JP2016216523A - Composition for thermal conducive grease, thermal conductive grease and heat dissipating member - Google Patents
Composition for thermal conducive grease, thermal conductive grease and heat dissipating member Download PDFInfo
- Publication number
- JP2016216523A JP2016216523A JP2015098866A JP2015098866A JP2016216523A JP 2016216523 A JP2016216523 A JP 2016216523A JP 2015098866 A JP2015098866 A JP 2015098866A JP 2015098866 A JP2015098866 A JP 2015098866A JP 2016216523 A JP2016216523 A JP 2016216523A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- composition
- conductive grease
- component
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004519 grease Substances 0.000 title claims abstract description 76
- 239000000203 mixture Substances 0.000 title claims abstract description 48
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 47
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 29
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000011231 conductive filler Substances 0.000 claims abstract description 14
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 7
- 239000011787 zinc oxide Substances 0.000 claims abstract description 6
- 229910052582 BN Inorganic materials 0.000 claims abstract description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 37
- 239000000843 powder Substances 0.000 claims description 21
- 238000005304 joining Methods 0.000 claims description 2
- 230000035939 shock Effects 0.000 abstract description 12
- 239000011342 resin composition Substances 0.000 abstract description 2
- 230000002349 favourable effect Effects 0.000 description 15
- 238000012360 testing method Methods 0.000 description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000945 filler Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 241001247482 Amsonia Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- UMFJXASDGBJDEB-UHFFFAOYSA-N triethoxy(prop-2-enyl)silane Chemical compound CCO[Si](CC=C)(OCC)OCC UMFJXASDGBJDEB-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 239000005047 Allyltrichlorosilane Substances 0.000 description 1
- 108010068977 Golgi membrane glycoproteins Proteins 0.000 description 1
- 102100038736 Histone H3.3C Human genes 0.000 description 1
- 101001031505 Homo sapiens Histone H3.3C Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920004482 WACKER® Polymers 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000002199 base oil Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- KMVZWUQHMJAWSY-UHFFFAOYSA-N chloro-dimethyl-prop-2-enylsilane Chemical compound C[Si](C)(Cl)CC=C KMVZWUQHMJAWSY-UHFFFAOYSA-N 0.000 description 1
- XSDCTSITJJJDPY-UHFFFAOYSA-N chloro-ethenyl-dimethylsilane Chemical compound C[Si](C)(Cl)C=C XSDCTSITJJJDPY-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- MBGQQKKTDDNCSG-UHFFFAOYSA-N ethenyl-diethoxy-methylsilane Chemical compound CCO[Si](C)(C=C)OCC MBGQQKKTDDNCSG-UHFFFAOYSA-N 0.000 description 1
- ZLNAFSPCNATQPQ-UHFFFAOYSA-N ethenyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C=C ZLNAFSPCNATQPQ-UHFFFAOYSA-N 0.000 description 1
- JEWCZPTVOYXPGG-UHFFFAOYSA-N ethenyl-ethoxy-dimethylsilane Chemical compound CCO[Si](C)(C)C=C JEWCZPTVOYXPGG-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000006459 hydrosilylation reaction Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- GQIUQDDJKHLHTB-UHFFFAOYSA-N trichloro(ethenyl)silane Chemical compound Cl[Si](Cl)(Cl)C=C GQIUQDDJKHLHTB-UHFFFAOYSA-N 0.000 description 1
- HKFSBKQQYCMCKO-UHFFFAOYSA-N trichloro(prop-2-enyl)silane Chemical compound Cl[Si](Cl)(Cl)CC=C HKFSBKQQYCMCKO-UHFFFAOYSA-N 0.000 description 1
- LFRDHGNFBLIJIY-UHFFFAOYSA-N trimethoxy(prop-2-enyl)silane Chemical compound CO[Si](OC)(OC)CC=C LFRDHGNFBLIJIY-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は、熱伝導性グリース用組成物、熱伝導性グリースおよび放熱部材に関する。 The present invention relates to a thermally conductive grease composition, a thermally conductive grease, and a heat dissipation member.
発熱性電子部品の小型化、高出力化に伴い、それらの電子部品から発生する単位面積当たりの熱量は非常に大きくなってきている。冷却には金属製のヒートシンクや筐体が使用され、さらに電子部品からヒートシンクや筐体などの冷却部へ効率よく熱を伝えるために放熱材が使用される。この放熱材を使用する理由として電子部品とヒートシンク等をそのまま接触させた場合、その界面には微視的にみると、空気が存在し熱伝導の障害となる。したがって、界面に存在する空気の代わりに放熱材を電子部品とヒートシンク等の間に存在させることによって、効率よく熱を伝えることができる。 As heat generating electronic components are miniaturized and output is increased, the amount of heat per unit area generated from these electronic components has become very large. A metal heat sink or housing is used for cooling, and a heat dissipating material is used to efficiently transfer heat from electronic components to a cooling unit such as a heat sink or housing. As a reason for using this heat radiating material, when an electronic component and a heat sink or the like are brought into contact with each other as they are, microscopically, air is present at the interface, which hinders heat conduction. Therefore, heat can be efficiently transferred by allowing the heat dissipating material to exist between the electronic component and the heat sink instead of the air present at the interface.
また、電子部品動作前は電子機器の使用環境次第ではマイナス数十℃から、動作中は高温といったように、電子部品を使用する度に、放熱材は数百℃の冷熱衝撃を受け続ける。電子部品を長期にわたり故障しないようにするためには、発熱する電子部品を冷却し続ける必要があり、放熱材の放熱特性に劣化があってはならない。 In addition, the heat radiation material continues to receive a thermal shock of several hundred degrees C. every time the electronic component is used, such as from minus tens of degrees Celsius depending on the use environment of the electronic device before operation of the electronic parts and high temperature during operation. In order to prevent the electronic components from failing for a long period of time, it is necessary to continue cooling the electronic components that generate heat, and the heat dissipation characteristics of the heat dissipation material should not be deteriorated.
放熱材としては、高分子量シリコーンや低分子量シリコーンに熱伝導性粉末を充填した硬化物からなる熱伝導性シート、低分子量シリコーンのようなやわらかいシリコーンに熱伝導性粉末が充填され、柔軟性を有する硬化物からなる熱伝導性パッド、液状シリコーンに熱伝導性粉末が充填された流動性のあるグリース、発熱電子部品の作動温度で軟化又は流動化する相変化型熱伝導性材料などがある。これらの中で、グリースが特に熱を伝えやすい。 As a heat dissipation material, a heat conductive sheet made of a cured product obtained by filling a high molecular weight silicone or low molecular weight silicone with a heat conductive powder, a soft silicone such as low molecular weight silicone is filled with the heat conductive powder, and has flexibility. There are a thermally conductive pad made of a cured product, a fluid grease in which liquid silicone is filled with a thermally conductive powder, and a phase change type thermally conductive material that softens or fluidizes at the operating temperature of a heat generating electronic component. Among these, grease is particularly easy to conduct heat.
グリースは、シリコーンオイル等の液状シリコーンである基油や、低分子量シリコーンなどの低粘度のシリコーンに熱伝導性粉末を含有させてなるものである。 The grease is a base oil that is a liquid silicone such as silicone oil, or a low-viscosity silicone such as low molecular weight silicone that contains a heat conductive powder.
グリースは高熱伝導であるが流動性があるがゆえに冷熱衝撃を何回も繰り返されるところで使用すると、割れやポンプアウト(基材やグリース自身の熱膨張・収縮により、グリースが冷却部より外に流れ出てしまう現象)を生じ、熱抵抗が上昇する。一般的に割れは低温時のグリースの粘度が高いほど生じやすく、またポンプアウトは高温時のグリースの粘度が低いほど生じやすく、割れおよびポンプアウトのどちらも生じることがないグリースを開発することは極めて困難である。なお、本発明の割れ性とは、150℃以上の雰囲気下に長時間暴露した際に、グリースに欠陥部を生じる現象を意味する。 Grease is highly heat conductive but has fluidity, so if it is used in locations where the thermal shock is repeated many times, it will crack and pump out (the grease will flow out of the cooling section due to the thermal expansion and contraction of the base material and the grease itself). Phenomenon) and the thermal resistance increases. In general, cracks are more likely to occur as the viscosity of grease at lower temperatures is higher, and pump-out is more likely to occur as the viscosity of grease at higher temperatures is lower. It is extremely difficult. The cracking property of the present invention means a phenomenon in which a defective portion is formed in the grease when exposed to an atmosphere of 150 ° C. or higher for a long time.
上記課題を解決するために、白金系触媒によるヒドロシリル化反応を利用したシリコーン組成物が提案されている(特許文献1〜4)が、何れも放熱材として用いた際の基板との接着性、耐熱性及び放熱樹脂材料としての機械的特性(引張強度)等に着目したものであり、冷熱衝撃過程における耐割れ性、耐ポンプアウト性に関しての効果は不十分と判断される。 In order to solve the above problems, silicone compositions using hydrosilylation reaction by a platinum-based catalyst have been proposed (Patent Documents 1 to 4), all of which are adhesive to a substrate when used as a heat dissipation material, It pays attention to heat resistance and mechanical properties (tensile strength) as a heat-dissipating resin material, and it is judged that the effects on crack resistance and pump-out resistance in the thermal shock process are insufficient.
発明者達は鋭意検討した結果、冷熱衝撃過程におけるグリースの割れ現象は、フィラーの再凝集に起因する現象であることを確認した。フィラーの再凝集を低減するには、シリコーン分子鎖中に、フィラー表面と相互作用を生じるシランカップリング剤を導入することが有効であることを見出した。さらにグリースのポンプアウト現象に関しては、シリコーン架橋体の構造制御が不可欠であることを確認した。このシリコーン架橋体の構造制御には特定の分子量、ビニル基数、分子中にある一定数量の平均ヒドロシリル基数を有するシリコーンが不可欠であることを見出した。
本発明は、上記問題と実状に鑑み、冷熱衝撃過程において、耐割れ性および耐ポンプアウト性に優れた熱伝導性グリース用組成物を提供することを目的とする。さらに、この熱伝導性グリース用組成物を用いて製造される、熱伝導性グリースおよび放熱部材を提供することを目的とする。
As a result of intensive studies, the inventors have confirmed that the grease cracking phenomenon during the thermal shock process is a phenomenon caused by re-aggregation of the filler. In order to reduce reaggregation of the filler, it has been found that it is effective to introduce a silane coupling agent that interacts with the filler surface into the silicone molecular chain. Furthermore, regarding the grease pump-out phenomenon, it was confirmed that the structure control of the crosslinked silicone was indispensable. It has been found that a silicone having a specific molecular weight, the number of vinyl groups, and a certain number of average hydrosilyl groups in the molecule is indispensable for controlling the structure of the crosslinked silicone.
The present invention has been made in view of the above problems and circumstances, and an object of the present invention is to provide a composition for thermally conductive grease that is excellent in crack resistance and pump-out resistance in the process of thermal shock. Furthermore, it aims at providing the heat conductive grease and heat radiating member which are manufactured using this composition for heat conductive grease.
本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)(A)成分、(B)成分、(C)成分、(D)成分および(E)成分を含有する熱伝導性グリース用組成物。(A)両末端にビニル基を含有する質量平均分子量10000〜800000のシリコーン、(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーン、(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量10000〜40000のシリコーン、(D)反応性二重結合を含有するシランカップリング剤、(E)熱伝導性フィラー
(2)熱伝導性グリース用組成物中の(A)成分、(B)成分、(C)成分および(D)成分の総和が6〜20質量%である、(1)に記載の熱伝導性グリース用組成物。
(3)熱伝導性グリース用組成物中の、(A)成分が2.5〜15質量%、(B)成分が0.005〜0.1質量%、(C)成分が1〜10質量%、(D)成分が0.01〜0.6質量%である(1)または(2)に記載の熱伝導性グリース用組成物。
(4)(E)成分が、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム及び酸化亜鉛から選択される1種以上である、(1)〜(3)の何れか一つに記載の熱伝導性グリース用組成物。
(5)(E)成分が、平均粒子径が15〜100μmである粗粉、平均粒子径が2〜11μmである中粒粉および平均粒子径が0.5〜1μmである微粉からなる、(1)〜(4)の何れか一つに記載の熱伝導性グリース用組成物。
(6)(1)〜(5)に記載の何れか一つの熱伝導性グリース用組成物を硬化させてなる熱伝導性グリース。
(7)(6)に記載の熱伝導性グリースを介して電子部品とヒートシンクを接合した放熱部材。
The present invention employs the following means in order to solve the above problems.
(1) A composition for thermally conductive grease containing (A) component, (B) component, (C) component, (D) component and (E) component. (A) Silicone having a weight average molecular weight of 10,000 to 800,000 containing vinyl groups at both ends, (B) A weight average of containing no vinyl groups in the molecule and containing 5 to 10 hydrosilyl groups in the molecule Silicone having a molecular weight of 2000 to 10000, (C) a silicone having a weight average molecular weight of 10,000 to 40,000 containing vinyl groups at both ends and an average of 1 to 4 hydrosilyl groups in the molecule, (D) reactive double Silane coupling agent containing a bond, (E) Thermally conductive filler (2) The total of (A) component, (B) component, (C) component and (D) component in the thermally conductive grease composition is The composition for thermally conductive grease according to (1), which is 6 to 20% by mass.
(3) In the composition for thermally conductive grease, the component (A) is 2.5 to 15% by mass, the component (B) is 0.005 to 0.1% by mass, and the component (C) is 1 to 10% by mass. %, (D) component is 0.01-0.6 mass%, The composition for heat conductive grease as described in (1) or (2).
(4) The thermally conductive grease according to any one of (1) to (3), wherein the component (E) is at least one selected from silica, alumina, boron nitride, aluminum nitride, and zinc oxide. Composition.
(5) The component (E) consists of coarse powder having an average particle diameter of 15 to 100 μm, medium powder having an average particle diameter of 2 to 11 μm, and fine powder having an average particle diameter of 0.5 to 1 μm. The composition for heat conductive grease as described in any one of 1)-(4).
(6) A thermal conductive grease obtained by curing any one of the thermal conductive grease compositions according to (1) to (5).
(7) A heat radiating member in which an electronic component and a heat sink are joined via the heat conductive grease according to (6).
本発明では、特定のシリコーン、シランカプリング剤及び熱伝導性フィラーを含有する熱伝導性グリース用組成物が、冷熱衝撃過程後もグリースとしての特性を維持し、かつ耐割れ性および耐ポンプアウト性を両立することを見出した。 In the present invention, a thermally conductive grease composition containing a specific silicone, a silane coupling agent, and a thermally conductive filler maintains the properties as a grease even after a thermal shock process, and is resistant to cracking and pump-out. I found out that it is compatible.
本発明の熱伝導性グリース用組成物は、(A)両末端にビニル基を含有する質量平均分子量10000〜800000のシリコーン、(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーン、(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量10000〜40000のシリコーン、(D)ビニル基を含有するシランカップリング剤、(E)熱伝導性フィラーを含有する。 The composition for thermally conductive grease of the present invention comprises (A) a silicone having a vinyl group at both ends and a weight average molecular weight of 10,000 to 800,000, (B) no vinyl group in the molecule, and an average in the molecule. Silicone having a mass average molecular weight of 2000 to 10000 containing 5 to 10 hydrosilyl groups, (C) A mass average molecular weight of 10,000 containing vinyl groups at both ends and an average of 1 to 4 hydrosilyl groups in the molecule ~ 40000 silicone, (D) a silane coupling agent containing a vinyl group, and (E) a thermally conductive filler.
熱伝導性グリース用組成物はシリコーンの付加反応により架橋反応を進ませるが、架橋度を最適化することにより流動性のある熱伝導性グリースが得られる。硬化方法としては熱伝導性グリース用組成物に白金系触媒を添加し、これを加熱する方法が挙げられる。また、熱伝導性グリース用組成物を二剤に分割し、一方に白金系触媒を添加し、常温にて硬化する方法も採用できる。 The thermally conductive grease composition allows the crosslinking reaction to proceed by the addition reaction of silicone, and a flowable thermally conductive grease can be obtained by optimizing the degree of crosslinking. Examples of the curing method include a method in which a platinum-based catalyst is added to the thermally conductive grease composition and heated. Moreover, the composition for thermal conductive grease can be divided into two parts, a platinum catalyst is added to one of them, and the composition can be cured at room temperature.
(A)両末端にビニル基を含有するシリコーンは、質量平均分子量が10000〜800000であり、質量平均分子量が10000〜40000であることがより好ましい。質量平均分子量を10000以上とすることで、耐ポンプアウト性が良好となる。また、質量平均分子量を800000以下とすることで、耐割れ性が良好となる。これらの市販品としては、例えば東レ・ダウコーニング社製SE1885/A剤などを用いることができる。 (A) The silicone containing vinyl groups at both ends has a mass average molecular weight of 10,000 to 800,000, and more preferably 10,000 to 40,000. By setting the mass average molecular weight to 10,000 or more, the pump-out resistance is improved. Moreover, crack resistance becomes favorable because a mass mean molecular weight shall be 800,000 or less. As these commercially available products, for example, SE1885 / A agent manufactured by Toray Dow Corning Co., Ltd. can be used.
(A)成分の熱伝導性グリース用組成物中の添加量は、2.5〜15質量%が好ましく、3〜5質量%がより好ましい。2.5質量%以上とすることで、耐割れ性が良好になる。また、15質量%以下とすることで、耐ポンプアウト性が良好となる。 The addition amount of the component (A) in the thermally conductive grease composition is preferably 2.5 to 15% by mass, and more preferably 3 to 5% by mass. By setting it to 2.5% by mass or more, the crack resistance is improved. Moreover, pumping out resistance becomes favorable by setting it as 15 mass% or less.
(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーンは、熱伝導性グリース用組成物の硬化体の架橋度を調整するためのものである。分子中のヒドロシリル基数は平均5〜10個であり、平均5〜7個がより好ましい。ヒドロシリル基数を平均5以上とすることで、耐ポンプアウト性が良好となる。また平均10個以下とすることで、耐割れ性が良好となる。市販品としては、例えば東レ・ダウコーニング・シリコーン社製、商品名「RD−1」などが挙げられる。 (B) Silicone having a weight average molecular weight of 2000 to 10000 containing no vinyl group in the molecule and containing an average of 5 to 10 hydrosilyl groups in the molecule is a crosslink of the cured product of the composition for heat conductive grease. It is for adjusting the degree. The number of hydrosilyl groups in the molecule is 5 to 10 on average and more preferably 5 to 7 on average. By setting the number of hydrosilyl groups to 5 or more on average, the pump-out resistance is improved. Moreover, crack resistance becomes favorable by setting it as 10 or less on average. As a commercial item, the Toray Dow Corning Silicone make, brand name "RD-1" etc. are mentioned, for example.
(B)成分の熱伝導性グリース用組成物中の添加量は、0.005〜0.1質量%が好ましく、0.005〜0.04質量%がより好ましい。0.005質量%以上とすることで、耐ポンプアウト性が良好となる。また、0.1質量%以下とすることで、耐割れ性が良好となる。 The addition amount of the component (B) in the heat conductive grease composition is preferably 0.005 to 0.1% by mass, and more preferably 0.005 to 0.04% by mass. By setting it to 0.005 mass% or more, the pump-out resistance is improved. Moreover, crack resistance becomes favorable by setting it as 0.1 mass% or less.
(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量10000〜40000のシリコーンは、熱伝導性グリース用組成物の硬化体の架橋度を調整するためのものである。分子中のヒドロシリル基数は平均1〜4個であり、平均1〜2個がより好ましい。ヒドロシリル基数を平均1以上とすることで、耐割れ性が良好となる。また平均4個以下とすることで、耐ポンプアウト性が良好となる。 (C) Silicone having a weight average molecular weight of 10,000 to 40,000 containing vinyl groups at both ends and containing an average of 1 to 4 hydrosilyl groups in the molecule is the degree of crosslinking of the cured product of the composition for thermally conductive grease. It is for adjusting. The number of hydrosilyl groups in the molecule is 1 to 4 on average and more preferably 1 to 2 on average. By setting the number of hydrosilyl groups to 1 or more on average, crack resistance is improved. Moreover, pump-out resistance becomes favorable by setting it as 4 or less on average.
(C)成分の質量平均分子量は10000〜40000であり、10000〜25000がより好ましい。質量平均分子量を10000以上とすることで、耐ポンプアウト性が良好となる。また、40000以下とすることで耐割れ性が良好となる。 (C) The mass mean molecular weight of a component is 10,000-40000, and 10000-25000 is more preferable. By setting the mass average molecular weight to 10,000 or more, the pump-out resistance is improved. Moreover, crack resistance becomes favorable by setting it as 40000 or less.
(C)成分の熱伝導性グリース用組成物中の添加量は、1〜10質量%が好ましく、2.5〜5質量%がより好ましい。1質量%以上とすることで、耐ポンプアウト性が良好となる。また、10質量%以下とすることで、耐割れ性が良好となる。 The addition amount of the component (C) in the heat conductive grease composition is preferably 1 to 10% by mass, and more preferably 2.5 to 5% by mass. By setting the content to 1% by mass or more, the pump-out resistance is improved. Moreover, crack resistance becomes favorable by setting it as 10 mass% or less.
(D)反応性二重結合を有するシランカップリング剤は、フィラーの再凝集を低減すべく、シリコーン分子鎖中に、フィラー表面と相互作用を生じるシランカップリング剤を導入するために用いる。シリコーン分子鎖にシランカップリング剤を導入するため、シランカップリング剤は反応性二重結合を有する。反応性二重結合としては、ビニル基またはアリル基を意味する。(D)反応性二重結合を含有するシランカップリング剤としては、アリルトリエトキシシラン、アリルクロロジメチルシラン、アリルトリメトキシシラン、アリルトリクロロシラン、クロロジメチルビニルシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリクロロビニルシラン、ビニルトリメトキシシラン、ジメチルエトキシビニルシラン、ビニルトリス(2−メトキシエトキシ)シラン等が挙げられる。市販品としては、東レ・ダウコーニング・シリコーン社製、商品名「Z6300」「Z6519」「Z6075」が挙げられる。これらの中ではフィラーとの反応性と、フィラーとの脱水縮合反応後の副産物として有害性の低いエタノールが発生する点で、Z6519(アリルトリエトキシシラン)が好ましい。 (D) The silane coupling agent having a reactive double bond is used to introduce a silane coupling agent that interacts with the filler surface into the silicone molecular chain in order to reduce reaggregation of the filler. In order to introduce a silane coupling agent into the silicone molecular chain, the silane coupling agent has a reactive double bond. A reactive double bond means a vinyl group or an allyl group. (D) As a silane coupling agent containing a reactive double bond, allyltriethoxysilane, allylchlorodimethylsilane, allyltrimethoxysilane, allyltrichlorosilane, chlorodimethylvinylsilane, diethoxymethylvinylsilane, dimethoxymethylvinylsilane, Examples include trichlorovinylsilane, vinyltrimethoxysilane, dimethylethoxyvinylsilane, and vinyltris (2-methoxyethoxy) silane. Examples of commercially available products include “Z6300”, “Z6519”, and “Z6075” manufactured by Toray Dow Corning Silicone. Among these, Z6519 (allyltriethoxysilane) is preferable in terms of reactivity with the filler and generation of less harmful ethanol as a by-product after the dehydration condensation reaction with the filler.
(D)成分の熱伝導性グリース用組成物中の添加量は、0.01〜0.6質量%が好ましく、0.02〜0.3質量%がより好ましい。0.01質量%以上とすることで、耐割れ性が良好となる。また、0.60質量%以下とすることで、耐ポンプアウト性が良好となる。 The amount of component (D) added to the thermally conductive grease composition is preferably 0.01 to 0.6 mass%, more preferably 0.02 to 0.3 mass%. By setting the content to 0.01% by mass or more, the crack resistance is improved. Moreover, pumping-out resistance becomes favorable by setting it as 0.60 mass% or less.
熱伝導性グリース用組成物中の(A)成分、(B)成分、(C)成分および(D)成分の総和は6〜20質量%が好ましく、6〜10質量%がより好ましい。6質量%以上とすることで、熱伝導性が良好となる。また、20質量%以下とすることで、塗布する際の粘性が良好となる。 The total of the components (A), (B), (C) and (D) in the heat conductive grease composition is preferably 6 to 20% by mass, more preferably 6 to 10% by mass. Thermal conductivity becomes favorable by setting it as 6 mass% or more. Moreover, the viscosity at the time of application | coating becomes favorable by setting it as 20 mass% or less.
本発明の熱伝導性グリース用組成物を二剤に分割して使用する場合、第一剤に(A)両末端にビニル基を含有する質量平均分子量10000〜800000のシリコーン、(D)反応性二重結合を含有するシランカップリング剤、および白金系触媒を、第二剤に(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーンおよび(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量1万〜4万のシリコーンを含むことが好ましい。これにより白金系触媒が存在しても、二剤の貯蔵安定性を向上することができる。 When the composition for thermally conductive grease of the present invention is divided into two parts and used, (A) silicone having a weight average molecular weight of 10,000 to 800,000 containing vinyl groups at both ends, (D) reactivity A silane coupling agent containing a double bond, and a platinum-based catalyst, (B) a mass that contains no vinyl group in the molecule and contains an average of 5 to 10 hydrosilyl groups in the molecule. It is preferable to include a silicone having an average molecular weight of 2000 to 10,000 and (C) a silicone having a weight average molecular weight of 10,000 to 40,000 containing vinyl groups at both ends and containing an average of 1 to 4 hydrosilyl groups in the molecule. . Thereby, even if a platinum-type catalyst exists, the storage stability of two agents can be improved.
(E)熱伝導性フィラーとしては、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム及び酸化亜鉛から選択される1種以上であることが好ましく、これらの中ではアルミナが充填性の点で好ましく、アルミナおよび窒化アルミニウムが熱伝導性の点で好ましい。 (E) The thermally conductive filler is preferably at least one selected from silica, alumina, boron nitride, aluminum nitride, and zinc oxide. Among these, alumina is preferable in terms of filling, and alumina and Aluminum nitride is preferred from the viewpoint of thermal conductivity.
(E)熱伝導性フィラーは、平均粒子径が15〜100μmである粗粉、平均粒子径が2〜11μmである中粒粉および平均粒子径が0.5〜1μmである微粉からなることが好ましい。
粗粉の平均粒子径を15μm以上とすることで、熱伝導性および耐ポンプアウト性が良好となる。また粗粉の平均粒子径を100μm以下とすることで、絶縁性および耐割れ性が良好となる。また、中粒粉の平均粒子径を2〜11μmとすることで、熱伝導性フィラーの充填量が向上する。さらに、微粉の平均粒子径を0.5μm以上とすることで、熱伝導性および耐ポンプアウト性が良好となる。また微粉の平均粒子径を1μm以下とすることで、絶縁性および耐割れ性が良好となる。このように平均粒子径の異なる3種類の熱伝導性フィラーを用いることにより、塗布に好適な粘性を維持しつつ絶縁性、耐割れ性、熱伝導性及び耐ポンプアウト性を両立することができる。
(E) The thermally conductive filler may be composed of coarse powder having an average particle diameter of 15 to 100 μm, medium powder having an average particle diameter of 2 to 11 μm, and fine powder having an average particle diameter of 0.5 to 1 μm. preferable.
By setting the average particle diameter of the coarse powder to 15 μm or more, the thermal conductivity and the pump-out resistance are improved. Moreover, insulating property and crack resistance become favorable because the average particle diameter of coarse powder shall be 100 micrometers or less. Moreover, the filling amount of a heat conductive filler improves by setting the average particle diameter of medium-sized powder to 2-11 micrometers. Furthermore, heat conductivity and pump-out resistance become favorable by making the average particle diameter of a fine powder into 0.5 micrometer or more. Moreover, insulating property and crack resistance become favorable because the average particle diameter of fine powder shall be 1 micrometer or less. Thus, by using three types of thermally conductive fillers having different average particle diameters, it is possible to achieve both insulation, crack resistance, thermal conductivity and pump-out resistance while maintaining a viscosity suitable for coating. .
熱伝導性グリース用組成物中の(E)熱伝導性フィラーは80質量%を超える量〜94質量%未満が好ましく、90〜94質量%がより好ましい。80質量%を越える量とすることで、熱伝導性が良好となる。また、94質量%未満とすることで、塗布する際の粘性が良好となる。 The amount of (E) the heat conductive filler in the heat conductive grease composition is preferably more than 80% by mass to less than 94% by mass, and more preferably 90 to 94% by mass. Heat conductivity becomes favorable by setting it as the quantity exceeding 80 mass%. Moreover, the viscosity at the time of application | coating becomes favorable by setting it as less than 94 mass%.
本発明では、例えばレジノカラー工業株式会社製「レジノブラック」などの着色剤を熱伝導性グリース用組成物100質量部に対して0.05〜0.2質量部、熱伝導性グリース用組成物としての物性に悪影響を及ぼさない程度に添加してもよい。また、必要に応じて酸化防止剤、金属腐食防止剤などを配合してもよい。 In the present invention, for example, a colorant such as “Resino Black” manufactured by Resino Color Industry Co., Ltd. is used in an amount of 0.05 to 0.2 parts by weight with respect to 100 parts by weight of the thermally conductive grease composition. You may add to the extent which does not have a bad influence on the physical property as. Moreover, you may mix | blend antioxidant, a metal corrosion inhibitor, etc. as needed.
本発明の熱伝導性グリース用組成物は、遊星攪拌機、万能混合攪拌機、ニーダー、ハイブリッドミキサー等で混練りすることによって製造することができる。 The composition for thermally conductive grease of the present invention can be produced by kneading with a planetary stirrer, universal mixing stirrer, kneader, hybrid mixer or the like.
本発明の熱伝導性グリース用組成物は、予め25℃〜200℃で0.5時間〜24時間加熱して架橋反応を進ませた状態で放熱グリースとして使用することができる。また、電子部品とヒートシンクを接合後、同条件で加熱して使用しても良い。 The composition for thermally conductive grease of the present invention can be used as a heat dissipating grease in a state where the crosslinking reaction is advanced by heating at 25 ° C. to 200 ° C. for 0.5 hours to 24 hours in advance. Moreover, after joining an electronic component and a heat sink, you may heat and use on the same conditions.
以下、本発明を実施例および比較例により具体的に説明するが、本発明はこれに限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to this.
<熱伝導性グリース用組成物の製造>
熱伝導性グリース用組成物の製造には以下の原料を用いた。
(A)両末端にビニル基を含有する質量平均分子量10000〜800000のシリコーン
Wacker社製、「Silgel613 A剤」、質量平均分子量10000、
Momentive社製、「XE14−B8530 A剤」、質量平均分子量25000、
Dow corning社製、「SE1885 A剤」、質量平均分子量40000、
Momentive社製、「TSE201」、質量平均分子量800000、
(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーン
Dow corning社製、「RD−1」、質量平均分子量2000、平均ヒドロシリル基数5個、
ブルースターシリコーン社製、「BLUESIL FLD 628 V12 H3.5」、質量平均分子量3000、平均ヒドロシリル基数7個、
ブルースターシリコーン社製、「BLUESIL FLD 626 V30 H2.5」、質量平均分子量5000、平均ヒドロシリル基数9個、
ブルースターシリコーン社製、「BLUESIL FLD 626 V70 H0.7」、質量平均分子量10000、平均ヒドロシリル基数10個
ブルースターシリコーン社製、「BLUESIL FLD 620 V3」、質量平均分子量2000、平均ヒドロシリル基数2個、
また、比較例用としてブルースターシリコーン社製、「BLUESIL FLD 626 V25 H7」、質量平均分子量3000、平均ヒドロシリル基数20個を用いた。
(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量10000〜40000のシリコーン
Wacker社製、「Silgel613 B剤」、質量平均分子量1万、平均ヒドロシリル基数1個、
Momentive社製、「XE14−B8530 B剤」、質量平均分子量25000、平均ヒドロシリル基数2個、
Dow corning社製、「SE1885 B剤」、質量平均分子量40000、平均ヒドロシリル基数4個
(D)ビニル基を含有するシランカップリング剤
ビニルトリエトキシシラン、Dow corning社製、「Z6519」
(E)熱伝導性フィラー
粗粉:アルミナ、電気化学工業社製、「DAW90」、平均粒子径90μm、
アルミナ、電気化学工業社製、「DAW70」、平均粒子径70μm、
アルミナ、電気化学工業社製、「DAW45」、平均粒子径45μm、
アルミナ、住友化学社製、「AA−18」、平均粒子径18μm、
窒化アルミニウム、電気化学工業社製、「SAN」、平均粒子径20μm、
中粒粉:アルミナ、電気化学工業社製、「DAS10」、平均粒子径10μm、
アルミナ、電気化学工業社製、「DAW05」、平均粒子径5μm、
アルミナ、住友化学社製、「AA−2」、平均粒子径2μm、
酸化亜鉛、堺化学社製、「ZIMC−11」、平均粒子径11μm、
微粉:アルミナ、住友化学社製、「AA−05」、平均粒子径0.5μm、
酸化亜鉛、本庄ケミカル社製、「一種」、平均粒子径0.5μm、
窒化アルミニウム、トクヤマ社製、「H」、平均粒子径1μm
白金系触媒: Momentive社製、「SFG−32」を、熱伝導性樹脂組成物に対し白金量換算で20ppm添加した。
<Manufacture of thermal conductive grease composition>
The following raw materials were used for the production of the composition for thermally conductive grease.
(A) Silicone having a weight average molecular weight of 10,000 to 800,000 containing vinyl groups at both ends, manufactured by Wacker, “Silgel 613 A agent”, a weight average molecular weight of 10,000,
Manufactured by Momentive, "XE14-B8530 A agent", mass average molecular weight 25000,
“SE1885 A agent” manufactured by Dow Corning, weight average molecular weight 40000,
Manufactured by Momentive, "TSE201", mass average molecular weight 800000,
(B) Silicone having a weight average molecular weight of 2000 to 10,000 containing no vinyl group in the molecule and containing 5 to 10 hydrosilyl groups in the molecule, “RD-1”, mass average molecular weight, manufactured by Dow Corning 2000, average number of hydrosilyl groups of 5,
“BLUESIL FLD 628 V12 H3.5” manufactured by Brewster Silicone, mass average molecular weight 3000, average number of hydrosilyl groups 7,
“BLUESIL FLD 626 V30 H2.5” manufactured by Brewster Silicone, mass average molecular weight 5000, average number of hydrosilyl groups 9,
Bluestar Silicone, “BLUESIL FLD 626 V70 H0.7”, mass average molecular weight 10,000, average hydrosilyl group number 10 Bluestar Silicone, “BLUESIL FLD 620 V3”, mass average molecular weight 2000, average hydrosilyl group number 2,
Further, as a comparative example, “BLUESIL FLD 626 V25 H7” manufactured by Brewster Silicone Co., Ltd., a mass average molecular weight of 3000 and an average number of hydrosilyl groups of 20 were used.
(C) Silicone having a mass average molecular weight of 10,000 to 40,000 containing vinyl groups at both ends and containing an average of 1 to 4 hydrosilyl groups in the molecule, “Silgel 613 B agent”, mass average molecular weight 10,000 1 average hydrosilyl group,
Manufactured by Momentive, "XE14-B8530 B agent", mass average molecular weight 25000, average number of hydrosilyl groups 2,
“SE1885 B agent” manufactured by Dow Corning Co., Ltd. “Si6585 B agent”, mass average molecular weight 40000, average hydrosilyl group number 4 (D) silane coupling agent containing vinyl group vinyltriethoxysilane, manufactured by Dow Corning Co., “Z6519”
(E) Thermally conductive filler coarse powder: Alumina, manufactured by Denki Kagaku Kogyo Co., Ltd., “DAW90”, average particle size 90 μm,
Alumina, manufactured by Denki Kagaku Kogyo Co., Ltd., “DAW70”, average particle size 70 μm,
Alumina, manufactured by Denki Kagaku Kogyo Co., Ltd., “DAW45”, average particle size 45 μm,
Alumina, manufactured by Sumitomo Chemical Co., Ltd., “AA-18”, average particle size 18 μm,
Aluminum nitride, manufactured by Denki Kagaku Kogyo Co., Ltd., “SAN”, average particle size 20 μm,
Medium grain powder: alumina, manufactured by Denki Kagaku Kogyo Co., Ltd., “DAS10”, average particle diameter 10 μm,
Alumina, manufactured by Denki Kagaku Kogyo Co., Ltd., “DAW05”, average particle size 5 μm,
Alumina, manufactured by Sumitomo Chemical Co., Ltd., “AA-2”, average particle size 2 μm,
Zinc oxide, manufactured by Sakai Chemical Industry Co., Ltd., “ZIMC-11”, average particle diameter 11 μm,
Fine powder: Alumina, manufactured by Sumitomo Chemical Co., Ltd., “AA-05”, average particle size 0.5 μm,
Zinc oxide, manufactured by Honjo Chemical Co., Ltd., “Type”, average particle size 0.5 μm,
Aluminum nitride, manufactured by Tokuyama, “H”, average particle size 1 μm
Platinum-based catalyst: “SFG-32” manufactured by Momentive was added to the thermally conductive resin composition in an amount of 20 ppm in terms of platinum amount.
表1〜表4に示す割合で各種原料を、150℃にて3時間、絶対圧100Pa以下で、真空加熱混練し、数種の熱伝導性グリースを製造した。なお、各配合原料の質量平均分子量、平均ヒドロシリル基数及び平均粒子径は以下の方法により測定した。 Various raw materials were vacuum-heated and kneaded at 150 ° C. for 3 hours and at an absolute pressure of 100 Pa or less to produce several types of thermally conductive grease. In addition, the mass average molecular weight of each compounding raw material, the average number of hydrosilyl groups, and the average particle diameter were measured with the following method.
[質量平均分子量]
GPC(ゲルパーミエーションクロマトグラフィー)を用いて標準ポリスチレン換算の質量平均分子量を求めた。溶媒はTHFを使用し、東ソー社製「HLC−8020」を用い測定した。ディテクターはRI(示差屈折率計)を用いた。
[Mass average molecular weight]
The weight average molecular weight in terms of standard polystyrene was determined using GPC (gel permeation chromatography). The solvent was measured using “HLC-8020” manufactured by Tosoh Corporation using THF. RI (differential refractometer) was used as a detector.
[平均ヒドロシリル基数]
JOEL社製「JOEL ECP−300」を用いて1H−NMR測定を行い、ビニル基数、メチル基数、ヒドロシリル基数の数比を定量した。両末端にビニル基を含有するヒドロシリル基含有シリコーンの場合は、ビニル基とヒドロシリル基の数比から平均ヒドロシリル基数を算出した。また、ビニル基を有さないヒドロシリル基含有シリコーンについては、東ソー社製「HLC−8020」を用いて質量平均分子量を測定してから、メチル基数とヒドロシリル基数の数比と質量平均分子量の測定値から平均ヒドロシリル基数を算出した。
[Average number of hydrosilyl groups]
1H-NMR measurement was performed using “JOEL ECP-300” manufactured by JOEL, and the number ratio of the number of vinyl groups, the number of methyl groups, and the number of hydrosilyl groups was quantified. In the case of hydrosilyl group-containing silicones containing vinyl groups at both ends, the average number of hydrosilyl groups was calculated from the number ratio of vinyl groups and hydrosilyl groups. For hydrosilyl group-containing silicones that do not have a vinyl group, the mass average molecular weight is measured using “HLC-8020” manufactured by Tosoh Corporation, and then the number ratio of the number of methyl groups to the number of hydrosilyl groups and the measured value of the mass average molecular weight. From this, the average number of hydrosilyl groups was calculated.
[平均粒子径]
島津製作所製「レーザー回折式粒度分布測定装置SALD−200」を用いて測定を行った。評価サンプルは、ガラスビーカーに50ccの純水と測定する熱伝導性フィラーを5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。分散処理を行った熱伝導性フィラーの分散液をスポイトを用いて、装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待った。このようにして吸光度が安定になった時点で測定を行なった。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算した。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を乗じ、相対粒子量の合計(100%)で割って求めた。
[Average particle size]
Measurement was performed using a “laser diffraction particle size distribution analyzer SALD-200” manufactured by Shimadzu Corporation. As an evaluation sample, 5 g of 50 cc of pure water and a heat conductive filler to be measured were added to a glass beaker, stirred using a spatula, and then subjected to dispersion treatment for 10 minutes with an ultrasonic cleaner. The dispersion liquid of the thermally conductive filler that had been subjected to the dispersion treatment was added drop by drop to the sampler portion of the apparatus using a dropper, and waited until the absorbance became measurable. Measurement was performed when the absorbance was stabilized in this manner. In the laser diffraction particle size distribution analyzer, the particle size distribution is calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor. The average particle size was obtained by multiplying the value of the measured particle size by the relative particle amount (difference%) and dividing by the total relative particle amount (100%).
表1〜4の配合に記す熱伝導性グリースの物性は、以下の方法により測定した。 The physical properties of the thermally conductive grease described in Tables 1 to 4 were measured by the following methods.
[粘度]
Thermo Scientific社製回転式レオメータMARSIIIにて、上部治具として35mmΦのパラレルプレートを用い、ペルチェ素子にて温度制御が可能な35mmΦ下部プレートの上に、熱伝導性グリースを載せ、上部治具で厚み1mmまで圧縮し、はみ出した部分はかきとり、測定を開始した。せん断速度0.0001〜100s−1の粘度を測定し、せん断速度10s−1の粘度を評価に用いた。粘度が400Pasより低い場合、メタルマスク・スクリーン印刷、スキージによる塗布が可能であり、作業性が良い。粘度が400Pas以上1200Pas未満である場合、メタルマスク・スクリーン印刷、スキージによる塗布は不可能であるが、自動塗布機によるシリンジからの吐出および塗布が可能である。1200Pas以上1500Pas未満においては、自動塗布機による吐出および塗布は、時間がかかるために困難である。1500Pasを超えた場合、自動塗布機による吐出および塗布も不可能である。
以上、評価に際しては、以下の指標を用いた。
優:粘度400Pas未満
良:粘度400Pas以上1200Pas未満
可:粘度1200Pas以上1500Pas未満
不可:粘度1500Pas以上
[viscosity]
Using Thermo Scientific rotary rheometer MARSIII, a parallel plate of 35mmΦ is used as the upper jig, and heat conductive grease is placed on the lower plate of 35mmΦ that can be controlled by Peltier element. The sample was compressed to 1 mm, the protruding part was scraped off, and measurement was started. The viscosity at a shear rate of 0.0001 to 100 s −1 was measured, and the viscosity at a shear rate of 10 s −1 was used for evaluation. When the viscosity is lower than 400 Pas, metal mask / screen printing and application by squeegee are possible, and workability is good. When the viscosity is 400 Pas or more and less than 1200 Pas, metal mask screen printing and application by squeegee are impossible, but discharge and application from a syringe by an automatic application machine are possible. When the pressure is 1200 Pas or more and less than 1500 Pas, it is difficult to discharge and apply by an automatic application machine because it takes time. When 1500 Pas is exceeded, neither discharge nor application by an automatic coating machine is possible.
As described above, the following indices were used for the evaluation.
Excellent: Viscosity less than 400 Pas Good: Viscosity 400 Pas or more and less than 1200 Pas Possible: Viscosity 1200 Pas or more and less than 1500 Pas Impossible: Viscosity 1500 Pas or more
[熱伝導率]
ヒーターの埋め込まれた直方体の銅製治具で先端が100mm2(10mm×10mm)と、冷却フィンを取り付けた直方体の銅製治具で先端が100mm2(10mm×10mm)との間に、熱伝導性グリースを挟んで、隙間の厚みを0.05mm〜0.30mmの範囲で熱抵抗を測定し、熱抵抗と厚みの勾配から熱伝導率を算出して評価した。熱抵抗は、ヒーターに電力10Wをかけて30分間保持し、銅製治具同士の温度差(℃)を測定し、
熱抵抗(℃/W)={温度差(℃)/ 電力(W)}にて算出した。
熱伝導率としては、熱伝導性グリースの用途上1W/mK以上であれば問題なく使用される。
なお、評価に際しては、以下の指標を用いた。
優:熱伝導率2.5W/mK以上
良:熱伝導率1.0W/mK以上2.5W/mK未満
不可:熱伝導率1.0W/mK未満
[Thermal conductivity]
Thermal conductivity between a rectangular copper jig with a heater embedded at 100 mm 2 (10 mm × 10 mm) and a rectangular copper jig with a cooling fin attached at a tip of 100 mm 2 (10 mm × 10 mm) The thermal resistance was measured in the range of 0.05 mm to 0.30 mm with the grease interposed therebetween, and the thermal conductivity was calculated from the gradient of the thermal resistance and thickness and evaluated. The thermal resistance is applied to the heater with electric power of 10 W and held for 30 minutes, and the temperature difference (° C.) between the copper jigs is measured.
Thermal resistance (° C./W)={temperature difference (° C.) / Power (W)}.
As the thermal conductivity, if it is 1 W / mK or more in view of the use of the thermal conductive grease, it is used without any problem.
In the evaluation, the following indicators were used.
Excellent: Thermal conductivity of 2.5 W / mK or more Good: Thermal conductivity of 1.0 W / mK or more and less than 2.5 W / mK Impossibility: Thermal conductivity of less than 1.0 W / mK
[耐ポンプアウト性]
アルミ板に大きさ60mm角で厚さ100μmに熱伝導性グリースを0.03cc×4点塗布し、真空脱泡を1時間処理した。この後、ガラス板をはさみ込み、熱伝導性グリースの直径が20mmの円形になるよう調整した。
次に、4kgの重りをガラス板上に乗せ1日放置後ガラス板両端をクリップで閉じ固定し、荷重にて変形した熱伝導性グリースの外周を油性マジックでマーキングした。−40℃から150℃の冷熱衝撃試験を実施し、耐ポンプアウト性を評価した。−40℃と150℃の保持時間は30分とし、−40℃から150℃、150から−40℃の昇降温は5分以内とし、300サイクル実施した。耐ポンプアウト性の評価において、ポンプアウト性の評価は以下に従った。
ポンプアウト率(%)
=(熱衝撃試験後の直径−熱衝撃試験前の直径)/冷熱衝撃試験前の直径×100
優:ポンプアウト率0%
良:ポンプアウト率1%以上5%未満
可:ポンプアウト率5%以上15%未満
不可:ポンプアウト率15%以上
[Pump-out resistance]
The aluminum plate was coated with 0.03 cc × 4 points of heat conductive grease having a size of 60 mm square and a thickness of 100 μm, and vacuum defoaming was processed for 1 hour. Thereafter, the glass plate was sandwiched and adjusted so that the diameter of the thermally conductive grease was 20 mm.
Next, a weight of 4 kg was placed on the glass plate and allowed to stand for 1 day. Then, both ends of the glass plate were closed and fixed with clips, and the outer periphery of the thermally conductive grease deformed by the load was marked with an oily magic. A thermal shock test from −40 ° C. to 150 ° C. was performed to evaluate the pump-out resistance. The holding time of −40 ° C. and 150 ° C. was 30 minutes, the temperature increase / decrease from −40 ° C. to 150 ° C. and 150 to −40 ° C. was within 5 minutes, and 300 cycles were performed. In the evaluation of pump-out resistance, the evaluation of pump-out performance was as follows.
Pump-out rate (%)
= (Diameter after thermal shock test-Diameter before thermal shock test) / Diameter before thermal shock test x 100
Excellent: Pump-out rate 0%
Good: Pump-out rate 1% or more and less than 5% Possible: Pump-out rate 5% or more and less than 15% Impossible: Pump-out rate 15% or more
[耐割れ性]
アルミ板に大きさ60mm角で厚さ100μmに熱伝導性グリースをスキージで塗布し、真空脱泡を1時間処理した後、ガラス板をはさみ込んだ。
次に、−40℃から150℃の冷熱衝撃試験を実施した。−40℃と150℃の保持時間はそれぞれ30分とし、−40℃から150℃、150から−40℃の昇降温は5分以内とし、300サイクル実施した。
耐割れ率の計算方法としては、図5に示すように、2値化ができる画像処理ソフト(ここではGIMP2.0)を用い2値化を行い、空隙の面積(黒色部)およびグリースの面積(白色部)を測定した。
優:割れ率0%
良:割れ率1%以上5%未満
可:割れ率5%以上15%未満
不可:割れ率15%以上
[Crack resistance]
A thermally conductive grease having a size of 60 mm square and a thickness of 100 μm was applied to the aluminum plate with a squeegee, vacuum defoaming was treated for 1 hour, and then the glass plate was sandwiched.
Next, a thermal shock test from −40 ° C. to 150 ° C. was performed. The holding time of −40 ° C. and 150 ° C. was 30 minutes, the temperature increase / decrease from −40 ° C. to 150 ° C. and 150 to −40 ° C. was within 5 minutes, and 300 cycles were performed.
As shown in FIG. 5, the crack resistance ratio is calculated using binarization using image processing software that can be binarized (here, GIMP 2.0), and the void area (black portion) and grease area. (White part) was measured.
Excellent: 0% crack rate
Good: Crack rate 1% or more and less than 5% Possible: Crack rate 5% or more but less than 15% Impossible: Crack rate 15% or more
実施例および比較例に示すように、本発明の熱伝導性グリース用組成物を用いた熱伝導性グリースは、耐ポンプアウト性、耐割れ性に優れ、熱伝導率も高い結果となった。
As shown in Examples and Comparative Examples, the heat conductive grease using the composition for heat conductive grease of the present invention was excellent in pump-out resistance and crack resistance, and also had high heat conductivity.
Claims (7)
(A)両末端にビニル基を含有する質量平均分子量10000〜800000のシリコーン
(B)分子中にビニル基を含有せず、かつ分子中に平均5〜10個のヒドロシリル基を含有する質量平均分子量2000〜10000のシリコーン
(C)両末端にビニル基を含有し、かつ分子中に平均1〜4個のヒドロシリル基を含有する質量平均分子量10000〜40000のシリコーン
(D)反応性二重結合を含有するシランカップリング剤
(E)熱伝導性フィラー A composition for thermally conductive grease containing (A) component, (B) component, (C) component, (D) component and (E) component.
(A) A silicone having a weight average molecular weight of 10,000 to 800,000 containing vinyl groups at both ends (B) A weight average molecular weight having no vinyl group in the molecule and an average of 5 to 10 hydrosilyl groups in the molecule Silicone (C) of 2000 to 10,000 (C) contains vinyl groups at both ends, and contains silicone (D) reactive double bonds having a weight average molecular weight of 10,000 to 40,000 containing 1 to 4 hydrosilyl groups in the molecule. Silane coupling agent (E) Thermally conductive filler
(A)成分が2.5〜15質量%
(B)成分が0.005〜0.1質量%
(C)成分が1〜10質量%
(D)成分が0.01〜0.6質量%である請求項1または2に記載の熱伝導性グリース用組成物。 In the composition for thermally conductive grease,
(A) A component is 2.5-15 mass%
(B) component is 0.005-0.1 mass%
(C) 1-10 mass% of component
(D) The composition for heat conductive grease of Claim 1 or 2 which is 0.01-0.6 mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015098866A JP6510315B2 (en) | 2015-05-14 | 2015-05-14 | Thermal conductive grease composition, thermal conductive grease and heat dissipating member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015098866A JP6510315B2 (en) | 2015-05-14 | 2015-05-14 | Thermal conductive grease composition, thermal conductive grease and heat dissipating member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016216523A true JP2016216523A (en) | 2016-12-22 |
JP6510315B2 JP6510315B2 (en) | 2019-05-08 |
Family
ID=57579969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015098866A Active JP6510315B2 (en) | 2015-05-14 | 2015-05-14 | Thermal conductive grease composition, thermal conductive grease and heat dissipating member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6510315B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019525979A (en) * | 2016-07-26 | 2019-09-12 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | Gel type thermal interface material |
WO2020209263A1 (en) * | 2019-04-11 | 2020-10-15 | デンカ株式会社 | Copolymer, dispersant and resin composition |
US11041103B2 (en) | 2017-09-08 | 2021-06-22 | Honeywell International Inc. | Silicone-free thermal gel |
US11072706B2 (en) | 2018-02-15 | 2021-07-27 | Honeywell International Inc. | Gel-type thermal interface material |
JP2021134340A (en) * | 2020-02-28 | 2021-09-13 | 京セラ株式会社 | Thermally conductive grease composition and article using the same |
WO2022075434A1 (en) * | 2020-10-09 | 2022-04-14 | ダウ・東レ株式会社 | Thermally conductive silicone composition and thermally conductive member |
WO2022113941A1 (en) | 2020-11-30 | 2022-06-02 | 株式会社トクヤマ | Resin composition |
US11373921B2 (en) | 2019-04-23 | 2022-06-28 | Honeywell International Inc. | Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing |
WO2023008538A1 (en) * | 2021-07-29 | 2023-02-02 | 積水ポリマテック株式会社 | Thermally conductive composition and cured product |
WO2023135857A1 (en) | 2022-01-14 | 2023-07-20 | 富士高分子工業株式会社 | Thermally conductive composition, thermally conductive sheet obtained from same, and production method therefor |
CN117210014A (en) * | 2023-08-28 | 2023-12-12 | 湖北三峡实验室 | Low-thermal-resistance organic silicon heat conduction interface material and preparation method thereof |
WO2024042955A1 (en) * | 2022-08-26 | 2024-02-29 | デンカ株式会社 | Heat dissipation grease |
WO2024042956A1 (en) * | 2022-08-26 | 2024-02-29 | デンカ株式会社 | Heat-dissipating grease |
EP4227336A4 (en) * | 2020-10-05 | 2024-04-17 | Denka Company Limited | Heat-conductive resin composition and electronic apparatus |
WO2024134993A1 (en) * | 2022-12-21 | 2024-06-27 | 日立Astemo株式会社 | On-board electronic control device |
KR20240131325A (en) | 2022-01-14 | 2024-08-30 | 후지고분시고오교오가부시끼가이샤 | Thermally conductive composition and thermally conductive sheet using the same and method for producing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6884787B2 (en) * | 2016-08-18 | 2021-06-09 | デンカ株式会社 | Composition for heat conductive grease, heat conductive grease and heat dissipation member |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002327116A (en) * | 2001-05-01 | 2002-11-15 | Shin Etsu Chem Co Ltd | Thermoconductive silicone composition and semiconductor device |
JP2004079683A (en) * | 2002-08-13 | 2004-03-11 | Shin Etsu Chem Co Ltd | Method of manufacturing semiconductor device and semiconductor device |
JP2009138036A (en) * | 2007-12-04 | 2009-06-25 | Momentive Performance Materials Japan Kk | Thermally-conductive silicone grease composition |
JP2011084621A (en) * | 2009-10-14 | 2011-04-28 | Denki Kagaku Kogyo Kk | Heat conductive material |
WO2012067247A1 (en) * | 2010-11-18 | 2012-05-24 | 電気化学工業株式会社 | High durability thermally conductive composite and low pump-out grease |
JP2013091726A (en) * | 2011-10-26 | 2013-05-16 | Shin-Etsu Chemical Co Ltd | Heat-conductive silicone composition |
JP2014218564A (en) * | 2013-05-07 | 2014-11-20 | 信越化学工業株式会社 | Heat conductive silicone composition and cured product of the same |
-
2015
- 2015-05-14 JP JP2015098866A patent/JP6510315B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002327116A (en) * | 2001-05-01 | 2002-11-15 | Shin Etsu Chem Co Ltd | Thermoconductive silicone composition and semiconductor device |
JP2004079683A (en) * | 2002-08-13 | 2004-03-11 | Shin Etsu Chem Co Ltd | Method of manufacturing semiconductor device and semiconductor device |
JP2009138036A (en) * | 2007-12-04 | 2009-06-25 | Momentive Performance Materials Japan Kk | Thermally-conductive silicone grease composition |
JP2011084621A (en) * | 2009-10-14 | 2011-04-28 | Denki Kagaku Kogyo Kk | Heat conductive material |
WO2012067247A1 (en) * | 2010-11-18 | 2012-05-24 | 電気化学工業株式会社 | High durability thermally conductive composite and low pump-out grease |
JP2013091726A (en) * | 2011-10-26 | 2013-05-16 | Shin-Etsu Chemical Co Ltd | Heat-conductive silicone composition |
JP2014218564A (en) * | 2013-05-07 | 2014-11-20 | 信越化学工業株式会社 | Heat conductive silicone composition and cured product of the same |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021064809A (en) * | 2016-07-26 | 2021-04-22 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | Gel type thermal interface material |
JP2019525979A (en) * | 2016-07-26 | 2019-09-12 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | Gel type thermal interface material |
US11041103B2 (en) | 2017-09-08 | 2021-06-22 | Honeywell International Inc. | Silicone-free thermal gel |
US11072706B2 (en) | 2018-02-15 | 2021-07-27 | Honeywell International Inc. | Gel-type thermal interface material |
EP3954719A4 (en) * | 2019-04-11 | 2022-06-01 | Denka Company Limited | Copolymer, dispersant and resin composition |
WO2020209263A1 (en) * | 2019-04-11 | 2020-10-15 | デンカ株式会社 | Copolymer, dispersant and resin composition |
TWI742609B (en) * | 2019-04-11 | 2021-10-11 | 日商電化股份有限公司 | Copolymer, dispersant, and resin composition |
CN113677717A (en) * | 2019-04-11 | 2021-11-19 | 电化株式会社 | Copolymer, dispersant, and resin composition |
US20220186089A1 (en) * | 2019-04-11 | 2022-06-16 | Denka Company Limited | Copolymer, dispersant, and resin composition |
US11373921B2 (en) | 2019-04-23 | 2022-06-28 | Honeywell International Inc. | Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing |
JP2021134340A (en) * | 2020-02-28 | 2021-09-13 | 京セラ株式会社 | Thermally conductive grease composition and article using the same |
EP4227336A4 (en) * | 2020-10-05 | 2024-04-17 | Denka Company Limited | Heat-conductive resin composition and electronic apparatus |
WO2022075434A1 (en) * | 2020-10-09 | 2022-04-14 | ダウ・東レ株式会社 | Thermally conductive silicone composition and thermally conductive member |
CN115803394B (en) * | 2020-11-30 | 2024-03-26 | 株式会社德山 | Resin composition |
WO2022113941A1 (en) | 2020-11-30 | 2022-06-02 | 株式会社トクヤマ | Resin composition |
CN115803394A (en) * | 2020-11-30 | 2023-03-14 | 株式会社德山 | Resin composition |
KR20230114183A (en) | 2020-11-30 | 2023-08-01 | 가부시끼가이샤 도꾸야마 | resin composition |
WO2023008538A1 (en) * | 2021-07-29 | 2023-02-02 | 積水ポリマテック株式会社 | Thermally conductive composition and cured product |
WO2023135857A1 (en) | 2022-01-14 | 2023-07-20 | 富士高分子工業株式会社 | Thermally conductive composition, thermally conductive sheet obtained from same, and production method therefor |
KR20240131325A (en) | 2022-01-14 | 2024-08-30 | 후지고분시고오교오가부시끼가이샤 | Thermally conductive composition and thermally conductive sheet using the same and method for producing the same |
WO2024042955A1 (en) * | 2022-08-26 | 2024-02-29 | デンカ株式会社 | Heat dissipation grease |
WO2024042956A1 (en) * | 2022-08-26 | 2024-02-29 | デンカ株式会社 | Heat-dissipating grease |
WO2024134993A1 (en) * | 2022-12-21 | 2024-06-27 | 日立Astemo株式会社 | On-board electronic control device |
CN117210014A (en) * | 2023-08-28 | 2023-12-12 | 湖北三峡实验室 | Low-thermal-resistance organic silicon heat conduction interface material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6510315B2 (en) | 2019-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016216523A (en) | Composition for thermal conducive grease, thermal conductive grease and heat dissipating member | |
JP6884787B2 (en) | Composition for heat conductive grease, heat conductive grease and heat dissipation member | |
JP5463116B2 (en) | Thermally conductive material | |
KR102108902B1 (en) | Heat conductive silicone composition, heat conductive layer, and semiconductor device | |
TWI715648B (en) | Insulated heat sink | |
TWI780100B (en) | Thermally conductive resin composition, heat dissipation sheet, heat dissipation member, and manufacturing method thereof | |
JP2010155870A (en) | Thermally conductive compound and method for producing the same | |
TW202024238A (en) | Heat-conductive composition and heat-conductive sheet employing same | |
JP6705426B2 (en) | Thermally conductive silicone composition | |
JP5422413B2 (en) | Heat dissipation member and manufacturing method thereof | |
JP5472055B2 (en) | Thermally conductive silicone grease composition | |
CN105754346A (en) | Heat conduction organosilicone composition, solidified substance, and composite sheet material | |
CN102555331A (en) | Thermal-conductive silicon sheet and manufacturing method thereof | |
JP6314915B2 (en) | Heat dissipation putty sheet | |
CN114761492A (en) | Highly thermally conductive flowable silicone composition | |
JP2010120979A (en) | Thermally conductive silicone gel cured product | |
WO2020116057A1 (en) | Cured product of thermally conductive silicone composition | |
JP2015212318A (en) | Thermal conductive silicone composition | |
CN109868113A (en) | A kind of motor casting glue and preparation method thereof | |
JP2018012809A (en) | Thermally conductive polysiloxane composition | |
JP5284655B2 (en) | Thermally conductive grease | |
JP2021195478A (en) | Heat-conductive silicone composition, cured product thereof, and heat radiation sheet | |
CN116554685A (en) | Bi-component heat-conducting gel and preparation method and application thereof | |
TWI724156B (en) | Thermally conductive composite sheet | |
TWI716474B (en) | Composition for thermally conductive paste, thermally conductive paste and heat dissipation member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180509 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190404 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6510315 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |