JP5497458B2 - Thermally conductive resin composition - Google Patents
Thermally conductive resin composition Download PDFInfo
- Publication number
- JP5497458B2 JP5497458B2 JP2010004738A JP2010004738A JP5497458B2 JP 5497458 B2 JP5497458 B2 JP 5497458B2 JP 2010004738 A JP2010004738 A JP 2010004738A JP 2010004738 A JP2010004738 A JP 2010004738A JP 5497458 B2 JP5497458 B2 JP 5497458B2
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- powder
- molecular weight
- average molecular
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011342 resin composition Substances 0.000 title claims description 28
- 239000000843 powder Substances 0.000 claims description 31
- 229920001296 polysiloxane Polymers 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 27
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 21
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 17
- 229910052582 BN Inorganic materials 0.000 claims description 15
- 239000011231 conductive filler Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 9
- 229920002050 silicone resin Polymers 0.000 claims description 6
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 4
- 239000000523 sample Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000007259 addition reaction Methods 0.000 description 7
- 238000009413 insulation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- -1 acetyl alcohols Chemical class 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 150000003058 platinum compounds Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、熱伝導性に優れた樹脂組成物とその用途に関するものであり、特に電子部品用放熱部材として使用した際に、パワーデバイス、トランジスタ、サイリスタ、CPU(中央処理装置)等の発熱性電子部品を損傷させることなく、電子機器に組み込むことができる熱伝導性樹脂組成物に関するものである。 TECHNICAL FIELD The present invention relates to a resin composition having excellent thermal conductivity and its use, and particularly when used as a heat radiating member for electronic parts, it generates heat such as power devices, transistors, thyristors, CPUs (central processing units). The present invention relates to a thermally conductive resin composition that can be incorporated into an electronic device without damaging the electronic component.
パワーデバイス、トランジスタ、サイリスタ、CPU等の発熱性電子部品においては、使用時に発生する熱を如何に除去することが重要な問題となっている。従来、このような除熱方法としては、発熱性電子部品を電気絶縁性の放熱シートを介して放熱フィンや金属板に取り付け、熱を逃がすことが一般的に行われており、その放熱シートとしてはシリコーンゴムに熱伝導性フィラーを分散させたものが使用されている。 In heat-generating electronic components such as power devices, transistors, thyristors, and CPUs, it is an important problem how to remove heat generated during use. Conventionally, as such a heat removal method, a heat-generating electronic component is generally attached to a heat-radiating fin or a metal plate via an electrically insulating heat-dissipating sheet, and the heat is released. Uses a silicone rubber with a thermally conductive filler dispersed therein.
近年、電子部品内の回路の高集積化に伴いその発熱量も大きくなっており、従来にも増して高い熱伝導性を有する材料が求められてきている。
熱伝導性材料の熱伝導性を向上させるには、これまで酸化アルミニウム粉末、窒化ホウ素粉末、窒化アルミニウム粉末といった高い熱伝導性を示すフィラーを有機樹脂へ含有する手法が一般的であった。また充填性の悪い鱗片状の六方晶窒化ホウ素粉末については二次凝集粒子といった形で有機樹脂へ充填することで高熱伝導化を達成するという方法が行われていた。(特許文献1〜4)。六方晶窒化ホウ素粉末の配向性に関しては、特許文献5や6などがある。
In recent years, the amount of heat generated has increased with the high integration of circuits in electronic components, and a material having higher thermal conductivity than ever has been demanded.
In order to improve the thermal conductivity of the thermally conductive material, a method in which an organic resin contains a filler having high thermal conductivity such as aluminum oxide powder, boron nitride powder, and aluminum nitride powder has been generally used. In addition, for the flaky hexagonal boron nitride powder having poor filling property, a method of achieving high thermal conductivity by filling an organic resin in the form of secondary agglomerated particles has been performed. (Patent Documents 1 to 4). Regarding the orientation of the hexagonal boron nitride powder, there are Patent Documents 5 and 6.
本発明の目的は、熱伝導性と絶縁性に優れた樹脂組成物を提供することであり、特に電子部品用放熱部材として好適な樹脂組成物を提供することである。 An object of the present invention is to provide a resin composition excellent in thermal conductivity and insulation, and particularly to provide a resin composition suitable as a heat radiating member for electronic parts.
本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)平均粒子径20〜60μm、下記で定義された配向性指数が2〜20の六方晶窒化ホウ素の凝集粉末と平均粒子径0.1〜1μmの酸化アルミニウム粉末の熱伝導性フィラー60〜73体積%、シリコーン樹脂27〜40体積%を含有してなり、シリコーン樹脂が重量平均分子量15000〜30000と重量平均分子量400000〜600000のビニル基をもつオルガノポリシロキサンであり、その体積比が7:3〜5:5である樹脂組成物。
配向性指数は、粉末X線回折法による(002)面の回折線の強度I002と(100)面の回折線の強度I100との比(I002/I100)である。
(2)前記(1)に記載の樹脂組成物を用いた放熱部材。
The present invention employs the following means in order to solve the above problems.
(1) Thermally conductive fillers 60 to 60 of 60 μm in average particle diameter, aggregated hexagonal boron nitride powder having an orientation index defined below of 2 to 20 and aluminum oxide powder having an average particle diameter of 0.1 to 1 μm 73 vol%, Ri Na contain 27-40 vol% silicone resin, an organopolysiloxane silicone resin has a vinyl group having a weight average molecular weight of from 15,000 to 30,000 and a weight average molecular weight from 400,000 to 600,000, a volume ratio of 7 : Resin composition which is 3-5: 5 .
The orientation index is a ratio (I002 / I100) of the intensity I002 of the (002) plane diffraction line and the intensity I100 of the (100) plane diffraction line by powder X-ray diffraction method.
(2) A heat radiating member using the resin composition according to (1) .
本発明によれば、高熱伝導性を示し、600Vの直流電圧において体積抵抗率1013〜1014Ω・cmを示す樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a resin composition that exhibits high thermal conductivity and exhibits a volume resistivity of 10 13 to 10 14 Ω · cm at a DC voltage of 600V.
以下、本発明について詳細に説明する。
本発明で用いる六方晶窒化ホウ素の凝集粉末は、平均粒子径が20〜60μmである必要があり、さらに平均粒子径は35〜45μmの範囲のものが好ましい。平均粒子径が60μmより大きくなる粒子と粒子が接触した際のすき間が大きくなり、熱伝導性が減少する傾向にある。反対に平均粒子径が20μmより小さくなると熱伝導性材料の充填性が悪くなる傾向にあり、熱伝導性が減少する傾向にある。
六方晶窒化ホウ素は、鱗片状又は多角板状の形態が一般的であり、六方晶窒化ホウ素の凝集粉末とは、その一次粒子を複合集合させた粉末である。六方晶窒化ホウ素の凝集状態は、粉末X線回折法による配向性指数で評価することができる。配向性指数とは、粉末X線回折法による(002)面の回折線の強度I002と(100)面の回折線の強度I100との比(I002/I100)である。六方晶窒化ホウ素粉末は一般的にI002≧I100であるため、配向性指数は1以上となる。配向性指数が小さくなるほど無配向性を示し、配向性指数が1のとき完全無配向となる。配向性が大きくなるにつれて、配向性指数は大きくなる。本願発明の六方晶窒化ホウ素の凝集粉末の配向性指数は2〜20であり、好ましくは2〜10である。配向性指数が20より大きくなると、熱伝導性が減少する傾向にある。
六方晶窒化ホウ素の凝集粉末の配向性指数は、六方晶窒化ホウ素の一次粒子を結合剤もしくは、熱処理を行うことによって、調整することができる。
Hereinafter, the present invention will be described in detail.
The aggregated powder of hexagonal boron nitride used in the present invention needs to have an average particle size of 20 to 60 μm, and the average particle size is preferably in the range of 35 to 45 μm. There is a tendency that the gap between the particles having an average particle size larger than 60 μm and the particles becomes larger, and the thermal conductivity tends to decrease. On the other hand, when the average particle diameter is smaller than 20 μm, the filling property of the heat conductive material tends to deteriorate, and the heat conductivity tends to decrease.
Hexagonal boron nitride generally has a scale-like or polygonal plate-like form, and the hexagonal boron nitride agglomerated powder is a powder in which the primary particles are complexly assembled. The aggregation state of hexagonal boron nitride can be evaluated by an orientation index by a powder X-ray diffraction method. The orientation index is a ratio (I002 / I100) of the intensity I002 of the (002) plane diffraction line and the intensity I100 of the (100) plane diffraction line by powder X-ray diffraction method. Since hexagonal boron nitride powder generally satisfies I002 ≧ I100, the orientation index is 1 or more. As the orientation index becomes smaller, non-orientation is shown. When the orientation index is 1, complete non-orientation is obtained. As the orientation increases, the orientation index increases. The orientation index of the hexagonal boron nitride aggregate powder of the present invention is 2 to 20, preferably 2 to 10. When the orientation index is greater than 20, the thermal conductivity tends to decrease.
The orientation index of the hexagonal boron nitride agglomerated powder can be adjusted by subjecting the primary particles of hexagonal boron nitride to a binder or heat treatment.
本発明で用いる酸化アルミニウム粉末は平均粒子径が0.1〜1μmである必要があり、さらに平均粒子径は0.3〜0.5μmの範囲のものが好ましい。本発明で酸化アルミニウム粉末を充填せず、上記窒化ホウ素凝集粉末のみを使用した場合、凝集粉末間に空隙が存在しやすくなり、樹脂組成物化が困難となるとともに、熱伝導性も悪くなる傾向にある。平均粒子径が1μmより大きくなると窒化ホウ素粉末凝集体と接する酸化アルミニウム粒子の数が減少し、熱伝導性が減少する傾向にある。反対に平均粒子径が0.1μmより小さくなると酸化アルミニウム粉末の充填性が悪くなり、熱伝導性が減少する傾向にある。 The aluminum oxide powder used in the present invention needs to have an average particle diameter of 0.1 to 1 μm, and the average particle diameter is preferably in the range of 0.3 to 0.5 μm. In the present invention, when only the boron nitride agglomerated powder is used without filling the aluminum oxide powder, voids are likely to exist between the agglomerated powders, making it difficult to form a resin composition, and the thermal conductivity tends to deteriorate. is there. When the average particle diameter is larger than 1 μm, the number of aluminum oxide particles in contact with the boron nitride powder aggregate decreases, and the thermal conductivity tends to decrease. On the other hand, when the average particle size is smaller than 0.1 μm, the filling property of the aluminum oxide powder is deteriorated and the thermal conductivity tends to be reduced.
更に、本発明においては、絶縁性を損なわせない範囲で、アルミニウム、銅、銀、カーボンファイバー、カーボンナノチューブ等の導電性粉末を併用することもできる。 Furthermore, in the present invention, conductive powders such as aluminum, copper, silver, carbon fiber, and carbon nanotube can be used in combination as long as the insulating properties are not impaired.
本発明の樹脂組成物中の熱伝導性フィラーの含有率は、全体積の60〜73体積%であり、特に65〜70体積%であることが望ましい。熱伝導性フィラーの含有率が60体積%未満では樹脂組成物の熱伝導性が不十分となり、また73体積%を越えると、熱伝導性フィラーの充填が困難となる。 The content rate of the heat conductive filler in the resin composition of this invention is 60 to 73 volume% of the whole volume, and it is desirable that it is 65 to 70 volume% especially. When the content of the heat conductive filler is less than 60% by volume, the heat conductivity of the resin composition becomes insufficient, and when it exceeds 73% by volume, it becomes difficult to fill the heat conductive filler.
本発明における平均粒子径は、島津製作所製「レーザー回折式粒度分布測定装置SALD−200」を用いて測定を行った。評価サンプルは、ガラスビーカーに50ccの純水と測定する熱伝導性粉末を5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。分散処理を行った熱伝導性材料の粉末の溶液をスポイドを用いて、装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待った。このようにして吸光度が安定になった時点で測定を行う。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算する。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を掛けて、相対粒子量の合計(100%)で割って求められる。なお、平均粒子径は粒子の平均直径である。 The average particle diameter in the present invention was measured using “Laser diffraction particle size distribution analyzer SALD-200” manufactured by Shimadzu Corporation. As an evaluation sample, 5 g of 50 cc of pure water and a heat conductive powder to be measured were added to a glass beaker, stirred using a spatula, and then subjected to a dispersion treatment for 10 minutes using an ultrasonic cleaner. The solution of the thermally conductive material powder that had been subjected to the dispersion treatment was added drop by drop to the sampler portion of the apparatus using a dropper, and waited until the absorbance became measurable. The measurement is performed when the absorbance becomes stable in this way. In the laser diffraction type particle size distribution measuring device, the particle size distribution is calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor. The average particle size is obtained by multiplying the value of the measured particle size by the relative particle amount (difference%) and dividing by the total relative particle amount (100%). The average particle diameter is the average diameter of the particles.
本発明のマトリックスとして使用される有機樹脂であるシリコーン樹脂としては、ミラブル型シリコーンが代表的なものであるが、総じて所要の柔軟性を発現させることが難しい場合が多いので、高い柔軟性を発現させるためには付加反応型シリコーンが好適である。付加反応型液状シリコーンの具体例としては、一分子中にビニル基とH−Si基の両方を有する一液反応型のオルガノポリシロキサン、または末端あるいは側鎖にビニル基を有するオルガノポリシロキサンと末端あるいは側鎖に2個以上のH−Si基を有するオルガノポリシロキサンとの二液性のシリコーンなどである。例えば東レ・ダウコーニング・シリコーン社製、商品名「SE−1885A/B」がある。 As the silicone resin that is an organic resin used as the matrix of the present invention, millable type silicone is representative, but generally it is difficult to express the required flexibility, so it exhibits high flexibility. For this purpose, addition reaction type silicone is preferred. Specific examples of the addition reaction type liquid silicone include a one-component reaction type organopolysiloxane having both a vinyl group and an H-Si group in one molecule, or an organopolysiloxane having a vinyl group at a terminal or side chain and a terminal. Alternatively, it is a two-part silicone with an organopolysiloxane having two or more H-Si groups in the side chain. For example, there is a product name “SE-1885A / B” manufactured by Toray Dow Corning Silicone.
本発明で使用される付加反応型シリコーンとしては、重量平均分子量10000〜30000と重量平均分子量400000〜600000のビニル基をもつオルガノポリシロキサンが好ましい。特に重量平均分子量15000〜25000のビニル基をもつオルガノポリシロキサンと重量平均分子量450000〜550000のビニル基を含有したシリコーン系樹脂を用いることが好ましい。重量平均分子量が10000より小さくなると樹脂組成物を形成することが困難となり、重量平均分子量が30000より大きくなると熱伝導性フィラーの充填性が悪くなり、ともに熱伝導性が低減する傾向にある。また重量平均分子量が400000より小さくなると樹脂組成物の形成が困難となり、600000より大きくなると熱伝導性フィラーの充填性が悪くなり、熱伝導性が低減する傾向にある。 The addition reaction type silicone used in the present invention is preferably an organopolysiloxane having a vinyl group having a weight average molecular weight of 10,000 to 30,000 and a weight average molecular weight of 400,000 to 600,000. In particular, it is preferable to use an organopolysiloxane having a vinyl group having a weight average molecular weight of 15,000 to 25000 and a silicone resin containing a vinyl group having a weight average molecular weight of 450,000 to 550,000. When the weight average molecular weight is less than 10,000, it is difficult to form a resin composition, and when the weight average molecular weight is more than 30000, the filling property of the heat conductive filler is deteriorated, and the heat conductivity tends to be reduced. When the weight average molecular weight is less than 400,000, it is difficult to form a resin composition. When the weight average molecular weight is more than 600,000, the filling property of the heat conductive filler is deteriorated, and the heat conductivity tends to be reduced.
また、本発明で使用される重量平均分子量15000〜30000のビニル基をもつオルガノポリシロキサンと重量平均分子量400000〜600000のビニル基をもつオルガノポリシロキサンの配合割合は体積比で6:4〜5:5であることが好ましく、5.5:4.5〜5.8:4.2であることがさらに好ましい。重量平均分子量15000〜30000のビニル基をもつオルガノポリシロキサンの割合が5より小さくなると、マトリックス樹脂の粘度が高くなり、熱伝導性フィラーを充填しにくくなるため、熱伝導性は減少する傾向にある。また重量平均分子量15000〜30000のビニル基をもつオルガノポリシロキサンの割合が6より大きくなると、15000〜30000のビニル基をもつオルガノポリシロキサンと重量平均分子量400000〜600000のビニル基をもつオルガノポリシロキサンの混合物が相分離を起こす場合があり、樹脂組成物中に含有させることができる熱伝導性フィラーが減少する恐れがあり、熱伝導性は減少する傾向にある。 Moreover, the compounding ratio of the organopolysiloxane having a vinyl group having a weight average molecular weight of 15,000 to 30,000 and the vinyl group having a weight average molecular weight of 400,000 to 600,000 used in the present invention is 6: 4 to 5: 5 is preferable, and 5.5: 4.5 to 5.8: 4.2 is more preferable. When the ratio of the organopolysiloxane having a vinyl group having a weight average molecular weight of 15,000 to 30,000 is smaller than 5, the viscosity of the matrix resin increases and it becomes difficult to fill the thermally conductive filler, so that the thermal conductivity tends to decrease. . When the ratio of the organopolysiloxane having a vinyl group having a weight average molecular weight of 15,000 to 30,000 is larger than 6, the organopolysiloxane having a vinyl group having a weight average molecular weight of 400000 to 600000 and the organopolysiloxane having a vinyl group having a weight average molecular weight of 400000 to 600000 The mixture may cause phase separation, the heat conductive filler that can be contained in the resin composition may decrease, and the heat conductivity tends to decrease.
重量平均分子量は以下の方法を用いて測定した。東ソー社製の高温サイズ排除クロマトグラフィーHLC−8121GPC/HTを用い、測定用カラムとしてはTSK−GEL MultiporeHXL−M、ガードカラムとしてはTSK−guardcolumnMPを用いた。展開溶液としてはテトラヒドロフラン(THF)を用い、カラム温度40℃、流量1.0ml/min、送液圧力36kg/cm2にて測定を実施した。分子量は標準ポリスチレン換算の重量平均分子量である。 The weight average molecular weight was measured using the following method. High temperature size exclusion chromatography HLC-8121GPC / HT manufactured by Tosoh Corporation was used, TSK-GEL MultiporeHXL-M was used as a measurement column, and TSK-guardcolumnMP was used as a guard column. Tetrahydrofuran (THF) was used as a developing solution, and measurement was performed at a column temperature of 40 ° C., a flow rate of 1.0 ml / min, and a liquid feeding pressure of 36 kg / cm 2 . The molecular weight is a weight average molecular weight in terms of standard polystyrene.
付加反応型シリコーンは、ビニル基をもつオルガノポリシロキサン、H−Si基を有するオルガノポリシロキサン、触媒として白金化合物を用い、さらに加熱することで硬化反応が進み、樹脂硬化物が得られる。 The addition reaction type silicone uses an organopolysiloxane having a vinyl group, an organopolysiloxane having an H-Si group, and a platinum compound as a catalyst, and further heating causes a curing reaction to obtain a cured resin product.
本発明で使用される付加反応型液状シリコーンは、アセチルアルコール類、マレイン酸エステル類などの反応遅延剤、十〜数百μmのアエロジルやシリコーンパウダーなどの増粘剤、難燃剤、顔料などと併用することもできる。 The addition reaction type liquid silicone used in the present invention is used in combination with reaction retarders such as acetyl alcohols and maleates, thickeners such as 10 to several hundred μm aerosil and silicone powder, flame retardants, pigments, etc. You can also
本発明の樹脂組成物の製造方法は、付加反応型液状シリコーンに窒化ホウ素粉末の凝集粉末と酸化アルミニウム粉末を添加し、自転・公転ミキサーであるシンキー社製「あわとり練太郎」を用いて混合することで、窒化ホウ素粉末の凝集粉末が解砕することなく、樹脂組成物を製造することが可能である。 The method for producing the resin composition of the present invention comprises adding an agglomerated powder of boron nitride powder and aluminum oxide powder to an addition reaction type liquid silicone, and mixing using “Awatori Kentaro” manufactured by Shinky Corporation, which is a rotating / revolving mixer. By doing so, it is possible to produce a resin composition without crushing the aggregated powder of boron nitride powder.
本発明の樹脂組成物の熱伝導性及び絶縁性を評価するため、シート成形体を作製する必要がある。シート成形体の作製方法として、プランジャー式の押出機を用いることで、窒化ホウ素粉末の凝集粉末を解砕することなく、シート化可能である。熱伝導性評価用のシート成形体は厚み1mmで、10mm×10mmの大きさのサンプルを用意した。また絶縁性評価用のシート成形体は厚み1mmで、100mm×100mmの大きさのサンプルを用意した。 In order to evaluate the thermal conductivity and insulation of the resin composition of the present invention, it is necessary to produce a sheet molded body. By using a plunger-type extruder as a method for producing a sheet compact, it is possible to form a sheet without crushing the aggregated powder of boron nitride powder. A sheet molded body for thermal conductivity evaluation was prepared with a sample having a thickness of 1 mm and a size of 10 mm × 10 mm. In addition, a sheet molded body for insulation evaluation was prepared with a sample having a thickness of 1 mm and a size of 100 mm × 100 mm.
熱伝導率は、ASTM E−1461に準拠した樹脂組成物の熱拡散率、密度、比熱を全て乗じて算出した(熱伝導率=熱拡散率×密度×比熱)。熱拡散率は、試料を幅10mm×10mm×厚み1mmに加工し、レーザーフラッシュ法により求めた。測定装置はキセノンフラッシュアナライザー(NETSCH社製 LFA447 NanoFlash)を用い、25℃で測定を行った。密度はアルキメデス法を用いて求めた。比熱は、DSC(リガク社製 ThermoPlus Evo DSC8230)を用いて求めた。 The thermal conductivity was calculated by multiplying all of the thermal diffusivity, density, and specific heat of the resin composition according to ASTM E-1461 (thermal conductivity = thermal diffusivity × density × specific heat). The thermal diffusivity was determined by a laser flash method after processing the sample into a width of 10 mm × 10 mm × thickness of 1 mm. The measurement was performed at 25 ° C. using a xenon flash analyzer (LFA447 NanoFlash manufactured by NETSCH). The density was determined using the Archimedes method. Specific heat was determined using DSC (ThermoPlus Evo DSC8230, manufactured by Rigaku Corporation).
樹脂組成物の絶縁性を示す体積抵抗率は、JIS−K6911に準拠した三菱化学アナリテック社製のハイレスタUP MCP−HT450型を用いて測定を行った。測定はレジテーブル上に厚さ1mmであり100mm×100mmの大きさのサンプルをセットし、さらにサンプル上方からプローブを接触させ、サンプルをはさみこんだ状態で600Vの電圧を30s負荷し、体積抵抗率を求めた。 The volume resistivity indicating the insulating property of the resin composition was measured using Hiresta UP MCP-HT450 type manufactured by Mitsubishi Chemical Analytech Co., Ltd. based on JIS-K6911. For measurement, a sample with a thickness of 1 mm and a size of 100 mm × 100 mm is set on a register table, and a probe is brought into contact with the sample from above, a voltage of 600 V is applied for 30 s with the sample sandwiched, and volume resistivity Asked.
配向性指数は、六方晶窒化ホウ素の凝集粉末を成形し試料板を用いて、X線回折装置(理学電機社製「Geiger Flex 2013型」)にて2θ=30°〜25°の範囲で測定し、2θ=27〜28°付近((002)面)の回折線の強度I002、2θ=41°付近((100)面)の回折線の強度I100を求め、(002)面の回折線の強度I002と(100)面の回折線の強度I100との比である(I002/I100)とした。
配向性指数=(I002/I100)
The orientation index is measured in the range of 2θ = 30 ° to 25 ° with an X-ray diffractometer (“Geiger Flex 2013 type” manufactured by Rigaku Corporation) using a hexagonal boron nitride agglomerated powder and a sample plate. Then, the intensity I002 of diffraction lines near 2θ = 27 to 28 ° ((002) plane), the intensity I100 of diffraction lines near 2θ = 41 ° ((100) plane), and the diffraction lines on the (002) plane are calculated. The ratio (I002 / I100) is the ratio between the intensity I002 and the intensity I100 of the (100) plane diffraction line.
Orientation index = (I002 / I100)
実施例1〜8、10〜12、15、16 比較例1〜13 参考例1〜6
熱伝導性粉末として表1に示される凝集六方晶窒化ホウ素粉末7種類、六方晶窒化ホウ素粉末1種類及び酸化アルミニウム粉末7種類、付加反応型液状シリコーンとして表2に示されるA液5種類(白金触媒を含有したビニル基を有するオルガノポリシロキサン)、B液5種類(H−Si基を有するオルガノポリシロキサン及びビニル基を有するオルガノポリシロキサン)、C液5種類(ビニル基を有するオルガノポリシロキサン)を室温下で表3〜6に示す配合(体積%)で、自転・公転ミキサーであるシンキー社製「あわとり練太郎」を用いて、回転速度2000rpmで10分混合して樹脂組成物を製造した。
Examples 1-8, 10-12, 15, 16 Comparative Examples 1-13 Reference Examples 1-6
7 types of agglomerated hexagonal boron nitride powder shown in Table 1 as heat conductive powder, 1 type of hexagonal boron nitride powder and 7 types of aluminum oxide powder, 5 types of A liquid shown in Table 2 as an addition reaction type liquid silicone (platinum) Organopolysiloxane having vinyl group containing catalyst), 5 types of B liquid (organopolysiloxane having H-Si group and organopolysiloxane having vinyl group), 5 types of C liquid (organopolysiloxane having vinyl group) The mixture (volume%) shown in Tables 3 to 6 at room temperature was mixed for 10 minutes at a rotational speed of 2000 rpm using a “rotor / revolution mixer” manufactured by Shinky Co., Ltd., a rotation / revolution mixer, to produce a resin composition. did.
この樹脂組成物をスリット(1mm×100mm、及び1mm×10mm)付きダイスの固定されたシリンダー構造金型内に100g充填し、ピストンで5MPaの圧力をかけながらスリットから押し出して樹脂組成物のグリーンシートを得た。
このグリーンシートを110℃で3時間加熱し、熱伝導性及び絶縁性を評価する樹脂組成物のシートを製造した。
上記で得られた樹脂組成物のシートの熱伝導率と体積抵抗率を測定した結果を表3〜6に示した。
100 g of this resin composition is filled into a cylinder structure mold fixed with a die having slits (1 mm × 100 mm and 1 mm × 10 mm), and extruded from the slit while applying a pressure of 5 MPa with a piston, and then a green sheet of the resin composition Got.
The green sheet was heated at 110 ° C. for 3 hours to produce a resin composition sheet for evaluating thermal conductivity and insulation.
The result of having measured the thermal conductivity and volume resistivity of the sheet | seat of the resin composition obtained above was shown to Tables 3-6.
表3〜5の実施例と表6の比較例から、本発明の熱伝導性樹脂組成物は、優れた熱伝導性と高い絶縁性(体積抵抗率)を示していることがわかる。 From the examples of Tables 3 to 5 and the comparative examples of Table 6, it can be seen that the thermally conductive resin composition of the present invention exhibits excellent thermal conductivity and high insulation (volume resistivity).
本発明の熱伝導性樹脂組成物を電子部品用放熱部材として使用した場合、例えば、パワーデバイス等の半導体素子の放熱部材として使用した場合、長期間使用可能となる。
When the heat conductive resin composition of the present invention is used as a heat radiating member for electronic components, for example, when it is used as a heat radiating member of a semiconductor element such as a power device, it can be used for a long period of time.
Claims (2)
配向性指数は、粉末X線回折法による(002)面の回折線の強度I002と(100)面の回折線の強度I100との比(I002/I100)である。 Thermally conductive filler 60-73% by volume of hexagonal boron nitride agglomerated powder having an average particle diameter of 20-60 μm and an orientation index defined below of 2-20 and aluminum oxide powder having an average particle diameter of 0.1-1 μm , Ri Na contain 27-40 vol% silicone resin, an organopolysiloxane silicone resin has a vinyl group having a weight average molecular weight of 15,000 to 30,000 and a weight average molecular weight from 400,000 to 600,000, a volume ratio of 7: 3 5: 5 resin composition.
The orientation index is a ratio (I002 / I100) of the intensity I002 of the (002) plane diffraction line and the intensity I100 of the (100) plane diffraction line by powder X-ray diffraction method.
The heat radiating member using the resin composition of Claim 1 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010004738A JP5497458B2 (en) | 2010-01-13 | 2010-01-13 | Thermally conductive resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010004738A JP5497458B2 (en) | 2010-01-13 | 2010-01-13 | Thermally conductive resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011144234A JP2011144234A (en) | 2011-07-28 |
JP5497458B2 true JP5497458B2 (en) | 2014-05-21 |
Family
ID=44459382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010004738A Active JP5497458B2 (en) | 2010-01-13 | 2010-01-13 | Thermally conductive resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5497458B2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150037575A1 (en) | 2012-03-30 | 2015-02-05 | Showa Denko K.K. | Curable heat radiation composition |
JP2014152299A (en) * | 2013-02-13 | 2014-08-25 | Mitsubishi Electric Corp | Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same |
WO2014136484A1 (en) * | 2013-03-07 | 2014-09-12 | 住友ベークライト株式会社 | Apparatus, composition for adhesive, and adhesive sheet |
JP6493226B2 (en) * | 2014-02-05 | 2019-04-03 | 三菱ケミカル株式会社 | Boron nitride aggregated particles, method for producing boron nitride aggregated particles, resin composition containing boron nitride aggregated particles, molded product, and sheet |
JP6584752B2 (en) * | 2014-06-12 | 2019-10-02 | 日東電工株式会社 | Resin sheet for sealing |
CN104479291A (en) * | 2014-12-04 | 2015-04-01 | 中国科学院过程工程研究所 | Heat-conducting insulated epoxy resin composition and preparation method and use thereof |
US10501671B2 (en) * | 2016-07-26 | 2019-12-10 | Honeywell International Inc. | Gel-type thermal interface material |
JP6884787B2 (en) * | 2016-08-18 | 2021-06-09 | デンカ株式会社 | Composition for heat conductive grease, heat conductive grease and heat dissipation member |
JP7220150B2 (en) * | 2017-08-10 | 2023-02-09 | デンカ株式会社 | Low dielectric constant thermal conductive heat dissipation material |
US11041103B2 (en) | 2017-09-08 | 2021-06-22 | Honeywell International Inc. | Silicone-free thermal gel |
JP7248217B2 (en) * | 2017-12-04 | 2023-03-29 | 積水ポリマテック株式会社 | Thermally conductive composition |
CN109929249A (en) * | 2017-12-15 | 2019-06-25 | 南京机器人研究院有限公司 | A kind of insulation thermal conductivity new material |
KR101981629B1 (en) * | 2018-01-23 | 2019-05-24 | 엘지이노텍 주식회사 | Thermoelectric element and method of preparating the same |
US11072706B2 (en) * | 2018-02-15 | 2021-07-27 | Honeywell International Inc. | Gel-type thermal interface material |
JP7389014B2 (en) * | 2018-02-26 | 2023-11-29 | デンカ株式会社 | insulation heat dissipation sheet |
WO2020203299A1 (en) * | 2019-03-29 | 2020-10-08 | ダウ・東レ株式会社 | Multicomponent type thermally conductive silicone gel composition, thermally conductive member and heat dissipation structure |
US11373921B2 (en) | 2019-04-23 | 2022-06-28 | Honeywell International Inc. | Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing |
WO2024057678A1 (en) * | 2022-09-15 | 2024-03-21 | 富士高分子工業株式会社 | Thermally conductive composition |
JP7426545B1 (en) | 2022-09-15 | 2024-02-01 | 富士高分子工業株式会社 | thermally conductive composition |
JP2024060273A (en) * | 2022-10-19 | 2024-05-02 | 信越化学工業株式会社 | Curable organopolysiloxane composition, and semiconductor device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3654743B2 (en) * | 1997-07-01 | 2005-06-02 | 電気化学工業株式会社 | Heat dissipation spacer |
JP4906243B2 (en) * | 2004-06-02 | 2012-03-28 | 電気化学工業株式会社 | Inorganic powder and its use |
-
2010
- 2010-01-13 JP JP2010004738A patent/JP5497458B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011144234A (en) | 2011-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5497458B2 (en) | Thermally conductive resin composition | |
JP5749536B2 (en) | Thermally conductive moldings and their applications | |
CN111492474B (en) | Insulating radiating fin | |
JP7220150B2 (en) | Low dielectric constant thermal conductive heat dissipation material | |
CN110709474B (en) | Thermally conductive polyorganosiloxane composition | |
JP5103364B2 (en) | Manufacturing method of heat conductive sheet | |
JP2010260225A (en) | Thermoconductive molding and use thereof | |
JP6987210B2 (en) | Thermal conductivity sheet | |
CN109627776A (en) | Solidfied material made of heat-conductive silicone composition and its solidification | |
KR20110122484A (en) | Silicone polymer composition having an excellent heat-radiating function | |
JPWO2020137086A1 (en) | Thermal conductivity composition and thermal conductivity sheet using it | |
JP2019131669A (en) | Resin composition and insulation heat conductive sheet | |
JP5755977B2 (en) | High thermal conductive resin composition | |
JP2017014445A (en) | Aluminum nitride composite filler and resin composition containing the same | |
JP2016169281A (en) | Composite filler and resin composition containing the same | |
JP5284655B2 (en) | Thermally conductive grease | |
KR20160150290A (en) | Silicone polymer composition having an excellent heat-radiating function | |
JP7189879B2 (en) | thermally conductive sheet | |
WO2022049815A1 (en) | Thermally conductive silicone gel composition, thermally conductive silicone sheet, and production methods therefor | |
TWI724816B (en) | Heat-resistant and thermally conductive composition and heat-resistant and thermally conductive sheet | |
JP2016060680A (en) | Boron nitride agglomerate and thermally conductive composition | |
Hu et al. | Preparation of thermal interface materials with high thermal conductivity through the synergistic effect of Monoalkoxy-Terminated polysiloxane and branched siloxane oligomers | |
TW200831579A (en) | Resin composition and radiating spacer formed from the same | |
Wahab et al. | Effect of Nanodiamond Surface Functionalization on the Properties of Nanodiamond/PEEK Composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140306 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5497458 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |