JP5435798B2 - 乱流制御装置及び乱流制御用アクチュエータの製造方法 - Google Patents

乱流制御装置及び乱流制御用アクチュエータの製造方法 Download PDF

Info

Publication number
JP5435798B2
JP5435798B2 JP2010053250A JP2010053250A JP5435798B2 JP 5435798 B2 JP5435798 B2 JP 5435798B2 JP 2010053250 A JP2010053250 A JP 2010053250A JP 2010053250 A JP2010053250 A JP 2010053250A JP 5435798 B2 JP5435798 B2 JP 5435798B2
Authority
JP
Japan
Prior art keywords
electrode
actuator
turbulent flow
cavity
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010053250A
Other languages
English (en)
Other versions
JP2011185399A (ja
Inventor
慶一 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010053250A priority Critical patent/JP5435798B2/ja
Publication of JP2011185399A publication Critical patent/JP2011185399A/ja
Application granted granted Critical
Publication of JP5435798B2 publication Critical patent/JP5435798B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)

Description

本発明は、物体の表面(壁面)近傍に発生する乱流の制御に好適な乱流制御装置及びこれに用いる乱流制御用アクチュエータの製造方法の技術に関する。
自然現象として生じる乱流を制御することによって、流体抵抗の低減、伝熱の増進や抑制、或いは複数種流体の混合及び拡散のコントロールなどが可能であり、環境負荷低減等の観点から、乱流制御技術の開発が期待されている(非特許文献1参照)。
従来、サメ肌に類似した構造を持つ壁面や界面活性剤の添加など、壁の表面形状や表面物性の工夫による乱流制御の試みが行われている。例えば、特許文献1では、壁表面に多数のV字型の突起を配列させ、そのV型要素の形状と配列パターンにより、乱流を減少又は増大させる方法が提案されている。
しかし、乱流の発生具合は時々刻々の流れの状態によって変化するため、理想的な乱流制御としては、リアルタイムで乱流の状態をセンシングし、それに応じてアクチュエータ群を動かし、流体に対してフィードバックをかけることにある。
近年、半導体プロセスを応用したMEMS(Micro Electro Mechanical System)技術が大いに発展し、MEMS技術により作製したセンサとアクチュエータを用いて乱流制御を行う研究が行われている(非特許文献1)。
このような乱流制御に用いられるアクチュエータに望まれるスペックは、制御しようとする流体のレイノルズ数によっても違うが、概ね、100μm〜数mmの寸法、高ストローク、100Hz〜100kHzの動作周波数、使用環境においての高耐久性、低消費電力などである。かかる要求仕様に対して、従来の乱流制御用MEMSアクチュエータの駆動機構としては、電磁式や誘電エラストマーなどがある(特許文献2、非特許文献1)。
鈴木 雄二,笠木 伸英,「MEMSデバイスを用いた壁乱流フィードバック制御」,ながれ, 日本流体力学会誌, Vol. 25,平成18年4月,pp. 95-102 (2006).
特開平10−183557号公報 特許第2862855号公報
しかしながら、従来提案されている電磁式のアクチュエータは、高トルクを出力できるが、構造が複雑になるので作製が困難であり、クロストークや高消費電力などの問題を抱える。一方、誘電エラストマーは高変位を出せるが、kVオーダーの電圧をかける必要があり、電気系の駆動回路への負荷や安全性などの観点で課題が残る。
本発明はこのような事情に鑑みてなされたもので、製造プロセスの簡素化が可能で、低電圧駆動による高ストローク出力が可能なアクチュエータを用いた乱流制御装置を提供することを目的とし、併せて、その乱流制御装置に適用されるアクチュエータの製造方法を提供することを目的とする。
前記目的を達成するために本発明に係る乱流制御装置は、流体との境界面を形成する壁に設置される乱流制御装置であって、振動板の面上に第1電極、圧電体膜及び第2電極が積層されて成るダイアフラム型圧電アクチュエータ群を備え、前記境界面は前記ダイアフラム型圧電アクチュエータ群の可動部の表面を含んで構成され、前記第1電極及び前記第2電極間への電圧印加により前記可動部を変位させて前記境界面を変形させるように構成されており、前記振動板の可動部の領域に対応したキャビティを有する構造体を備え、前記キャビティは平面視で円形の開口を有し、前記振動板は、前記キャビティの開口面を覆って前記構造体に接合され、前記第2電極として、リング型、又はC字型の電極を備え、前記リング型、又はC字型の電極は、平面視で前記キャビティの開口円に沿って形成されるとともに、当該リング型、又はC字型の電極の一部は、平面視で前記キャビティの開口円よりも外側に張り出していることを特徴とする。
また、前記目的を達成するために以下の発明態様を提供する。
(発明1):発明1に係る乱流制御装置は、流体との境界面を形成する壁に設置される乱流制御装置であって、振動板の面上に第1電極、圧電体膜及び第2電極が積層されて成るダイアフラム型圧電アクチュエータ群を備え、前記境界面は前記ダイアフラム型圧電アクチュエータ群の可動部の表面を含んで構成され、前記第1電極及び前記第2電極間への電圧印加により前記可動部を変位させて前記境界面を変形させるように構成されていることを特徴とする。
本発明によれば、圧電体膜を用いたダイアフラム型圧電アクチュエータの採用により、従来の電磁式や誘電エラストマーを利用する構成と比較して低電圧での駆動が可能である。これにより、消費電力の低減が可能である。また、本発明の乱流制御装置は、薄膜技術(成膜技術)並びにMEMS技術を適用して製造プロセスの簡素化を達成でき、歩留まり向上、コスト低減が可能である。
(発明2):発明2に係る乱流制御装置は、発明1において、前記圧電体膜は、圧電定数d31の絶対値が200pm/V以上であることを特徴とする。
圧電定数d31の絶対値が200pm/V以上の圧電体膜を用いることにより、薄膜でありながら、高ストローク出力が可能な圧電アクチュエータを実現できる。なお、圧電定数 d31は通常マイナスの符号を持つ。これは、膜厚方向に電圧を印加すると、面内方向で縮む、という意味である。
(発明3):発明3に係る乱流制御装置は、発明1又は2において、前記振動板の可動部の領域に対応したキャビティを有する構造体を備え、前記振動板は、前記キャビティの開口面を覆って前記構造体に接合されていることを特徴とする。
かかる態様により、ダイアフラム構造体を形成することができる。
(発明4):発明4に係る乱流制御装置は、発明3において、前記キャビティは平面視で円形の開口を有していることを特徴とする。
かかる態様によれば、応力集中による劣化や破壊を低減でき、信頼性の高いアクチュエータを提供できる。
(発明5):発明5に係る乱流制御装置は、発明3又は4において、前記第2電極として、リング型、又はC字型の電極を備えることを特徴とする。
かかる態様によれば、壁面を凸に変形させることが可能である。
(発明6):発明6に係る乱流制御装置は、発明5において、前記リング型、又はC字型の電極は、平面視で前記キャビティの開口円に沿って形成されるとともに、当該リング型、又はC字型の電極の一部は、平面視で前記キャビティの開口円よりも外側に張り出していることを特徴とする。
かかる態様により、電極下にある圧電体膜の一部が構造体に拘束され、振動板の非拘束部を大きく変位させることが可能である。
(発明7):発明7に係る乱流制御装置は、発明4において、前記第2電極として、円型の電極を備え、当該円型電極の直径は、前記キャビティの開口径の50〜75%の範囲内であり、平面視で前記キャビティの開口円の内側に形成されていることを特徴とする。
かかる態様によれば、耐久性に優れたアクチュエータを実現でき、かつ、乱流制御に適した大きな変位量を得ることができる。
(発明8):発明8に係る乱流制御装置は、発明1乃至7のいずれか1項において、前記圧電体膜は、ペロブスカイト型強誘電体であることを特徴とする。
(発明9):発明9に係る乱流制御装置は、発明1乃至8のいずれか1項において、前記ダイアフラム型圧電アクチュエータ群の各アクチュエータを、そのダイアフラム構造の共振周波数で駆動する駆動信号を出力する駆動制御回路を備えたことを特徴とする。
ダイアフラムの共振を利用することにより、一層大きな変位を得ることができる。
(発明10):発明10に係る乱流制御装置は、発明1乃至9のいずれか1項において、前記ダイアフラム型圧電アクチュエータ群の配置位置よりも前記流体の流れの上流側に配置され、当該流体の流れの状態を検知するセンサ群と、前記センサ群から得られる情報に基づいて前記ダイアフラム型圧電アクチュエータ群の駆動を制御する制御回路と、を備えたことを特徴とする。
かかる態様によれば、時々刻々変化する流体の流れの状況に対応して、適切な乱流制御が可能なシステムを提供できる。
(発明11):発明11に係る乱流制御用アクチュエータの製造方法は、発明1乃至10のいずれか1項に記載の乱流制御装置における前記ダイアフラム型圧電アクチュエータ群を構成する乱流制御用アクチュエータの製造方法であって、第1基板の片面にキャビティを形成する工程と、前記キャビティの開口面を覆うように第2基板を前記第1基板に接合する工程と、前記第1基板に接合された前記第2基板を薄層化し、その残部により振動板を形成する工程と、前記振動板上に第1電極、圧電体膜、第2電極をこの順で成膜する工程と、前記第2電極の一部を除去して所定の電極形状にパターニングする工程と、前記圧電体膜の一部を除去して所定の圧電体形状にパターニングする工程と、を有することを特徴とする。
本発明による圧電膜を利用したアクチュエータ群は、従来の電磁式や誘電エラストマーを利用する構成と比較して低電圧の駆動が可能であり、消費電力の低減が可能である。また、本発明の乱流制御装置は、薄膜の成膜技術、MEMS技術を利用して製造プロセスの簡素化を達成でき、歩留まり向上、コスト低減につながる。
本発明の第1実施形態に係る境界層制御装置の平面図 図1に示したアクチュエータの拡大図であり、(a)は平面図、(b)は断面図 本実施形態に係る乱流制御装置のシステム構成を示したブロック図 アクチュエータアレイの製造プロセスの例を示す工程図 本発明の第2実施形態を示すアクチュエータの拡大図 本発明の第3実施形態を示すアクチュエータの拡大図
以下、添付図面に従って本発明の実施形態について詳細に説明する。
<第1実施形態>
図1は、本発明の第1実施形態に係る境界層制御装置の平面図である。本例の乱流制御装置10は、流体と接触する壁面12に複数個の圧電薄膜ダイアフラム型MEMSアクチュエータ20を配列させてなるアクチュエータ群21を備える。以下、符号20を単に「アクチュエータ」と表記し、アクチュエータ群の全体を符号21で示す。ここでは、説明を簡単にするために、壁面12は略平坦な平面とするが、本発明の実施に際して、壁面12は曲率を持つ壁面(曲面)であってもよい。
流体は、気体、液体のいずれであってもよい。アクチュエータ群21を備えた壁面12上を図1の左から右に向かって流体が流れるものとする。説明の便宜上、この流体の流れ方向をx方向、x方向と直交し壁面12と平行な方向(図1の縦方向)をz方向、壁面12の法線方向(壁面から離れる方向、図1の紙面垂直手前に向かう方向))をy方向として座標系を定義する。
本例のアクチュエータ群21は、アクチュエータ20がz方向に沿って一定の間隔Lzで並べられているアクチュエータ列が、x方向に対して一定の間隔Lxで複数列(ここでは3列を例示)設けられている。
ここでは、各アクチュエータ20がマトリクス状に二次元配列されている例を示したが、アクチュエータ20の配列形態はこの例に限定されない。例えば、アクチュエータ列内におけるz方向のアクチュエータ間隔をLz(一定)とし、x方向の位置が異なるアクチュエータ列間でz方向に位置をずらして配置してもよい。例えば、隣り合うアクチュエータ列間でLz/2だけz方向に位置をずらして千鳥状の配列としてもよい。
図2は、1つのアクチュエータ20を拡大した図であり、図2(a)は平面図、図2(b)はその断面図(図2(a)中の2b−2b線に沿う断面図)である。これらの図面に示したように、アクチュエータ20は、キャビティ22を構成する凹部23が形成された基板26(「構造体」に相当)の上に当該凹部23の開口面(図3において上面)を覆うように振動板30が接合されたダイアフラム構造を有し、当該振動板30上に、下部電極40、圧電体膜44、及び上部電極46がパターン成膜された構造となっている。
図2において、符号47は、各アクチュエータ20の上部電極46に繋がる配線引き出し用の電極である。配線引き出し用の電極47は配線ライン48のパターンと接続されている(図1参照)。図1に示したとおり、本例のアクチュエータアレイは、z方向に沿ったアクチュエータ列24毎に、各アクチュエータ20の配線ライン48がz方向に引き出される。図には示されていないが、配線ライン48は駆動回路に接続される。配線ライン48を通じて各アクチュエータ20に駆動電圧が印加されることにより、アクチュエータ20が作動する。各アクチュエータ20は、個別に駆動制御することも可能であるし、列単位で駆動制御することも可能である。
図2(a)に示したように、キャビティ22は、平面視で円形となっている。このキャビティ22の上面を封止する振動板30は、キャビティ22の開口円(図2(a)中の破線円)の内側領域が基板26に拘束されておらず、当該非拘束の領域が実質的に変位可能な可動部(図2(b)の符号32)となる。一方、キャビティ22の外側は基板26の上面に振動板30が接合(拘束)されており(図2(b)参照)、当該拘束部分は振動板30を支持する構成となっている。このようなダイアフラム構造のアクチュエータ20は、キャビティ22の縁を境界とする非拘束領域(可動部32)が変位する。したがって、ストレス集中による劣化や破壊などを避ける観点から、キャビティ22の開口形状は、矩形などよりも円形が望ましい。
本例の下部電極40は、振動板30の上面を一様に覆っており、複数のアクチュエータ20について共通の電極となっているが、アクチュエータ20の形状に合わせて(例えば、圧電体膜44のパターンに合わせて)、パターニングされていてもよい。
圧電体膜44は、キャビティ22の外周に沿って、平面視でリング状にパターン成膜されている。このリング型の圧電体膜44の外径はキャビティ22の直径よりも大きく、キャビティ22の開口円より外に出ている。また、リング型の圧電体膜44の内径は、キャビティ22の直径よりも小さく、圧電体膜44の内周縁はキャビティ22の開口円の内側に入っている。
上部電極46は、リング型の圧電体膜44の上に、当該圧電体膜44と同心のリング状にパターン成膜されている。このリング型の上部電極46の外径は圧電体膜44の外径よりも小さいが、キャビティ22の直径よりも大きく、キャビティ22の開口円より外に出ている。また、上部電極46の内径は、圧電体膜44の内径よりも大きいが、キャビティ22の直径よりも小さく、上部電極46の内周縁はキャビティ22の開口円の内側に入っている。
すなわち、キャビティ22の開口円の半径をr、リング型圧電体膜44の外周半径をr、内周半径をr、上部電極46の外周半径をr、内周半径をrとすると、これらは中心が共通(同心円状)で、r<r<r<r<rの関係を満たしている。
なお、下部電極40上には、リング型の圧電体膜44のみならず、配線電極(47、48)を支持するための支持層52、53として機能する圧電体膜が形成されている。
このようなリング型の圧電体膜44及び上部電極46を有する圧電薄膜素子に対して、駆動電圧を印加すると、電極間に挟まれている圧電体膜44がd31方向に縮み、キャビティ22上の振動板30部分(可動部32)は、図2(b)の上方向に変位する。
図2(b)では、各層を視覚的に強調するために、実際の膜厚比率とは異なる比率で描いてある。実施寸法の一例として、圧電体膜44の膜厚は2〜3μm、上部電極46の膜厚は0.2μmである。下部電極40の表面に対して、圧電体膜44及び上部電極46の積層構造による表面凹凸は極めて小さく(無視できる程度に小さく)、非駆動状態では、実質的には平らな壁面12となっている。そして、圧電駆動による可動部32のy方向の変位量は10μm〜100μmのオーダーである。
このように、アクチュエータ20の可動部32の表面を含んで流体との境界面が構成され、アクチュエータ20の駆動によって境界面を直接的に変形させることにより、境界層の流れを制御する。
図3は、本実施形態に係る乱流制御装置10のシステム構成を示したブロック図である。壁面12上に複数のアクチュエータ20が配置され、当該壁面12にはこれらアクチュエータ群21の配置位置よりも流体の流れの上流側に、センサ70が配置される。図3では、1つのセンサ70のみを示したが、壁面12上においてセンサ70は、図1のアクチュエータ列24と同様に、z方向に沿って複数個配列されたセンサ群(センサアレイ)として設けられている。
センサ70に関して、詳細な構成は図示しないが、例えば、壁面圧力を検知する手段、壁面せん断応力を検知する手段、壁面温度を検知する手段など、様々な形態を採用し得る(非特許文献1参照)。本実施形態では、壁面12にヒータを埋め込み、流体中に奪われる熱量とせん断応力の相関を利用して壁面上での流れ情報を得る熱膜せん断応力センサが用いられる。
制御部80は、センサ70からの情報を得てアクチュエータ20の動作を制御する制御手段である。制御部80は、センサ70の駆動回路、センサ70からの信号を処理する信号処理回路、アクチュエータ20の制御量を演算する演算回路、演算結果に基づいて制御信号を生成する制御回路、アクチュエータ20を駆動するための駆動回路(例えば、パワーアンプ)などを含んでいる。制御部80は、センサ70から得られる情報に基づいて、アクチュエータ20の制御量を演算し、その演算結果に従ってアクチュエータ20の制御信号を生成する。この制御信号に基づきアクチュエータ20の駆動信号が出力される。すなわち、本例の制御部80は、「駆動回路」、「制御回路」、「駆動制御回路」としての役割を果たす。
図1乃至図3で説明した構成によれば、壁面12上のセンサ70群により、流体の上流にて乱流状態がセンシングされ、その情報を基に下流の各アクチュエータ20の駆動電圧が決定される。この決定された駆動電圧の信号(駆動信号)が各アクチュエータ20に供給される。アクチュエータ20に電圧が印加されると、キャビティ22上のダイアフラムは、流体の境界層に進出する方向(図3の上方向)凸に反る。このアクチュエータ20の変位によって、境界層に影響を及ぼし、流体を制御する。制御の態様としては、乱流を抑制する制御に限らず、乱流を増大させる制御も可能である。
本実施形態によれば、流体の流れの状態(壁乱流の状況)に応じて、必要な位置のアクチュエータ20を必要な量だけ変位させることができる。これにより、流体との境界面を能動的に変形させることが可能となり、境界層の流れを適応的に制御することができる。
<アクチュエータアレイの作製方法>
次に、圧電薄膜ダイアフラム型MEMSアクチュエータアレイの作製方法の例について説明する。図4は図1乃至図3で説明したアクチュエータアレイの作製に好適な製造プロセスの工程図である。
(工程1):図4(a)に示すように、まず、シリコン(Si)ウェハ基板100(「第1基板」に相当)を用意する。
(工程2):次に、シリコンウエハ基板100に対し、ボッシュ法によるドライエッチにより50μm深さ程度のキャビティ102を形成する(図4(b))。このキャビティ102は、図1〜3で説明したキャビティ22に相当するものである。ここでは、キャビティ102の直径φD0はφ3mmとした。
(工程3):次に、別途用意したSOI(silicon on insulator)基板110(「第2基板」に相当)のデバイス層114側と、シリコンウエハ基板100のキャビティ面を接合する(図4(c))。この接合工程は、高温でアニールし、拡散接合によって接合を強度なものにする。なお、SOI基板110のデバイス層114は、3〜5μm厚程度であることが望ましい。
(工程4):次に、SOI基板110のハンドル層118を研磨とドライエッチングにより除去する(図4(d))。このとき、SiO層116はエッチングストッパー層として機能する。ハンドル層118及びSiO層116が除去され、薄層化された後の残部、すなわちデバイス層114によって、振動板30(図2参照)が形成される。
なお、本例では、SiO層116を除去したが、SiO層116を残して、SiO層116とデバイス層114の積層体によって「振動板」を形成してもよい。
(工程5):次に、図4(e)に示したように、デバイス層114の上に、下部電極(Ti(10nm)/Pt(200nm))120、圧電体膜(2um)132、上部電極(Ti(10nm)/Au(200nm)146をスパッタ法により、この順番で成膜する。このとき成膜された圧電体膜132は、チタン酸ジルコン酸鉛(PZT:一般式Pb(ZrTi1−x)O(0<x<1))系の圧電体膜(PZT膜)であり、その圧電定数はd31=−250pm/Vであった。
圧電体膜132は、スパッタ法、化学的気相成長法(CVD)、ゾル・ゲル法などにより直接構造体に成膜することが量産性、歩留まり向上、完成デバイスの性能バラつきの観点から好ましい。特に、熱応力低減のための低温成膜可能で、かつ駆動トルクが大きい数μm厚以上の厚膜形成可能なスパッタ法が望ましい。
なお、本例の下部電極120は、デバイス層114側から10nm厚のチタン(Ti)膜と、その上に200nm厚のプラチナ(Pt)膜とが積層された層構造で構成されているが、図4(e)では、この積層電極をまとめて「下部電極120」として図示した。同様に、上部電極146は、チタンTi膜(10nm厚)と金Au膜(200nm厚)の積層構造で構成されるが(圧電体膜132側がTi膜)、図4(e)では、この積層電極を「上部電極146」としてまとめて図示した。
(工程6):次に、上部電極146をリソグラフィとエッチング(ウェットエッチング又はドライエッチング)によりパターン形成する(図4(f))。この上部電極パターニング工程により、図1〜図2に示したリング型の上部電極46及び配線用の電極(47,48)のパターンが形成される。
(工程7):次に、圧電体膜132をリソグラフィ後、ドライエッチングによりエッチングし、パターン化する(図4(g)。この圧電膜パターニング工程により、図1〜図2で説明したリング型の圧電体膜44及び配線電極(47,48)の支持層52,53のパターンが形成される。
上述の工程1〜7により、図1〜3で説明したアクチュエータ20が得られる。
<変位実験>
図4で説明した製造プロセスによって得られたアクチュエータ20に50Vの電圧を印加したところ、12μmの凸の変位が得られた。さらに、同アクチュエータ20を、当該アクチュエータ20の共振周波数(ダイアフラムの共振周波数)で駆動することにより、150μmの変位が得られた。
この変位量は、自動車、小型航空機などの境界層制御用アクチュエータとしては充分な変位量である。図3で説明した制御部80における駆動信号の生成手段として、アクチュエータ20の共振周波数と同等の周波数でアクチュエータ20を駆動する波形の信号を出力する駆動制御回路を備えることが好ましい。
なお、このような高変位の圧電膜アクチュエータを実現できた背景の一つとして、高圧電定数(d31の絶対値が200pm/V以上)の圧電膜を成膜できるようになった成膜技術の向上がある。また、図1〜図4で説明した本実施形態では、さらに変位量を最大にするために、周囲の圧電膜をパターンエッチングにより除去して拘束を減らし、上部電極46のチャンバ(キャビティ22)に対するサイズを最適化してある。こうして、境界層の制御に好適な変位量が得られる圧電膜アクチュエータが達成されている。
<圧電薄膜を用いる利点について>
圧電膜は低消費電力、高トルク、低電圧駆動などの利点を有しており、乱流制御用MEMSアクチュエータ用として好ましい駆動方式である。従来の薄膜の圧電体は、焼成されたバルク体の圧電体と比較し、圧電定数が劣るという弱点があったが、近年は高圧電定数の薄膜圧電体が開発され、薄膜でありながら、高ストローク出力が可能なアクチュエータ作製が可能である。圧電薄膜により形成されたアクチュエータは、最表面での構造凹凸が少ないため、流体において抵抗が少ないという利点がある。さらに圧電薄膜は、スパッタリングなどの成膜方法を用いることにより、任意の流線形状表面に形成できるという利点がある。
<第2実施形態>
次に、本発明の第2実施形態について説明する。第1実施形態ではリング型の上部電極46を有するアクチュエータ20を説明したが、これに代えて、図5に示すような円形の上部電極246を有するアクチュエータ220を用いることも可能である。図5中、図2で説明した構成と同一又は類似の要素には同一の符号を付し、その説明は省略する。
図5(a)は平面図、図5(b)は断面図(図5(a)の5b−5b線に沿う断面図)である。図5において、符号244は圧電体膜、246は上部電極、247は配線電極である。このアクチュエータ220は、キャビティ22の開口円(半径r)よりも大きな円形の圧電体膜244(半径r>r)の上に、円形の上部電極246(半径r<r)が積層形成されている。
駆動電圧を印加した際のアクチュエータ220の変位方向は、キャビティ22の内側に凹む方向(壁面12を凹ませる方向)である。すなわち、上部電極246の下にある圧電体がd31方向に縮み、ダイアフラムはキャビティ22内に凹む。したがって、第1実施形態で説明したリング型のアクチュエータ20の凸方向に動く場合と比較して、境界層への影響度合いは低くなるが、変位量はリング型よりも10%〜30%大きい。また、図5のアクチュエータ220は、圧電体膜244のうち、基板26に拘束(支持)されている拘束部分の圧電体膜(r<r<rの領域)に電圧がかからないため、耐久性の観点では、第1実施形態に係るリング型のアクチュエータ20よりも望ましい形態である。
なお、図5の形態において、凹み方向の変位量を最大にするためには、円形の上部電極246の直径(2×r)をキャビティ22の直径(2×r)の50%〜75%程度にするのがよい。
<第3実施形態>
次に、本発明の第3実施形態について説明する。
さらなる変位量の増大を達成するために、第1実施形態で説明したリング型の電極(符号46)と、第2実施形態で説明した円形の電極(符号246)とを組み合わせた電極形態を有するアクチュエータを作製する態様も可能である。図6にその例を示す。図6中、図2及び図5で説明した構成と同一又は類似の要素には同一の符号を付し、その説明は省略する。
図6(a)は平面図、図6(b)は断面図(図6(a)の6b−6b線に沿う断面図)である。図6において、符号346は、図1で説明したリング型電極(46)に代えて、設けたC型の上部電極である。図6における符号47はC型の上部電極346と接続された配線電極であり、符号247は円形の上部電極246と接続された配線電極である。
C型の上部電極346における切欠部分に配線電極247が形成されており、円形の上部電極246と、その周囲のC型の上部電極346に対して、それぞれ独立した電圧を印加することが可能となっている。このような構造を有するアクチュエータ320によれば、変位量(ストローク)を一層増大させることが可能である。
図6に示したアクチュエータ320の製造方法としては、第1実施形態で説明したプロセス(図4)と同様の方法を適用できる。
なお、図1及び図2で説明したリング型の上部電極46に代えて、C型の上部電極346を採用したアクチュエータを用いることも可能である。
<圧電体膜の組成について>
本発明の実施に用いることができる圧電体膜として、下記一般式(P)で表される1種又は複数種のペロブスカイト型酸化物からなる圧電体膜(不可避不純物を含んでいてもよい。)が挙げられる。かかる圧電体膜は、プラズマを用いるスパッタリング法により基板上に成膜することができる。
一般式A・・・(P)
式中、AはPbを主成分とするAサイト元素、BはBサイトの元素であり、Ti,Zr,V,Nb,Ta,Cr,Mo,W,Mn,Sc,Co,Cu,In,Sn,Ga,Zn,Cd,Fe,及びNiからなる群より選ばれた少なくとも1種の元素、Oは酸素であるa≧1.0かつb=1.0である場合が標準であるが、これらの数値はペロブスカイト構造を取り得る範囲内で1.0からずれてもよい。
上記一般式(P)で表されるペロブスカイト型酸化物としては、チタン酸鉛、チタン酸ジルコン酸鉛(PZT)、ジルコニウム酸鉛、ニオブ酸ジルコニウムチタン酸鉛等が挙げられる。圧電体膜は、これら上記一般式(P)で表されるペロブスカイト型酸化物の混晶系であってもよい。
また、本発明の実施に際しては、特に、下記一般式(P−1)で表される1種又は複数種のペロブスカイト型酸化物からなる(不可避不純物を含んでいてもよい。)圧電体膜がより好ましい。
Pb(Zrb1Tib2b3)O・・・(P−1)
式(P−1)中、XはV族及びVI族の元素群より選ばれた少なくとも1種の金属元素である。a>0、b1>0、b2>0、b3≧0。a≧1.0であり、かつb1+b2+b3=1.0である場合が標準であるが、これらの数値はペロブスカイト構造を取り得る範囲内で1.0からずれてもよい。
上記一般式(P−1)で表されるペロブスカイト型酸化物は、b3=0のときチタン酸ジルコン酸鉛(PZT)であり、b3>0のとき、PZTのBサイトの一部をV族及びVI族の元素群より選ばれた少なくとも1種の金属元素であるXで置換した酸化物である。
Xは、VA族、VB族、VIA族、及びVIB族のいずれの金属元素でもよく、V,Nb,Ta,Cr,Mo,及びWからなる群より選ばれた少なくとも1種であることが好ましい。
上記一般式(P)及び(P−1)で表されるペロブスカイト型酸化物からなる圧電体膜は、高い圧電歪定数(d31定数)を有するため、かかる圧電体膜を備えた圧電アクチュエータ(アクチュエータ素子)は、変位特性の優れたものとなる。特に、一般式(P)及び(P−1)で表されるペロブスカイト型酸化物において、Pbの組成aが1.02<a≦1.3の範囲内である場合に、良好な特性が得られる。
<変形例1>
本発明の実施に際しては、上述した実施例における、圧電体の材料、電極の材料、成膜条件、膜厚寸法、駆動電圧等の条件に限定されず、様々な条件で実施することが可能である。また、シリコンウエハ基板100に代えて、SOI基板を用いることも可能である。
<変形例2>
図1では、同じ大きさ、同じ形状のアクチュエータ20を多数配列させたアクチュエータ群21を説明したが、サイズや変位量が異なる複数種類のアクチュエータを組み合わせて配置してもよい。例えば、大きい乱流に対しては大きいアクチュエータ(変位量が大きいもの)を作動させ、小さい乱流に対しては小さいアクチュエータを作動させるという制御形態を採用してもよい。ただし、同じアクチュエータを配列させる形態の方がシステムをシンプルに構成することができる。
<変形例3>
図1では、アクチュエータ20を二次元配列させたアクチュエータ群21を説明したが、一次元配列(例えば、z方向にそってアクチュエータ20を1列に並べたもの)であっても、ある程度の乱流制御効果は得られる。ただし、より効果的な乱流制御を実現するためには、x方向及びz方向にそれぞれ位置を異ならせて複数のアクチュエータを配置する形態(二次元的に配列する形態)が好ましい。
<変形例4>
図5で説明した第2実施形態では、図5において振動板30の上面に下部電極40、圧電体膜244、上部電極246を積層した構造を説明したが、これに代えて、振動板30の下面(キャビティ22側)に下部電極、圧電体膜、上部電極を積層する形態も可能である。この場合、製造プロセスはやや複雑になるが、壁面12に対して凸方向の変位が可能となる。
10…乱流制御装置、12…壁面、20…アクチュエータ、21…アクチュエータ群、22…キャビティ、26…基板、30…振動板、32…可動部、40…下部電極、44…圧電体膜、46…上部電極、70…センサ、80…制御部、100…シリコンウエハ基板、110…SOI基板、102…キャビティ、120…下部電極、132…圧電体膜、146…上部電極、220,320…アクチュエータ、244…圧電体膜、246,346…上部電極

Claims (7)

  1. 流体との境界面を形成する壁に設置される乱流制御装置であって、
    振動板の面上に第1電極、圧電体膜及び第2電極が積層されて成るダイアフラム型圧電アクチュエータ群を備え、
    前記境界面は前記ダイアフラム型圧電アクチュエータ群の可動部の表面を含んで構成され、
    前記第1電極及び前記第2電極間への電圧印加により前記可動部を変位させて前記境界面を変形させるように構成されており、
    前記振動板の可動部の領域に対応したキャビティを有する構造体を備え、
    前記キャビティは平面視で円形の開口を有し、
    前記振動板は、前記キャビティの開口面を覆って前記構造体に接合され、
    前記第2電極として、リング型、又はC字型の電極を備え、
    前記リング型、又はC字型の電極は、平面視で前記キャビティの開口円に沿って形成されるとともに、当該リング型、又はC字型の電極の一部は、平面視で前記キャビティの開口円よりも外側に張り出していることを特徴とする乱流制御装置。
  2. 請求項1において、
    前記圧電体膜は、圧電定数d31の絶対値が200pm/V以上であることを特徴とする乱流制御装置。
  3. 請求項1又は2において、
    前記第2電極として、円型の電極を備え、当該円型電極の直径は、前記キャビティの開口径の50〜75%の範囲内であり、平面視で前記キャビティの開口円の内側に形成されていることを特徴とする乱流制御装置。
  4. 請求項1乃至のいずれか1項において、
    前記圧電体膜は、ペロブスカイト型強誘電体であることを特徴とする乱流制御装置。
  5. 請求項1乃至のいずれか1項において、
    前記ダイアフラム型圧電アクチュエータ群の各アクチュエータを、そのダイアフラム構造の共振周波数で駆動する駆動信号を出力する駆動制御回路を備えたことを特徴とする乱流制御装置。
  6. 請求項1乃至のいずれか1項において、
    前記ダイアフラム型圧電アクチュエータ群の配置位置よりも前記流体の流れの上流側に配置され、当該流体の流れの状態を検知するセンサ群と、
    前記センサ群から得られる情報に基づいて前記ダイアフラム型圧電アクチュエータ群の駆動を制御する制御回路と、
    を備えたことを特徴とする乱流制御装置。
  7. 請求項1乃至のいずれか1項に記載の乱流制御装置における前記ダイアフラム型圧電アクチュエータ群を構成する乱流制御用アクチュエータの製造方法であって、
    第1基板の片面にキャビティを形成する工程と、
    前記キャビティの開口面を覆うように第2基板を前記第1基板に接合する工程と、
    前記第1基板に接合された前記第2基板を薄層化し、その残部により振動板を形成する工程と、
    前記振動板上に第1電極、圧電体膜、第2電極をこの順で成膜する工程と、
    前記第2電極の一部を除去して所定の電極形状にパターニングする工程と、
    前記圧電体膜の一部を除去して所定の圧電体形状にパターニングする工程と、
    を有することを特徴とする乱流制御用アクチュエータの製造方法。
JP2010053250A 2010-03-10 2010-03-10 乱流制御装置及び乱流制御用アクチュエータの製造方法 Expired - Fee Related JP5435798B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010053250A JP5435798B2 (ja) 2010-03-10 2010-03-10 乱流制御装置及び乱流制御用アクチュエータの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010053250A JP5435798B2 (ja) 2010-03-10 2010-03-10 乱流制御装置及び乱流制御用アクチュエータの製造方法

Publications (2)

Publication Number Publication Date
JP2011185399A JP2011185399A (ja) 2011-09-22
JP5435798B2 true JP5435798B2 (ja) 2014-03-05

Family

ID=44791925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010053250A Expired - Fee Related JP5435798B2 (ja) 2010-03-10 2010-03-10 乱流制御装置及び乱流制御用アクチュエータの製造方法

Country Status (1)

Country Link
JP (1) JP5435798B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149766B2 (en) 2018-08-24 2021-10-19 Quest Engines, LLC Controlled turbulence system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013105557B4 (de) * 2013-05-29 2015-06-11 Michael Förg Piezoelektrischer Aktor
JP6575901B2 (ja) * 2014-09-04 2019-09-18 ローム株式会社 圧電素子利用装置
JP6862820B2 (ja) * 2016-12-26 2021-04-21 セイコーエプソン株式会社 超音波デバイス及び超音波装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2955703B2 (ja) * 1995-04-14 1999-10-04 日本航空電子工業株式会社 光路長制御用圧電アクチュエータ構造体
JP4600650B2 (ja) * 2003-11-05 2010-12-15 セイコーエプソン株式会社 圧電体膜、圧電素子、圧電アクチュエーター、圧電ポンプ、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、薄膜圧電共振子、周波数フィルタ、発振器、電子回路、および電子機器
WO2005083809A1 (en) * 2004-02-27 2005-09-09 Canon Kabushiki Kaisha Piezoelectric thin film, method of manufacturing piezoelectric thin film, piezoelectric element, and ink jet recording head
JP4501517B2 (ja) * 2004-04-21 2010-07-14 パナソニック電工株式会社 圧電ダイヤフラムポンプ
JP4830689B2 (ja) * 2006-07-25 2011-12-07 パナソニック電工株式会社 ダイヤフラムポンプ
JP2008211965A (ja) * 2007-01-30 2008-09-11 Matsushita Electric Ind Co Ltd 圧電体素子、インクジェットヘッドおよびインクジェット式記録装置
JP4317888B2 (ja) * 2007-08-31 2009-08-19 富士フイルム株式会社 スパッタ方法およびスパッタ装置
JP2009240059A (ja) * 2008-03-27 2009-10-15 Fujifilm Corp 圧電デバイス、圧電デバイスを備えた液体吐出装置およびマイクロポンプ
JP2010010933A (ja) * 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd Baw共振装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149766B2 (en) 2018-08-24 2021-10-19 Quest Engines, LLC Controlled turbulence system

Also Published As

Publication number Publication date
JP2011185399A (ja) 2011-09-22

Similar Documents

Publication Publication Date Title
US11165011B2 (en) Piezoelectric element and method for manufacturing piezoelectric element
CN105474419B (zh) 多层薄膜压电设备和制造该设备的方法
EP2579347B1 (en) Piezoelectric device and method of manufacturing piezoelectric device
EP2579348B1 (en) Piezoelectric device, method of manufacturing piezoelectric device, and liquid ejection head
US5344117A (en) Micro-actuator
JP6365690B2 (ja) 圧電デバイスの製造方法
TWI437741B (zh) 鐵電裝置
EP2717344B1 (en) Lower electrode for piezoelectric element, and piezoelectric element provided with lower electrode
JP2009081347A (ja) 圧電デバイスおよび液体吐出ヘッド
JP5435798B2 (ja) 乱流制御装置及び乱流制御用アクチュエータの製造方法
JP2011136412A (ja) 最適駆動式圧電メンブレンの製造方法
EP2772358B1 (en) Passivation of ring electrodes
JP6346693B2 (ja) 圧電体素子の製造方法
JP5729065B2 (ja) 薄膜圧電体デバイス
Levy et al. Single-crystal relaxor ferroelectric piezoactuators with interdigitated electrodes
JP2014503390A (ja) 圧力チャンバの圧電性アクチュエータメンブレンの操作
JP5556181B2 (ja) 薄膜アクチュエータ、及びインクジェットヘッド
JP6421828B2 (ja) 圧電デバイスの製造方法
WO2011007645A1 (ja) 薄膜アクチュエータ、及びインクジェットヘッド
EP2504273B1 (en) Mems device and method of fabrication
EP2974867A1 (en) Inkjet head, method for manufacturing same, and inkjet printer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5435798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees