〜5のいずれか一項に記載の熱伝導性グリース用組成物の硬化物を含む、熱伝導性グリース。 A heat conductive grease containing a cured product of the composition for heat conductive grease according to any one of claims 1 to 5. 請求項6に記載の熱伝導性グリースを含む放熱材と、
前記放熱材を介して電子部品と接合される冷却部と、
を備える、放熱部材。
The heat radiating material containing the heat conductive grease according to claim 6 and
A cooling unit that is joined to an electronic component via the heat radiating material,
A heat-dissipating member.
JP2018534246A 2016-08-18 2016-08-18 Composition for heat conductive grease, heat conductive grease and heat dissipation member Active JP6884787B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074144 WO2018033992A1 (en) 2016-08-18 2016-08-18 Composition for thermally-conductive grease, thermally-conductive grease, and heat dissipation member

Publications (2)

Publication Number Publication Date
JPWO2018033992A1 JPWO2018033992A1 (en) 2019-06-13
JP6884787B2 true JP6884787B2 (en) 2021-06-09

Family

ID=61196528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534246A Active JP6884787B2 (en) 2016-08-18 2016-08-18 Composition for heat conductive grease, heat conductive grease and heat dissipation member

Country Status (2)

Country Link
JP (1) JP6884787B2 (en)
WO (1) WO2018033992A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072706B2 (en) * 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
JP7073939B2 (en) * 2018-06-26 2022-05-24 住友金属鉱山株式会社 Thermally conductive grease
EP3954719B1 (en) * 2019-04-11 2023-07-26 Denka Company Limited Copolymer, dispersant, and resin composition
JP2021134340A (en) * 2020-02-28 2021-09-13 京セラ株式会社 Thermally conductive grease composition and article using the same
WO2022130665A1 (en) 2020-12-15 2022-06-23 富士高分子工業株式会社 Thermally conductive liquid composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079757A (en) * 1983-10-06 1985-05-07 Hitachi Cable Ltd Ceramic substrate package
JP2005320390A (en) * 2004-05-07 2005-11-17 Denki Kagaku Kogyo Kk Curable composition, molded product and heat-releasing member
JP5463116B2 (en) * 2009-10-14 2014-04-09 電気化学工業株式会社 Thermally conductive material
JP5497458B2 (en) * 2010-01-13 2014-05-21 電気化学工業株式会社 Thermally conductive resin composition
JP5447337B2 (en) * 2010-10-29 2014-03-19 信越化学工業株式会社 Silicon structure manufacturing method and semiconductor device
JP5749536B2 (en) * 2011-03-28 2015-07-15 電気化学工業株式会社 Thermally conductive moldings and their applications
JP6510315B2 (en) * 2015-05-14 2019-05-08 デンカ株式会社 Thermal conductive grease composition, thermal conductive grease and heat dissipating member

Also Published As

Publication number Publication date
WO2018033992A1 (en) 2018-02-22
JPWO2018033992A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP6510315B2 (en) Thermal conductive grease composition, thermal conductive grease and heat dissipating member
JP6884787B2 (en) Composition for heat conductive grease, heat conductive grease and heat dissipation member
JP5368090B2 (en) Thermally conductive grease
JP4993135B2 (en) Thermally conductive silicone composition
US11319412B2 (en) Thermally conductive silicone compound
JP5463116B2 (en) Thermally conductive material
KR102108902B1 (en) Heat conductive silicone composition, heat conductive layer, and semiconductor device
JP6972028B2 (en) Thermally conductive resin composition, heat dissipation sheet, heat dissipation member and its manufacturing method
JP2010155870A (en) Thermally conductive compound and method for producing the same
JP4987496B2 (en) Manufacturing method of heat dissipation material
JP6705426B2 (en) Thermally conductive silicone composition
JP6451592B2 (en) Thermally conductive fluorine-containing curable composition, cured product thereof, and electric / electronic component
JP2022141720A (en) Thermally conductive sheet and method for manufacturing the same
JP2010502785A (en) Thermally conductive grease
CN105754346A (en) Heat conduction organosilicone composition, solidified substance, and composite sheet material
JP3957596B2 (en) Thermally conductive grease
CN103254647A (en) Heat-conductive gap interface material and preparation method thereof
JP7082563B2 (en) Cured product of thermally conductive silicone composition
WO2012067247A1 (en) High durability thermally conductive composite and low pump-out grease
CN1491437A (en) Heat radiating member
JP2015212318A (en) Thermal conductive silicone composition
CN114761492A (en) Highly thermally conductive flowable silicone composition
JPWO2019031458A1 (en) Low dielectric constant heat conductive heat dissipation member
JP5284655B2 (en) Thermally conductive grease
TWI716474B (en) Composition for thermally conductive paste, thermally conductive paste and heat dissipation member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210127

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210208

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210512

R150 Certificate of patent or registration of utility model

Ref document number: 6884787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250